
i

COPYRIGHT © 1997 Niakwa, Inc.

23600 N. Milwaukee Avenue
Vernon Hills, IL 60061
U.S.A.

PHONE: (847) 634-8700
FAX: (847) 634-8718
E-MAIL: sales@niakwa.com or support@niakwa.com

INSTANT VISUAL NPL DEVELOPER’S

GUIDE

Version 1.0

ii Contents

DISCLAIMER OF WARRANTIES AND LIMITATION OF
LIABILITIES AND PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa) has taken due care in preparing this manual.
Nothing contained herein shall be construed to modify or alter in any way the
standard terms and conditions of the Niakwa Programming Language (NPL) Support
and Distribution License Agreement and Warranty or any other Niakwa License
Agreement (collectively, the “License Agreements”) by which this software package
was acquired.

This manual is to serve as a guide for use with the Niakwa-authored suite of NPL
products only, and not as a source of representations or additional undertakings by
Niakwa. The licensee must refer to the License Agreements for Niakwa product and
service representations.

No ownership of Niakwa software is transferred by any of the License Agreements.
Any use of Niakwa software beyond the terms and conditions of the License
Agreements, without the written authorization of Niakwa, is prohibited.

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage and retrieval system, without prior written permission
from Niakwa, Inc.

Niakwa, Niakwa Data Manager (NDM), Niakwa Programming Language (NPL), Visual
NPL (VNPL, Vinny) and Instant Visual NPL (Instant Vinny) are trademarks of Niakwa,
Inc.

All other trademarks are the property of their respective holders

iii

iv Contents

Contents

1. Introduction
1.1 What is Instant Visual NPL?..2
1.2 System Requirements...3
 1.2.1 Developer Knowledge..3
 1.2.2 Hardware.. 3
 1.2.3 Software.. 4
1.3 Software Contents...4
1.4 Installation..6

2. Quick Start Tutorial
2.1 Getting Started... 9
2.2 Required NPL Program Modifications...............................10
 2.2.1 Setting up the Instant Vinny Project......................10
 2.2.2 Modifying the NPL Applications..............................12
2.3 Creating the VB Project...13
2.4 Creating a VB Form..15
2.5 Make an .EXE... 20
2.6 Starting the Instant Vinny Application............................20
2.7 Add a Button to Close the Form...................................... 23
2.8 Adding a Form to “ATDEVICE”..26
2.9 Add Enhancements to an Form....................................... 29

3. Instant Visual NPL Fundamentals
3.1 Intended Scope of Instant Vinny..................................... 34
3.2 How Instant Vinny Works..34
3.3 NPL Application Changes Required................................. 35
 3.3.1 Additional Changes to the NPL Program.................36

v

3.4 Visual Basic Considerations..38
 3.4.1 Visual Basic Requirements.....................................38
 3.4.2 Visual Basic Form Requirements............................39
3.5 Mixing Instant VNPL with Standard VNPL........................41
3.6 Examples...42

4. NPL Reference
4.1 NPL Variables..44
4.2 NPL Procedures..45
 4.2.1 'VnIVCurrForm$...45
 4.2.2 'VnIVDisableColor...46
 4.2.3 'VnIVInit...47
 4.2.4 'VnIVSelect...48
 4.2.5 'VnIVShutdown...49

5. Visual Basic Reference
5.1 Constants..52
 5.1.1 Standard Keys (strings)...52
 5.1.2 Special Function Keys (integers).............................52
5.2 Subroutines...54
 5.2.1 VnGoNPL..54
 5.2.2 VnSendKeys..55
 5.2.3 VnSendSF...56
 5.2.4 VnSendStr..57
 5.2.5 VnSetHost...58

6. Deployment
6.1 Using the Visual Basic Setup Wizard...............................60
 6.1.1 Manually including the NPL files.............................60

1

Documentation Conventions
This manual uses the following typographic conventions to
describe NPL code and constructs:

Example of NPL Conventions Description

“VnplDev” Names of NPL modules (programs)
are enclosed within quotations in
this font.

'VnClose, 'VnCmd Names of NPL functions and
procedures appear in this font,
preceded by an apostrophe.

_VnSys, VnPrint$ Names of NPL constants and
variables appear in this font.

PROCEDURE 'NextRecord/PUBLIC
 ;NPL
 ;
END PROCEDURE 'NextRecord

Code examples written in NPL
appear in this font with ;NPL
embedded within the code as an
explanatory REMark statement.

These typographic conventions describe Visual Basic code and
constructs:

Example of VB Conventions Description

Main, VnDevDef, VnSetCtrl Names of VB methods, events,
functions and procedures appear
in bold.

MyProject, Form1, VnplLink,
VnplUtil

Programmatic names (not
filenames, titles, or captions) of
VB objects appear in bold and
italics.

BackColor, Tag, Visible, Clipboard,
Printer, Screen

Names of VB properties and
system objects appear with initial
letter(s) capitalized.

2 Instant Visual NPL

File, Edit, Tools, Next, Previous, OK,
Cancel

Text titles and captions of VB
menu choices, tab choices,
buttons, check boxes and other
objects appear in italics.

Private Sub NextBtn_Click()
 Rem VB
 VnCallProc "NextRecord"
End Sub

Code examples written in VB
appear in this font with Rem VB
embedded within the code as an
explanatory Remark statement.

These other typographic conventions also appear in the manual:

Example of Other Conventions Description

BOOT.OBJ, DEMOS.NPL,
SETUP.EXE, .DLL

Filenames of native Windows or
DOS files (including NPL
diskimage filenames) and filename
extensions appear in this bold
font.

F5, TAB, DEL Names of keys and key sequences
appear in small capital letters.

properties, methods, events In text, italic letters indicate
defined terms, usually the first
time they occur in the book.
Italics also are used occasionally
for emphasis.

RETURN Text you’re instructed to type in
appears in this font.

 Instant Visual NPL 3

C H A P T E R 1

This chapter introduces Instant Visual NPL (Instant Vinny) to
the NPL developer. Topics covered in this chapter include:

• A description of Instant Vinny

• The differences between Instant Vinny and Niakwa’s Visual
NPL Product

• Instant Vinny system requirements

• Instant Vinny file descriptions

• Installation of Instant Vinny

Introduction

4 Instant Visual NPL

1.1 What is Instant Visual NPL?
Visual NPL (Vinny) and Instant Visual NPL (Instant Vinny) together
solve the following problem: How do you take an existing
character-based NPL application into the graphical world?

