
NIAKWA PROGRAMMING LANGUAGE

TECHNICAL REFERENCE GUIDE

PROGRAMMER’S GUIDE

1st Edition - July 1993
COPYRIGHT 1993 Niakwa, Inc.

Niakwa, Inc.
23600 N. Milwaukee Avenue
Mundelein, IL 60060

PHONE: (708) 634-8700 FAX (708) 634-8718 TELEX 3719965 NIAK UB

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES AND PRO-
PRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa), has taken due care in preparing this guide. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution Li-
cense Agreement, the End-User Support Only License Agreement, the Niakwa Software
License Agreement and Warranty and any other Niakwa License Agreement (collec-
tively, the "License Agreements") by which this software package was acquired.

This manual is to serve as a guide for use of the Niakwa software only and not as a
source of representations or additional undertakings by Niakwa. The licensee must refer
to the License Agreements for Niakwa product and service representations.

No ownership of Niakwa software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa, is prohibited.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, recording or by any information storage and retrieval system,
without prior written permission from Niakwa, Inc.

Niakwa is a registered trademark of Niakwa Management Services 1975 Ltd., and is licensed to Bluebird Sys-
tems.

Niakwa Programming Language (NPL), Bluebird and SuperDOS are registered trademarks of Bluebird Systems.

All other trademarks are property of their respective holders.

NIAKWA SOFTWARE LICENSE AGREEMENT AND WARRANTY

The Niakwa Software is licensed on the condition that the Licensee agrees to the following terms and condi-
tions. If you do not agree with them, return the unopened package to Niakwa or your distributor, and your
money will be promptly refunded. OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF
THESE TERMS.

Niakwa agrees to grant, and the Licensee agrees to accept, a non-exclusive, non-transferable license to use the
Niakwa Software herein contained under the following terms and conditions:

1. Grant of License:
A. Upon payment by Licensee of the Software License fee, Licensee may use Niakwa Software. Licensee’s
right to use the Niakwa Software is restricted to use on a single C.P.U. for the appropriate number of users as in-
dicated on the RunTime Package, or in the case of multi-user software on a Niakwa-approved network, to use
on a single network for the appropriate number of users as indicated on the RunTime Package. The RunTime
Software may be used temporarily in conjunction with a backup C.P.U. or network only in the event the primary
computer or network becomes involuntarily inoperative. Licensee shall not use the RunTime Software for inter-
nal development use unless Licensee has paid the Development Package fee.

B. In the case of certain Niakwa products, including but not limited to the Niakwa Data Manager and certain
Niakwa libraries, the licensee is granted an unlimited use license of the Niakwa Software, provided licensee’s
software is also installed on the same CPU or network as the Niakwa Software. Only those Niakwa products in-
dicated "Unlimited Use License" on the diskette label may be used on an unlimited use basis.

C. At each of its wholly owned branches that has properly licensed the Niakwa RunTime Package, a Licensee
may install Development Software FOR SUPPORT PURPOSES ONLY. The installation of Development Soft-
ware at any branch is for purposes of on-site application software support (bug corrections) only. The Develop-
ment Software shall not be used at any branch for software development of any kind. Licensee shall be
responsible for informing all branch personnel of the limited use for which the Development Software is in-
stalled at the branch facility and shall ensure that such limited use is observed by all branch personnel.

2. Additional Terms On Use:
Licensee may merge the Niakwa Software into other software; however, Licensee has no right to modify any
item of Niakwa Software which is supplied to it unless specifically authorized in writing by Niakwa. In the case
of the Development Tools, Licensee shall not merge and/or install the Niakwa Software individually or collec-
tively unless a Niakwa Programming Language RunTime Package has first been properly licensed and installed.
Licensee’s rights are limited to use on equipment and operating system software combinations indicated on the
RunTime Package of Development Software. For a current list of approved compatibles, contact Niakwa or
your authorized Niakwa distributor. Licensee shall not use the Niakwa Software in derogation of any third
party’s proprietary rights in any software program or in violation of any agreement between Licensee and any
third party in respect of any software program. The use by Licensee of the Niakwa Software resulting in the mis-
use of any third party’s software shall constitute a breach of the agreement. Niakwa may, from time to time, pub-
lish information relating to the use of Niakwa Software in conjunction with other software. Niakwa assumes
such published information will be used by Licensee only if Licensee first determines it may do so without vio-
lating any third party’s software rights. Licensee is solely responsible for all claims of third parties arising out of
or related to Licensee’s activities under this agreement or relating to the Niakwa Software (whether those claims
are based on contract, tort, or otherwise) except as to Niakwa negligence. Licensee agrees to indemnify and hold
Niakwa harmless from any and all such claims, and to pay all expenses including attorneys’ fees, that Niakwa
may incur as a result of such claims, including the expense of defending against them.

3. Proprietary Rights of Niakwa:
Full ownership rights to each item of the Niakwa Software rests with Niakwa, and Licensee shall have no rights
to the Niakwa Software, or any changes made therein by Niakwa. Licensee shall not copy the physical diskettes
unless otherwise authorized by Niakwa in writing. Licensee warrants that it will not inspect, disassemble, re-
verse-engineer or in any way attempt to determine the internal methods of the Niakwa Software. Licensee and
its employees shall not disclose or transfer any portion of the Niakwa Software except as specifically authorized
by Niakwa, whether in physical, magnetic, or any other form, to any person or organization. In the event Licen-
see attempts to use, copy, disclose, or transfer any portion of the Niakwa Software or any modification thereof
in a manner contrary to the terms of this agreement or in derogation of Niakwa’s rights, whether those rights are
explicitly stated, determined by law, or otherwise, the Licensee shall be in breach of this agreement and Niakwa
shall have the right, in addition to any other remedies available to it, to injunctive relief, either restrictively en-
joining such acts and/or mandatorily requiring certain acts, it being acknowledged that other remedies are inade-
quate.

4. Term and Termination:
This License is effective from the date of receipt by Licensee and shall remain in force unless terminated by
Niakwa upon a breach by Licensee. In the event of termination of this License, Licensee shall return to Niakwa
within 20 days all existing copies of the Niakwa Software in Licensee’s possession unencumbered and certify to
Niakwa that all copies or partial copies of the Niakwa Software have been returned. No refund shall be made in
respect to any returned Niakwa Software.

5. Limited Warranty and Limitation of Liability:

What Is Covered:
Niakwa warrants that the magnetic media containing the Niakwa Software and the Documentation are free from
defects in materials and workmanship under normal use. Niakwa warrants that the Niakwa Software itself will
perform substantially in accordance with the specifications set forth in the Reference Guide, the Development
Package and the Installation Guide.

For How Long:
The above warranties are made for a period of (90) days from the date of original delivery to you.

What We Will Do:
Niakwa will replace any magnetic diskette, or Documentation which proves defective in materials or workman-
ship without charge, provided Licensee is not in breach of this agreement. Niakwa may either replace or repair
any Niakwa Software that does not perform substantially in accordance with the specifications set forth in the
Reference Guide, Development Package, or User’s Guide with a corrected copy of the Niakwa Software or cor-
rective code. Niakwa may also provide addenda or substitute pages in the case of an error in the Reference
Guide, Development Package, or User’s Guide.

If Niakwa is unable to replace a defective diskette or if Niakwa elects not to provide corrected Niakwa Soft-
ware, Niakwa will refund the fees paid for the Niakwa Software.

What We Will Not Do:
Niakwa does not warrant that the functions contained in the Niakwa Software will meet your requirements or
that the operation of the Niakwa Software will be uninterrupted or error-free. The warranty does not cover any
Niakwa Software which has been subjected to damage or abuse, or which has been altered or changed in any
way by anyone other than Niakwa. Niakwa is not responsible for problems caused by computer hardware or non-
Niakwa software.

ANY IMPLIED WARRANTIES COVERING THE NIAKWA SOFTWARE INCLUDING ANY WARRAN-
TIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED IN DURA-
TION TO NINETY (90) DAYS FROM THE DATE OF DELIVERY TO YOU. Some states do not allow
limitations on how long an implied warranty lasts, so the above limitation may not apply to you.

NIAKWA SHALL NOT IN ANY CASE BE LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL,
INDIRECT OR OTHER SIMILAR DAMAGES ARISING FROM BREACH OF CONTRACT, NEGLI-
GENCE OR ANY OTHER LEGAL THEORY EVEN IF NIAKWA OR OUR AGENT HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. This means we are not responsible for any costs incurred as a
result of lost profits or revenue, loss of use of the software, loss of data, costs of re-creating lost data, the cost of
any substitute program, claims by any party other than you, or for the above limitation or exclusion may not ap-
ply to you.

What You Must Do:
(1) To qualify for warranty coverage, Licensee must complete and return to Niakwa the USER REGISTRA-
TION CARD contained herein.

(2) You must return the defective item to Niakwa or its authorized distributor postpaid within ninety (90) days
of your original delivery, and it must be received within one hundred-five (105) days of delivery. You assume
the risk of loss or damage in transit. Any claim under the above warranty must include a dated proof of purchase
such as a copy of your receipt or invoice.

Other Conditions:
This warranty allocates risks of product failure between YOU and Niakwa. Niakwa’s software pricing reflects
this allocation of risk and the limitations of liability contained in this warranty. The warranty set forth above is
in lieu of all other express warranties, whether oral or written. The agents, employees, , and dealers of Niakwa
are not authorized to make modifications to this warranty, or additional warranties binding on Niakwa. Accord-
ingly, additional statements such as dealer advertising or presentations, whether oral or written, do not constitute
warranties by Niakwa and should not be relied upon.

