
NIAKWA PROGRAMMING LANGUAGE

386/DOS-EXTENDER ADDENDUM

1st Edition - August 1993
COPYRIGHT   1993 Niakwa, Inc.

Niakwa, Inc.
23600 N. Milwaukee Avenue
Mundelein, IL 60060

PHONE (708) 634-8700   FAX (708) 634-8718   TELEX 3719965 NIAK UB



DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES AND
PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa) has taken due care in preparing this manual. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution Li-
cense Agreement, the End-User Support Only License Agreement, the Niakwa Software
License Agreement and Warranty and any other Niakwa License Agreement (collec-
tively, the "License Agreements") by which this software package was acquired.

This manual is to serve as a guide for use of the Niakwa software only and not as a
source of representations or additional undertakings by Niakwa. The licensee must refer
to the License Agreements for Niakwa product and service representations.

No ownership of Niakwa software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa, is prohibited.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information storage and retrieval system,
without prior written permission from Niakwa, Inc.

Niakwa is a registered trademark of Niakwa Management Services 1975 Ltd., and is licensed to Bluebird Sys-
tems. 

Niakwa Programming Language (NPL), Bluebird and SuperDOS are registered trademarks of Bluebird Systems.

All other trademarks are the property of their respective holders.



PREFACE

This Niakwa Programming Language (NPL) Addendum for 386/DOS-Extender is de-
signed as an addition to the NPL Supplement for MS-DOS. This Addendum discusses the
installation, operation, and 386/DOS-Extender specific features of the Niakwa 386 Inter-
preter and RunTime Program. For more information, refer to the appropriate NPL docu-
mentation and the Phar Lap 386/DOS-Extender documentation (if available).

P.1 Prerequisite Knowledge

This guide assumes at least a basic knowledge of the IBM Personal Computer, the Mi-
crosoft Disk Operating System (DOS) Version 3.10 or greater.

This Addendum also assumes an understanding of the information contained in the NPL
MS-DOS Supplement.

PREFACE Prerequisite Knowledge

NPL 386/DOS-Extender Addendum P-1



P.2 How to Use this Addendum

This addendum should be used by the developer as a guide to understand how to create
and modify applications for use with NPL for the 386/DOS-Extender.

All chapters should be reviewed thoroughly by the developer. Below is a summary of the
topics discussed in each chapter.

Chapter 1 introduces the 386/DOS-Extender RunTime and Development Package disk-
ette contents, and the specific features of the RunTime under the 386/DOS-Extender.

Chapter 2 discusses the installation procedures necessary for NPL under the 386/DOS-Ex-
tender.

Chapter 3 discusses the exact configuration requirements for NPL under the 386/DOS-Ex-
tender.

Chapter 4 discusses the RunTime operation under the 386/DOS-Extender.

Chapter 5 discusses the operating environment-specific language features under the
386/DOS-Extender.

Chapter 6 discusses the use of the External Call feature under the 386/DOS-Extender.

NOTE: This Addendum is intended to cover environment-specific differences from the ge-
neric NPL information provided in the NPL Programmer’s Guide and Statements
Guide or the operating system-specific information contained in the main DOS Sup-
plement.

How to Use this Addendum PREFACE

P-2 NPL 386/DOS-Extender Addendum



CHAPTER 1

INTRODUCTION

1.1 Overview

The NPL 386/DOS-Extender Addendum is intended as an aid in the correct installation
and use of the 386/DOS Extender versions of the Niakwa Development Package and Run-
Time programs (RTI386 and RTP386).

NOTE: This addendum details the additional features of NPL operating under the 386/DOS-
Extender environment. Refer to the MS-DOS Supplement for information on the
standard NPL features.

Section 1.2 describes the contents of the Niakwa 386/DOS-Extender Development Pack-
age.

Section 1.3 describes the contents of the Niakwa 386/DOS-Extender RunTime Package.

INTRODUCTION Overview

NPL 386/DOS-Extender Addendum 1-1



Section 1.4 discusses the specific features of the Niakwa 386/DOS Extender RunTime
Program.

1.2 Contents of the Development Package

The NPL 386/DOS-Extender Development Package is intended for software develop-
ment and execution of application software on MS-DOS or Novell NetWare systems us-
ing a 80386 processor or greater. The NPL Development Package for the
386/DOS-Extender is the same as for MS-DOS with the addition of the Niakwa
386/DOS-Extender Supplementary Files Diskette.

The contents of the standard NPL Development Package diskettes are listed in Section
1.2 of the MS-DOS Supplement. The following is a description of the additional files in-
cluded on the 386/DOS-Extender Supplementary Files diskette.

SWITCHES.DOC This file documents the 386/DOS-Extender environment
switches most likely to be used by NPL developers. Refer to
Section 3.4 for more information.

All other files contained in directories on this diskette are for use with the 386\DOS-Ex-
tender version of the NPL external call interface. Refer to Chapter 6 for more information.

Contents of the Development Package INTRODUCTION

1-2 NPL 386/DOS-Extender Addendum



1.3 Contents of the Runtime Package

NOTE: The diskette labeled GOLD KEY is required to complete any task requiring or re-
questing the Gold Key diskette (i. e., installing the Gold Key security).

The contents of the standard MS-DOS RunTime are listed in Section 1.3 of the NPL MS-
DOS Supplement. The following is a description of the additional files included for the
386/DOS-Extender.

CFIG386.EXE This utility allows customization of startup switches that the Niakwa
386/DOS-Extender RunTime automatically uses every time the
386/DOS-Extender RunTime is executed. 

RTI386.EXE    The Niakwa 386/DOS-Extender Interpretive RunTime Program.

RTP386.EXE   The Niakwa 386/DOS-Extender Non-interpretive RunTime Program.

RTIPERR.HLP This file is a text file that contains the Niakwa 386 RunTime error mes-
sages that are displayed optionally when using the 386/DOS-Extender
Interpretive RunTime Program (RTI386).

RTIPERR.IDX This file contains the index listings used when the RTIPERR.HLP file
is accessed.

1.4 386/DOS-Extender Runtime Specific Features

The 386/DOS-Extender version of NPL provides the following features in addition to
those described in Chapter 1 of the MS-DOS Supplement:

• Extended memory support beyond 640K. Memory use is limited only by the
physical memory available. The Niakwa 386/DOS-Extender RunTime, user parti-
tion, and external routines all reside in extended memory (above 1MB). Base
memory may also be used based on switches set by the developer or user. 

• Up to a 20% improvement on CPU operations.

INTRODUCTION Contents of the Runtime Package

NPL 386/DOS-Extender Addendum 1-3



• Support for variables larger than 64K. Refer to Section 5.4.

• Support for the standard Niakwa RunTime so that applications that are not com-
patible with the 386/DOS-Extender RunTime can still be run with the standard
Niakwa RunTime Package. 

NOTE: This allows for any combination of the Niakwa 386/DOS-Extender RunTime and
standard RunTime users up to the available user limit on network installations.

• Support for virtual memory. Refer to Section 2.2 for more information on the nec-
essary products.

• Support of mixed language programming through the use of the 386/DOS-Exten-
der SDK. Refer to Chapter 6 for information on external calls use with the NPL
386/DOS-Extender RunTime Package. Refer to Section 2.2 for more information
on the required products.

• Full support for the Niakwa 2227 Communication and Plot drivers.

• Support of all NPL MS-DOS and Novell NetWare features.

386/DOS-Extender Runtime Specific Features INTRODUCTION

1-4 NPL 386/DOS-Extender Addendum



CHAPTER 2

INSTALLATION

2.1 Overview

This chapter provides instructions for installing the NPL 386/DOS-Extender Develop-
ment and RunTime Packages.

Section 2.2 discusses the operating system, memory, and hardware requirements for the
NPL 386/DOS-Extender RunTime.

Section 2.3 discusses the installation of the NPL 386/DOS-Extender Development Pack-
age.

Section 2.4 discusses the NPL 386/DOS-Extender RunTime security.

Section 2.5 discusses the installation of the NPL 386/DOS-Extender RunTime Package.

Section 2.6 discusses the installation of the Niakwa Gold Key security. 

INSTALLATION Overview

NPL 386/DOS-Extender Addendum 2-1



2.2 Operating System and Hardware Requirements

The 386/DOS-Extender version of NPL is designed to operate on systems meeting the fol-
lowing requirements:

• A minimum of a 80386-based (or higher) IBM-PC compatible.

• MS-DOS 3.1 or greater.

• Novell NetWare 2.10 or greater (for Novell Netware versions).

• A minimum of 2MB memory (1MB extended). 2MB provides approximately a
407K partition, more if base memory is also used (about 430K when RTI386 is
configured with -MAXREAL 800H using DOS 5.0 loaded HIGH). All memory
above 2MB is available to the user partition.

• Developers who wish to work with NPL external calls must license Phar Lap’s
386/DOS-Extender SDK and 386/DOS-Extender Redistribution Package*, plus a
supported 386 "C" compiler.

• Developers who wish to use virtual memory must license Phar Lap’s 386 DOS-
Extender SDK, 386/DOS-Extender Redistribution Package, 386/VMM Develop-
ment version, and 386/VMM Redistribution Package*. 

NOTE: • Phar Lap products must be revision 5.0 or higher for Release IV compatibility.

* The above products are available from Phar Lap Software at:

Phar Lap Software, Inc.
60 Aberdeen Avenue
Cambridge, MA. 02138
Phone: (617) 661-1510
Fax (617) 876-2972

Operating System and Hardware Requirements INSTALLATION

2-2 NPL 386/DOS-Extender Addendum



2.3 Installing the 386 Specific Development Software

Installation of the 386/DOS-Extender RunTime Package is identical with that of the
standard RunTime except for the additional diskette(s). These diskette(s) should be cop-
ied to the same directory as the standard RunTime. 

The 386/DOS-Extender Development Package Supplementary diskette contains one file
(SWITCHES.DOC) which should be copied to the same directory where the standard De-
velopment Package is installed.

In addition, the 386/DOS-Extender Development Package Supplementary diskette con-
tains a version of the BESDK External Call SDK for 386/DOS-Extender. Refer to Chap-
ter 6 for installation instructions for the 386/DOS-Extender BESDK.

2.4 Security Issues

The 386/DOS-Extender RunTime utilizes the installed security (and Gold Key) from the
standard RunTime that is included with this package. Install the standard Gold Key as de-
scribed in Section 2.5 of the MS-DOS Supplement. All aspects of the Gold Key installa-
tion and security check work as described in the MS-DOS Supplement (or Novell
NetWare Addendum for Novell NetWare installations).

NOTE: The 386/DOS-Extender RunTime will operate only with the standard Gold Key
shipped as part of the 386/DOS-Extender RunTime Package or with a Gold Key
that has specifically been upgraded to support the 386/DOS-Extender. It will not
work with any other Gold Key.

INSTALLATION Installing the 386 Specific Development Software

NPL 386/DOS-Extender Addendum 2-3



CHAPTER 3

CONFIGURATION

3.1 Overview

Once the NPL 386/DOS-Extender Development and RunTime software has been in-
stalled, the 386/DOS-Extender environment must be configured to work with the Niakwa
software. This procedure is examined in this chapter.

Section 3.2 discusses configuring the 386/DOS-Extender for use with NPL.