To completely convert that application to Windows, you need two
things: Vinny and some time (to design the Visual Basic forms that
Vinny connects to your application, and to adjust your application
to respond to the “event-driven” way that Windows works)

But most applications follow an 80/20 rule: 80% of the user
screens are used rarely, while the remaining 20% are used a lot.
In order to speed the delivery of a graphical version of your
product to market, we recommend that you follow this plan:

Phase 1: Convert the high-use 20% of your screens to
graphical Windows using Vinny. Convert the remaining low-
use 80% to “no-frills-but rapid-deployment” graphical
Windows using Instant Vinny. Release this version of your
application, allowing you to demonstrate and upgrade
existing users to a Windows version of your product.

Phase 2: Once you are receiving revenue from Phase 1 (and
have satisfied the market need for a Windows version of
your application), convert the Instant Vinny screens to
Vinny screens. Release this version of your application.

Instant Vinny, therefore, is a tool intended to help NPL developers
quickly integrate part or all of character based NPL applications
into the graphical Visual Basic environment, with a minimum of
time and effort. This is accomplished by adding a small number of
changes to the existing NPL application combined with a small
amount of Visual Basic form design and coding.

 Instant Visual NPL 5

This allows the developer to improve the look and feel of an
application in a short period of time, while reducing the overhead
knowledge required. Once this is accomplished, the developer can
begin to fully explore the Vinny environment while maintaining
support for current applications.

To illustrate this, a quick start tutorial is provided in Chapter 2 of
this guide. The tutorial provides a step by step project that is easy
to follow, allowing you to become comfortable with the concepts of
Instant Vinny in a short period of time.

1.2 System Requirements
This section discusses the hardware and software requirements to
successfully install and use Instant Vinny.

1.2.1 Developer Knowledge
While Instant Vinny is designed to be a simple tool, developer
knowledge of certain subject matter is assumed throughout this
guide. The subject areas include:

• A comfortable understanding of NPL and NPL Release IV
features (i.e., modules and procedures)

• A basic understanding of Microsoft Visual Basic
• A basic understanding of Visual NPL

In general, if you have comfortably installed Visual Basic and
Visual NPL, the tutorial and example programs provided should be
enough to provide a rapid introduction to Instant Vinny.
Developers should refer to the Visual NPL Developers Guide for
details on installing and using Visual NPL.

1.2.2 Hardware
No specific hardware is required beyond that which is
recommended for running Microsoft’s Visual Basic. However, for
best results it is recommended that the product be used in
conjunction with a fast video adapter. In addition, you may want
to consider using a 17” monitor.

6 Instant Visual NPL

1.2.3 Software
To develop an application in Instant Vinny, the following software
needs to be installed on your system.

• MS-Windows Version 3.1 or later (Windows 95 or Windows NT
recommended)

• NPL for MS-Windows Revision 4.22.21 or later
• Visual NPL 2.0 or greater
• Microsoft Visual Basic 4.0 (16-bit version)

Note Revision 4.22.21 is a maintenance update to Niakwa’s 4.22
field release of NPL. This update is available for download from
Niakwa’s world wide web site at www.niakwa.com.

1.3 Software Contents
Instant Vinny consists of this guide and one diskette containing a
compressed setup program and files. Running the SETUP program
decompresses the files into:

File Name Description

CUSTMENU.FRM Form used in the “Customer Menu” demo

CUSTOMER.FRM Form used in the “Customer” demo

DATAFORM.FRM Form Used in the “Data“ demo

DEFAULT.FRM Sample Instant Vinny Form

EXITSCRN.FRM Instant Vinny Exit Form

HIDESHOW.FRM Form used in the Hide/Show Demo

ICONINFO.TXT Describes which Icons you should create in
Windows

INSTVNPL.BAS Instant Vinny Visual Basic library

IVDEMO.EXE Compiled Instant Vinny Demo Visual Basic Library

IVDEMO.NPL Instant Vinny Demo NPL Library

IVDEMO.OBJ Instant Vinny Demo Object File

IVDEMO.VBP Instant Vinny Demo Visual Basic Project

MAINMENU.FRM Form used as the Main Menu

 Instant Visual NPL 7

NOBORDER.FRM Form used for the No Border Demo

OKCANCEL.FRM Form used for the Options Demo

OPTIONS.FRM Form used for the Options Demo

RTIFORM.FRM Generic RunTime Form

RTIFORM.FRX VB compiled form (of above)

SWOOSH.ICO Icon file used for the Custom Control Toolbar

VNPLDEV.BAS Visual NPL developers module

VNPLFORM.FRM Visual NPL connection control form

VNPLFORM.FRX VB compiled form (of above)

WELCOME.FRM Opening Instant Vinny Form

WELCOME.FRX VB compiled form (of above)

8 Instant Visual NPL

1.4 Installation
To install Instant Vinny from the distribution diskette onto your
system, run the SETUP.EXE program on the diskette. This program
does the following:

• Prompts you for the drive and directory to copy the Instant
Vinny files into. This should be a subdirectory of your Visual
NPL 2.0 directory

• Decompresses the files and copies them to the specified
directory

• Creates a new program group of folder depending on which
Windows environment is detected

• Creates icons for the Instant Vinny demo program

 Instant Visual NPL 9

C H A P T E R 2

This chapter contains a step by step tutorial demonstrating how to
apply Instant Vinny to the standard Niakwa Utility programs
distributed with the NPL Development Package.

Upon completion of this tutorial you will have converted the NPL
Utilities main menu program from the programs' typical look and
feel in Figure 2.1 to the Instant Vinny look and feel illustrated in
Figure 2.2.

This chapter discusses:

• Getting started
• Required modifications to the NPL program
• Creating the VB project
• Creating VB forms
• Making an executable for distribution
• Enhancing the NPL program by adding controls to the VB form

Quick Start Tutorial

10 Instant Visual NPL

1.

Figure 2.1 Typical NPL Utility Menu

Figure 2.2 Instant Vinny Utility Menu

 Instant Visual NPL 11

2.1 Getting Started
Before beginning this tutorial, the following items must be
installed and working properly on your system.

• Visual NPL 2.0
• Instant Visual NPL
• The Niakwa Utilities (UTILITY.BS2 and UTILITY.OBJ)
• Visual Basic 4 (16-bit)

Once you're comfortable the above programs are in place and
operational, you are ready to begin. The scope of this tutorial is to
adapt the standard NPL Utilities Menu program (“2CMENU”) to an
enhanced graphical version using Instant Vinny. To accomplish
this, the following tasks will be performed:

• Create a working directory and diskimage for your Instant
Vinny Project

• Create a boot program for the Instant Vinny application
• Modify two NPL Utility programs to prepare them to use Instant

Vinny
• Create a VB project to support the NPL application
• Create an executable program to deliver the application
• Add custom controls to enhance the NPL application

The following sections will guide you through each of the above
tasks.

12 Instant Visual NPL

2.2 Required NPL Program Modifications
This section will guide you through setting up files for the Instant
Vinny tutorial and modifications required to the NPL programs.