State Law Rights:
This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

6. Diskette Replacement Policy:
After expiration of the ninety (90) day warranty period, and for two (2) years from the date of delivery, the origi-
nal magnetic media may be returned to Niakwa or its authorized distributor for replacement if it becomes
damaged. The damaged magnetic media must be returned with a service replacement fee.

In the case of RunTime Software, upon return of the magnetic media that has failed to operate and service re-
placement fee, if applicable, a substitute RunTime Package will be delivered.

Niakwa shall have no obligation to provide replacement Niakwa Software for releases other than the most cur-
rent or to any Licensee who has failed to return the enclosed USER REGISTRATION CARD to Niakwa.

7. Attorneys’ Fees:
Licensee shall be responsible to pay all expenses, including attorneys’ fees, that Niakwa may incur as a result of
enforcing its rights against Licensee under this agreement.

8. General:
This agreement may be altered, amended, or modified only by a written agreement executed by an authorized of-
ficer of Niakwa. This agreement shall be governed by and interpreted pursuant to the laws of the State of
Illinois, United States of America. Licensee hereby consents to the jurisdiction of the courts of the State of Illi-
nois and the United States District Court for the Northern District of Illinois.

PREFACE

P.1 The NPL Documentation -- An Overview

The Niakwa Programming Language (NPL) provides a portable development environ-
ment, allowing developers to distribute their applications on an array of hardware and op-
erating environments. Because the underlying NPL source code is compatible with all
NPL supported operating environments, developers can use a single source code ap-
proach in their application development, while maintaining maximum portability of an
application.

Due to this source code portability, Niakwa has structured the NPL documentation into
generic and operating environment dependent manuals to allow developers easy refer-
ence to detailed platform specific information. Each of these manuals is described below.

PREFACE The NPL Documentation -- An Overview

NPL Programmer’s Guide P-1

P.1.1 The NPL Technical Reference Guide

The NPL Technical Reference Guide consists of two manuals, the NPL Programmer’s
Guide (this manual) and the NPL Statements Guide. The Technical Reference Guide
(TRG) is intended as a generic guide for programmers in the correct use of the Niakwa
Programming Language, and its program development and debugging facilities on all
supported environments.

This Programmer’s Guide provides a detailed discussion on the operation of all areas of
NPL. This guide also provides a detailed discussion of the Niakwa Compiler (B2C), the
Niakwa Utilities, and a series of structured NPL examples.

The Statements Guide provides syntactical descriptions, discussion, examples, compati-
bility issues and references for all NPL statements. The Statements Guide also provides
developers with a series of available NPL library functions. Additionally, the Statements
Guide provides a Language Compatibility chart documenting all NPL statements.

P.1.2 Operating System-Specific Supplements

The NPL Operating System Specific Supplements are used in conjunction with the NPL
TRG, to clearly document operating system dependent features of NPL, from one operat-
ing system to the next. Whenever an operating system dependent feature is discussed
within the context of the TRG, the developer is advised to refer to the appropriate Operat-
ing System Specific Supplement for details.

Each NPL Supplement contains a general manual that discusses the operating system fea-
tures of a specific operating system, along with a series of operating environment-spe-
cific addenda (as required). These addenda document NPL operations and options that
are either unique to a given environment, or function differently from platform to plat-
form.

Additionally, each supplement contains a set of Release Notes, providing information per-
taining to an operating system specific-supplement that was not available at press time.
Release Notes are dated and denote the NPL Revision to which these apply. As interim
revisions of NPL are released to the field, new Release Notes are published to document
changes and updates.

The NPL Documentation -- An Overview PREFACE

P-2 NPL Programmer’s Guide

P.1.3 Installation Guides

An NPL Installation Guide is distributed with each NPL RunTime Package. The Installa-
tion Guide is operating system specific, and is intended to assist end users in the correct
installation and operation of the NPL RunTime.

P.1.4 Upgrade Guides

Upgrade Guides are intended to guide an end user through the correct process of applying
an NPL Upgrade RunTime to a currently installed NPL RunTime (where available).

P.1.5 Supplementary Documentation/Services

As with all programming languages, the potential for bugs always exist. To minimize
these, the staff at Niakwa has taken due care to perform stringent quality assurance test-
ing of the Niakwa Programming Language.

All bugs that are discovered will be published first on the Niakwa Bulletin Board System
(NBBS). New bugs are posted on a monthly basis to the currently open bug report, which
is closed and distributed to the field on a quarterly basis.

Although most bugs are minor and are easily worked around, occasionally, a more severe
bug is discovered and requires an immediate fix. In this event, Niakwa will distribute no-
tification and make available documentation and software to all NPL developers running
on the current NPL revision and platform for which the patch is intended. Distribution of
these patches is typically performed using Niakwa’s BBS (or by request).

As a continuing service to our developers, Niakwa will periodically publish and distrib-
ute Tech Notes to all NPL developers. Niakwa Tech Notes cover a broad spectrum of
technical issues that may have an impact on Niakwa developers. Like patches, all Tech
Notes are maintained and available on the NBBS.

P.2 How to Use the Programmer’s Guide

The following sections provide an overview of the NPL Programmer’s Guide and recom-
mended guidelines on how to proceed.

PREFACE How to Use the Programmer’s Guide

NPL Programmer’s Guide P-3

P.2.1 Documentation Conventions

This guide uses the following notational conventions:

NOTE: Notes provide information of particular importance.

WARNING--Warnings are special conditions that require extra care by
the user.

HINT: Hints provide helpful comments pertaining to the use of particular features.

The followingg conventions are used in the illustration and defination of NPL:

• Each statement appears on a separate page, with the statement as a page header.

• The general form of each statement is enclosed within a box.

• Uppercase letters ("A" through "Z"), digits ("0" to "9"), and special characters
(such as "$", "#", ":") must always appear exactly as presented in the general for-
mat.

• All lower-case words indicate information that the user must supply. These
words appear in italic type.

For example:

LEN (alpha-variable)

The user must supply the alpha-variable.

How to Use the Programmer’s Guide PREFACE

P-4 NPL Programmer’s Guide

• When braces, "{ }", enclose a vertically stacked list, or a horizontal list with
each item separated by a comma (","), the user must choose one of the options
within braces. Information within braces is shown in italic type.

For example:

ALL ({literal-string, alpha-variable, two-hexdigits})

or

ALL ({literal-string })
 {alpha-variable }
 {two-hexdigits }

Here, the ALL instruction must be followed by one and only one of the items in the list.

• Brackets, "[]", indicate that the enclosed items are optional. When brackets en-
close a vertical list or a horizontal list, the user may specify one or none of the
items. Information within brackets is shown in italic type.

For example:

 INPUT [literal-string,] variable [,variable] ...

Here, the INPUT instruction may optionally contain a literal-string fol-
lowed by an optional comma preceding the required "variable". Additional
variables may optionally be specified.

or:

CLEAR [V]
 [N]
 [P [line-number1][,[line-number2]]]

Here, either the V, N, or P parameter may be specified, but no parameter is
required.

PREFACE How to Use the Programmer’s Guide

NPL Programmer’s Guide P-5

NOTE: Here, line-number parameters may be optionally specified only if the "P" parame-
ter is specified.

• The presence of an ellipsis (...) within any format indicates that the unit immedi-
ately preceding the ellipsis can occur one or more times in succession.

For example:

 DEFFN’integer [(variable[,variable]...)]

Here, any number of "variable" may be specified, but the format ",variable"
must be used for the second and subsequent "variables".

• All other punctuation such as commas or parentheses must be included where
shown.

P.2.2 Programmer’s Guide Overview

This section provides a brief description of each chapter and appendix contained within
this guide.

Chapter 1 provides an overview of the NPL Development Environment and its struc-
ture.

Chapter 2 takes an in-depth look at working within the NPL environment using the
interpretive (RTI) and non-interpretive (RTP) RunTime programs.

Chapter 3 discusses RunTime memory considerations.

Chapter 4 takes a detailed look at structured programming and describes the recom-
mended NPL program constructs to use in developing structured applications.

Chapter 5 discusses working with the interpretive (RTI) RunTime to create, save and
edit NPL programs.

Chapter 6 discusses the debugging features of NPL.

Chapter 7 provides a detailed discussion of addressing hardware devices under NPL.

Chapter 8 identifies and discusses NPL error handling techniques.

How to Use the Programmer’s Guide PREFACE

P-6 NPL Programmer’s Guide

Chapter 9 describes a series of NPL system variables initialized by the RunTime at
startup.

Chapter 10 discusses usage of the NPL $SHELL command.

Chapter 11 discusses operating and developing context sensitive help with the NPL
HELP processor.

Chapter 12 provides details on developing self running demonstration programs us-
ing the NPL $DEMO statement.

Chapter 13 discusses the Niakwa Utilities programs provides details on the use of
each utility.

Chapter 14 discusses the how to use the Niakwa compiler program (B2C) and its op-
tions.

Chapter 15 discusses various methods of porting NPL programs and data from one
NPL supported environment to another.

Chapter 16 describes the process of integrating external routines written in other sup-
ported languages with NPL.

Chapter 17 provides a series of example NPL programs.

Appendix A discusses the immediate benefits of upgrading code from previous re-
leases of NPL.

Appendix B lists all NPL error messages.

Appendix C lists all NPL compiler errors.

Appendix D discusses the terminal characteristics of all NPL supported terminals.

Appendix E describes NPL Keyboard Keywords.

Appendix F discusses NPL de-compiler compatibility.