Section 3.3 discusses the CFIG386 Utility for customizing 386 RunTime operations.

Section 3.4 discusses setting the 386/DOS-Extender environment switches.

Section 3.5 discusses the various 386/DOS-Extender command line switches.

Section 3.6 discusses extended memory allocations.

CONFIGURATION Overview

NPL 386/DOS-Extender Addendum 3-1



Section 3.7 discusses linear memory allocations under virtual memory.

Section 3.8 discusses other 386/DOS-Extender environment switches.

Section 3.9 discusses using the 386/DOS-Extender switches with mixed language pro-
gramming.

3.2 Configuring the 386/DOS-Extender Environment

This section is intended to aid in the configuration of the 386/DOS-Extender environment
for NPL and NPL applications. All other configuration requirements remain the same as
those documented in Section 2.3 of the MS-DOS Supplement.

3.2.1 Use of 386 Memory Managers

Use of extended memory managers, such as QEMM or HIMEM.SYS are allowed when
using the NPL 386/DOS-Extender Runtime. However, these memory managers may use
an amount of extended memory that may otherwise be used by the 386/DOS-Extender en-
vironment. Developers are encouraged to try different memory manager configurations
and choose the settings best suited for their applications.

NOTE: Memory managers typically work with the 386/DOS-Extender environment, but
may require special setup or configuration. Refer to the documentation provided
with the 386 memory manager for details.

Certain TSR (Terminate and Stay Resident Programs) also may use an amount of ex-
tended memory that may otherwise be used by the 386/DOS-Extender environment. 

3.3 The CFIG386 Utility

The CFIG386 Utility is provided for developers who intend to customize the 386/DOS-
Extender environment for NPL applications.

Configuring the 386/DOS-Extender Environment CONFIGURATION

3-2 NPL 386/DOS-Extender Addendum



NOTE: This section only describes configuration options that are relevant to the 386/DOS-
Extender environment and the NPL 386/DOS-Extender RunTime. The NPL
386/DOS-Extender Supplementary Files Diskettes contains a file called
SWITCHES.DOC that contains additional information on other options. 

3.4 Setting the Environment Switches 

There are two methods of setting the 386/DOS-Extender environment switches for the
NPL 386/DOS-Extender RunTime:

• the CFIG386 Utility 

• an MS-DOS environment variable.

3.4.1 Use of the CFIG386 Utility

To use the CFIG386 utility to add 386/DOS-Extender switches to the NPL 386/DOS-Ex-
tender RunTime, enter the following from a DOS prompt:

CFIG386 RTI386.EXE <NEW SWITCHES>

For example, to add the switch -MAXXMSMEM 100000h to the 386 RunTime program
RTI386.EXE, enter:

CFIG386 RTI386.EXE -MAXXMSMEM 100000H

To view all switches currently configured in the NPL 386/DOS-Extender RunTime, enter:

CFIG386 RTI386.EXE

NOTE: The CFIG386 Utility does not update the date or time stamp of the RunTime pro-
gram (RTI386 or RTP386). It is necessary to use the method described above to ver-
ify that any new switch settings are added to the 386/DOS-Extender RunTime
programs (RTI386 and RTP386).

To clear all currently configured switches, enter the switch -CLEAR before the
RTI386.EXE. For example, to clear all configured switches, enter:

CFIG386 -CLEAR RTI386.EXE

CONFIGURATION Setting the Environment Switches 

NPL 386/DOS-Extender Addendum 3-3



NOTE: If a switch was set incorrectly, the -CLEAR parameter must be used before reset-
ting the correct values of the respective switch.

3.4.2 Setting Switches with an MS-DOS Environment Variable

Using a DOS environment variable is typically a better method to specify the 386/DOS-
Extender environment switches.  

To select an environment variable to contain the 386/DOS-Extender switches, configure
the string "%varname" into the 386 RunTime Program (RTI386 or RTP386), where "var-
name" is the name of the environment variable. 

HINT: A good choice for this environment variable is RTI386 or RTP386. 

For example, to give users the ability to specify the 386/DOS-Extender environment
switches in an environment variable called RTI386 enter:

CFIG386 RTI386.EXE %RTI386

The user can then specify the switch -MAXVCPIMEM 100000H by entering the MS-
DOS command:

SET RTI386=-MAXVCPIMEM 100000H

NOTE: It is recommended that this statement be added to the system’s AUTOEXEC.BAT
file. This can be accomplished by editing the batch file with a text editor (i.e., EDIT,
EDLIN, etc.)

If the specified environment variable does not exist, the NPL 386/DOS-Extender Run-
Time ignores it and runs with its preset switch settings.

3.5 Environment Command Line Switches

The switches described below are the 386/DOS-Extender environment switches that may
be useful with the NPL 386/DOS-Extender RunTime. The default values assumed by the
NPL 386/DOS-Extender RunTime are shown for each switch. If the default values are ac-
ceptable for the application, no changes are necessary when configuring the 386/DOS-Ex-
tender environment for the NPL 386/DOS-Extender RunTime.

Environment Command Line Switches CONFIGURATION

3-4 NPL 386/DOS-Extender Addendum



NOTE: Numbers entered as switch parameters are base 10 by default; they may be entered
in hexadecimal (base 16) by appending the character "H" to the number (i.e., -MIN-
REAL 4096 and -MINREAL 1000H are equivalent).

3.5.1 Conventional Memory Allocations

-MAXREAL
Default Setting: FFFFH

Effect of default setting: The maximum amount of DOS memory that is reserved for
DOS applications accessed using a $SHELL. The NPL
386/DOS-Extender RunTime uses extended memory exclu-
sively.

Alternative Setting: 0

Effect of alternative setting: The minimum amount of DOS memory that is reserved for
DOS applications accessed using a $SHELL. This may be
insufficient memory for any $SHELL commands. The NPL
386/DOS-Extender RunTime uses both extended and con-
ventional memory, resulting in a larger maximum work
space size.

NOTE: When -MAXREAL is set to 0, the partition size available is increased by the amount
of base memory available. On typical configurations, this will be about 330K.

-MINREAL
Default Setting: 0700H (may vary depending on release)

Effect of default setting: A minimum amount of DOS memory that must be available
to allow the NPL 386/DOS-Extender RunTime to execute.
This is necessary for the Niakwa security TSR program, and
is required only at startup. This setting ensures that if the al-
ternative setting -MAXREAL 0  is used, sufficient memory
is reserved to pass Niakwa’s Gold Key security. Once the
NPL 386/DOS-Extender RunTime is running, this real mem-
ory (28K) is released for use by DOS applications invoked
by a $SHELL or for buffers (18K) required to access raw
diskettes.

CONFIGURATION Environment Command Line Switches

NPL 386/DOS-Extender Addendum 3-5



Alternative setting: Any value higher than the default setting.

Effect of alternative setting: A larger minimum amount of DOS memory is required to
run the NPL 386/DOS-Extender RunTime. For applications
that are known to require use of DOS applications accessed
using a $SHELL, this setting ensures that the memory is re-
served even if the alternative setting -MAXREAL 0 is used.

-MINIBUF
Default setting: (Set by the NPL 386/DOS-Extender RunTime)

Effect of default setting: Phar Lap allocates up to 16K of conventional memory for
buffers used in file I/O and must have a minimum of 1K.
Most I/O performed by the NPL 386/DOS-Extender Run-
Time is handled well by this default buffer allocation.

Alternative setting: A value greater than 16K and up to 64K

Effect of alternative setting: Applications that do significant amounts of I/O using buff-
ers that can exceed 16K (COPY, MOVE DATALOAD BM
or DATASAVE BM with large buffers) may benefit from
using a larger buffer. Consequently, less conventional mem-
ory is available for other uses (i.e., $SHELL) or for the
NPL 386/DOS-Extender RunTime if -MAXREAL  is re-
duced.

-MAXIBUF
Default setting: (Set by the NPL 386/DOS-Extender RunTime)

Effect of default setting: Phar Lap allocates up to 16K of conventional memory for
buffers used in file I/O and must have a minimum of 1K.
Most I/O performed by the NPL 386/DOS-Extender Run-
Time is handled well by this default buffer allocation.

Alternative setting: A value less than 16K down to 1K.

Environment Command Line Switches CONFIGURATION

3-6 NPL 386/DOS-Extender Addendum



Effect of alternative setting: Applications that do little I/O using buffers that can exceed
1K may benefit from a smaller buffer. Consequently, more
conventional memory is available for other uses(i.e.,
$SHELL) or for the NPL 386/DOS-Extender RunTime if -
MAXREAL  is reduced.

3.6 Extended Memory Allocations

When working in an environment where other applications may make use of extended
memory while the NPL 386/DOS-Extender RunTime is executing, it may be necessary to
change the configuration value of the -MAXBLKXMS, -MAXXMSMEM, -
MAXEXTMEM or -MAXVCPIMEM  switches to reserve extended memory for these
applications. The default values permit the NPL 386/DOS-Extender RunTime to use as
much extended memory as required, up to the full amount of available memory.

In environments in which applications make use of extended memory without using the
XMS or VCPI standards, it may be necessary to set the -EXTLOW or -EXTHIGH  pa-
rameters. This prohibits these applications from interfering with the operation of the NPL
386/DOS-Extender RunTime.

3.7 Linear Memory Allocations under Virtual Memory

Developers who wish to limit the amount of virtual memory used by the Phar Lap
386/DOS-Extender environment under VMM, should set the -MAXPGMMEM  switch.
There are several other VMM switches that can also be used to tune the performance of
the virtual memory manager. Refer to the Phar Lap 386/VMM Reference Guide for more
information.

3.8 Other Environment Switches

Other switches not described above are set appropriately by the NPL 386/DOS-Extender
RunTime at startup. For specific settings and options for the other 386/DOS-Extender en-
vironment switches, refer to the appropriate Phar Lap manuals or the SWITCHES.DOC
file contained on the 386/DOS-Extender Supplementary Files Diskette. 

CONFIGURATION Extended Memory Allocations

NPL 386/DOS-Extender Addendum 3-7



3.9 Use of the Switches with External Calls

Developers who intend to use the NPL 386/DOS-Extender RunTime to run applications
linked with external routines in the 386/DOS-Extender environment (refer to Chapter 6),
may require special settings to support unusual options in the external routines. This sec-
tion briefly covers some of these options. Refer to the 386/DOS-Extender manuals for de-
tails of settings that may be necessary when using the NPL external call features in the
386/DOS-Extender environment.

Privilege level
Default setting: -UNPRIVILEGED

Effect of default setting: The NPL 386/DOS-Extender RunTime is a well-behaved
protected mode application that does not require ring 0 privi-
lege. By running as an unprivileged application, the NPL
386/DOS-Extender RunTime permits control by the operat-
ing system over emulation, enhancing the ability of the prod-
uct to run under emulation environments such as DPMI.

Alternative setting: -PRIVILEGED

Effect of alternative setting: Allows external routines to use ring 0 privilege.

3.9.1 Mixed Mode Operation

The NPL 386/DOS-Extender RunTime does not require special switch settings for mixed
mode operation. However, developers that create a custom RunTime linked with external
routines that require mixed mode (real and protected) operation, may need to set the -RE-
ALBREAK or -CALLBUFS arguments. Refer to the Phar Lap 386/DOS-Extender SDK
documentation for more information.