2.2.1 Setting up the Instant Vinny Project
The first step in creating an Instant Vinny project is to create a
project directory and copy all required diskimages and programs
into this directory. So, assuming you have installed Instant Vinny
into a subdirectory of Visual NPL, create and change into the
following directory:

C:\VNPL20\INSTVNPL>MD IVUTIL

C:\VNPL20\INSTVNPL>CD IVUTIL

C:\VNPL20\INSTVNPL\IVUTIL>

Once this is accomplished, copy the current NPL Utilities into this
directory. Assuming these are in a BASIC2C directory, perform
the following:

C:\VNPL20\INSTVNPL\IVUTIL>COPY C:\BASIC2C\UTIL*.*

Note The NPL Utilities are also available on the NPL Utilities Disk
included with your NPL Development Package.

 Instant Visual NPL 13

The next step to perform is to expand the UTILITY.BS2 diskimage
to accommodate several new programs that need to be added to
the diskimage. To do this, use the NPL Utilities to perform the
following tasks:

1. Upon startup of the NPL Utilities, add the following diskimages
to the NPL Device Table:

C:\VNPL20\VNPL.NPL

C:\VNPL\20\INSTVNPL\IVDEMO.NPL

After establishing the above device references, proceed to the
NPL Utilities Main Menu.

2. From the Main Menu, run the “Change Diskimage Size ”
program and extend the end catalog of the UTILITY.BS2
diskimage (Device D35) to 1000 sectors.

3. Run the “General File Copy” program and copy the contents
of the VNPL.NPL diskimage into UTILITY.BS2.

4. Run the “General File Copy” program and copy the file
“INSTVNPL” from the IVDEMO.NPL diskimage into the
UTILITY.BS2 diskimage.

Once the above steps have been completed, the Instant Vinny
project is in place and you are ready to begin modifying the NPL
programs.

14 Instant Visual NPL

2.2.2 Modifying the NPL Applications
In order to migrate an NPL application to Instant Vinny, the
application must be able to locate the Instant Vinny support
programs and the name of the file that contains the Visual Basic
forms and controls.

2. Load the “2CMENU” program from UTILITY.BS2 and add the
following two lines to the beginning of the program.

INCLUDE T#0,"InstVnpl"

‘VnIVInit ("IVUTIL")

The first line causes the module “InstVnpl” to be loaded, allowing
the NPL application to reference all of the Instant Vinny variables
and routines.

The second line ‘VnIVInit (“IVUTIL”) , initializes the
IVUTIL.EXE program. This program will be created later on in this
tutorial.

5. In the mainline code of “2CMENU” , you need to specify the name
of the Visual Basic form to use. In this particular case we can
add this line after the two lines discussed above. Let’s call the
form “MAIN1”. To do this add the line

 ’VnIVSelect (“MAIN1”)

3. Resave the “2CMENU” program.

Note Any time you change forms in Instant Visual NPL you must
call the ‘VnIVSelect (“<form name>”) procedure to associate
the new form with the NPL application.

6. Add the same three lines of code to the first line of the
“ATDEVICE” program. This is a requirement, since this
program is loaded first by the NPL utilities and displays output
to the screen before the “2CMENU” program.

 Instant Visual NPL 15

2.3 Creating the VB Project
We need to create a Visual Basic Project that contains the forms
and code expected by the Instant Visual NPL application. To do
this perform each of the following steps.

1. Start the VB4 16-bit version.
2. In the opening screen, from the Visual Basic menu bar, select

File / Add.
7. In the files selection box, select the directory containing the

Instant Vinny files.
8. Add INSTVNPL.BAS, VNPLUTIL.BAS, VNPLDEV.BAS, and

VNPLLINK.FRM to the project.

Note The selected files have now been added to your “Visual Basic
project”. These files are required on all Instant Visual NPL
projects.
In addition, you will be adding other forms to your Visual Basic
project
later in this tutorial.

Figure 2.3 Visual Basic Project Window

16 Instant Visual NPL

9. Return to the Visual Basic menu bar and select File/Save
Project As. You may have to click the OK button several times
until you get to the dialog box requesting the project name.
Save this project as IVUTIL. The project will be saved as
IVUTIL.VBP. Later this file will be compiled into IVUTIL.EXE,
which is the file initialized by the NPL application using the
‘VnIVInit() function.

10. Return to the Visual Basic menu bar and select Tools/Custom
Controls. Scroll down in the Available Controls window and
check the selection box by Vnpl Connection Control. A control
icon with a Niakwa swiggle on it should appear on your control
tool bar.

Upon completing this section, you have successfully created a
Visual Basic Project that we will build upon to develop an Instant
Vinny version of the NPL Utilities.

Figure 2.4 Visual Basic Control Tool

 Instant Visual NPL 17

2.4 Creating a VB Form
Now that our project is created, the next step is to create a VB
Form. This form will represent the NPL Window. When starting
Visual Basic, the first form displayed is blank and is typically
named Form1. Using Form1, perform the following tasks:

1. Click on the form to assure it is in focus.
2. Change the Name property in the Properties Window to

“MAIN1”.

3. Change the Caption property in the Properties Window to
Instant Utilities.

Note It is highly recommended that all forms have the Maximize
property set to False and the BorderStyle property set to 1 (Fixed
Single). These settings prevent forms from being either Maximized
or Resized. Since it is awkward to reposition buttons and size the
NPL window accordingly, you do not want the forms to be resized.

4. Select the 3-D Text Box from the VB Controls Tool Bar. Any text
box will do, but the 3-D Text Box just looks nicer. Make the
text box almost as large as the form.

Note Change the Name property of a form before adding controls
to

the form. Otherwise, the controls will be lost when you rename
the

form.

18 Instant Visual NPL

5. After adding the 3-D text box control to the form, change the
Name property of the 3-D text box control to RTIWINFrame.
Any name is acceptable, but we recommend using
RTIWINFrame. This naming convention helps make your code
easier to debug.

Note Always change the Name property of a control before adding
any code to the control. Otherwise, the code will be lost when you
rename the control.

Figure 2.5 Main1 form with 3-D text box applied

 Instant Visual NPL 19

6. Double click on the form itself (not the 3-D text box) to bring up
the code box for the form.

7. In the FORM _ LOAD() function, add the following line as
displayed in Figure 2.6. The VnSetHost statement ties the NPL
window to the control named RTIWINFrame.