Appendix G provides an NPL "RAW" device compatibility chart.

PREFACE How to Use the Programmer’s Guide

NPL Programmer’s Guide P-7

P.2.3 Getting Started with NPL

This section is intended as a guide to assist programmers in deciding where to begin
within the Programmer’s Guide, based upon the programmers current knowledge of
NPL.

New to NPL

If you are new to the Niakwa Programming Language and have had experience with
other languages, the following chapters will get you acquainted with NPL and get you up
to speed in minimal time.

• Chapters 1 and 2 provide a high level overview of the NPL Development Envi-
ronment and a complete introduction to the NPL RunTime programs (RTI and
RTP).

• Chapter 4 introduces many of the structured constructs implemented in NPL Re-
lease IV. "C" programmers in particular, should feel quite comfortable with these
constructs. Heavy emphasis is placed on structured programming techniques and
how they are applied using NPL. A review of the example programs documented
in Chapter 17 of this manual and included with the NPL Development Package
software will compliment this chapter.

• Chapters 5 and 6 introduce the NPL Editor and NPL Debug facilities, respec-
tively.

• Chapter 7 expands on the virtual machine environment concept discussed in
Chapter 1 and provides detailed information on how NPL handles each compo-
nent of this virtual machine environment.

• Chapter 9 identifies a series of internal NPL system variables initialized at
startup. These variables provide useful information to the programmer and, in
most cases, may be modified.

• Chapter 13 documents the Niakwa Utilities. These utilities can serve program-
mers as useful tools in developing and maintaining applications.

How to Use the Programmer’s Guide PREFACE

P-8 NPL Programmer’s Guide

Experienced BASIC-2 User - New to NPL

If you are a BASIC-2 user and are new to the Niakwa Programming Language , the fol-
lowing chapters will get you introduced to NPL and how it emulates the Wang 2200 envi-
ronment.

• Chapters 1 and 2 provide a high level overview of the NPL Development Envi-
ronment and a complete introduction to the NPL RunTime programs (RTI and
RTP).

• Chapter 7 expands on the virtual machine environment concept discussed in
Chapter 1 and provides detailed information on how NPL handles each compo-
nent of this virtual machine environment. This chapter will clarify how the NPL
emulates the Wang 2200 environment.

• Chapters 5 and 6 introduce the NPL Editor and NPL Debug facilities, respec-
tively. Many enhancements have been implemented in the NPL Editor that do
not exist in BASIC-2.

• Chapters 14 and 15 discuss the Niakwa Compiler and porting procedures for con-
verting and moving your applications from a Wang 2200 to a Niakwa-supported
platform.

• Chapter 9 identifies a series of internal NPL system variables initialized at
startup. These variables provide useful information to the programmer and, in
most cases, may be modified.

• Chapter 4 introduces many of the structured constructs implemented in NPL Re-
lease IV. Heavy emphasis is placed on structured programming techniques and
how they are applied using NPL. A review of the example programs documented
in Chapter 17 of this manual and included with the NPL Development Package
software will compliment this chapter.

• Chapter 13 documents the Niakwa Utilities. These utilities can serve program-
mers as useful tools in developing and maintaining applications.

PREFACE How to Use the Programmer’s Guide

NPL Programmer’s Guide P-9

Experienced NPL Users

 If you are an experienced NPL user, welcome to Release IV. The following chapters
should help you get acquainted quickly to the new documentation layout and highlight
the new areas.

• Review the Preface and Table of Contents to note the NPL documentation layout
changes and any new sections that may be of interest.

• Appendix A provides a discussion on upgrading code that has been written using
previous releases of NPL.

• Chapter 4 introduces many of the structured constructs implemented in NPL Re-
lease IV. Many enhancements and changes have been introduced in Release IV,
and this chapter represents the core of these changes. Programmers are encour-
aged to become comfortable with the constructs introduced in this chapter.
Heavy emphasis is placed on structured programming techniques and how they
are applied using NPL. A review of the example programs documented in Chap-
ter 17 of this manual and included with the NPL Development Package software
will compliment this chapter.

• Chapters 5 and 6 discuss the NPL Editor and NPL Debug facilities, respectively.
Many enhancements have been implemented in the NPL Editor with Release IV.

P.3 Getting Help

This section is intended to assist developers’ in getting the best and most expedient sup-
port from Niakwa if a problem is encountered.

P.3.1 Warranty Information

Refer to the Niakwa Software Licence Agreement and Warranty at the start of this man-
ual.

P.3.2 Patch - Update - Upgrade Policies

Niakwa is continually working on the development of NPL. Public releases of new ver-
sions of our products typically fall into one of three categories. These are:

Getting Help PREFACE

P-10 NPL Programmer’s Guide

Patches. Patches typically consist of a series of bug corrections for an existing product
and are produced as needed. Although the version number has been updated with the
patch release (i.e., 4.00.08 to 4.00.15), only minor changes to the product will have been
made. Distribution of patches is done over Niakwa’s BBS (or by request) and are free of
charge. Notification of availability provided by Niakwa’s Tech Notes.

Updates. Updates generally provide several significant enhancements to the existing
Niakwa product and are provided within the life of a current product release (i.e., Release
III). With updates, the revision number of the product is updated with the new update re-
lease (i.e., 3.00 to 3.20). Distribution of updates is provided only by ordering and paying
the appropriate fee. Notification of availability is provided by Niakwa’s Marketing Bulle-
tins.

Upgrades. Upgrades provide major changes to an existing Niakwa product and only oc-
cur every couple of years. With upgrades, the release number of the product is updated
with the new upgrade release (i.e., 3. to 4.). Distribution is provided only by ordering and
paying the appropriate fee. Notification of availability is provided by Niakwa’s Market-
ing Bulletins.

NOTE: Developers must be currently licensed with Niakwa to receive any of the above.

P.3.3 Product Support

At Niakwa, we are dedicated to keeping our customers satisfied--not only with quality
products, but with outstanding support as well.

To better serve you when problems arise, Niakwa has made a substantial investment in
technical support staff and their training. The level of support and speed of response we
can provide is directly dependent on the information provided to us.

Customers can obtain the best product support by following the steps shown below and
using the enclosed form prior to calling Niakwa’s technical support.

1. Refer to the NPL manuals, Release Notes, Bug Reports, and Tech Notes to see if the
problem is covered there.

2. Run the program in question without other programs in memory to see if the problem
continues.

PREFACE Getting Help

NPL Programmer’s Guide P-11

3. Use the NPL Problems/Comments/Suggestions Form provided below to write down
the required information on the problem system.

4. Have available all configuration details: CONFIG.SYS and AUTOEXEC.BAT for
MS-DOS; profile, login, PATH and BASIC2C_TERM for XENIX/UNIX; CON-
FIG.P for SuperDOS; etc.

5. Be ready to describe the problem clearly and in detail (make notes if necessary).

6. Call from a phone near the computer; the Support Analyst may have questions about
the system.

7. Make sure the software in question is running on the computer, and have related
manuals nearby.

8. Please have patience. Other customers may have questions, and Niakwa wants to help
everyone.

Our support Analysts will answer questions about NPL and its functions, operation, and
installation, and can guide developers through difficult procedures. We can also advise
customers about the appropriate solution to any limitation known to exist in earlier ver-
sions of our software. We will also attempt to answer your questions on the setup of NPL
on the specific hardware you are working with.

NOTE: Upgrading or ordering questions should be directed to the Niakwa NPL sales staff.
Sales should also be contacted with suggestions for future upgrades of NPL and ad-
ditional system ports to be considered.

It is your responsibility to have a technically proficient person available for each NPL
platform you are supporting. We do not provide help for loading operating systems, oper-
ating system level problems, or hardware problems. Please contact the vendor’s technical
support departments directly for problems of this nature. For instance, if a printer does
not work from the operating system level, it will not work with NPL.

Technical support for NPL is available at (708) 634-8700, from 8:00 a.m. to 5:00 p.m.
(Central Standard Time). You may also FAX your problems to us at (708) 634-8718.

Getting Help PREFACE

P-12 NPL Programmer’s Guide

To further open the lines of communication, the Niakwa Bulletin Board System (NBBS)
is online 24 hours. The NBBS is an open forum for all NPL developers to exchange ideas
and information. Niakwa also maintains updated bug reports and current patch informa-
tion on this system. Login as "GUEST" or, to obtain a personal LOGIN to the NBBS,
contact Niakwa Technical Support.

NOTE: We are happy to extend our services to all /resellers so they can better help their
end-users. Please do not tell an end-user to call us. We are not equipped to handle
all of our distributors’/resellers’ end-users directly.

Support Analysts are always ready to explain a situation, provide a solution, or offer sug-
gestions on NPL related topics. Niakwa aims to provide NPL customers with the most
comprehensive technical support available. If we don’t know the answer to an NPL re-
lated issue, we will find out!

P.3.4 Reporting Problems

If you are encountering problems or simply have a comment or suggestion, simply fill out
the form on the next page and FAX it to Niakwa at (708) 634-8718. Remember, your
thoughts count!!!