Use of the Switches with External Calls CONFIGURATION

3-8 NPL 386/DOS-Extender Addendum



CHAPTER 4 

RUNTIME OPERATION

4.1 Overview

This chapter discusses the operation of the NPL 386/DOS-Extender RunTime. 

Section 4.2 discusses the various 386/DOS-Extender environment virtual memory mode
and its effect on the NPL 386/DOS-Extender RunTime.

Section 4.3 discusses starting the NPL 386/DOS-Extender RunTime.

Section 4.4 discusses the use of $SHELL with the NPL 386/DOS-Extender RunTime.

Section 4.5 discusses using the standard Niakwa RunTime. 

RUNTIME OPERATION Overview

NPL 386/DOS-Extender Addendum 4-1



4.2 386/DOS-Extender Virtual Memory Mode

The NPL 386/DOS-Extender RunTime can be executed with or without virtual memory
support. Support of virtual memory requires developers to license Phar Lap’s 386/DOS-
Extender SDK, 386/DOS-Extender Redistribution, 386/VMM Development version, and
386/VMM Redistribution Package. Refer to Section 2.2 for more details.

4.3 Starting the Runtime

Procedures for starting the NPL 386/DOS-Extender RunTime is the same as documented
in the NPL MS-DOS Supplement except as noted below:

• RTI386 and RTP386 should be substituted for RTI and RTP, respectively, in all
startup commands.

• The 386/DOS-Extender environment must be properly configured as discussed in
Chapter 3.

4.4 $SHELL

The behavior of $SHELL, under the NPL 386/DOS-Extender RunTime is similar to that
under MS-DOS. However, the amount of memory available to $SHELL can be modified
through the 386/DOS-Extender command line switches. By default base memory is not
used by the RunTime, leaving this available for $SHELL. Refer to Chapter 3 for more in-
formation.

4.5 Using The Standard Niakwa Runtime

The standard Niakwa RunTime is also included with the NPL 386/DOS-Extender Run-
Time Package. There may be situations when the use of the standard version is necessary.
For example, users of a Novell network who do not have extended memory or worksta-
tions with less than an 80386 based processor must use the standard RunTime version. 

386/DOS-Extender Virtual Memory Mode RUNTIME OPERATION

4-2 NPL 386/DOS-Extender Addendum



NOTE: For instructions on using the standard Niakwa RunTime, refer to the MS-DOS Sup-
plement.

4.5.1 Serial Number

The serial number used by the standard Niakwa RunTime is the same as that used by the
NPL 386/DOS-Extender RunTime. If the Gold Key security is installed on the hard
drive, either RunTime can pass security from that hard drive. Otherwise, the RunTime
prompts the user to insert the Gold Key diskette to pass security.

4.5.2 User Limit

On Novell Netware systems, the user count is increased by one each time either the stand-
ard or 386 version of the RunTime is started. The user count is the total number of users
using the standard and the 386 version of the RunTimes.

4.5.3 Device Sharing

Device sharing, particularly non-network files and devices, is not allowed under the NPL
386/DOS-Extender RunTime. 

Novell NetWare versions fully support all file sharing logic as described in the Novell
NetWare Addendum. 

RUNTIME OPERATION Using The Standard Niakwa Runtime

NPL 386/DOS-Extender Addendum 4-3



CHAPTER 5

PLATFORM-SPECIFIC
LANGUAGE FEATURES

5.1 Overview

This chapter discuses the platform-specific language features for the 386/DOS-Extender
RunTime.

Section 5.2 discusses 386/DOS-Extender specific statements.

Section 5.3 discusses memory allocation under the 386/DOS-Extender RunTime.

PLATFORM-SPECIFIC LANGUAGE FEATURES Overview

NPL 386/DOS-Extender Addendum 5-1



5.2 Environment-Specific Statements

5.2.1 $MACHINE

Byte 1 of $MACHINE is set to "P" for the 386/DOS-Extender RunTime Version. All
other $MACHINE values are the same as those for the standard Niakwa RunTime. Refer
to Chapter 8 of the MS-DOS Supplement.

NOTE: $MACHINE is a 64-byte variable and must be treated as such or unpredictable re-
sults may occur. Refer to the Statements Guide, $MACHINE, for details on the ex-
act syntax and use of this statement, as well as the contents of the remaining bytes of
the variable.

5.2.2 $OPTIONS

There are no specific $OPTIONS bytes for NPL under the 386/DOS-Extender. All $OP-
TIONS values are the same as those for the standard Niakwa RunTime. Refer to Chapter
8 of the MS-DOS Supplement for details.

5.3 Memory Allocation

All NPL code and defined variables reside within a section of memory defined as the
"user partition". With the NPL 386/DOS-Extender RunTime under the 386/DOS-Exten-
der environment, the size of the user partition is limited only by the amount of extended
memory in the computer on which the NPL 386/DOS-Extender RunTime is installed.

Due to the dynamic nature of memory allocation in the 386/DOS-Extender environment,
the NPL 386/DOS-Extender RunTime allocates an initial 139K to the user partition. Un-
like MS-DOS, in which the maximum size of the user partition is reported, this is the
minimum size of the user partition and is returned by the SPACEW function. The mini-
mum allocation is used because attempting to allocate the full amount of memory avail-
able would leave insufficient memory for other tasks.

Environment-Specific Statements PLATFORM-SPECIFIC LANGUAGE FEATURES

5-2 NPL 386/DOS-Extender Addendum



At any given time, the amount of memory currently available within the user partition is
returned by the SPACEF function. When the value of SPACEF drops below 64K, the
NPL 386/DOS-Extender RunTime automatically attempts to allocate another 64K of
memory to the user partition. The result of this increase is reflected by a 64K increase in
SPACEW. If the NPL 386/DOS-Extender RunTime is unable to allocate the memory, the
value of SPACEF then drops below 64K. 

To illustrate this, consider the following:

386/DOS-Extender RunTime Environment SPACEW Value SPACEF Value
Initial RunTime Memory 139664 139456
Allocated 64K Variable 139664 73920
Allocate 8300 Bytes 139664 65600
Allocate 2nd 64K Variable 205168 65600*
Allocate 20K Variable 205168 45080**

*Additional 64K segment allocated to user partition.

**Value SPACEF reports in the event the NPL 386/DOS-Extender RunTime was unable
to allocate the extra 64K.

NOTE:  Once memory is allocated in this fashion, it is not released until the task is closed.
Thus, in the example above, executing a CLEAR statement results in both
SPACEW and SPACEF reports 205168.

5.4 Support for Variables 64K

The 386/DOS-Extender RunTime is a true 386 implementation. Therefore, variables
larger than 64K are fully supported as described in Chapter 4 of the NPL Programmer’s
Guide.

5.4.1 Memory Fragmentation

If a large variable is allocated, new space is requested from the operating system. When
the variable is no longer required, the RunTime cannot return this memory to the operat-
ing system until a $END occurs. The allocation is still available to the NPL program, but
any requests for substantially larger variables cannot use the space. 

PLATFORM-SPECIFIC LANGUAGE FEATURES Support for Variables 64K

NPL 386/DOS-Extender Addendum 5-3



For example:

0010 ;PROGRAM1
   : DIM A$1000000 :;allocate 1MB from O/S
   : DIM B$1000000 :;allocate 1MB from O/S
   :;do some work...
   : PRINT SPACEW :;workspace size is about 2MB
   : LOAD T"PROGRAM2"

0010 ;PROGRAM2
   : DIM C$2000000 :;need 2MB from O/S
   : PRINT SPACEW :;workspace size is about 4MB

When the second program resolves, neither of the 1MB chunks requested from the operat-
ing system is big enough for the new variable, so new space must be allocated. The result
is that a minimum workspace of 4MB is required.  If only 3MB of extended memory
were available, a memory error (A01) would occur.  

NOTE: If the programs were run in the opposite order (PROGRAM2, then   PROGRAM1)
both 1MB variables could be allocated from the 2MB chunk, and only 2MB of work-
space would be necessary.

There is a way to prevent this fragmentation problem, If you have some idea what the
maximum workspace size is that you will need.  Early in the application’s startup, a se-
quence such as:

0010 DIM ReserveSpace$(0)1
   : MaximumWorkspaceNeeded=xxx :;determine max size needed
   : ;Grow the workspace as one ’chunk’
   : MAT REDIM ReserveSpace$(1)MaximumWorkspaceNeeded
   : ERROR DO
   :     STOP "Insufficient memory to run"
   : ENDDO
   :;When the variable ReserveSpace$() is cleared (by an overlay)
   :;the allocated memory will be available as one chunk.
   : LOAD T"..."

can be used to ensure that the total workspace size used by RTI is effectively unfrag-
mented.

Except for large variable allocations, the workspace normally expands in 64K "chunks".

Support for Variables 64K PLATFORM-SPECIFIC LANGUAGE FEATURES

5-4 NPL 386/DOS-Extender Addendum



PLATFORM-SPECIFIC LANGUAGE FEATURES Support for Variables 64K

NPL 386/DOS-Extender Addendum 5-5



CHAPTER 6

MIXED LANGUAGE
PROGRAMMING

6.1 Overview

The NPL External Subroutine Development Kit (BESDK), formerly Basic-2C, provides
an interface to external subroutines written in other programming languages. However,
there are both benefits and penalties which may occur as a result of using mixed lan-
guages programming under NPL. The benefits include a potential increase in execution
speed for selected processor-intensive functions, and the capability to access resources
and features of a specific environment. The penalties include increased memory require-
ments, limited portability to other NPL environments and a potentially less friendly envi-
ronment for testing and error diagnosis.

MIXED LANGUAGE PROGRAMMING Overview

NPL 386/DOS-Extender Addendum 6-1



This chapter concerns itself with the operating environment-specific features of the NPL
External Subroutine Development Kit (BESDK) for the 386/DOS Extender. For a com-
plete discussion on the general operation of mixed language programming, refer to Chap-
ter 11 of the NPL Programmer’s Guide.

The remainder of this Section continues to provide an overview of the 386/DOS-Exten-
der environment.

Section 6.2 discusses the contents of the 386/DOS-Extender BESDK.

Section 6.3 discusses the installation of the 386/DOS-Extender BESDK.

Section 6.4 discusses NPL external call support specific to the 386/DOS-Extender envi-
ronment.

Section 6.5 discusses support of Metaware HIGH C under the 386/DOS-Extender.

Section 6.6 discusses support of 386 ASM Macro Assembler under the 386/DOS-Exten-
der.

Section 6.7 discusses support of Metaware Professional Pascal under the 386/DOS-Exten-
der.

Section 6.8 discusses "binding" the 386/DOS-Extender executables.

Section 6.9 discusses the memory allocation module requirements of a linked 386/DOS-
Extender executable.

Section 6.10 discusses accessing real mode memory and TSR programs under the
386/DOS-Extender.

Section 6.11 discusses the flow control of external libraries.

Overview MIXED LANGUAGE PROGRAMMING

6-2 NPL 386/DOS-Extender Addendum



NOTE: The following chapter refers only to the 386/DOS-Extender BESDK package con-
tained on the 386/DOS-Extender Supplementary Files Diskette. For information on
the standard MS-DOS BESDK package, refer to Chapter 11 of the MS-DOS Supple-
ment.

