Link NPL, NDM, and PostgreSQL

How to create rtip and rtpp.

Creating the rtip and rtpp is not difficult but it is different from creating rtic and rtpc, there are
many details that have to be in place for success. If any of the details are wrong the compile will
fail.

PostgreSQL Version 7.3.3 must be installed correctly and functioning
properly.

PostgreSQL is not available for SCO as a precompiled package. It is necessary to download the
source code and build it.

The official PostgreSQL web site is <http://www.postgresql.org/>. Manuals and FAQs can be
found in the "Docs" section. The "Administrators Guide" has installation instructions. The
"SCO FAQ" covers some SCO OpenServer issues.

This has been developed & tested using PostgreSQL 7.3.3.

Preparation:

Before you attempt to build PostgreSQL, make sure the following optional software is installed
on the SCO System:

e SCO UnixWare and OpenServer Development Kit (UDK)
e SCO Skunkware - Development Tools
SCO Skunkware - File and Shell Utilities

When building PostgreSQL, you should be logged in as an unprivileged user; some steps will
not work correctly if you are logged in as 'root’.

Make sure the directories containing the UDK executables (cc, 1d, etc.) and the GNU
development tools (gmake, gzip, etc) are included in your PATH environment variable; by
default, these are installed in /udk/usr/ccs/bin and /ust/local/bin. If you have the SCO
OpenServer Development System installed too, make sure they do not precede the UDK tools in
the search path.

The version of the GNU C compiler (gcc) included on the SCO Skunkware CD appears to be
incompatible with the PostgreSQL configuration & build scripts; if you have it installed, you
may need to rename it so that the scripts won't find it and try to use it.

Kernel Configuration:

The PostgreSQL server requires a large amount of shared memory. The default value of the
SHMMAX kernel parameter on SCO OpenServer is too low; it should be set to at least 1.5MB
(1572864 bytes).

You can inspect and change kernel parameters in the graphical desktop by running the
Hardware/Kernel Manager, or from a text-mode window by running the command "scoadmin
hardware/kernel manager", or by following the SCO OpenServer instructions in the PostgreSQL
Administrator's Guide.

After changing SHMMAZX, it will be necessary to rebuild the kernel and reboot the system.

For details, see the PostgreSQL Administrator's Guide, "Managing Kernel Resources".

Building & Installing PostgreSQL on SCO

Following are instructions on building and installing PostgreSQL on SCO OpenServer. For
more information, see the PostgreSQL Administrators Guide. The following assumes you are
installing PostgreSQL version 7.3.3; if you choose a different version, the file & directory names
will differ.

Make sure you are logged in on your SCO OpenServer system as a non-privileged user (i.e. not
root), and go to the directory where you want to put the PostgreSQL source code.

1) Download and extract the source code:

Download the PostgreSQL source code (e.g. "postgresql-7.3.3.tar.gz") from the PostgreSQL web
site to the current directory.

Extract the contents of the .tar.gz file using the commands:
gunzip postgresql-7.3.3.tar.gz

tar xf postgresql-7.3.3.tar

This will create a directory named postgresql-7.3.3 under the current directory. Go to this
subdirectory.

2) Edit the int8.c source file:

The UDK's C compiler has a bug which is triggered by a line in one of the PostgreSQL source
files. To avoid this bug, edit the source file ./src/backend/utils/adt/int8.c. Find the function
"int8fac", and look for the following line in that function:

for (i = argl, result = 1; i > 0; --i)

Remove the "> 0", so that the line now reads:

for (i = argl, result = 1; i; --i)

3) Run the configure script:

Run the PostgreSQL "configure" script with appropriate options:

./configure \

—--with-libs=/udk/usr/lib:/usr/local/lib \
--with-includes=/udk/usr/include:/usr/local/include \
—-—-disable-largefile \

—--without-readline \

——without-z1lib

(Note: The backslashes "\" indicate that the command is continued on the next line.)

The --with-libs and --with-includes options specify where the UDK and Skunkworks library and
include files can be found. If for some reason they were installed in other locations, these
options will have to be changed accordingly.

Additional parameters may be specified to control where the PostgreSQL executables, libraries,
etc. will be installed. The default is to put them in subdirectories of /usr/local/pgsql. See the
PostgreSQL Administrator's Guide for details.