PREFACE Getting Help

NPL Programmer’s Guide P-13

NPL Problems/Comments/Suggestions Form

Date:_________________________________ Phone Number:_______________________

Company:_____________________________ FAX Number:________________________

Reported By:___________________________

Type: __Problem __Comment __Suggestion __Other:________________________

 Product_____________ Documentation_____________ Software____________

Operating System: __MS-DOS __Novell __SuperDOS __XENIX __UNIX __VMS __68000 UNIX
 __Other:____________________________

Operating System Release/Revision: ____________________________

RunTime Revision (Please provide all 7 digits): ___________________________________
(use $REV in 3.00 or greater or start the RunTime and look at the security screen)

Hardware: __________________________________(Please provide any important details about your hardware)

Detailed Description:__

__

__

__

__

__
(If needed, please attach more pages) Attached pages___________

Sample program attached ? _____
(If it applies, please provide a small sample program that replicates easily the reported problem)

If applicable, please answer the following questions:
Any recent changes in the operating system ? ______

Did the program/security work before ? ___________

Logged on as "root" (XENIX/UNIX systems) or "SUPERVISOR" (on NOVELL) or "user"? ___________

Problem occurs only on console or only on terminals or both ? _______

Anything else specific to your system? ___

Niakwa Support Representative: ___

Getting Help PREFACE

P-14 NPL Programmer’s Guide

TABLE OF CONTENTS

 P-1

PREFACE P-1
The NPL Documentation -- An Overview ...P-1

The NPL Technical Reference Guide ..P-2
Operating System-Specific Supplements...P-2
Installation Guides..P-3
Upgrade Guides ..P-3
Supplementary Documentation/Services ...P-3

How to Use the Programmer’s Guide ..P-3
Documentation Conventions ..P-4
Programmer’s Guide Overview ...P-6
Getting Started with NPL...P-8
New to NPL...P-8
Experienced BASIC-2 User - New to NPL...P-9
Experienced NPL Users...P-10

Getting Help..P-10
Warranty Information...P-10
Patch - Update - Upgrade Policies ...P-10
Product Support ..P-11
Reporting Problems..P-13

INTRODUCTION 1-1
Overview...1-1
The Niakwa Development Environment..1-2

The Niakwa Programming Language (NPL)...1-2
Creating NPL Programs..1-4
NPL Add-Ons...1-6
The Niakwa Development Tools ...1-6
Niakwa Data Manager...1-6
Intelligent Query ...1-7
Niakwa’s Objectives...1-7

TABLE OF CONTENTS P-1

NPL Programmer’s Guide TOC-1

NPL Technical Features ...1-8
Performance..1-8
Interactive Environment...1-8
Debugging Facilities...1-9
Portability ..1-11
Multi-User ..1-11
Program Constructs..1-11
Program Modules (Libraries) ...1-11
FUNCTION Interface...1-12
Mixed Language Programming..1-12
Data Conversion Statements ..1-12
Advanced Math Functions ...1-12
String Handling ..1-13
Advanced Matrix Manipulation ...1-13
Device Independent..1-13
Native Operating System Calls ..1-13
Data Verification and Error Handling..1-13
HELP Subsystem..1-13
$DEMO ..1-14
Program Encryption..1-14
Wang 2200/Basic-2 Upward Compatibility...1-14

NPL Limits ...1-14
The NPL Virtual Machine Environment..1-17

Input/Output..1-18
Storage Devices ..1-18
Native Operating System Files..1-19
ISAM Files...1-19
Display Devices..1-20
NPL Character Sets ..1-20
NPL Virtual Keyboard ...1-23

RUNTIME OPERATIONS 2-1
Overview...2-1
RTP Versus RTI..2-2

Enabling RTI ..2-2
Starting the NPL RunTime...2-3

Starting from the Command Processor ..2-3
Starting from Batch/Script Files...2-4
Starting from a Menu ...2-4

RUNTIME OPERATIONS 2-1 TABLE OF CONTENTS

TOC-2 NPL Programmer’s Guide

Command Line (Start-up) Options...2-5
/B (Background Partition) ..2-5
/D (DET Entries) ..2-6
/G (Graphics Mode)..2-7
/H (Handle Table Size)...2-8
/K (Mouse Support)..2-10
/L (Leave Overhead Memory)..2-11
/M (XMS Memory) ..2-11
/P (Pre-boot) ...2-11
/R (Remote Control) ...2-13
/S (Separate Program Segments)..2-13
/T (Terminal/Port Number)..2-14
/U (UMB Memory)..2-14
/X (External Library)..2-15
Boot Program..2-16

Immediate Mode Operation..2-18
Two Types of Immediate Mode Entries...2-18
Immediate Mode Program Lines (Deferred Execution)................................2-18
Immediate Mode Commands (Immediate Execution)...................................2-19
Invoking Immediate Mode ...2-20
Invoking Immediate Mode from the Keyboard ...2-20
Invoking Immediate Mode from Program Control ..2-21
Conditionally Invoking Immediate Mode..2-22
Invoking Immediate Mode on ERROR Conditions.......................................2-23
Summary Table ..2-24
Immediate Mode Operation ...2-24
Statements Which Are Illegal As Commands..2-25
Statements Which Operate Differently As Commands2-25
1. Transfer of Control Statements..2-26
2. Program LOAD Statements..2-26
3. PRINT Statements..2-27
4. $SHELL Statement..2-27
Preserving a Program’s "Execution Status"...2-27
Exiting Immediate Mode..2-28
CONTINUE Command ...2-28
EXECUTE Key ...2-29
RUN Command..2-29
$END Command...2-29

Exiting NPL ..2-30
Exiting under Program Control ..2-30

TABLE OF CONTENTS RUNTIME OPERATIONS 2-1

NPL Programmer’s Guide TOC-3

Exiting Using the HELP Key...2-31
Exiting Using the Interrupt Key ...2-31

The HELP Processor...2-31
Selecting HELP Options ..2-32
HELP Options...2-33
Disabling Immediate Mode Options ..2-35

Print Control ...2-36
Accessing Printer Control ..2-36
The Print Control Screen..2-36
Printer Control Options ..2-37
Print Control Values...2-39

Redirect Feature for Remote Support...2-40
Establishing the Communications Link ...2-40
Turning Control Over to the Remote Terminal ...2-41
Example of Redirect Feature..2-44
Troubleshooting from Remote Sites ..2-45
Relinquishing Control Back to the End-User Site ...2-46

RunTime Errors..2-47
Error Handling Under RTP..2-47
Error Handling Under RTI ...2-50
Device Not Ready Conditions..2-50
Error Descriptions ..2-52

RUNTIME MEMORY USE 3-1
Overview...3-1
Dynamic Partition Size...3-2
Space Functions ..3-3
P-Code Size Relative to Wang 2200..3-4

NPL PROGRAMMING CONSTRUCTS 4-1
Overview...4-1
NPL Logical Program Organization...4-2

Structured Programming ..4-3
Code Modularization..4-4

Program Lines...4-5
Statement separators...4-6
Order of Execution ...4-6
Statement Labels ..4-7

RUNTIME MEMORY USE 3-1 TABLE OF CONTENTS

TOC-4 NPL Programmer’s Guide

Transfer of Control ...4-7
Data Types ..4-9

String 4-9
Numeric ..4-9

Literals and Constants...4-9
Literals 4-10
Numeric Constants ...4-10
Constant Variables..4-10

Variables ...4-11
Naming Conventions..4-11
Significance of Spaces in Syntax ...4-11
Identifier Abbreviations ...4-12
Case Conventions ...4-12
Short Identifier Names...4-13
Long Identifier Names (LINs)...4-13
Variable Types..4-14
String Variables ..4-14
Numeric Variables..4-15
Array 4-16
Pointer 4-17
Constant Variables...4-17
Field Identifiers and Logical Records..4-17
Allocation Classes of Variables ...4-18
Static Allocation..4-18
Recursive Allocation...4-18
Scope of Variables..4-19
Function Private Variables..4-20
Module Private Variables..4-20
Public Variables..4-20
Variable Declaration...4-21
Undeclared Variables...4-22
Variables Larger than 64KB ..4-22
Restrictions on Use...4-23
Expanding Array Size..4-24

Numeric and String Expressions ..4-25
Numeric Operators ...4-25
Numeric Expressions..4-26
Matrix Support..4-27
String Operators..4-27
String Expressions ..4-28

TABLE OF CONTENTS NPL PROGRAMMING CONSTRUCTS 4-1

NPL Programmer’s Guide TOC-5

Data Conversion ...4-29
FUNCTIONs and PROCEDUREs ...4-29

Parameter Types of Functions..4-30
Parameter Passing Conventions ...4-30
Parameter Specifying Modifiable Arguments ...4-31
Passing Large Arguments by Reference ..4-31
Scope of Functions ...4-31
Module Private Functions ..4-32
Public Functions ...4-32
Scope of Variables Declared within Functions..4-33
Coding Restrictions ..4-33
Location of the Body of a Function..4-33
Branching Restrictions in a Function...4-33
Nesting of Function Bodies..4-34
Function Body Skip-over...4-34
DEFFN’ Declarations...4-34

Calling a Defined Function ..4-34
Argument Type Checking ..4-34
Use of Constant Parameters ...4-34
Use of /POINTER Parameters..4-34
Restrictions on Arguments for POINTER Parameters............................4-35
Resolution of Function Identifier ...4-35
Indirect Specification of Function Name...4-35

Modules ..4-36
Module Concepts..4-36
Module Categories ...4-37
Root Module ...4-37
Run Module...4-37
Executing Module ..4-37
List Module ...4-38
Choosing Module Names ...4-38
Reviewing Loaded Modules...4-39
Modifying an Active Module...4-39
Nested Included Modules...4-40
Module Initialization and Cleanup...4-41
Discarding Modules ...4-41
Effect on Immediate Mode Commands ...4-42
 Execution Time LOAD and SAVE..4-43
 Guidelines for Writing Modules ..4-43