6.1.1 Differences from DOS/SuperDOS Releases.

The MS-DOS and SuperDOS releases of the NPL RunTime use the quick library mecha-
nism of the Microsoft Linker allowing the standard NPL RunTime program to load a
specified set of routines after NPL starts. This approach does not work in the 386/DOS-
Extender environment where code in general cannot be dynamically linked at execution
time.

Instead, the user subroutines must be linked with NPL code itself, to produce an ex-
ecutable file which is a customized version of NPL with the user subroutines "built in".
This is the approach used to support external subroutines under the 386/DOS-Extender
environment.

6.1.2 Choosing the Development Environment

When coding and linking external routines, the following implications must be consid-
ered:

• Because the user subroutines must be linked to produce a 386/DOS-Extender bi-
nary executable file, the Phar Lap software development system utilities, particu-
larly the linker ("386LINK") must be present. In addition, if the Metaware High
C or Metaware Professional Pascal is being used, the Metaware High C or Profes-
sional Pascal startup and support libraries must be present.

• Working with many of the examples is more efficient if the Microsoft MAKE or
NMAKE utilities (or equivalent) are available. However, this is not a require-
ment to use BESDK. 

NOTE: All provided makefile scripts work with either NMAKE or MAKE, however when
used with MAKE several warning messages are displayed related to lines that are
NMAKE pseudo-target instructions. These warnings can be ignored. 

• To execute the instructions in the makefile, type "make makefile" or "nmake". To
keep this documentation brief, the rest of the chapter refers only to NMAKE.

MIXED LANGUAGE PROGRAMMING Overview

NPL 386/DOS-Extender Addendum 6-3



• To execute a 386/DOS-Extender binary (.EXP) file, each user must also be li-
censed to use the Phar Lap RUN386 program, must have a licensing agreement
with Phar Lap that enables distribution of executables that have been bound with
the bindable version of this product.

6.1.3 Security

Any custom version of the RunTime produced by using the BESDK procedures, although
not physically copy protected, does not execute unless a 386/DOS-Extender enabled Run-
Time is installed on the system where the custom version is to be used.

NOTE: The 386/DOS-Extender RunTime installed must be of the same type as the custom
RunTime. That is, a 386/DOS-Extender RunTime must be installed. In addition, the
revision level of the installed 386/DOS-Extender RunTime must be equal to or
greater than the revision level of the custom RunTime.

When executed, the custom RunTime extracts the Serial Number from the installed
386/DOS-Extender RunTime and uses the Serial Number to perform the security check.
If the Gold Key security from the 386/DOS-Extender RunTime is installed on the system,
the security check is passed based on that. Otherwise, the Gold Key security check is per-
formed. If this is necessary, the Gold Key from the installed 386/DOS-Extender Run-
Time must be used.

NOTE: The custom RunTime also extracts and enforces the user limit from the 386/DOS-
Extender RunTime installed on the system.

The procedure for installation of custom RunTimes at end user sites is simple: 

1. Install a 386/DOS-Extender RunTime of the same version or greater as the custom
RunTime on the end user’s system using the normal installation procedure.

2. Copy the custom RunTime produced on the developer’s development system to the
end user’s system.

Overview MIXED LANGUAGE PROGRAMMING

6-4 NPL 386/DOS-Extender Addendum



6.1.4 Upgrades

When new releases of NPL become available, updates of the libraries used to make the
customized versions of NPL will also be made available. Periodically, releases of the li-
braries with bug corrections corresponding to interim patches may also be made. It is the
developer’s responsibility to produce new versions of their customized RunTime pro-
grams and distribute them to their clients.

NOTE: For formal upgrades of the RunTime, the 386 RunTime at end user sites must be up-
graded before installing an upgraded custom RunTime.

6.2 Contents of the 386/DOS-Extender BESDK

The BESDK files for the 386/DOS-Extender are stored on the 386/DOS-Extender Supple-
mentary Files Diskette and are stored in a MS-DOS format. These files must be installed
on the hard drive before they can be used. The INSTALLP batch file copies the contents
of the diskette to a specified target directory (and subdirectories). Within the BESDK
package, files are separated into directories, each of which illustrates an example of link-
ing an external subroutine in a particular environment using a particular language. The
function performed by the subroutine is the same in each case, and is analogous to the
Metaware C example followed in the text.

The examples are provided mainly to test normal versions of the compilers, assemblers,
linkers, etc., that are being used with the source files that have been pretested, and to help
clarify any points that may be unclear in the text.

HINT: It is recommended that example standalone and customized versions of the BESDK ex-
amples be produced before starting a customized project, to ensure the various utilities
work together as they should.

The contents of the 386/DOS-Extender BESDK are listed below:

\ (root directory) Contains all subdirectories pertaining to the operation of
BESDK. It also contains the following files:

MIXED LANGUAGE PROGRAMMING Contents of the 386/DOS-Extender BESDK

NPL 386/DOS-Extender Addendum 6-5



README.DOC This file may contain amendments to existing documenta-
tion or additional information not available at press time. It
is advisable to read this document before using the BESDK.

INSTALLP.BAT A batch program to install the 386/DOS-Extender BESDK
files to a specified directory and subdirectories.

\BIN Contains two batch command files that can be used to link a
set of external subroutines with either RTI386 or RTP386:

MAKERTIX.BAT Links the specified object files with NPL to create an Inter-
pretive 386/DOS-Extender RunTime with external subrou-
tines (RTIX.EXP).

MAKERTPX.BAT Links the specified object files with NPL to create a Non-in-
terpretive 386 RunTime with external subroutines
(RTPX.EXP).

NOTE: The above batch files are limited to specifying a maximum of 10 arguments (files
and libraries) and the total length of all arguments may not exceed 128 characters (a
MS-DOS limitation). However, arguments that are file lists may also be specified by
specifying "@filename" as an argument.

\INCLUDE This directory contains files that are common to all imple-
mentations or to all implementations of a specific language.
It is recommended that no changes are made to the files in
this directory. The files provided in this directory are:

MYBOOT.SRC A NPL source file, which performs a simple test of the ex-
ample external subroutine.

MYBOOT.OBJ Compiled form of MYBOOT.SRC.

MYSTART.SRC  Source version of the NPL program used to test the exam-
ple subroutines and FUNCTIONs.

MYMODULE.SRC Source version of the NPL library module used to specify
the interface to the example sub-routines and FUNCTIONs,
and containing sample CALLBACK function.

Contents of the 386/DOS-Extender BESDK MIXED LANGUAGE PROGRAMMING

6-6 NPL 386/DOS-Extender Addendum



MYMODULE.BS2 Compiled versions of the MYMODULE.SRC and the MYS-
TART.SRC programs in a diskimage.

MAKEFILE An NMAKE script to compile MYBOOT.SRC into MY-
BOOT.OBJ. Assumes that MYBOOT.SRC and makefile are
in the current directory and B2C can be accessed (the envi-
ronment PATH is set to allow it to be found). To use, enter
"nmake". 

RTPALL.H Include file for Metaware High C programs, with structure
and type definitions.

RTPALL.INC Include file for 386ASM programs, with structure and type
definitions.

RTPALL.PI Include file for Microsoft Pascal and the standard Niakwa
program.

RTPALL.PPI Include file for Metaware Pascal and the standard Niakwa
program.

\INCLUDE\D3X This directory contains files that are specific to the
386/DOS-Extender environment. It is recommended that no
changes are made to the files in this directory. The files pro-
vided in this directory are:

RTPDEFFN.H Operating system dependent macros to define the Metaware
High-C language attributes of external routines.

RTPPARM.OBJ Compiled version of RTPPARM.C using Metaware C.

RTPPARM.C C subroutines to provide the rtpfn_getparminfo() function
used to check function declarations.

MYMALLOC.C A Metaware High C version of a memory support module.

MYMALLOC.ASM A 386ASM version of a memory support module.

MYMALLOC.P A Metaware Professional Pascal version of a memory sup-
port module.

MIXED LANGUAGE PROGRAMMING Contents of the 386/DOS-Extender BESDK

NPL 386/DOS-Extender Addendum 6-7



MYINT.OBJ Subroutines used to access the 386/DOS-Extender API and
segmented addressable memory.

MYINT.ASM The 386ASM source code for the above.

MYINT.INC A 386ASM include file, specifying the structures used by
myint.obj.

MYINT.H A Metaware High C include file, specifying the structures
used by myint.obj.

MYINT.PPI A Metaware Professional Pascal include file, specifying the
structures used by myint.obj.

\LIB This directory contains the object files required to make cus-
tomized NPL 386/DOS-Extender RTI and RTP programs in
library form. Some specific .OBJ files and linker response
files may also be located here.

\D3XNOEXT This directory contains files for creating a 386/DOS-Exten-
der RunTime without external subroutines; these are pro-
vided to allow a simple test of the linking procedure. No
compiling or assembling is required.

NOEXTERN.OBJ Object file containing 386ASM mainline and "RTPEXT"
routines that have no external subroutines.

NOEXTERN.ASM 386ASM source for the above object file (for information
only, not required for test).

MYMALLOC.OBJ Preassembled version of the 386ASM version of memory
support routines.

MAKERTIX.BAT Batch file to produce the customized RTI (RTIX.EXP) for
the example.

MAKERTPX.BAT Batch file to produce the customized RTP (RTPX.EXP) for
the example.

Contents of the 386/DOS-Extender BESDK MIXED LANGUAGE PROGRAMMING

6-8 NPL 386/DOS-Extender Addendum



MAKEFILE Script for NMAKE utility to produce both customized RTI
and customized RTP.

\D3XCEXAM Contains example files for 386/DOS-Extender implementa-
tions using Metaware C.

\D3XMEXAM Contains example files for 386/DOS-Extender implementa-
tions using 386ASM.

\D3XPEXAM Contains example files for 386/DOS-Extender implementa-
tions using Metaware Professional Pascal.

The above three directories include the following files:

MYMAIN.x Source file for example mainline

MYRTP.x Source file for example rtp test subroutine

MYRTPEXT.x Source file for example RTPEXT subroutine

MYSUB.x Source file for example DEFFN’ subroutine

where x=
C for Metaware High C programs
ASM for 386ASM programs
P for Metaware Professional Pascal programs

MAKEMAIN.BAT Batch file to produce the mainline for the example.

MAKERTIX.BAT Batch file to produce the customized 386/DOS-Extender
RTI (RTIX.EXP) for the example.

MAKERTPX.BAT Batch file to produce the customized 386/DOS-Extender
RTP (RTPX.EXP) for the example.

MYMAIN.LNK A linker response file that contains options used to make the
mainline for the example.

MIXED LANGUAGE PROGRAMMING Contents of the 386/DOS-Extender BESDK

NPL 386/DOS-Extender Addendum 6-9



MAKEFILE Script for NMAKE utility to produce both mainline, custom-
ized 386/DOS-Extender RTI and customized 386/DOS-Ex-
tender RTP (all programs that are out of date are remade).
To use, enter "nmake".

The \D3XCEXAM  directory also contains the following files, specifically for Release IV
callback features:

MYCALLBK.C Source code to illustrate the use of a C function (mykeyin)
that performs a callback to the NPL function ’Callback-
Keyin 

MYCALLBK.H Interface file containing parameter block specifications re-
quired by MYCALLBK.C

MYPROC.C Source code to illustrate the implementation of the example
external PROCEDURE in C.