VnSetHost RTIWINFrame

Figure 2.6 Load Form Command Window

20 Instant Visual NPL

8. To prevent the VB form from closing and leaving RTIWIN
"floating" on the desktop (without a title bar or border), the
QueryUnload event should be trapped on all forms. It is best
to handle the closing of the VB forms by sending the
appropriate keystrokes back to the runtime and having it exit
the NPL application so as to shut everything down properly. In
the code box for the Main1 form, in the QueryUnload()
procedure enter:

If UnloadMode < > 1 Then

Cancel = 1

'

'if typing the letter "Y" ends the
'application, then use the following
'line

'VnSendStr "Y"

'

End If

Note If you want the closing of a form to quit
the NPL application , you should send the
appropriate keystrokes to the NPL application to
have it shutdown. The keystrokes would be the
same that a Close button would send to the
runtime.

Our next step is to add the name of our new form to the Select
statement in VNPLDEV.BAS. To accomplish this:

1. Double click on VNPLDEV.BAS in the project window.
2. The top right window will have “[declarations]” in it. Click on

the down arrow next to the window and a selection box will
drop down. Select VnSetObj.

 Instant Visual NPL 21

3. The code for VnSetObj will appear in the main window. Scroll
down to the Select Case ObjName statement. There should
be several entries in that statement already. Using the existing
entries as an example, enter the name of your newly created
form (MAIN1) to the statement.

Note Every form in your Instant Vinny application must be
identified in this Select statement.

Figure 2.7 Select Case statement in VnplDev

22 Instant Visual NPL

2.5 Make an .EXE
The final step in creating the Instant Vinny Utilities is to make a
VB executable to launch the Instant Vinny Application. To do this,
perform the following steps:

1. From the Visual Basic menu bar select File / Make An Exe File.
The dialog box will ask where to save the file and what to name
it. The default name is the project name. Use the default
name and save it in the BASIC2C directory.

2. When you make changes to the project you must resave the
project and remake the EXE file. If an EXE file exists with the
same name you will be asked if you want to replace the file.
(Answer yes).

2.6 Starting the Instant Vinny Application
The Instant Vinny application is started in the same manner as a
VNPL application with one addition, you must add the /C
parameter on the command line:

RTIWIN [<bootfile>] /C /Xvnpl16.dll

To start your application, enter:

C:\BASIC2C\INSTVNPL\IVUTIL\RTIWIN UTILITY /C

/XVNPL16.DLL

Note The NPL /C command line option is supported by NPL
revision 4.22.21 or greater.

 Instant Visual NPL 23

The first screen you see is the “NPL Device Configuration” screen
applied to the Instant Vinny form.

Press the TAB key and do not accept the changes to advance to
the next screen.

Figure 2.8 Device configuration screen applied to Vinny form

24 Instant Visual NPL

You should be looking at the familiar NPL Utilities menu applied to
the Visual Basic form you just created.

You should now see the modified ”2CMENU” program displayed.
Other than the display of the menu, the program operates the
same as it did when running outside of Instant Vinny.

Exiting from NPL Utilities leaves you with the VB form and an
active RunTime screen pasted on it. Enter $END to exit the
RunTime and close the VB form.

In the next section, we will look at dressing up our form a bit.

Figure 2.9 Main form with NPL Utilities in 3-D text box

 Instant Visual NPL 25

2.7 Add a Button to Close the Form
This section walks you through adding a command button control
to the Instant Utilities application.

1. Start Visual Basic and open your project.
2. View the MAIN1 form.
3. Click on the RTIWINFrame control and resize it to make some

room at the bottom for a command button.
4. Drop a command button (from the VB Controls Tool Bar) onto

the bottom of the MAIN1 form and adjust the size so it looks
good to you.

5. Click on the new button control and change the Name property
of the command button to BtnExit.

6. Change the Caption property of the command button to Exit.

Figure 2.10 Main form with Exit button added

26 Instant Visual NPL

7. Double click on the command button to bring up the code
window for it. In the code for the BtnExit_Click() function
enter:

VnSendSF NPL_Cancel
VnSendStr "$END" & NPL_Return

Note You could have used the VnSendKeys procedure instead of
VnSendSF and VnSendStr. VnSendSF or VnSendKeys can be
used to send special function keystrokes to the NPL application.
Special function keys must always be sent singly no matter which
procedure is used. VnSendKeys and VnSendStr can send
character strings and standard keys. Several character strings
and standard keys can be combined by putting an ampersand (&)
between them. They can be sent using either VnSendKeys or
VnSendStr procedure. A character string is always enclosed in
quotes.

8. Recompile IVUTIL.VBP into an EXE file again, replacing the old
IVUTIL.EXE with the new one.

Figure 2.11 Exit Button code screen

 Instant Visual NPL 27

9. Start the application again by entering C:\BASIC2C\RTIWIN
UTILITY /C /XVNPL16.DLL. This time there should be an exit
button on the bottom of the NPL Device Configuration form and
the Utilities Menu form.

With the NPL Device Configuration screen on the form, the Exit
button will not cause the form to close or exit. The reason for this
is the "ATDEVICE " program does not understand the commands
being input from the Exit command button.

Use the keyboard and advance to the NPL Utility Main Menu and
clicking the Exit command button will cause the form and NPL
window to close and exit the RunTime.

The next section will discuss adding a unique form for the
“ATDEVICE” program.

Figure 2.12 Instant Visual NPL screen with Exit Button

28 Instant Visual NPL

2.8 Adding a Form to “ATDEVICE”
This section discusses adding a new form to be displayed when the
initial Device Configuration screen of the Instant Vinny Utilities is
displayed.

1. If Visual Basic is not running, start it and open your project.
2. Add a new form to your project. From the menu bar select

Insert / Form.
3. Change the Name property of the form to DevFrm.
4. Add a 3-D Text Box to the form. Size it to allow room at the

bottom for a command button and at the top for a heading.
5. Change the Name property of the text box to RTIWINFrame.
6. Add a command button on the bottom of the form, size it, and

change the Name property to BtnCont.
7. Change the Caption property to Continue.
8. In the code for the BtnCont command button, enter:

VnSendKeys NPL_Tab

VnSendKeys NPL_execute

9. Next, let’s add a heading to DevFrm.
10. Select a Label control (from the VB Controls Tool Bar) and drop

it on the top of the form.
11. Size the Label control to fill the space between the Menu bar

and the top of the RTIWINFrame control.
12. Center the heading on the form by changing the Alignment

property. To change this property, mouse click on the
Alignment property to highlight it. A down button appears.
Click on the down arrow and a list of options will drop down.
Choose 2-Center with a mouse click to center the heading.

 Instant Visual NPL 29

13. Change the color of the text in the heading on the form to red
by changing the ForeColor property in the same manner as
above. Mouse click on the red color swatch.

14. Change the Font property by selecting it with a mouse click.
When you select the property a font selection dialog box will
appear. Choose a nice looking font and set the size to 24.