Logical Constructs..4-44

NPL PROGRAMMING CONSTRUCTS 4-1 TABLE OF CONTENTS

TOC-6 NPL Programmer’s Guide

Structured IF...ELSE...ENDIF ...4-44
WHILE...WEND ..4-45
REPEAT...UNTIL ..4-46
FOR/BEGIN...NEXT ...4-46
SWITCH...CASE..4-47

RECORDs/FIELDs...4-48
Field Identifiers ..4-49
Field Expressions..4-50
Indirect Field References..4-52
Example of RECORDs/FIELDs...4-53

CREATING NPL PROGRAMS AND THE NPL EDITOR
5-1

Overview...5-1
Creating NPL Programs..5-2

NPL P-Code..5-2
The NPL Interpreter (RTI) ...5-2
The NPL Compiler (B2C) ..5-3
$SOURCE/$OBJECT ..5-4

Loading Programs...5-4
Program Text Merging ...5-5
Loading from Diskimages..5-5
Loading from Native Operating System Files (BOOT and PREBOOT)5-6
Loading Program Text at RunTime ...5-7
Loading Modules..5-8

The Line Editor...5-8
Multi-Command Buffering..5-11
EDIT Functions ..5-11
Standard Keys...5-12
Special Function Keys..5-12
Special Function Keys - DEFFN Mode ...5-13
Special Function Keys - EDIT Mode...5-14
Alternative to EDIT Mode SF Keys...5-16
Multi-Character Insertion ...5-18
Overstrike Mode...5-18
Insert Mode...5-19
Multi-Statement Program Lines...5-21
Suppression of Statement Separators ...5-21
Statement Insertion and Deletion ...5-22

TABLE OF CONTENTS CREATING NPL PROGRAMS AND THE NPL EDITOR 5-1

NPL Programmer’s Guide TOC-7

Adding Statements..5-23
Inserting a Statement ..5-23
Deleting a Statement ..5-24
Forcing Return-Graphics..5-24
Multi-Screen Text Lines...5-25
Use of TAB/SHIFT-TAB...5-26

Editing Programs ..5-27
Selecting a Module to Edit ...5-27
Entering a New Program Line..5-28
Replacing a Program Line..5-28
Changing a Program Line with RECALL..5-28
Deleting Program Lines..5-29
Concatenating Program Lines ..5-30
Moving Program Lines...5-30
Recalling Long Identifier Names ...5-31
Syntax Errors ..5-32
Other Useful Editing Tools ..5-33

Saving Programs...5-34
Saving New Programs to Diskimages..5-35
Saving Existing Programs to Diskimages..5-36
Insufficient Space in Old Program...5-36
Use of DEFFN’...5-36
Saving Portions of Programs to Diskimages..5-37
Saving Programs to Native Operating System Files......................................5-38
Scramble Protecting Programs...5-39

DEBUGGING CODE 6-1
Overview...6-1

Prerequisites..6-2
Debugging Modules ...6-2
Inspection and Modification of Program Logic ...6-4

Logic Inspection Using Stepped Execution ...6-4
Step Mode ...6-5
Step Range...6-5
Activating Stepped Execution...6-5
Operating Stepped Execution...6-7
Temporary Exit from Stepped Execution ..6-9
CONTINUE RETURN...6-9
CONTINUE NEXT..6-9

DEBUGGING CODE 6-1 TABLE OF CONTENTS

TOC-8 NPL Programmer’s Guide

CONTINUE LOAD ...6-10
DEFFN’ 6-10
Deactivating Stepped Execution ..6-10
Logic Inspection Using TRACE ..6-11
Activating TRACE Mode...6-11
TRACE Output...6-12
TRACE Output on Transfer of Control ...6-12
Trace Output on Variable Modification...6-13
Selective TRACE ...6-15
Redirecting TRACE Output ...6-17
Logic Inspection Using LIST...6-17
LIST STACK..6-17
LIST DT 6-18
Logic Modification...6-18
GOTO 6-19
RETURN 6-19
RETURN CLEAR..6-19
RETURN (value)..6-20
RETURN ERROR (code) ..6-20
NEXT 6-20
RUN # 6-21
RUN 6-21

Inspection/Modification of Program Variables..6-21
Variable Inspection...6-21
Automatic Variable Inspection with TRACE..6-23
TRACE V 6-24
Variable Modification..6-25

Inspection of Program Text ..6-26
Inspection Using the LIST Commands..6-26
Redirecting LIST Output..6-27

Inspection of the Program Environment ..6-28
Commands..6-28
System Variables..6-29
Public Functions, Procedures and Variables..6-30

DEVICE SUPPORT 7-1
Overview...7-1
Device Emulation ...7-2

Device Addressing..7-3

TABLE OF CONTENTS DEVICE SUPPORT 7-1

NPL Programmer’s Guide TOC-9

The Device Equivalency Table (DET)...7-3
The $DEVICE Statement..7-4
Default Device Equivalence Table..7-6
Maximum Entries Allowed in the Device Equivalence Table...................7-7
Inspecting the Device Equivalence Table...7-7
Modifying the DET ...7-7
Clearing Entries in the Device Equivalence Table.....................................7-8
The Internal Device Table (DT)...7-8
Default Devices..7-9
File Number Slots...7-10
Modifying the Internal Device Table..7-10
Use of the SELECT Statement..7-10
Other Functions and Statements..7-11
Examining the DT...7-11
Module Status...7-12
Wang 2200 Compatibility Note...7-12
Exclusive Access ..7-12
The $OPEN Statement...7-13
Implied Exclusive Access ..7-13

Storage Devices ..7-14
NPL Diskimages...7-15
General Features of Diskimages..7-15
Sector Size 7-15
Maximum Size..7-16
Maximum Number of Diskimages..7-16
File Storage..7-16
Compatibility ..7-16
Compatibility with Native Operating System File Structures.................7-17
Diskimage Addressing ...7-17
Native Operating System Files as Diskimage Files.......................................7-18
Creating Diskimage Files...7-18
Changing the Size of a Diskimage File...7-19
Deleting Diskimage Files..7-20
Wang 2200 Compatibility Notes...7-20
Native Operating System "RAW" Devices as Diskimages7-21
Purpose of Using "Raw" Devices..7-21
Characteristics of "Raw" Devices..7-21
Internal Structure of Diskimage Files..7-22
Catalog Index and Catalog Area..7-22
Listing the Index...7-25

DEVICE SUPPORT 7-1 TABLE OF CONTENTS

TOC-10 NPL Programmer’s Guide

Non-Cataloged Area...7-25
Cataloged Files ...7-26
Wang 2200 Compatibility Notes...7-27
Creating Files..7-28
Maintaining Files ..7-28
Accessing Files..7-29
Internal Format of Program Files ..7-29
Internal Format of Data Files ...7-29
Catalog Access Methods ..7-30
Summary of Statements Used for Catalog Access to Data Files.............7-30
The Logical Record ..7-32
Diskimage Utilization for Logical Records..7-32
Logical End-of-File...7-33
Use of the Internal Device Table...7-34
Direct Access..7-35
Summary of Statements Used for Direct Access to Data Files................7-35
Extended Diskimages...7-37
Implementation...7-37
Maximum Size..7-38
Compatibility ..7-38
Implications for Application Software ...7-38
Three-Byte Addresses..7-39
Direct Access to the Index..7-39
Use of Bytes 7 & 8 for Other Purposes...7-39
Internal Structure of Diskimages..7-40
NPL Statements Affected...7-41
For Non-Extended Diskimages:..7-43
Native Operating System Files...7-44
ASCII File Access...7-44
Print Class Devices...7-44
Disk Class Devices..7-45
The Niakwa Data Manager (NDM)..7-47

Screen Handling..7-47
General Features...7-47
Addressing the Screen..7-48
The NPL Screen Character Set...7-49
Screen Output Character Translation...7-51
Internal Access ...7-51
Screen Control Codes and Attributes...7-52
Video Attributes ..7-53

TABLE OF CONTENTS DEVICE SUPPORT 7-1

NPL Programmer’s Guide TOC-11

Graphics..7-55
Color Support ...7-55
Dynamic Selection of Colors Using HEX Sequences................................7-57
Underline Color Replacement...7-58
Selecting "BRIGHT" Attribute ..7-59
Sample Color Program ...7-59
Box Graphics ..7-60
True Boxes...7-60
Character Boxes..7-60
Pixel Graphics ..7-61
Plotting Capabilities ...7-61
Statements Used to Print to the Screen ..7-61
132-Column Support ..7-62
Uses and Limitations of INPUT SCREEN/PRINT SCREEN.......................7-63

Keyboard Support...7-64
The Keyboard Device Address ..7-64
Virtual Key Names and Codes...7-65
Use of Special Function Keys by NPL..7-66
The HALT Key ...7-67
The Underline Key ...7-67
Keyboard Translation ...7-68
Statements Used for Keyboard Input ...7-69
Extended Keyboard Entry ..7-69

Mouse Support..7-71
Terminal/Monitor Support..7-72

Determination of Type ...7-73
NPL Directly Supported Terminals/Monitors..7-73
Local Printer Support ...7-75
Support of Native Operating System and Utilities..7-75

Printers ..7-76
Valid NPL Print Addresses..7-76
Equivalent Native Operating System Devices or Files..................................7-76
Specifying the Output Printer Device ..7-77
Available Print Statements ...7-77
Control Sequences..7-78
Use of Native Operating System Files ...7-78
Printer Translation ..7-79
Local Printer ...7-81
Special End-of-Line Handling ...7-81