MYPROC.H Interface file containing parameter block specifications re-
quired by MYPROC.C

NOTE: If the makefile itself is changed, delete all previously made .OBJ files in the direc-
tory before running NMAKE again.

The batch files and "makefile" NMAKE scripts assume:

• The compiler executables (such as HC386, 386ASM, 386LINK, B2C, etc.) that
may be required can be accessed (the environment variable PATH is set to allow
these to be found).

• The example source files and makefile are in the current directory.

• The example include directory can be accessed as "..\INCLUDE" (and ..\D3X\IN-
CLUDE).

• The command files "MAKERTIX.BAT" and "MAKERTPX.BAT" can be found
in "..\BIN" .

Contents of the 386/DOS-Extender BESDK MIXED LANGUAGE PROGRAMMING

6-10 NPL 386/DOS-Extender Addendum



• All required system libraries are in the default directory specified by the LIB en-
vironment variable. All required system include files are in the default directory
specified by the IPATH environment variable (Metaware Pascal and Metaware
High C only).

The NMAKE script files assume the current (4.00.00 or later) version of the NPL com-
piler "B2C" is on the execution PATH (older versions of B2C may cause NMAKE to
stop with a spurious exit code - in this case, rerun the NMAKE script).

6.3 Installation of the BESDK Diskette

The 386/DOS-Extender Supplementary Files Diskette has been produced in MS-DOS for-
mat on two different medias: 5-1/4" 1.2MB diskettes and 3-1/2" 720K diskettes.

To install the 386/DOS-Extender BESDK, insert the 386 Supplementary Files Diskette in
the floppy drive, select the drive and directory to install the BESDK on and enter the fol-
lowing command for the appropriate drive being used:

To install from drive A:

A:INSTALLP A: .

To install from drive B:

B:INSTALLP B: .

The BESDK directories and files are extracted to the currently selected directory.

6.4 386/DOS-Extender Support

The external call features of NPL are supported in 386/DOS-Extender environment as de-
scribed in the following sections.

MIXED LANGUAGE PROGRAMMING Installation of the BESDK Diskette

NPL 386/DOS-Extender Addendum 6-11



6.4.1 Environments

No special addressing models are used with the 386/DOS-Extender. All addresses are 32-
bit pointers to the default code/data segment. Segmented addresses are not generally used
by applications under the 386/DOS-Extender. Exceptions may be required to access MS-
DOS memory, the MS-DOS environment block, or memory-mapped devices that are out-
side the default segment.

Operating system functions are accessed from the 386/DOS-Extender interface, which de-
fines a set of functionality for interrupt 21H analogous in many ways to the MS-DOS in-
terrupt 21H, extended to the 32-bit addressing mode. Developers may compile, link and
run customized versions of 386/DOS-Extender RTI and RTP under the 386/DOS-Exten-
der provided that access to the 386/DOS-Extender software development system, version
5.00 or later is present.

The entry point of the program depends on the language used, but must be specified by
the external programs or library routines (the libraries and objects supplied do not define
an entry point). Linking with the standard Metaware High C or Metaware Professional
Pascal startup and support libraries meets this condition.

The external routines must also define a memory allocation subroutine for the 386/DOS-
Extender RTP to use, to avoid conflicting memory allocation schemes in the various lan-
guages. Example routines are provided for each supported language.

Some special considerations may be necessary to take advantage of the optionally avail-
able virtual memory driver (VMMDRV.SYS). 

6.5 Metaware HIGH C under the 386/DOS-Extender

Writing external subroutines in Metaware High C 386/DOS-Extender is relatively
straightforward. Examples assume Metaware High C for MS-DOS 80386 environment,
version 3.1 or later. In all the examples, the compiler chosen is the driver program
(hc386). The Metaware compiler requires either the Phar Lap 386/DOS-Exender or a
DPMI server such as Microsoft Windows to operate.

The Metaware High C compiler does not add an underscore ("_") to the start of all labels
as some other compilers do. In the following discussion, labels are presented the way
they must appear in the source files of your C routines.

Metaware HIGH C under the 386/DOS-Extender MIXED LANGUAGE PROGRAMMING

6-12 NPL 386/DOS-Extender Addendum



6.5.1 General

Use the small (flat addressing) model 386 compiler on all "hc386" compile commands.
This is the default for the compiler, so no options are required as part of the HCOPTS
variable.

Make sure the include files provided with the BESDK are available either in a directory
specified by a "-I"directory"" option to the "hc386" command or as part of the HCOPTS
make variable. The directory should end in a backslash.

6.5.2 Mainline

The starting label of user code is called "main". 

NOTE: Substantial startup code from the Metaware High C library is executed before
reaching the "main" routine. The standard entry point of an image linked using
Metaware High C is "_MWINIT", a library routine.

The 386/DOS-Extender RunTime subroutine should be referenced as an external with the
standard BESDK calling conventions.

The default C language memory support routine (MYMALLOC.C) passes requests for
memory from the 386/DOS-Extender RunTime routines to the "malloc" library routine.

6.5.3 Calling Conventions for BESDK Subroutines

Test RTP Subroutines
Declare all GOSUB’ routines using standard BESDK calling conventions (i.e., the sub-
routine preserves non-volatile registers, arguments are pushed in the order they appear, ar-
guments are popped by the called routine). The "rtpdeffn.h" include file for
386/DOS-Extender defines "rtpdeffn_ext" as equivalent to this designation.

RTPEXT Subroutine
The RTPEXT subroutine should be defined as a procedure with the standard BESDK call-
ing conventions. When called, the address of the rtpdef structure (defined in the include
file RTPALL.H) is the only parameter. The first field of this structure is a rtpreq structure
(defined in the include file RTPALL.H).

MIXED LANGUAGE PROGRAMMING Metaware HIGH C under the 386/DOS-Extender

NPL 386/DOS-Extender Addendum 6-13



GOSUB’ Subroutines
Use the standard BESDK calling conventions on declarations of all subroutines that are
called from the GOSUB’ interface. The "RTPDEFFN.H" include file for the 386/DOS-
Extender defines "RTPDEFFN_EXT" as equivalent to this designation.

Formats of strings in NPL do not have a zero-terminator and are not variable length. If
strings are to be used by C library routines, you must make copies, which have trailing
spaces removed and a zero terminator added.

6.5.4 Linkage of Test Program

The files required for production of the standalone should include:

• The mainline

• The 386/DOS-Extender RunTime test subroutine. If callbacks to NPL are made
by the test subroutines, it is usually practical to link a standalone test module
which includes the code that makes these callbacks.

• The RTPEXT subroutine (optional, but recommended)

• The GOSUB’ subroutines

• Any function or procedure subroutine. If these are used, the RTPPARM.OBJ
module (located in \INCLUDE\DX3) must also be included.

• The Metaware High C support library HCE.LIB (name may vary)

6.5.5 Linkage of Customized 386/DOS-Extender RTI or RTP

The files required for production of the customized 386/DOS-Extender RTI or RTP
should include:

• Files from the BESDK lib directory

• The mainline

• The RTPEXT subroutine

Metaware HIGH C under the 386/DOS-Extender MIXED LANGUAGE PROGRAMMING

6-14 NPL 386/DOS-Extender Addendum



• The GOSUB’ subroutines

• Any function or procedure subroutines. If these are used, the RTPPARM module
(located in \INCLUDE\D3X) must also be used.

• The Metaware High C language memory support module (from BESDK)

• The Metaware High C support library HCE.LIB (name may vary)

The batch command files supplied on the BESDK diskette are the recommended way to
specify the files needed by the customized 386/DOS-Extender RTP or RTI. 

For example:

..\bin\makertpx mymain myrtpext mysub mymalloc myproc mycallbk rtpparm
-lib      hce386 hcsoft

produces "RTPX.EXP" (Non-interpretive 386/DOS-Extender RunTime, with extensions).

and

..\bin\makertix mymain myrtpext mysub mymalloc myproc mycallbk rtpparm 
-lib      hce386 hcsoft

produces "RTIX.EXP" (Interpretive 386/DOS-Extender RunTime, with extensions). If
the list of files which must be linked in to make the customized 386/DOS-Extender RTI
and RTP exceeds 128 characters or 10 parameters (MS-DOS limitations) the list of files
must be specified indirectly, as @filelist, where "filelist" is the name of a text file that
contains a list of the required files.

6.5.6 Binding the Customized 386/DOS-Extender Executable RTI or RTP

Once the RTIX.EXP file is created, this file must be combined with the 386/DOS-Exten-
der (and optionally 386/VMM) to produce a single executable file. This allows end-users
to run the customized Runtime in protected mode without having to know that it is using
the 386/DOS-Extender.

NOTE: Because the 386/DOS-Extender is included as part of the application, after binding,
there are no special installation procedures required and end users can run the cus-
tomized RunTime just as the 386/DOS-Extender RunTime can be run.

Refer to Section 6.8 of this Chapter for information on running the Phar Lap BIND386
utility.

MIXED LANGUAGE PROGRAMMING Metaware HIGH C under the 386/DOS-Extender

NPL 386/DOS-Extender Addendum 6-15



6.6 386ASM Macro Assembler

External subroutines and the mainline can be written entirely in 386ASM Macro assem-
bler if required. Macro assembler has the advantage that support code dragged in from li-
braries is usually minimal, and so the resulting library is often more compact than if
written in a high-level language. However, the code is generally much more difficult to
write and less portable when complete.

386ASM is normally included as part of the 386/DOS-Extender Software Development
Kit. Examples assume Phar Lap’s 386ASM version 3.0 or later. Earlier versions may also
work but are not tested.

External libraries written in Macro Assembler do not support the FUNCTION, PROCE-
DURE interfaces or callbacks to NPL.

6.6.1 General

Make sure the include files provided with the BESDK are available in a directory speci-
fied by a "-I directory" option to the "386asm" command. The directory name should end
in a backslash.

6.6.2 Mainline

It is possible to write an entire standalone module in macro assembler.

The RTP () subroutine should be referenced as a far external with the name "RTP".

Use standard small-model conventions for segment names. Explicit segment names must
be used. Be sure that:

• All code segments have combine class "CODE" and are part of the group named
DGROUP.

• All near-data segments (and standard stack) have combine class "DATA", and
are part of the group named DGROUP.

386ASM Macro Assembler MIXED LANGUAGE PROGRAMMING

6-16 NPL 386/DOS-Extender Addendum



The module must not depend on any specific segment ordering. References to specific
segments using the SEG operator are not permitted in the 32-bit flat model code. The
OFFSET operator should always be based using DGROUP to ensure a correct flat model
address.

At entry SS:ESP are set to the system stack area. Do not attempt to use a different stack
area.

If additional memory is required, be sure to use a routine that is compatible with the
RTP_MALLOC routine defined for use by NPL.

The default 386ASM language memory support routine (mymalloc.asm) requires that the
startup code call MYMALLOC_INIT, which trims the size of the standard CODE/
DATA segment to a minimum. Requests to RTP_MALLOC extend the size of the stand-
ard segment, and return the address of the previously unmapped memory.