15. Change the Caption property. To do this, select the property
with the mouse. Click on the right hand column opposite the
Caption property. Now you can enter the text of the heading.
Enter NPL Device Configuration. You will see the text, in
red, on the top of the form where you placed the Label control.

Notice how the caption changes as you make changes in the
property for that Label. This allows you to see what the changes
look like before you actually run the program.

Figure 2.13 Visual Basic Properties Window

30 Instant Visual NPL

The name of the newly created form has to be added to the Select
statement in VNPLDEV.BAS.

Every form in your Instant Vinny application must be identified in
this Select statement.

The 'VnIVSelect statement in the “ATDEVICE” program has to be
modified to load the new form.

Change:

'VnIVSelect("Main1")

to

'VnIVSelect("DevFrm")

Re-make the EXE. and run the program. This time you should be
greeted by a new screen with the caption “NPL Device
Configuration”, the NPL Device Configuration screen, and a button
labeled Continue. Press the Continue button and the Main1
screen will appear with the NPL Utility menu.

Figure 2.14 Add the form name to the Select Case statement in VnplDev

 Instant Visual NPL 31

In the next section we will modify the Main1 form and dress it up
a bit by adding a header.

2.9 Add Enhancements to an Existing Form
This section discusses how to add a colorful heading to the
existing Main1 form.

1. If Visual Basic is not running, start it and open your project.

2. Reduce the size of the RTIWINFrame control to allow some
room at the top of the form for the heading.

3. Take the Label control from the VB Control Bar and drop it on
the top of the form. Size the control to fill the space between
the Menu bar and the top of the RTIWINFrame control.

4. Center the heading on the form by changing the Alignment
property. To change this property, mouse click on the
Alignment property to highlight it. A Down button appears.
Click on the Down arrow and a list of options will drop down.
Choose 2-Center with a mouse click to center the heading.

5. Change the color of the text in the heading on the form to red.
Change the ForeColor property in the same manner as above.
Select the red color.

6. Select a font for the heading. Change the Font property by
selecting it with a mouse click. When you select this property
a font selection dialog box will appear. Choose a nice looking
font and set the size to 24.

32 Instant Visual NPL

7. The Caption property is where the text for the heading is
actually entered. To do this, select the Caption property with a
mouse click. Click on the right hand column opposite the
Caption property. Now you will be able to enter the text for the
heading. Enter “Instant NPL Utilities”. You will see the text, in
red, on the top of the form where you placed the Label control.

Figure 2.15 Visual Basic Properties Window

 Instant Visual NPL 33

8. Re-make the EXE file and start your Instant Visual NPL
Utilities.

Congratulations, you have just created your first Instant Visual
NPL application.

With just a few modifications to the NPL code and some minor
coding in Visual Basic, you have created a Windows look for the
NPL Utility menu.

Figure 2.16 Instant Visual NPL form with Heading added.

34 Instant Visual NPL

You can add more command buttons to the form, sending different
NPL_keys to the NPL application.

For instance:

Create Up and Down command buttons and send NPL_NORTH
and NPL_SOUTH to the application with them.

Make a Select button and send NPL_EXECUTE with it.

Now you can navigate the entire main menu screen using only the
command buttons on the Visual Basic part of the form.

Figure 2.17 Final Instant Visual NPL form

 Instant Visual NPL 35

C H A P T E R 3

This chapter discusses the fundamentals of using Instant Vinny
and covers the following topics:

• Intended scope of Instant Vinny applications

• How Instant Vinny works

• Changes required to adapt an NPL application to use
Instant Vinny

• Visual Basic requirements

• Visual Basic form design requirements

• Merging an application with both Visual NPL and Instant
Vinny routines

Before reading this chapter, developers are encouraged to walk
through the “Quick Start Tutorial” in Chapter 2.

Instant Vinny Fundamentals

36 Instant Visual NPL

3.1 Intended Scope of Instant Vinny
As discussed in Chapter 1, Instant Vinny is a development tool
designed for the specific purpose of improving the overall look and
feel of an NPL application in a Windows environment. Instant
Vinny is designed to be simple to use and implement.

The intention of this product is to provide developers with a simple
path to integrate an NPL application with Visual Basic without
having to be an advanced Visual Basic or Visual NPL user.

3.2 How Instant Vinny Works
An Instant Vinny application is an NPL program running in a
special RTIWIN window that appears to be “pasted” on a Visual
Basic form. This special NPL window has no border, no title bar,
and no menu. It looks like a type of Visual Basic control.

Note This is especially true if the application’s color schemes can
be modified to closely match those commonly used in Windows.
Techniques to do this are found later in this guide.

The Visual Basic form is usually quite simple, and is designed to
allow push and/or radio buttons to emulate normal and SF
keystrokes typed in the NPL program. Normal or Special Function
key combinations used by the NPL application are executed by
clicking on an appropriate button located on a Visual Basic form,
in addition to pressing keys from the keyboard as always.
Combining these buttons with picture boxes and other display
objects enhances the appearance of the application. The behavior
and performance of the NPL application, however, remains
unchanged.

 Instant Visual NPL 37

3.3 NPL Application Changes Required
In order to adapt an NPL application to use Instant Vinny, several
changes to the NPL program are required.

The first required change is to insert a line of code that will point
the NPL application to the Visual NPL libraries. For example, the
first line of your NPL application should be:

 INCLUDE T "InstVnpl"

Next, a line of code is added that initializes Visual NPL, and loads
the compiled VB program containing the Visual Basic form(s) you
will be using. For example:

 'VnIVInit("MyApp")

The above command initializes Visual NPL using the 'VnIVInit
procedure, and loads MyApp.EXE.

Note The VB program may or may not exist at this point. The
code just needs to reference the correct name of a VB application
at runtime.

Once the application and VB are initialized, the NPL window
remains hidden by default. To make the form visible, use the
'VnIVSelect procedure to load a Visual Basic form. For
example,

'VnIVSelect(“MAIN1”)

Note Add this statement after the application's code initialization
section.

After the VB form has been loaded, the NPL window will appear to
be pasted onto the VB form, very much like a standard VB control.
The NPL application may switch VB forms at anytime by issuing a
subsequent 'VnIVSelect procedure and specifying a different
VB form name.

38 Instant Visual NPL

At this point, the NPL application will execute just as it did before.
In addition, the application exits just as before and Instant Vinny
will automatically shut itself down.

The changes discussed above are the minimal code requirements
needed to initialize Instant Vinny and load a single Visual Basic
form. However, most programs have a variety of screens in which
the SF key functionality may change. Therefore it may be
necessary to switch VB forms occasionally to assure that the
keystrokes associated with button controls on the VB form are
logically consistent with the keystrokes your application is
expecting. In any case, the NPL application will continue to
respond to keystrokes entered from the keyboard as normal.