Serial Devices ...7-82

DEVICE SUPPORT 7-1 TABLE OF CONTENTS

TOC-12 NPL Programmer’s Guide

Directing Output to Other Devices ..7-82
Accepting Input ..7-83
Input from the Serial Port ...7-83
Telecommunications Support...7-85

ERROR HANDLING 8-1
Overview...8-1
Error Classes ...8-2

RunTime Program Errors and Warnings ...8-2
Recoverable Versus Non-Recoverable Errors..8-3
Resolution Versus Execution Errors..8-5
Handling Under Program Control ..8-7

ERROR DO..8-7
ERR 8-8
ERR$ 8-10
$OSERR ...8-11
Error Help Files ..8-12

SYSTEM VARIABLES 9-1
Overview...9-1
$MACHINE..9-2
$OPTIONS..9-2
Other System Variables ..9-3

$BOXTABLE...9-3
$KEEPREMS ...9-4
$KEYBOARD..9-4
$NETID ..9-4
$PRINTER..9-5
$PROGRAM ..9-5
$REV 9-5
$SCREEN...9-5
$SER 9-6

$SHELL 10-1
Overview...10-1
Uses of $SHELL...10-2

TABLE OF CONTENTS ERROR HANDLING 8-1

NPL Programmer’s Guide TOC-13

General Versus Specific Program Use ...10-3
General Form..10-3
Executing Specific Commands ..10-5
Native Operating System File System ...10-6
Return Code..10-6

Command Usage...10-6
From Immediate Mode...10-6
From The HELP Processor...10-7
From Program Control ...10-7

Memory Requirements ...10-8

THE HELP PROCESSOR 11-1
Overview...11-1
User-Definable Help Screens ...11-2

The HELP ENTRY...11-2
Stand-alone HELP Files ...11-3
Indexed HELP Files ...11-3
The $HELP Statement..11-4

Special Sequences...11-5
Nested Help Entries ..11-6
Indexed Help Files..11-7

Advantages and Disadvantages of Indexed HELP Files11-7
Creating an Indexed HELP File ...11-8
Defining HELP Entries Within an Indexed File ..11-8
Creating the Index for the File ...11-9
To Use an Indexed HELP File ...11-9
Alternative Search ..11-10
External References within Indexed HELP Files ..11-11
Internal References within an Indexed File ...11-11

General Notes on Help Files...11-12
Additional HELP Processor Features...11-13

Mouse Support..11-13
Keyboard Functionality..11-13

$DEMO 12-1
Overview...12-1
$DEMO Statement..12-2

Syntax 12-2

THE HELP PROCESSOR 11-1 TABLE OF CONTENTS

TOC-14 NPL Programmer’s Guide

Effect of Execution...12-3
Determining $DEMO Status ..12-4

DEMO Script File...12-4
Keystrokes..12-4

Keystroke Processing ...12-5
Special Keys ...12-6
Repeat Keys..12-7
Timing 12-7

Display of Informational Text ..12-8
The BOX Statement ...12-8
Special Sequences ..12-9
End-of-Text Delimiter..12-10
Modifying Box Parameters..12-11
BOX Graphics Display...12-11
Redefining the Prompt..12-12

Adding Comments..12-12
Restrictions ...12-13

The HELP Key ...12-13
Polling KEYIN ...12-13
$IF ON 12-13

Keyboard Logging..12-13

NPL UTILITIES 13-1
Overview...13-1
Starting the NPL Utilities ...13-3
The NPL Utilities Menu ...13-4
Menu Utility..13-4

Format Floppy Disks ..13-4
General Backup Utility...13-4
General Recovery Utility ...13-5
General File Copy Utility ...13-5
Diskimage Listing ..13-5
New Diskimage Creation ...13-5
Change Diskimage Size..13-5
Scratch Single File ...13-5
Change Utilities Device Equivalences Table...13-5
Keyboard Translation Tables Editor ..13-5
Screen Translation Tables Editor ...13-5
Font Table Editor..13-5

TABLE OF CONTENTS NPL UTILITIES 13-1

NPL Programmer’s Guide TOC-15

Printer Control Table Editor...13-5
Indexed Help Table Editor ...13-5
Diagnostic Dump File Processor..13-6
Printer Translation Table ...13-6
Edit Options..13-6
Other Program ..13-6
Operation ..13-6
Menu Options Setup...13-7
Accessing the Menu Options Program...13-7
Error Handling..13-8

Format Floppy Disks..13-8
Features...13-9
Operation ..13-9

General Backup Utility...13-10
Features...13-11
Operation ..13-12
Selecting Files ..13-13
The Copying Process..13-13
Limitations..13-14

General Recovery Utility..13-15
Features...13-15
Operation ..13-16
Error Handling..13-17
Limitations..13-17

General File Copy Utility ...13-18
Features...13-18
Operation ..13-19
Selecting Files ..13-20
The Copying Process..13-21
Exceptions13-21
Overwrite Exceptions...13-22

Diskimage Listing...13-22
Features...13-23
Operation ..13-24

New Diskimage Creation..13-24
Features...13-25
Operation ..13-25

Change Diskimage Size..13-26
Features...13-26
Operation ..13-27

NPL UTILITIES 13-1 TABLE OF CONTENTS

TOC-16 NPL Programmer’s Guide

Scratch Single Files ..13-28
Features...13-28
Operation ..13-28

Change Utilities Device Equivalences Table...13-29
Features...13-29
Operation ..13-30

Keyboard Translation Tables Editor ..13-31
Features...13-31
Operation ..13-32

Screen Translation Tables Editor ...13-34
Features...13-35
Operation ..13-35

Font Table Editor..13-37
Features...13-37
Operation ..13-37

Printer Control Table Editor...13-40
Features...13-40
Operation ..13-40

Indexed HELP File Processor...13-41
Features...13-41
Operation ..13-41
Error Handling..13-42

Diagnostic Dump Variables List ..13-43
Printer Translation Table ..13-43

Features...13-44
Operation ..13-44

Edit Options ..13-45
Features...13-45
Operation ..13-46

OTHER Program ..13-47
Features...13-47
Operation ..13-47

Generating 2200 Source ...13-48

COMPILER OPERATION 14-1
Overview...14-1
The Compiler Command Line..14-3

Format 14-4
Discussion...14-6

TABLE OF CONTENTS COMPILER OPERATION 14-1

NPL Programmer’s Guide TOC-17

Selecting Input Programs for Compilation...14-7
Literal Program Selection...14-7
Wildcard Program Selection ..14-8

Compiler Options..14-9
Default Options ..14-10
Changing Options During a Compiler Run..14-10
Specifying Path Names and Device Names...14-10

The SRCLOC Option ...14-10
Format 14-11
Discussion...14-11
Diskimage Files ..14-11

The OBJLOC Option..14-13
Format ... 14-13
Discussion...14-13
Diskimage Files ..14-14
Native Disk Environment...14-15
No Object Programs Produced...14-15
Scrambled Program Considerations...14-15

The OBJFORMAT Option ...14-16

Format ... 14-16
Discussion...14-16
Scrambled Program Considerations...14-16

The OBJEXTRA Option ..14-17
Format ... 14-17
Discussion...14-17

The LSTLOC Option..14-17
Format ... 14-18
Discussion...14-18
Diskimage Files ..14-18
Native Directory ...14-19
Native Files...14-19
"RAW" Diskettes..14-19
Print Device ..14-20

The LSTFORMAT Option ...14-20
Format ... 14-20
Discussion ..14-20
.LST Format..14-20
.SRC Format ...14-21
2200 Format..14-21
2200 "Compressed" Format ...14-21

COMPILER OPERATION 14-1 TABLE OF CONTENTS

TOC-18 NPL Programmer’s Guide

The ERRLOC Option ...14-21
Format ... 14-22
Discussion...14-22
Native Files...14-22
Print Device ..14-22

The WARNINGS Option ...14-23
Format ... 14-23
Discussion...14-23

The NUMBERS Option..14-23
Format ... 14-24
Discussion...14-24

The REM$ Option ..14-24
Format ... 14-25
Discussion...14-25

The KEEPREMS Option ..14-25
Format ... 14-26
Discussion...14-26
The KEEPREMS Compiler Option ...14-26

The DISPLAY Option ..14-27

Format ... 14-27
Discussion...14-28
Explicitly Invoking the Compiler Display ...14-28
Implicitly Invoking the Compiler Display ...14-28

The TRANSLATE Option..14-28
Format ... 14-29
Discussion...14-29
Translation Is Performed Only When Required..14-31

The LCASE Option ..14-31
Format ... 14-31
Discussion...14-31

The User-Friendly Compiler Display...14-32
Invoking the Display ..14-32
The Display Screen...14-33
Limitations of the Compiler Display..14-34
Compiler Display Example ..14-35

Batch Files ..14-35
Discussion...14-36
Example Batch Files...14-37

2200 Compatibility Issues ..14-37

TABLE OF CONTENTS COMPILER OPERATION 14-1

NPL Programmer’s Guide TOC-19

Compatibility with Earlier Revisions ...14-38
New Statements ..14-39
Program Stamp ...14-39
Using the Compiler...14-39

Commonly Used Compiler Options ...14-39

PORTING PROGRAMS AND DATA 15-1
Overview...15-1
Porting Options...15-2

"RAW" Diskette Transfer ..15-2
Serial Communications ..15-3
Native Operating System Utility Options ..15-4

NPL General Backup/Recovery Utilities ...15-5
Steps Required for Transfer ...15-5

NPL General File Copy Utility Use ...15-8
User Programs...15-9

Transferring Over Your Own Utility Programs...15-10
Executing Your Own Utility Programs..15-11