6.6.3 Calling Conventions for BESDK Subroutines 

Test RTP Subroutines
Declare the RTP () subroutine as public with name "RTP".

Call GOSUB’ subroutines using standard BESDK calling conventions (push arguments
in order used in GOSUB’ statements, assume arguments popped by subroutine, preserve
used non-volatile registers).

RTPEXT Subroutine
The RTPEXT subroutine should be defined as a near (the default) procedure with the
name "RTPEXT". When called, the address of the RTPDEF structure (defined in the in-
clude file rtpall.inc) is on the stack as a 32-bit near (flat model) pointer. The first field of
this structure is a RTPREQ structure (defined in the include file rtpall.inc).

GOSUB’ Subroutines
Each subroutine should be defined as a near (the default) procedure. When called, the pa-
rameters are on the stack below the return address. The first parameter of the GOSUB’ is
pushed first; last parameter pushed last.

A string parameter is passed as:

PUSH    OFFSET < string> ;32-bit flat model address
PUSH    SIZE < string> ;32-bit integer

MIXED LANGUAGE PROGRAMMING 386ASM Macro Assembler

NPL 386/DOS-Extender Addendum 6-17



NOTE: The string size is an unsigned 16-bit integer, zero-extended to keep stack alignment
on a DWORD address.

A numeric parameter is passed as:

PUSH    OFFSET < rtpnum structure>  ;32-bit flat model address

The rtpnum structure is defined in the include file RTPALL.INC.

To conform to standard BESDK calling conventions, use the form of the "RET" instruc-
tion that automatically pops parameters from the stack (4 bytes per numeric parameter +
8 bytes per string parameter).

6.6.4 Linkage of Test Program

Programs written in Macro Assembler must be linked to produce an executable file. All
input files to "386LINK" must be the result of previously run assemblies or libraries of
files.

The files required for production of the standalone should include:

• The mainline (i.e., MYMAIN.OBJ)

• The RTP () test subroutine (i.e, MYRTP.OBJ)

• The RTPEXT subroutine (optional, but recommended)

• The GOSUB’ subroutines (i.e., MYSUB.OBJ)

• The 386ASM language memory support module (from the BESDK, i.e., MY-
MALLOC.OBJ)

The batch command file "MAKEMAIN.BAT" supplied on the BESDK diskette contains
the recommended command to link the files needed by the test program, namely:
386LINK, MYMAIN.OBJ, MYRTP.OBJ, MYRTPEXT.OBJ, MYSUB.OBJ, MYMAL-
LOC.OBJ, and @MYMAIN.LNK.

386ASM Macro Assembler MIXED LANGUAGE PROGRAMMING

6-18 NPL 386/DOS-Extender Addendum



6.6.5 Linkage of Customized 386/DOS-Extender RTI or RTP

The files required for production of the customized RTI or RTP should include:

• Files from the BESDK \LIB directory

• The mainline (i.e., MYMAIN.OBJ)

• The RTPEXT subroutine (i.e., MYRTPEXT.OBJ)

• The GOSUB’ subroutines (i.e., MYSUB.OBJ)

• The 386ASM language memory support module (from the BESDK)

The batch command files supplied on the BESDK diskette are the recommended way to
specify the files needed by the customized 386 RTP or RTI. 

For example:

..\bin\makertpx mymain.obj myrtpext.obj mysub.obj mymalloc.obj

produces "RTPX.EXP" (Non-interpretive 386/DOS-Extender RunTime, with extensions).

and

..\bin\makertix mymain.obj myrtpext.obj mysub.obj mymalloc.obj

produces "RTIX.EXP" (Interpretive 386/DOS-Extender RunTime, with extensions).

6.6.6 Binding the Customized 386 Executable RTI or RTP

Once the RTIX.EXP file is created, this file must be combined with the 386/DOS-Exten-
der (and optionally 386/VMM) to produce a single executable file. This allows end users
to execute the customized 386/DOS-Extender Runtime in protected mode without having
to know that it is using the 386/DOS-Extender.

NOTE: Because the 386/DOS-Extender is included as part of the application, after binding,
there are no special installation procedures required and end users can run the cus-
tomized RunTime just as the 386/DOS-Extender RunTime can be run.

Refer to Section 6.8 of this Chapter for information on running the Phar Lap BIND386
utility.

MIXED LANGUAGE PROGRAMMING 386ASM Macro Assembler

NPL 386/DOS-Extender Addendum 6-19



6.7 Metaware Professional Pascal

Writing external subroutines in Metaware Professional Pascal for the 386/DOS-Extender
is relatively straightforward. Examples assume Metaware Professional Pascal for MS-
DOS 80386 environment, version 2.7 or later. Earlier versions may also work, but are not
tested. In all the examples, the compiler chosen is the version for real-mode execution
(pp386). Several extensions to standard Pascal are required to support the required func-
tionality for the external calls. In particular, the standard packages "Loopholes" and
"Other_languages" must be available to the example include files.

The Metaware Professional Pascal compiler does not add an underscore ("_") to the start
of all labels as some other compilers do. In the following discussion, labels are presented
the way they must appear in the source files of your Pascal routines.

External libraries written in Pascal do not support the FUNCTION, PROCEDURE inter-
faces or callbacks to NPL.

6.7.1 General

Use the small (flat addressing) model 386 compiler on all "pp386" compile commands.
This is the default for the compiler, so no options are required as part of the PPOPTS vari-
able.

Make sure the include files provided with the BESDK are available either in a directory
specified by a "-I"directory"" option to the "pp386" command or as part of the PPOPTS
variable. The directory should end in a backslash.

6.7.2 Mainline

Declare RTP as an external function with the standard BESDK calling conventions re-
turning type CARDINAL result. It is not necessary to pass parameters to RTP in this case.

The starting label of user code is called "_MWMAIN". The "_MWMAIN" symbol is gen-
erated for any PP386 module that has a body associated with the "program" header. 

Metaware Professional Pascal MIXED LANGUAGE PROGRAMMING

6-20 NPL 386/DOS-Extender Addendum



NOTE: Substantial startup code from the Metaware Professional Pascal library is executed
before reaching the "_MWMAIN" routine. The standard entry point of an image
linked using Metaware Professional Pascal is "_MWINIT", a library routine.

The default Pascal language memory support routine (MYMALLOC.P) passes requests
for memory from the 386/DOS-Extender Runtimes RTP routines to the "Malloc" library
routine (part of the heap utility package).

6.7.3 Calling Conventions for BESDK Subroutines

Test RTP Subroutines
Declare 386 RTP as function named "RTP" returning cardinal.

Declare all GOSUB’ routines using standard BESDK calling conventions (i.e., the sub-
routine preserves non-volatile registers, arguments are pushed in the order they appear, ar-
guments are popped by the called routine). Argument types are "x:rtpstr_pointer,
len:cardinal" for a string and "x:rtpnum_pointer" for a numeric.

Call GOSUB’ subroutines with arguments in format "Adr(x[1])%retype
rtpstr_pointer,length(x)" for a string, and "Adr(x)%retype rtpnum_pointer" for a numeric.

Precede all GOSUB’ routine declarations using the following pragma:

pragma Calling_convention([callee_pops_stack]);

Follow all GOSUB’ routine declarations using the pragma:

pragma Calling_convention();

RTPEXT Subroutine
Declare RTPEXT as a function named "RTPEXT" returning an integer.

Assign the address of the GOSUB’ procedure to rtpdef_pointer using the Address(x)
function.

Assign the address of the LIST’ description using the retype(address(x[1]),rtpstr_pointer)
function. Strings used for this purpose should not be declared as local variables to
RTPEXT, since this places them in a volatile area (the stack).

MIXED LANGUAGE PROGRAMMING Metaware Professional Pascal

NPL 386/DOS-Extender Addendum 6-21



The RTPEXT subroutine should be defined as a procedure named "RTPEXT" with the
standard BESDK calling conventions. When called, the address of the rtpdef structure
(defined in the include file RTPALL.PPI) is the only parameter. The first field of this
structure is a rtpreq structure (also defined in the include file RTPALL.PPI).

GOSUB’ Subroutines
Subroutines called by the GOSUB’ interface should be declared as functions returning
type integer results. Since they are usually in a source file separate from the RTPEXT
subroutine and require linking, Metaware Professional Pascal requires a duplicate func-
tion declaration with the "external" designation replacing the body.

The data type of the NPL strings of different lengths are usually incompatible types in
standard Pascal, and extensions to support variable-length strings require a different for-
mat and parameter passing convention from that used by NPL. The approach used by the
example pascal subroutines is to declare a "rtpstr" type that is the largest array of charac-
ters, with indices starting at 1. This means that subscript checking on these strings is not
enforced within the pascal subroutines, and caution must be taken to ensure that string
bounds are not exceeded.

Precede all GOSUB’ routine declarations using the following pragma:

pragma Calling_convention([callee_pops_stack]);

Follow all GOSUB’ routine declarations using the pragma:

pragma Calling_convention();

Formats of strings in NPL do not have appropriate format for use by Pascal. If strings are
to be used by Pascal library routines you must make copies that have trailing spaces re-
moved and appropriate length definitions.

6.7.4 Linkage of Test Program

Programs written in Metaware Professional Pascal must be specifically linked to produce
a 386/DOS-Extender executable file. All input files to 386LINK must be the result of pre-
viously run compiles or libraries of files.

The files required for production of the standalone should include:

• The mainline

• The RTP () test subroutine

Metaware Professional Pascal MIXED LANGUAGE PROGRAMMING

6-22 NPL 386/DOS-Extender Addendum



• The RTPEXT subroutine (optional, but recommended)

• The GOSUB’ subroutines

• The Metaware Professional Pascal support library ppe.lib (name may vary)

6.7.5 Linkage of Customized 386/DOS-Extender RTI or RTP

The files required for production of the customized 386/DOS-Extender RTI or RTP
should include:

• Files from the BESDK lib directory

• The mainline

• The RTPEXT subroutine

• The GOSUB’ subroutines

• The Professional Pascal language memory support module (from BESDK)

• The Professional Pascal support library ppe.lib (name may vary)

The batch command files supplied on the BESDK diskette are the recommended way to
specify the files needed by the customized 386/DOS-Extender RTP or RTI.

For example:

..\bin\makertpx mymain.obj myrtpext.obj mysub.obj mymalloc.obj ppe.lib

produces "RTPX.EXP" (Non-interpretive 386/DOS-Extender RunTime, with exten-
sions), and

..\bin\makertix mymain.obj myrtpext.obj mysub.obj mymalloc.obj ppe.lib

produces "RTIX.EXP" (Interpretive 386/DOS-Extender RunTime, with extensions). If
the list of files that must be linked in to make the customized 386/DOS-Extender RTI and
RTP exceeds 128 characters or 10 parameters (MS-DOS limitations) the list of files must
be specified indirectly, as @filelist, where "filelist" is the name of a text file that contains
a list of the required files.

MIXED LANGUAGE PROGRAMMING Metaware Professional Pascal

NPL 386/DOS-Extender Addendum 6-23



6.7.6 Binding the Customized 386/DOS-Extender Executable RTI or RTP

Once the RTIX.EXP file is created, this file must be combined with the 386/DOS-Exten-
der (and optionally 386/VMM) to produce a single executable file. This allows end users
to run the customized Runtime in protected mode without having to know that it is using
the 386/DOS-Extender.