The number of VB forms an application uses is up to the
developer. The Instant Vinny approach makes virtually all of the
VB forms similar in nature so they can be duplicated and then
changed in a relatively short period of time.

The number of forms an application uses can be held to a
minimum by ‘overloading’ the form with more than the required
controls. Thus, instead of changing forms every time you switch
NPL screens, a single form can represent many forms by making
controls visible and invisible upon demand without changing
forms. Examples of this are included in the Instant Vinny demo
application and VB forms.

3.3.1 Additional Changes to the NPL Program
To make your application look as “Windows-like” as possible, it is
advisable to modify the NPL color scheme to match the standard
Windows display colors as closely as possible. RTIWIN does part of
this by default by mapping white to the standard Windows
foreground color and black to the standard Window’s background
color.

The most common color scheme for VB forms (and Windows
applications in general) is black text on a gray background. This
contrasts rather poorly with most color schemes used by typical
text character based NPL applications. A fairly common text
application will use white or bright white on blue, which will
appear quite abnormal pasted onto a standard VB form.

Changing the VB colors would make the entire application look
different from standard Windows applications, which would defeat

 Instant Visual NPL 39

a primary purpose of Instant Vinny. Therefore it is suggested that
the NPL application be modified to take on the standard color
scheme of Windows applications if multiple color schemes are
used.

This may not be practical if the NPL application changes colors
without using a library of procedures that define default
foreground and background colors or override certain or all color
combinations. Furthermore, certain colors might be used to
highlight data fields, push buttons, or other regions of the screen
that would otherwise be difficult to see if the color schemes were
modified. The developer should take care in re-mapping the
application’s colors so that functionality is not lost.

The default colors used for button background and text are
determined as follows:

1. If the RTIWIN.INI settings for StandardRGBColor0 and
StandardRGBColor7 are assigned values, these color values
are used for NPL text where the program specifies black and
white color, respectively.

2. In the absence of RTIWIN.INI settings, the default NPL Window
colors of black and white are replaced by the current desktop
color values for button background and text respectively.

In addition, Instant Vinny provides the procedure
'VnIVDisableColor which may assist in standardizing the look
of your NPL application. Another possible method is to remap how
RTIWIN displays colors by using the color settings feature of
RTIWIN.INI . For example, the following would be set in the
GENERAL section of RTIWIN.INI :

 [GENERAL]

StandardColorRGB0=192 192 192 ;black to gray

StandardColorRGB1=192 192 192 ;blue to gray

StandardColorRGB2=255 255 255 ;green to white

StandardColorRGB3=255 255 255 ;cyan to white

StandardColorRGB7=0 0 0 ;light gray to black

StandardColorRGB12=0 0 0 ;bright red to black

40 Instant Visual NPL

StandardColorRGB15=0 0 0 ;bright white to
black

3.4 Visual Basic Considerations
This section discusses the Visual Basic program requirements of
an Instant Vinny application and the relationship of the
components that link Instant Vinny and VB.

3.4.1 Visual Basic Requirements
An Instant Vinny application requires a Visual Basic project be
created in the same manner as a standard Visual NPL application
does. In addition, the module INSTVNPL.BAS must be added to
that project.

This module includes the three basic procedures that are used by
all Visual Basic controls for sending keystroke commands back to
the NPL application. Those procedures are:

VnSendKeys

VnSendStr

VnSendSF

The VnSendKeys procedure is simple to use. It’s purpose is to
send either standard ASCII characters to the NPL application
(including NPL virtual keys) or a single special function key.

The latter two procedures are specialized procedures. The
VnSendStr procedure sends only standard keystrokes, while the
VnSendSF procedure sends only special function keys.

Note VnSendSF is limited to sending a single special function
key at a time. VnSendStr and VnSendKeys may send a string
of characters limited in length only by the liberal character string
restrictions in Visual Basic.

The Visual Basic project must contain all of the forms that you
wish to display from your NPL program. In addition to
INSTVNPL.BAS mentioned above, it must also contain

 Instant Visual NPL 41

VNPLLINK.FRM, VNPLUTIL.BAS, and VNPLDEV.BAS as is
required for all Visual NPL / VB projects.

In addition, VNPLDEV.BAS must be edited to include the object
names of the forms you will be displaying, just as in Visual NPL.

42 Instant Visual NPL

Refer to Section 2.4 of your Visual NPL documentation for a
discussion in how to add files to the VB projects and what must be
modified in VNPLDEV.BAS.

3.4.2 Visual Basic Form Requirements
The Visual Basic forms used with Instant Vinny are fundamentally
different from those used by Visual NPL.

First, the controls which you place on a form can only be
‘clickable’ in nature (i.e. push buttons and radio buttons.) You
may also use the VB menu editor to create menu events that send
keystrokes back to your NPL application.

Keyboard input controls like a TextBox will not work with Instant
Vinny. In addition, mixed controls such as combo boxes are not
recommended since these are not intended for use in the Instant
Vinny environment.

It is important to remember that the Visual Basic form never
retains focus for very long, as RTIWIN is predominantly obtaining
focus in order to execute the NPL applications code.

Note To dress up a form, add ‘display’ controls such as text
labels and picture boxes to the form. You may add as many of
these controls as you wish.

The second difference between and Instant Vinny and standard
Visual NPL for is that all Instant Vinny forms require a special
‘RTIWIN sync’ control. By default this control is called
RTIWINFrame and is just a standard text box control with a
special name. The size and position of this control is what
determines where the NPL window appears on the VB form.

The Form_Load() event of each VB form must contain a call to
the Instant Vinny procedure VnSetHost. It is that call which
tells RTIWIN to align itself with the special sync control placed on
the VB form.

The NPL program controls the decision of which VB form is
currently displayed by making 'VnIVSelect calls. It is not
advisable to use VB commands to directly change forms or even

 Instant Visual NPL 43

unload the current form. A better method is to send a keystroke
back to the NPL application which will then execute a segment of
code which will change the VB form to the one it wants.

It is a good idea to disable the closing of a VB form by modifying
the forms QueryUnload event by adding the following code.

Private Sub Form_ QueryUnload(Cancel As

Integer, UnloadMode As Integer)

 If UnloadMode <> 1 Then

 Cancel = 1

 VnSendKeys NPL_Cancel

 End If

End Sub

The above code disables the event from automatically unloading
the form by setting Cancel to 1 and sending the Cancel key to the
NPL application. The NPL application will react to the cancel key
by switching forms.

44 Instant Visual NPL

3.5 Mixing Instant Vinny with Visual NPL
An application may utilize both the Instant Vinny approach and
Visual NPL development design. In fact, this is the recommended
model for converting an existing NPL application to a Windows
event driven application. The NPL application is first “Instant
Vinnyized” and then some or all of its screens are converted to
true Visual NPL forms.