Transfer to and from the Wang 2200 ...15-11
Formatting a PC Interchange Disk on the 2200...15-12

File Types for Porting...15-14
Methods of Transferring...15-15

MIXED LANGUAGE PROGRAMMING 16-1
Overview...16-1
Interface to External Subroutines ...16-2

GOSUB/DEFFN Versus FUNCTION/PROCEDURE Interface16-3
Using the GOSUB’/DEFFN’ Interface ..16-3
Using the FUNCTION/PROCEDURE Interface...16-5
Callbacks to /PUBLIC FUNCTIONs from the External Library16-7

External Subroutine Interface Specifications...16-8
Calling Conventions ...16-8
Near Versus Far Pointers..16-8
C Versus Pascal Calling Convention..16-9
Parameter Format ...16-10
Numeric Parameters ...16-10
String Parameters..16-12
Execution of the Subroutine...16-13

PORTING PROGRAMS AND DATA 15-1 TABLE OF CONTENTS

TOC-20 NPL Programmer’s Guide

Return Value of the Subroutine..16-13
Example of External Subroutine ..16-14

External Function Interface Specifications ...16-15
Calling Conventions ...16-15
Near Versus Far Pointers..16-15
C Versus Pascal Calling Convention ...16-16
Parameter Format ...16-16
Base Data Types...16-16
Numeric Data Type ..16-16
String Data Type...16-18
Arrays of Base Data Types...16-18
Parameters Passed by Reference ..16-18
Declaring the Parameter Block ..16-18
Declaring the Function ...16-20
Accessing the Parameter Block..16-20
Accessing Parameters Passed by Value ...16-21
Accessing Parameters Passed by Reference (/POINTER)..........................16-21
Execution of the Function ..16-22
Return Value of the Subroutine..16-23
Example of an External Function...16-23

NPL Function Callback Interface Specifications ..16-25
Locating the Function...16-25
Validating the Function ..16-26
Calling the Function ...16-26
Passing Parameters by Value ...16-26
Passing Parameters by Reference (/POINTER)...16-26
Passing the Address of the Function to be Called..16-27
Making the Callback ..16-28
Checking for Errors and Getting the Return Value16-28
Restrictions on Callbacks ...16-29
Error Handling in Callbacks...16-29
Example of External Callback to NPL Function ...16-29

Writing a Mainline for External Subroutines ..16-31
Why a Mainline is Needed...16-31
Calling NPL from the Mainline - The RunTime Subroutine.......................16-32
The RTP() Subroutine Calling Conventions...16-32
The RTP() Subroutine Parameters...16-32
The RTP() Subroutine Return Value...16-32
Example of Mainline ..16-33

Writing the RTPEXT Subroutine ...16-33

TABLE OF CONTENTS MIXED LANGUAGE PROGRAMMING 16-1

NPL Programmer’s Guide TOC-21

What Is the RTPEXT Subroutine?...16-33
The RTPEXT Calling Conventions ...16-35
The RTPEXT Parameters...16-35
Information Requests about External DEFFN’s..16-37
Named Aliases of External DEFFN’ Routines ..16-40
RTPEXT Requests for Information about External FUNCTIONs..............16-41
Validating a FUNCTION/PROCEDURE..16-43
The RTPEXT Return Code..16-45
Example RTPEXT Subroutine ...16-45
Another Example RTPEXT Subroutine...16-48

Writing a Test Program..16-50
Example Test Program ...16-51
Example Linkage for Test Program ...16-53
Running the Test Program..16-53
Running the Example Test Program ..16-53

Making the External Library ..16-54
Example Linkage for External Library ..16-54
Using an External Library ..16-55
Using the Example External Library..16-56

Cautions and Restrictions ...16-57
Compatibility with Other NPL Applications ...16-58
Memory Requirements ...16-58
Isolation from NPL Environment...16-58
Resource Conflicts..16-58
Increased Expertise Requirement...16-59
Portability ...16-59

17-1

EXTENDED EXAMPLES 17-1
Overview...17-1
Programming Style Used in Examples...17-3
Example 1: WHILE/WEND..17-4

Program Listing ..17-4
Discussion...17-4
General Comments ...17-5

Example 2: REPEAT/UNTIL..17-5
Program Listing ..17-5
Discussion...17-5
General Comments...17-6

EXTENDED EXAMPLES 17-1 TABLE OF CONTENTS

TOC-22 NPL Programmer’s Guide

Example 3: Simple SWITCH/CASE ..17-6
Program Listing ..17-6
Discussion...17-6
General Comments...17-7

Example 4: Example Module (Library) ..17-7
Program Listing ..17-7
Discussion...17-7
General Comments...17-9

Example 5: Module using PUBLIC Sections..17-9
Program Listing ..17-9
Detailed Discussion...17-11
General Comments...17-14

Example 6: Module using PROCEDURE..17-15
Program Listing ..17-15
Detailed Discussion...17-16
General Comments...17-16

Example 7: A Recursive Function...17-17
Program Listing ..17-18
Detailed Discussion...17-18
General Comments...17-19

Example 8: QSORT Routine ...17-19
Program Listing ..17-20
Discussion...17-22
General Comments...17-22

Example 9: Logical SWITCH/CASE..17-22
Program Listing ..17-22
Discussion...17-22
General Comments...17-23

Example 10: Complex SWITCH/CASE ...17-23
Program Listing ..17-23
Results 17-24
Discussion...17-24
General Comments...17-24

Example 11: RECORDS/FIELDS...17-24
Program Listing ..17-25
Results 17-25
Discussion...17-26

Example 12: Complex Use of RECORDs...17-27
Program Listing ..17-27
Results 17-28

TABLE OF CONTENTS EXTENDED EXAMPLES 17-1

NPL Programmer’s Guide TOC-23

Discussion...17-28

UPGRADING OLDER NPL CODE A-1
Compatibility with Earlier Revisions ..A-1
Immediate Benefits of Modularization.. A-2
Immediate Benefits of Long Variable Names...A-3
Upgrading Code Containing GOTO #... A-3
Useful NPL Enhancements..A-5

Language Features ...A-5
Editor Enhancements..A-6
Miscellaneous Enhancements...A-6

Additional Considerations...A-7

NPL ERRORS B-1
Overview.. B-1
Error Code Classes .. B-2

RunTime Program Errors and Warnings .. B-2
Recoverable Versus Non-Recoverable Errors .. B-3

RunTime Program Errors .. B-4
Miscellaneous Errors ... B-4
ERR A00 - Not Implemented.. B-4
ERR A01 - Memory Overflow (Text < --> Variable Table).......................... B-4
ERR A02 - Value Stack Overflow.. B-4
ERR A03 - Insufficient Memory for Buffer. .. B-4
ERR A04 - Operator Stack Overflow. .. B-4
ERR A05 - Program Line Too Long... B-5
ERR A06 - Program Protected.. B-5
ERR A07 - Illegal Immediate Mode Statement.. B-5
ERR A08 - Statement Not Legal Here.. B-5
ERR A09 - Program Not Resolved. .. B-5
Syntax Errors ... B-5
Program Errors .. B-6
ERR P32 - Start greater than End.. B-6
ERR P33 - Line-Number Conflict... B-7
ERR P34 - Illegal Value.. B-7
ERR P35 - No Program in Memory. ... B-7
ERR P36 - Undefined Line-Number or CONTINUE Illegal. B-7
ERR P37 - Undefined Marked Subroutine. .. B-7

UPGRADING OLDER NPL CODE A-1 TABLE OF CONTENTS

TOC-24 NPL Programmer’s Guide

ERR P38 - Undefined FN Function. ... B-7
ERR P39 - FN’s Nested Too Deep.. B-7
ERR P40 - No Corresponding FOR for NEXT Statement. B-7
ERR P41 - RETURN Without GOSUB.. B-8
ERR P42 - Illegal Image. .. B-8
ERR P43 - Illegal Matrix Operand.. B-8
ERR P44 - Matrix Not Square... B-8
ERR P45 - Operand Dimensions Not Compatible.. B-8
ERR P46 - Illegal Microcommand.. B-8
ERR P47 - Missing Buffer Variable. .. B-8
ERR P48 - Illegal Device Specification.. B-8
ERR P49 - Interrupt Table Full. .. B-9
ERR P50 - Illegal Array Dimensions or Variable Length.............................. B-9
ERR P51 - Variable or Value Too Short... B-9
ERR P52 - Variable or Value Too Long... B-9
ERR P53 - Noncommon Variables Already Defined. B-9
ERR P54 - Common Variable Required. .. B-9
ERR P55 - Undefined Variable... B-9
ERR P56 - Illegal Subscripts... B-9
ERR P57 - Illegal STR Arguments. .. B-10
ERR P58 - Illegal Field/Delimiter Specification. ... B-10
ERR P59 - Illegal Redimension..B-10
Computational Errors .. B-10
ERR C60 - Underflow... B-10
ERR C61 - Overflow... B-10
ERR C62 - Division by Zero... B-10
ERR C63 - Zero Divided by Zero or Zero ^ Zero... B-10
ERR C64 - Zero Raised to Negative Power.. B-10
ERR C65 - Negative Number Raised to Non-integer Power. B-10
ERR C66 - Square Root of Negative Value.. B-10
ERR C67 - LOG of Zero. .. B-10
ERR C68 - LOG of Negative Value. .. B-11
ERR C69 - Argument Too Large. ... B-11
Execution Errors.. B-11
ERR X70 - Insufficient Data... B-11
ERR X71 - Value Exceeds Format. .. B-11
ERR X72 - Singular Matrix. ... B-11
ERR X73 - Illegal INPUT Data..B-11
ERR X74 - Wrong Variable Type... B-11
ERR X75 - Illegal Number..B-12