NOTE: Because the 386/DOS-Extender is included as part of the application, after binding,
there are no special installation procedures required and end users can run the cus-
tomized RunTime just as the 386/DOS-Extender RunTime can be run.

Refer to Section 6.8 of this Chapter for information on running the Phar Lap BIND386
utility.

6.8 Binding

To bind the RTIX.EXP file with the 386/DOS-Extender (or optionally 386/VMM), the
Phar Lap BIND386 utility is required from the 386/DOS-Extender SDK (refer to the Phar
Lap SDK BIND386 Utility Guide). The customized RTIX.EXP file can be bound using
the BIND386 utility as shown below.

BIND386 \PHARLAP\RUN386 rtix.exp

Where the 386/DOS-Extender image RUN386.EXE from the \PHARLAP directory is
bound with the customized RTIX.EXP protected mode application image in the current
directory, creating the output customized 386/DOS-Extender RunTime program
RTIX.EXE (the same technique can be used to produce an executable RTPX.EXE). 

NOTE: The command for binding with VMM support is slightly different. Refer to the Phar
Lap VMM documentation for details.

Other options for the BIND386 are available and can be found documented in the Phar
Lap BIND386 Utility Guide.

Binding MIXED LANGUAGE PROGRAMMING

6-24 NPL 386/DOS-Extender Addendum



6.9 Memory Allocation Module Requirement

Unlike other environments that use linkable libraries to make custom 386/DOS-Extender
RTI and RTP programs (i.e., XENIX/UNIX), the method used to allocate task memory to
the 386/DOS-Extender applications varies depending on the language model in use. Con-
sequently when linking a custom 386/DOS-Extender RTI or RTP, part of the external rou-
tines requirement is to provide a subroutine (RTP_MALLOC) which provides the
address of new memory areas to RTP in a way that does not conflict with the language of
choice.

The interface to the subroutine RTP_MALLOC is roughly equivalent to the familiar C
malloc() function. It is passed a (long) integer and returns the (32-bit flat model) address
of a memory area in the default code / data segment that is for the exclusive use of the
RTP. If for any reason memory is not available, a null pointer (value 0) must be returned.

The example programs include source code for RTP_MALLOC routines suitable for use
with each of the example languages. These are located in the \INCLUDE\D3X directory,
under the name MYMALLOC.x (x= C, ASM or P). 

NOTE: The customized 386/DOS-Extender RTI or RTP need not use any of these exact rou-
tines, but must provide an RTP_MALLOC routine, and whatever routine is used
must be compatible with the language is being used for the external routines.

6.9.1 386ASM Version of RTP_MALLOC

The method of memory allocation for 386ASM is to reduce the size of the default seg-
ment to the minimum permitted at startup time, and extend this limit when requested (in
units of 4K) using an available 386/DOS-Extender call. 

MIXED LANGUAGE PROGRAMMING Memory Allocation Module Requirement

NPL 386/DOS-Extender Addendum 6-25



NOTE: This method requires correct estimation of stack requirements. If the routines use
substantial amounts of stack space (due to recursion or large dynamically allocated
variables), increase the amount of space allocated to stack. This method automat-
ically uses virtual memory if the VMM driver is enabled.

6.9.2 Metaware High C Version of RTP_MALLOC

The method of memory allocation for Metaware High C programs uses the malloc() func-
tion of the standard library. The behavior of this function is implementation dependent.
Under the current implementation this method automatically uses virtual memory if the
VMM driver is enabled.

6.9.3 Metaware Professional Pascal Version of RTP_MALLOC

The method of memory allocation for Professional Pascal programs uses the Malloc()
function from the "heap" standard Utility package. The behavior of this function is imple-
mentation dependent. Under the current implementation this method does not automat-
ically use virtual memory if the VMM driver is enabled.

6.10 Accessing Real Mode Memory and TSR Programs

The 386/DOS-Extender provides a number of facilities to allow programs executing in
the 32-bit protected model to access memory and programs that are stored in DOS real-
mode memory (which is normally located in a segment different from that used by the 32-
bit small-model address space). These facilities are most easily accessed using assembly
language from the MS-DOS system call interrupt (21H). Refer to the Phar Lap386/DOS-
Extender Reference Manual for details of the API.

Access to the 386/DOS-Extender API from Metaware High C is provided by use of the
intdos() and intdosx() functions. Access to the 386/DOS-Extender API from Metaware
Professional Pascal is provided by use of the "msdos.pf" utility package. Refer to the Met-
aware documentation for details. 

Accessing Real Mode Memory and TSR Programs MIXED LANGUAGE PROGRAMMING

6-26 NPL 386/DOS-Extender Addendum



NOTE: In each case, the names used for registers (ax, bx, etc.) are nominally the names of
16-bit registers, but under the 386/DOS-Extender these are in effect the correspond-
ing 32-bit register (eax, ebx, etc.). 

Access to data outside the default segment is possible under Metaware High C by use of
far pointers, and under Metaware Professional Pascal by the use of the Longptr type. Re-
fer to the Metaware documentation for details.

Alternative support for access to the 386/DOS-Extender API from Metaware High C and
Metaware Professional Pascal is provided by BESDK’s MYINT.OBJ module. The MY-
INT and MYMOVSB routines in this module accept the same single parameter. This pa-
rameter is the address of a structure that specifies the contents of registers before the
operation and which receives the contents of the registers after the operation. 

NOTE: Valid values or 0 must be specified for all segment registers (DS, ES, FS, GS),
whether these registers are required for the operation or not. Failure to ensure that
this is done results in an address fault and termination of the application. The fields
in this structure are documented in the include files MYINT.x (x= H, INC, OR PPI
depending in the language in use).

The MYINT21 routine permits calling interrupt 21H with all registers specified and al-
lows inspection of results which return in registers. As a convenience, the return value of
this function is 0 if the carry flag was clear after the call, or -1 if the carry flag was set. A
set carry flag is often used to indicate an error condition. The value of the carry flags
when MYINT21 is called is ignored. Only after the call is made are the resulting flags
stored in the flags status variable.

The MYMOVSB function allows performance of an inter-segment data transfer (from
DS:ESI to ES:EDI) for a specified number (ECX) of bytes.

The MYDSSEG function returns the value of the current default segment, which may be
required for some 386/DOS-Extender operations. 

When a 386/DOS-Extender program needs to call real-mode TSR’s, the following steps
are required:

1. Identify any parameters to the TSR. If all parameters are in registers, and these are
not addresses of other parameter blocks, in general the TSR may be called directly.
Refer to step 3.

MIXED LANGUAGE PROGRAMMING Accessing Real Mode Memory and TSR Programs

NPL 386/DOS-Extender Addendum 6-27



2. For any parameter blocks required by the TSR, use the 386/DOS-Extender call
250FH to determine whether the parameter block has an equivalent real mode ad-
dress. Both the protected mode address and the length of the parameter block must be
specified. If this call returns a result indicating that the parameter block is not in the
MS-DOS address space, a MS-DOS memory block must be allocated using the
386/DOS-Extender call 25C0H and the parameter block copied to the new location
(using MYMOVSB subroutine) before the call is made. Once allocated, the MS-DOS
memory area at segment X can be accessed in protected mode (by MYMOVSB) at
segment 34H offset X*10H.

3. Use the 386/DOS-Extender functions 250EH, 2510H or 2511H (depending on
whether the TSR is called as a subroutine or as an interrupt) to call the real-mode
TSR. Calls 2510H and 2511H require that a parameter block be passed that specifies
the real-mode values of segment registers and registers used by the 386/DOS-Exten-
der call. Do not confuse these with the MYINT structure. 

4. If real mode copies of parameter blocks were made before the call, copy the real
mode versions onto the protected mode versions (using MYMOVSB) and free the
MS-DOS memory blocks using the 386/DOS-Extender call 25C1H.

5. If the TSR returns information in the form of a pointer to a real-mode data area
(which was not a parameter), copying this to a protected mode addressable area may
be necessary.

Some optimization of the above procedure may be possible for specific calls (to reduce
the number of times allocation and deallocation routines are called) if the size of parame-
ter blocks is known in advance. In addition, the above assumes that the addresses passed
to TSR’s are transient, i.e., the TSR’s will not assume these addresses continue to remain
valid after the call returns.

If parameter blocks themselves contain pointers to other parameter blocks, care must be
taken to ensure that all pointers are correct (real mode addresses) before copies are made
to the real address space. 

Accessing Real Mode Memory and TSR Programs MIXED LANGUAGE PROGRAMMING

6-28 NPL 386/DOS-Extender Addendum



NOTE: In general, making a call to a real-mode procedure requires some careful analysis to
make sure that all pointers referenced by the call have correct real mode equiva-
lents. It also requires knowledge of the length of any parameter areas passed to (or
returned by) the TSR.

6.11 Flow Control for External Subroutines

The flow control (in chronological order) for 386/DOS-Extender RTI or RTP using exter-
nal subroutines is as follows:

1. C or Pascal startup routines execute and perform some initialization, and eventually
call the external library mainline (i.e., main()).

2. The mainline performs some initialization work for the external subroutines, and calls
RTP(). If assembly language is used, initialization of the memory allocation support
module is required prior to calling RTP.

3. NPL runs and does some initial configuration work, including processing command-
line options and loading the bootstrap program.

4. NPL scans the external library for numbered DEFFN’s with named aliases, using the
LIST’ calls starting at function number 0. An internal table of identifiers and equiva-
lent externals is built. 

5. NPL execution proceeds. At some point, a GOSUB’, (e.g., GOSUB’100) is executed,
and no local GOSUB’ subroutine is found. If the GOSUB’ is to a named DEFFN’,
and the identifier is found in the table created in step 4, the equivalent number is used
to query RTPEXT.

6. NPL calls RTPEXT to find out whether an external ’100 subroutine exists, and if so,
where it is and what parameter types it needs.

7. RTPEXT supplies the requested information (i.e., GOSUB’100 exists, has 3 parame-
ters with types string, string, and numeric, which is located at mysub()) and returns
(to NPL).

MIXED LANGUAGE PROGRAMMING Flow Control for External Subroutines

NPL 386/DOS-Extender Addendum 6-29



8. If the RTPEXT indicated that the subroutine does not exist, or if the number and type
of parameters do not match, a NPL error is generated on the GOSUB’ statement. Oth-
erwise, NPL evaluates parameters and calls the external subroutine (mysub) whose ad-
dress was provided by RTPEXT.

9. The external subroutine (mysub) executes and returns to NPL. NPL execution pro-
ceeds until we are back at step 5 (another GOSUB’) or the rtp is ending ($END,
Killed from HELP, etc.). In the second case, go to the next step.

10. NPL does its cleanup, then the RTP () subroutine returns to the caller (in the external
library mainline).

11. The external library mainline does C or Pascal library shutdown, and eventually ex-
its back to MS-DOS.

NOTE: RTPEXT can be called by LIST’ to find out information about DEFFN’ subroutines
without actually calling the subroutines.

Subroutines should not DEPEND on the above flow control order to work (i.e., a
subroutine should not expect RTPEXT to always be called immediately before it).

The above outline is provided merely as a guide to your understanding of how the
external mainline, rtp, RTPEXT and external subroutines interact.he following dia-
gram shows how execution proceeds using the various software components with the
above steps labeled.