If the configure script reports any errors, it will be necessary to examine the resulting log file and
figure out how to correct the problem.

4) Build PostgreSQL:

Run the GNU make command:

gmake

There may be some warning messages, but should be no errors.

5) Regression Tests:
Test the newly built PostgreSQL server by running the command:
gmake check
You may get an error if the SHMMAX kernel parameter is too low.
See the PostgreSQL Administrator's Guide for information on how to interpret the results of the
regression test. If one or more tests fail, you will have to examine the results closely to determine

whether it's important. For example, the Geometry tests may fail due to a slight difference in the
precision of floating-point results, but this is unlikely to cause any problems.

6) Install PostgreSQL:
Install PostgreSQL by running the command:

gmake install

Setting up PostgreSQL.:

Setup is much the same as for PostgreSQL on SuSE Linux, but with some minor changes:

For details on setting up PostgreSQL, see the Administrator's Guide, "Server Runtime
Environment".

For details about PostgreSQL user accounts, see the Administrator's Guide, "Database Users and
Privileges".

To set up a user account for the PostgreSQL daemon, use the SCO Account Manager in the
graphical desktop.

After creating the "postgres" user account, edit the login script for that user so that the PATH
environment variable will include the directory where the PostgreSQL executables were installed
(default is /ust/local/pgsql/bin).

Note that the instructions in the PostgreSQL manual use "/usr/local/pgsql/data" as the directory
where the PostgreSQL data will be kept, while my instructions used "/usr/ndm/data". The
location is up to the administrator to decide.

In previous instructions for Linux, the PostgreSQL server is started manually by using the
/usr/bin/pg_ctl command. On SCO OpenServer, the PostgreSQL executables are normally
installed in /ust/local/pgsql/bin instead of /ust/bin, so the command will have to be changed
accordingly:

/usr/local/pgsql/bin/pg_ctl start -1 /ust/ndm/data/logfile -D /ust/ndm/data

The method for starting the PostgreSQL server automatically upon system startup is different for
SCO OpenServer. First, create a file called /etc/init.d/postgresql containing the following line:

su - postgres -c¢ "startup-command"

where startup-command is the command that was used to manually start the server.

Then create a symbolic link to this new file in /etc/rc2.d as S99postgresql:

In -s /etc/init.d/postgresgl /etc/rc2.d/S99postgresql

To make rtip and rtpp you need:

NDM BESDK for PostgreSQL installed in the NDM directory.
NDM DEVELOPER KIT for PostgreSQL installed in the NDM directory.
NPL BESDK for PostgreSQL (ELF version of the BESDK) installed in the NPL directory.

R e A A

— ek
W N = O

14.
15.
16.
17.

18.

Log in as root

Run umask 0000

Create a directory called ndm in /usr

Place both ndmbesp51037.sco and ndmdevp51037.sco into /usr/ndm

Use “tar xvf “ to expand both files.

Change directories to /usr/BASIC2C

Make sure NJAKWA RUNTIME is set to /ust/BASIC2C

Make sure LD _LIBRARY PATH is set to the location of the PostgreSQL library.
Make sure PGSQLDIR is set to the location of the PostgreSQL directory.

. Make sure PGUSER is set to the value configured for the PostgreSQL user.

. Copy ELF_besdk.sco into /ust/BASIC2C

. Use “tar xvf” to expand the file.

. There is a problem with the “installb” shell script. It will be corrected in the final. For

now you will need to edit the shell script and substitute “./”” for “${start_dir}”.

Run ./installb to install the NPL Besdk.

Make sure the $PATH begins with “/bin:/ust/bin:/usr/local/bin:”

Make sure “/udk/usr/ccs/bin” is at the beginning of the $SPATH.

Change directories to /usr/BASIC2C/uextrn/cexam and run “make” as a test. This will
assure you are using the correct compiler. This will compile a runtime called rtix.

If the above step is successful, change directories to “/usr/ndm/ndmx” and run make to
make the rtip and rtpp.

Compiling rtic and rtip

The error messages that start with "UX:ce", "UX:make", and "UX:ld"
indicate that they're using the SCO UDK, which is not compatible with
the C-ISAM libraries. To work with C-ISAM, they have to use the SCO
OpenServer Development System; to work with PostgreSQL, they have to
use the SCO UDK.