Hint It is important to remember that when mixing the two, both
cannot be active at the same time. You may have an Instant
Vinny form visible (with RTIWIN visible and executing) or you may
have one or more Visual NPL forms visible with RTIWIN hidden
and “put to sleep”, but both may not be visible at the same time.

The easiest way to do this (and highly advised) is to make both
part of the same VB project. Initialize Instant Vinny and then
display either Visual NPL screens or Instant Vinny screens as your
code executes.

You load an Instant Vinny form with the 'VnIVSelect procedure
and you put Instant Vinny on hold by issuing 'VnIVSelect
again without a form name. You may then launch a Visual NPL
form using the methods normally used by Visual NPL programs.
After returning from the Visual NPL portion of your application,
Instant Vinny may be activated with another 'VnIVSelect call
to the appropriate Instant Vinny form name.

Note It is permissible to have separate VB applications for both
Visual NPL and Instant Vinny sections, but this method can be
more difficult to implement and has few benefits.

 Instant Visual NPL 45

3.6 Examples
Instant Vinny is distributed with an example application and fully
commented source code that demonstrates how to begin and how
to change VB forms. Also included are several sections showing
how to use some Visual NPL procedures and functions to make
your Instant Vinny forms more dynamic. An example of mixing
both Instant Vinny and Visual NPL is also included.

The examples contain many VB forms that can be used as
templates for just about any Instant Vinny conversion. Refer to
the inline comments to see how and why things are done on the
Visual Basic side of Instant Vinny.

46 Instant Visual NPL

C H A P T E R 4

This chapter contains:

• Detailed descriptions of the NPL variables
• Definitions and detailed descriptions of each of the NPL

subroutines and functions

NPL Reference

 Instant Visual NPL 47

4.1 NPL Variables

VnIVSnapWindow

This variable defaults to _VnTrue which causes VB forms that are
loaded by 'VnIVSelect() to appear in the same location that
the previous VB form was positioned at. When set to _VnFalse ,
VB forms appear in the position set during their design. It is
advisable to leave this variable set to _VnTrue as this provides a
more logical and visually consistent display of forms.
VnIVSnapWindow also controls the positioning of the first VB
form based on the position of the VB form when it was last run. If
VnIVSnapWindow is set to _VnTrue then the Instant Vinny
application will startup in the position that it was left off in. If
false, it will default to the form's design position.

48 Instant Visual NPL

4.2 NPL Procedures
4.2.1 'VnIVCurrForm$
Syntax FUNCTION ''VnIVCurrForm$

Parameters None

Description This function returns the name of the currently loaded VB form.
This applies only to VB forms loaded by 'VnIVSelect , and not
VB forms loaded using other Visual NPL commands.

Returns The name of the currently loaded Instant Vinny VB form

Example PROCEDURE 'Other

 DIM PrevForm$128

 ;

 PrevForm$= 'VnIVCurrForm$

 'VnIVSelect("Other")

 …

 'VnIVSelect(PrevForm$)

END PROCEDURE

See Also 'VnIVSelect

 Instant Visual NPL 49

4.2.2 'VnIVDisableColor
Syntax PROCEDURE 'VnIVDisableColor

Parameters None

DescriptionThis procedure disables color support
in RTIWIN. It may be useful in standardizing the
display of applications converted to Instant Vinny
mode.

Returns None

Examples 'VnIVDisableColor

'VnIVInit("Other")

50 Instant Visual NPL

4.2.3 'VnIVInit
Syntax PROCEDURE 'VnIVInit(

/POINTER _AppName$)

Parameters _AppName$

DescriptionThis procedure initializes an Instant
Vinny application. The parameter _AppName$ is the
name of the Visual Basic executable associated with
the Instant Vinny application. If _AppName$ is a
blank string, Instant Vinny is initialized without
doing a 'VnOpen . This should only be done if you
are starting up Instant Vinny from a Visual NPL
application (which will have already done a
'VnOpen).

Returns None

Example 'VnIVInit("MyApp ")

 Instant Visual NPL 51

4.2.4 'VnIVSelect
Syntax PROCEDURE 'VnIVSelect(

/POINTER
_FormName$)

Parameters _FormName$

DescriptionThis procedure loads a new VB form
(_FormName$) and positions it to the location of the
existing VB form (if there is one). The previous VB is
then unloaded. Auto-positioning of the new VB form
can be disabled by setting the variable
VnIVSnapWindow to the value of _VnFalse. The
NPL window (RTIWIN) is made visible if it isn’t
already. If the value of _FormName$ is a blank
string, the existing form is unloaded and RTIWIN is
made invisible. This is useful for switching to Visual
NPL operation.

Returns None

Example 'VnIVSelect("Utility")

52 Instant Visual NPL

4.2.5 'VnIVShutdown
Syntax PROCEDURE 'VnIVShutdown/EXIT

Parameters None

DescriptionThis procedure shuts down an Instant
Vinny application. It is called implicitly when the
InstVnpl module is unloaded, but may be called
explicitly if you wish to switch to Visual NPL mode
and have a separate application preparing to
execute.

Returns None

Examples 'VnIVShutdown

$END

 Instant Visual NPL 53

This page intentionally left blank

54 Instant Visual NPL

C H A P T E R 5

This chapter contains:

• Detailed descriptions of all Visual Basic constants

• Definitions and detailed descriptions of each of the VB
subroutines

Visual Basic Reference

 Instant Visual NPL 55

5.1 Constants
There are two sets of constants defined in InstVnpl module. One
set for standard NPL keys, another for special function keys. The
following sections identify each of the constants defined in this
module.

5.1.1 Standard Keys (strings)

NPL_Backspace

NPL_Return

NPL_Execute

NPL_Continue

NPL_Load

NPL_LineErase

5.1.2 Special Function Keys (integers)

NPL_Prev

NPL_Next

NPL_South

NPL_North

NPL_Erase

NPL_Delete

NPL_Insert

NPL_East

NPL_West

NPL_Recall

NPL_ShiftCancel

56 Instant Visual NPL

NPL_ShiftPrev

NPL_ShiftNext

NPL_ShiftSouth

NPL_ShiftNorth

NPL_ShiftDelete

NPL_ShiftInsert

NPL_ShiftEast

NPL_ShiftWest

NPL_DTab

NPL_GL

NPL_ShiftGL

NPL_Tab

NPL_FN

NPL_ShiftTab

NPL_Underline

NPL_Cancel

NPL_Edit

 Instant Visual NPL 57

5.2 Subroutines
5.2.1 VnGoNPL
Syntax Sub VnGoNPL()

Parameters None

Description This procedure is used to immediately return
focus to the NPL window (RTIWIN). It is not
required, as RTIWIN will automatically regain
focus from VB in approximately one-tenth of a
second after the mouse is released. Also
procedure calls such as VnSendKeys implicitly
return control to RTIWIN.