Flow Control for External Subroutines MIXED LANGUAGE PROGRAMMING

6-30 NPL 386/DOS-Extender Addendum



.

.
1. Library startup

Call to main()

11. C lib cleanup
Exit to DOS

RTP
NPL startup

3. Run BOOT.OBJ
4. Scan for named

 DEFFN aliases by
 following
 rtpdef_next_number
chain starting at 0
(multiple calls)

5. Run application
GOSUB’ 100 met

6. Call to RPTEXT()
.
.
.
.
.

8. Evaluate Parameters
Call to mysub()

Continue Application

$END met

10. NPL  cleanup
RTP returns

External Library
components

NPL (RTP or RTI)
components

main
2. my_initialization()

Call to RTP()
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
my_cleanup()
main returns

RTPEXT.
sets fields .
rtpdef_name_pointer.
rtpdef_name_length.
if DEFFN has.
alias

RTPEXT
7. RTPEXT provides

address of ’100
(mysub)

RTPEXT returns

mysub
9. mysub executes

mysub returns

MIXED LANGUAGE PROGRAMMING Flow Control for External Subroutines

NPL 386/DOS-Extender Addendum 6-31



The following diagram shows the execution picture for the FUNCTION/PROCEDURE
(interface):

RTP

resolve
FUNCTION or
PROCEDURE with
/EXTERNAL

call
FUNCTION or
PROCEDURE
declared with 
/EXTERNAL

rtpfn_getparminfo()
provide parameter
info and pseudo 
address

rtpfn_callfunction()
PROCEDURE CallbackKeyin

END PROCEDURE
or RETURN ERROR (x)

RTPEXT
validate parameters and
provide address
(myproc)

myproc

mycallbk
check exists
("CallBackKeyin")

call callback
with pseudo address

myproc returns

[while executing in external library, callbacks to NPL are permitted]

[while executing in NPL, callbacks to NPL are not permitted]

Flow Control for External Subroutines MIXED LANGUAGE PROGRAMMING

6-32 NPL 386/DOS-Extender Addendum



TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge...........................................................................................P-1
How to Use this Addendum .....................................................................................P-2

INTRODUCTION
Overview.....................................................................................................................1-1
Contents of the Development Package.......................................................................1-2
Contents of the Runtime Package ..............................................................................1-3
386/DOS-Extender Runtime Specific Features .........................................................1-3

INSTALLATION
Overview.....................................................................................................................2-1
Operating System and Hardware Requirements ........................................................2-2
Installing the 386 Specific Development Software....................................................2-3
Security Issues ............................................................................................................2-3

CONFIGURATION
Overview.....................................................................................................................3-1
Configuring the 386/DOS-Extender Environment.....................................................3-2

Use of 386 Memory Managers.........................................................................3-2
The CFIG386 Utility .................................................................................................3-2
Setting the Environment Switches .............................................................................3-3

Use of the CFIG386 Utility ..............................................................................3-3
Setting Switches with an MS-DOS Environment Variable .............................3-4

Environment Command Line Switches......................................................................3-4
Conventional Memory Allocations..................................................................3-5

-MAXREAL .................................................................................3-5
-MINREAL ..................................................................................3-5
-MINIBUF ....................................................................................3-6
-MAXIBUF ...................................................................................3-6

Extended Memory Allocations...................................................................................3-7
Linear Memory Allocations under Virtual Memory..................................................3-7

TABLE OF CONTENTS PREFACE

NPL 386/DOS-Extender Addendum TOC-1



Other Environment Switches......................................................................................3-7
Use of the Switches with External Calls ....................................................................3-8

Privilege level ...............................................................................3-8
Mixed Mode Operation ....................................................................................3-8

RUNTIME OPERATION
Overview.....................................................................................................................4-1
386/DOS-Extender Virtual Memory Mode...........................................................4-2
Starting the Runtime...................................................................................................4-2
$SHELL ......................................................................................................................4-2
Using The Standard Niakwa Runtime........................................................................4-2

Serial Number...................................................................................................4-3
User Limit.........................................................................................................4-3
Device Sharing .................................................................................................4-3

PLATFORM-SPECIFIC LANGUAGE FEATURES
Overview....................................................................................................................5-1
Environment-Specific Statements..............................................................................5-2

$MACHINE .....................................................................................................5-2
$OPTIONS .......................................................................................................5-2

Memory Allocation.....................................................................................................5-2
Support for Variables 64K..........................................................................................5-3

Memory Fragmentation....................................................................................5-3

MIXED LANGUAGE PROGRAMMING
Overview....................................................................................................................6-1

Differences from DOS/SuperDOS Releases....................................................6-3
Choosing the Development Environment ........................................................6-3
Security .............................................................................................................6-4
Upgrades...........................................................................................................6-5

Contents of the 386/DOS-Extender BESDK .............................................................6-5
Installation of the BESDK Diskette .........................................................................6-11
386/DOS-Extender Support...................................................................................6-11

Environments..................................................................................................6-12
Metaware HIGH C under the 386/DOS-Extender..............................................6-12

General............................................................................................................6-13

RUNTIME OPERATION TABLE OF CONTENTS

TOC-2 NPL 386/DOS-Extender Addendum



Mainline..........................................................................................................6-13
Calling Conventions for BESDK Subroutines...............................................6-13

Test RTP Subroutines..................................................................6-13
RTPEXT Subroutine.................................................................6-13
GOSUB’ Subroutines................................................................6-14

Linkage of Test Program................................................................................6-14
Linkage of Customized 386/DOS-Extender RTI or RTP..............................6-14
Binding the Customized 386/DOS-Extender Executable RTI or RTP..........6-15

386ASM Macro Assembler......................................................................................6-16
General............................................................................................................6-16
Mainline..........................................................................................................6-16
Calling Conventions for BESDK Subroutines ..............................................6-17

Test RTP Subroutines..................................................................6-17
RTPEXT Subroutine ...................................................................6-17
GOSUB’ Subroutines..................................................................6-17

Linkage of Test Program................................................................................6-18
Linkage of Customized 386/DOS-Extender RTI or RTP..............................6-19
Binding the Customized 386 Executable RTI or RTP...................................6-19

Metaware Professional Pascal ..................................................................................6-20
General............................................................................................................6-20
Mainline..........................................................................................................6-20
Calling Conventions for BESDK Subroutines...............................................6-21

Test RTP Subroutines..................................................................6-21
RTPEXT Subroutine ...................................................................6-21
GOSUB’ Subroutines..................................................................6-22

Linkage of Test Program................................................................................6-22
Linkage of Customized 386/DOS-Extender RTI or RTP..............................6-23
Binding the Customized 386/DOS-Extender Executable RTI or RTP..........6-24

Binding .....................................................................................................................6-24
Memory Allocation Module Requirement ...............................................................6-25

386ASM Version of RTP_MALLOC............................................................6-25
Metaware High C Version of RTP_MALLOC..............................................6-26
Metaware Professional Pascal Version of RTP_MALLOC ..........................6-26

Accessing Real Mode Memory and TSR Programs............................................6-26
Flow Control for External Subroutines................................................................6-29

TABLE OF CONTENTS MIXED LANGUAGE PROGRAMMING

NPL 386/DOS-Extender Addendum TOC-3


	TABLE OF CONTENTS
	PREFACE
	Prerequisite Knowledge P-1
	How to Use this Addendum P-2

	INTRODUCTION
	Overview 1-1
	Contents of the Development Package 1-2
	Contents of the Runtime Package 1-3
	386/DOS-Extender Runtime Specific Features 1-3

	INSTALLATION
	Overview 2-1
	Operating System and Hardware Requirements 2-2
	Installing the 386 Specific Development Software 2-3
	Security Issues 2-3

	CONFIGURATION
	Overview 3-1
	Configuring the 386/DOS-Extender Environment 3-2
	Use of 386 Memory Managers 3-2

	The CFIG386 Utility 3-2
	Setting the Environment Switches  3-3
	Use of the CFIG386 Utility 3-3
	Setting Switches with an MS-DOS Environment Variable 3-4

	Environment Command Line Switches 3-4
	Conventional Memory Allocations 3-5
	-MAXREAL 3-5
	-MINREAL 3-5
	-MINIBUF 3-6
	-MAXIBUF 3-6


	Extended Memory Allocations 3-7
	Linear Memory Allocations under Virtual Memory 3-7
	Other Environment Switches 3-7
	Use of the Switches with External Calls 3-8
	Privilege level 3-8


	Mixed Mode Operation 3-8
	RUNTIME OPERATION
	Overview 4-1
	386/DOS-Extender Virtual Memory Mode 4-2
	Starting the Runtime 4-2
	$SHELL 4-2
	Using The Standard Niakwa Runtime 4-2
	Serial Number 4-3
	User Limit 4-3
	Device Sharing 4-3


	PLATFORM-SPECIFIC LANGUAGE FEATURES
	Overview 5-1
	Environment-Specific Statements 5-2
	$MACHINE 5-2
	$OPTIONS 5-2

	Memory Allocation 5-2
	Support for Variables 64K 5-3
	Memory Fragmentation 5-3



	MIXED LANGUAGE PROGRAMMING
	Overview 6-1
	Differences from DOS/SuperDOS Releases. 6-3
	Choosing the Development Environment 6-3
	Security 6-4
	Upgrades 6-5

	Contents of the 386/DOS-Extender BESDK 6-5
	Installation of the BESDK Diskette 6-11
	386/DOS-Extender Support 6-11
	Environments 6-12

	Metaware HIGH C under the 386/DOS-Extender 6-12
	General 6-13
	Mainline 6-13
	Calling Conventions for BESDK Subroutines 6-13
	Test RTP Subroutines 6-13
	RTPEXT Subroutine 6-13
	GOSUB' Subroutines 6-14

	Linkage of Test Program 6-14
	Linkage of Customized 386/DOS-Extender RTI or RTP 6-14
	Binding the Customized 386/DOS-Extender Executable RTI or RTP 6-15

	386ASM Macro Assembler 6-16
	General 6-16
	Mainline 6-16
	Calling Conventions for BESDK Subroutines  6-17
	Test RTP Subroutines 6-17
	RTPEXT Subroutine 6-17
	GOSUB' Subroutines 6-17

	Linkage of Test Program 6-18
	Linkage of Customized 386/DOS-Extender RTI or RTP 6-19
	Binding the Customized 386 Executable RTI or RTP 6-19

	Metaware Professional Pascal 6-20
	General 6-20
	Mainline 6-20
	Calling Conventions for BESDK Subroutines 6-21
	Test RTP Subroutines 6-21
	RTPEXT Subroutine 6-21
	GOSUB' Subroutines 6-22

	Linkage of Test Program 6-22
	Linkage of Customized 386/DOS-Extender RTI or RTP 6-23
	Binding the Customized 386/DOS-Extender Executable RTI or RTP 6-24

	Binding 6-24
	Memory Allocation Module Requirement 6-25
	386ASM Version of RTP_MALLOC 6-25
	Metaware High C Version of RTP_MALLOC 6-26
	Metaware Professional Pascal Version of RTP_MALLOC 6-26

	Accessing Real Mode Memory and TSR Programs 6-26
	Flow Control for External Subroutines 6-29