The SCO OpenServer Development System is included on the same CD as the
operating system. The CD is labeled "SCO OpenServer'" with a release
number (e.g. "Release 5.0.6"). The Development System requires a
separate license code.

The SCO UDK is on a CD labeled "UnixWare and OpenServer Development
Ritr.

It's possible to install both the Development System and the UDK on one
system, but you have to use environment variables to determine which
orne will be used.

They appear to be using the development tools from the SCO UDK,

instead of the default SCO OpenServer development tools. (As I'm sure
yvou remember, NDM for C-ISAM requires the OpenServer tools, and NDM
for Postgres requires the SCO UDK tools.)

The easiest way to find out which tools are being used is to check the
version information by typing the following commands:

cc -V
1d -v

(note that's an uppercase 'V!')

Both version messages should say "SCO UNIX Development System", which
means that they're the default SCO OpenServer development tools.

If either or both messages say "Optimizing C Compilation System", then
they're using the SCO UDK. If this is the case, double-check the PATH
environment variable. Try to identify which directory contains the
copy of 'cc' and/or 'l1d' that it's using, and remove that directory
from PATH.

It might also be necessary to type the command "make clean" before
typing "make", to force it to recompile everything.

Link NPL, NDM, and C-ISAM

How to create rtic and rtpc

Creating the rtic and rtpc is not difficult but there are many details that have to be in place for
success. If any of the details are wrong the compile will fail.

To make rtic and rtpc you need:

NDM BESDK for C-ISAM installed in the NDM directory.

NDM DEVELOPER KIT for C-ISAM installed in the NDM directory.

NPL BESDK for C-ISAM (COFF version of the BESDK) installed in the NPL directory.
SCO Open Server Development tools must be installed.

Informix C-ISAM must be installed to the default location.

S0P N LA WN

15.

Log in as root

Run umask 0000

Create a directory called ndm in /usr

Place both ndmbesc51037.sco and ndmdevc51037.sco into /usr/ndm
Use “tar xvf “ to expand both files.

Change directories to /ust/BASIC2C

Make sure NIAKWA_RUNTIME is set to /ust/BASIC2C

Copy COFF _besdk.sco into /ust/BASIC2C

Use “tar xvf” to expand the file.

. There is a problem with the “installb” shell script. It will be corrected in the final. For

now you will need to edit the shell script and substitute “./” for “${start_dir}”.

. Run ./installb to install the NPL Besdk.
12.
13.
14.

Make sure the $PATH begins with “/bin:/usr/bin:/usr/local/bin:”

Make sure “/udk/usr/ccs/bin” is NOT in the $PATH.

Change directories to /ust/BASIC2C/uextrn/cexam and run “make” as a test. This will
assure you are using the correct compiler. This will compile a runtime called rtix.

If the above step is successful, change directories to “/ust/ndm/ndmx” and run make to
make the rtic and rtpc.

Richard Lindas

Date sent: Tue, 20 Sep 2005 16:30:49 -0500

From: "Wayne C. Morris" <wcmorris@shaw.ca>
Subject: Re: C-ISAM on SCO 6

To: Richard Lindas <ral@niakwa.com>

| was able to get NDM for C-ISAM working on SCO 6 without much difficulty.
To make it work, you have to do two things:

1) Setthe LD _LIBRARY_PATH environment variable to:

Josr5lusrices/lib:CISAMDIR/ib 7 /W E2f/7)X /i1 5

where 'CISAMDIR' is the directory to which C-ISAM was installed
(normally "/usr").

2) Edit ndmx/makefile, ndmserv/imakefile, and ndmexam/makefile.
Change all instances of "cc" to "cc -K osr".

The COFF version of BESDK (‘'uextrn') also heeds some changes to work on
SCO 6:

1) Set LD_LIBRARYPATH as above.

2) Edit include/rtpparms.c, include/rtpparms.h, and cexam/myrtpext.c.
Change all instances of "stricmp" to "stricmpx".

3) Edit cexam/makefile, parmtest/makefile, and noextern/makefile.
Change all instances of "-b coff" to "-K osr".

I'l check whether it's feasible to incorporate these changes into /A",M" , b cof F 4=
the next release for SCO, but it may be difficult to do this while cc - /{ oS
still keeping it compatible with both SCO 5 and SCO 6.

Printed for Richard Lindas, 9 Feb 2006, 8:39 Page 1 of 1