Returns None

Example Private Sub cmdQuit_Click()

 Unload Me

 VnGoNPL

End Sub

58 Instant Visual NPL

5.2.2 VnSendKeys
Syntax Sub VnSendKeys(

 Keys As Variant)

Parameters Keys Either a character string or numeric
special function key

Description This procedure is a generalized form of
VnSendStr and VnSendSF . If the parameter
Keys is a string then it is passed to VnSendStr .
Otherwise the parameter is converted to a one
byte integer and passed to VnSendSF . Do not
mix standard keystrokes and special function
keys together with this procedure. Note the
defined constants available for sending NPL
virtual keys to the runtime.

Returns None

Examples Private Sub Form_ Load()

 VnSendKeys NPL_Return

End Sub

See Also VnSendStr

VnSendSF

 Instant Visual NPL 59

5.2.3 VnSendSF
Syntax Sub VnSendSF(

FunctionKey%)

Parameters FunctionKey%

Description This procedure sends a special function key to
the NPL program. FunctionKey is converted to a
single byte integer which corresponds to the hex
codes defined for the special function NPL key.

Returns None

Example Private Sub cmdCancel_Click()

 ' sends the cancel key and then SF key
#5 to

 ' the NPL application

 VnSendSF NPL_Cancel

 VnSendSF 5

End Sub

See Also VnSendStr

VnSendKeys

60 Instant Visual NPL

5.2.4 VnSendStr
Syntax Sub VnSendStr(

KeyStrokes$)

Parameters KeyStrokes$

Description This procedure sends a character string
representing standard NPL keystrokes to the NPL
application. Do not use it to send special
function keys. They are converted to a string
representation which will produce illogical and
erratic results.

Returns None

Example Private Sub cmdYes_ Click()

' sends a line erase key, the letter Y,
and

' then the return key to the NPL
application.

' Note that NPL_LineErase and
NPL_Return are

' standard keys, not special function
keys

 VnSendStr NPL_LineErase & "Y" &
NPL_Return

End Sub

See Also VnSendKeys

VnSendSF

 Instant Visual NPL 61

5.2.5 VnSetHost
Syntax Sub VnSetHost(

Ctrl As Control)

Parameters Ctrl The name of the control used to sync
position with RTIWIN

Remarks This procedure is meant to be called from the
Form_Load event procedure. It is required in
every Instant Vinny form so that the NPL window
will properly position itself on the VB form.

Returns None

Example Private Sub Form_Load()

 ' syncs the location of the RTIWIN
window

 ' with the position of control
RTIWINFrame

 VnSetHost RTIWINFrame

End Sub

62 Instant Visual NPL

C H A P T E R 6

This chapter discusses how to create distribution diskettes for
your Instant Vinny application. For a complete discussion about
distributing Instant Vinny and Visual NPL applications, refer to
Chapter 6 of the Visual NPL Developer’s Guide.

Deployment

 Instant Visual NPL 63

6.1 Using the Visual Basic Setup Wizard
The following discusses the procedure for building distribution
diskettes that include all the files needed to deploy an Instant
Vinny application. With a few minor exceptions, this procedure is
the same used to create distribution diskettes for a regular Visual
NPL application. The Visual Basic Setup Wizard automatically
includes all required Visual Basic files and libraries. The required
NPL files and libraries are then included manually. Upon
completion, a distribution set of all the Instant Vinny application
and support files will be compiled.

1. In the program group for Visual Basic, select the Application
Setup Wizard.

2. Enter the path to your Visual Basic Project (.VBP) file or locate
it using the browse feature.

3. Click on the Next button to bypass STEP 2.
4. In STEP 3 you have to select the method of distribution. In

most cases distribution will be by floppy diskette.
5. Accept the default selections in STEP 4, 5, and 6.

6.1.1 Manually include the NPL files
The Application Setup Wizard analyzes the Visual Basic Project
and automatically selects the files needed for the Visual Basic
side. You will have to manually add the NPL related files to the
Setup Wizard.

In STEP 7 you will tell the setup program which additional files to
add to the setup. Using the Add Files feature, add:

All NPL libraries that are referenced including VNPL.NPL

All NPL diskimages that are referenced

All the Object (.OBJ) files that are needed

VNPL16.DLL

64 Instant Visual NPL

Once you have added all the NPL files, click on the Finish key to
finish creating the setup diskettes.

Note Visual Basic is not needed to run an Instant Vinny
application, but a NPL Windows RunTime, Revision 4.22.21 or
greater is needed.

Deploying Visual NPL files manually is discussed in Section 6.3 of
the Visual NPL Developer’s Guide.

When run, the Setup routine made using the Visual Basic
Application Setup Wizard will create a Program Group and a
Shortcut to the executable file. Both the Program Group and the
Shortcut should be deleted. They are not needed, the Visual Basic
.EXE file is launched by the VnIVInit (<file name>) procedure in
the NPL program and cannot be launched directly.

The Application Setup Wizard supplied with Visual Basic has no
provision to prevent creating the program group or the Shortcut.
Third party Setup programs are available that may optionally
prevent the creation of a Program Group and Shortcut.

 Instant Visual NPL 65

	INSTANT VISUAL NPL DEVELOPER’S
	Contents
	Documentation Conventions
	Introduction
	What is Instant Visual NPL?
	System Requirements
	Developer Knowledge
	Hardware
	Software

	Software Contents
	Installation

	Quick Start Tutorial
	Getting Started
	Required NPL Program Modifications
	Setting up the Instant Vinny Project
	Modifying the NPL Applications

	Creating the VB Project
	Creating a VB Form
	Make an .EXE
	Starting the Instant Vinny Application
	Add a Button to Close the Form
	Adding a Form to “ATDEVICE”
	Add Enhancements to an Existing Form

	Instant Vinny Fundamentals
	Intended Scope of Instant Vinny
	How Instant Vinny Works
	NPL Application Changes Required
	Additional Changes to the NPL Program

	Visual Basic Considerations
	Visual Basic Requirements
	Visual Basic Form Requirements

	Mixing Instant Vinny with Visual NPL
	Examples

	NPL Reference
	NPL Variables
	NPL Procedures
	'VnIVCurrForm$
	'VnIVDisableColor
	'VnIVInit
	'VnIVSelect
	'VnIVShutdown

	Visual Basic Reference
	Constants
	Standard Keys (strings)
	Special Function Keys (integers)

	Subroutines
	VnGoNPL
	VnSendKeys
	VnSendSF
	VnSendStr
	VnSetHost

	Deployment
	Using the Visual Basic Setup Wizard
	Manually include the NPL files