TABLE OF CONTENTS NPL ERRORS B-1

NPL Programmer’s Guide TOC-25

ERR X76 - Buffer Exceeded... B-12
ERR X77 - Invalid Partition Reference..B-12
ERR X79 - Invalid Password..B-12
Disk Errors... B-12
ERR D80 - File Not Open. .. B-12
ERR D81 - File Full. ... B-12
ERR D82 - File Not in Catalog. .. B-12
ERR D83 - File Already Cataloged. ... B-12
ERR D84 - File Not Scratched.. B-13
ERR D85 - Index Full. .. B-13
ERR D86 - Catalog End Error... B-13
ERR D87 - No End-of-File. .. B-13
ERR D88 - Wrong Record Type... B-13
ERR D89 - Sector Address Beyond End-of-File. ... B-13
I/O Errors ...B-13
ERR I90 - Disk Hardware Error..B-14
ERR I91 - Disk Hardware Error..B-14
ERR I92 - Timeout Error... B-14
ERR I93 - Format Error... B-14
ERR I94 - Format Key Engaged. .. B-14
ERR I95 - Device Error (Write Protect). .. B-14
ERR I96 - Data Error... B-14
ERR I97 - Longitudinal Redundancy Check Error....................................... B-14
ERR I98 - Illegal Sector Address or Platter Not Mounted. B-14
ERR I99 - Read-After-Write Error.. B-15
NPL Extended Errors .. B-15
ERR 200 - Handle table full / cannot expand. .. B-15
ERR 201 - Variable already referenced in program. B-15
ERR 202 - Variable not referenced in program. ...B-15
ERR 203 - Branch into body of a function or procedure.............................. B-15
ERR 204 - Branch out of body of a function or procedure........................... B-15
ERR 205 - This error code is reserved for future use by NPL...................... B-15
ERR 206 - FUNCTION/PROCEDURE not matched with END FUNC-
TION/PROCEDURE. ... B-15
ERR 207 - Nested functions/procedures not permitted................................B-16
ERR 208 - Function/ procedure already defined. ... B-16
ERR 209 - Function/ procedure differs from /FORWARD declaration....... B-16
ERR 210 - RETURN(value) not within FUNCTION body. B-16
ERR 211 - RETURN(value) incorrect type for FUNCTION....................... B-16
ERR 212 - End Structure name does not agree... B-16

NPL ERRORS B-1 TABLE OF CONTENTS

TOC-26 NPL Programmer’s Guide

ERR 213 - Arguments of function/procedure incorrect................................B-16
ERR 214 - No such function or procedure has been declared or included... B-16
ERR 215 - Argument for non-constant /POINTER parameter is
not modifiable..B-17
ERR 216 - Not legal after an :ERROR clause. ... B-17
ERR 217 - Only simple IF permitted here. ...B-17
ERR 218 - This error code is reserved for future use by NPL...................... B-17
ERR 219 - This error code is reserved for future use by NPL...................... B-17
ERR 220 - No enclosing WHILE, REPEAT or FOR/BEGIN loop structure. ...B-17
ERR 221 - This error code is reserved for future use by NPL...................... B-17
ERR 222 - Structured IF not matched with END IF..................................... B-17
ERR 223 - Structured ELSE not matched with END IF............................... B-17
ERR 224 - REPEAT not matched with UNTIL..B-18
ERR 225 - WHILE not matched with WEND.. B-18
ERR 226 - FOR/BEGIN not matched with NEXT....................................... B-18
ERR 227 - Recursive/parameter value not legal in declaration....................B-18
ERR 228 - Variable already declared with different access. B-18
ERR 229 - Local variable already declared. ... B-18
ERR 230 - Local function already declared.. B-18
ERR 231 - /BEGINS declaration not preceded by /FORWARD declaration. ...B-18
ERR 232 - Structured statements not allowed as THEN or ELSE clause.... B-19
ERR 233 - Recursive arrays cannot be redimensioned................................. B-19
ERR 234 - CASE located after default CASE for this SWITCH................. B-19
ERR 235 - SWITCH not matched with CASE/END SWITCH. B-19
ERR 236 - CASE expression not same type as SWITCH............................B-19
ERR 237 - FUNCTION/FNx() term not legal in declarations. B-19
ERR 238 - Conflicting options in function declaration................................B-19
ERR 239 - /FORWARD declaration not followed by /BEGINS declaration. ...B-19
ERR 240 - Invalid module name... B-20
ERR 241 - Circular INCLUDE/USE references... B-20
ERR 242 - Internal Error. .. B-20
ERR 243 - No EXTERNAL function is defined with this name and
these parameters... B-20
ERR 244 - Already defined as Non-public Variable....................................B-20
ERR 245 - Already defined as PUBLIC function... B-20
ERR 246 - Already defined as PUBLIC section... B-20
ERR 247 - PUBLIC not matched with END PUBLIC................................. B-20
ERR 248 - No such PUBLIC section..B-21
ERR 249 - Another procedure is already marked as /MAIN, /EXIT. B-21
ERR 250 - This error code is reserved for future use by NPL...................... B-21

TABLE OF CONTENTS NPL ERRORS B-1

NPL Programmer’s Guide TOC-27

ERR 251 - Forced error exit to /EXTERNAL from callback....................... B-21
ERR 252 - Callbacks not available. .. B-21
ERR 253 - Nested RECORD declarations not permitted. B-21
ERR 254 - RECORD not matched with END RECORD............................. B-21
ERR 255 - RECORD exceeds maximum allowed length............................B-21
ERR 256 - FIELD statement not in RECORD declaration. B-21
ERR 257 - PUBLIC section is not in an INCLUDEd module...................... B-22
ERR 258 - This error code is reserved for future use by NPL...................... B-22
ERR 259 - Statement label already defined.. B-22
ERR 260 - No such statement label in mainline. .. B-22
ERR 261 - No such statement label in same FUNCTION/PROCEDURE body.B-22
ERR 262 - FUNCTION used by declaration did not complete....................B-22
ERR 263 - DIM/RECURSIVE must be in a FUNCTION/PROCEDURE body.B-22
ERR 300 - Incorrect number or types for parameters of GOSUB’. B-23
ERR 301 - Insufficient memory or bad COMSPEC for $SHELL................B-23
ERR 302 - No such PUBLIC FIELD name. ... B-23
ERR 303 - No such PUBLIC PROCEDURE/FUNCTION name................B-23
ERR 304 - Cannot expand array variable. .. B-23

RunTime Program Warnings...B-23
WARN 01 - Warning: Programs merged.. B-23
WARN 02 - Warning: Program moved to end of platter.............................. B-24
WARN 03 - Warning: RUN statement is in progress................................... B-24

Error Message Files ... B-24
Operating System Level Errors...B-24

COMPILER ERRORS C-1
Compiler Options Errors ... C-1

Cannot open LSTLOC (or ERRLOC) file .. C-1
Cannot open SRCLOC (or OBJLOC) as a diskimage file.............................. C-2
Extensions not permitted... C-2
Fields may not contain embedded spaces ... C-2
Filename too long.. C-2
LSTFORMAT option must be one of; .LST, .SRC, 2200, 2200S.................. C-2
Missing Option after (literal)... C-3
No source programs specified... C-3
Non-Hex digits in option... C-3
OBJFORMAT must be one of; SCRAMBLED, UNSCRAMBLED............. C-3
Option is not a number .. C-3
Option must be one of; ON, OFF.. C-4

COMPILER ERRORS C-1 TABLE OF CONTENTS

TOC-28 NPL Programmer’s Guide

Option too long.. C-4
SRCLOC (or OBJLOC) is not a diskimage file.. C-4
Too many parameters on command line... C-4
Unknown option on command line (literal)=(parameter)............................... C-4
Diskimage index is full.. C-5
Filename in catalog is not a program.. C-5
No names found in (location) for wildcard (wildcard) C-5
Object program was moved to end of catalog in object diskimage................ C-5
Out of space in Object diskimage ... C-6

Program Syntax Errors .. C-6
Program Syntax Warnings... C-6

ALL(x) & X$ is illogical syntax, likely an error .. C-7
Cannot do RESTORE LINE / DATA checks due to table overflow.............. C-7
ELSE clause not preceded by IF statement... C-7
ERROR clause not preceded by statement... C-7
Programs which use SPACE(K) may need adjustment ... under "THIS O/S" C-7
RESTORE LINE does not point to DATA statement in this module C-7
SAVE DA/DC is not supported at run time.. C-7
Statement requires RTP Rev x.xx.xx or later to execute C-7

NPL DIRECTLY SUPPORTED TERMINAL CHARAC-
TERISTICS D-1

Overview..D-1
General Considerations..D-2

Determination of Terminal Type... D-2
Supported Terminals ...D-2
Support of Native Operating Systems and Utilities..D-3

Altos III ...D-3
Screen Character Set ...D-3
Downloadable Fonts..D-3
Alternate Character Set (Pixel Graphics)...D-3
Non-English Character Sets...D-3
Character Translation ..D-4
Box Graphics ...D-4
Attributes ...D-4
Cursor Handling ..D-5
Support for 132-Column Mode...D-5
Keyboard Characteristics ..D-5
Local Printer Support ..D-8

TABLE OF CONTENTS NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS D-1

NPL Programmer’s Guide TOC-29

Configuration Requirements ...D-9
Use as a Remote Terminal... D-9
Use with Native Operating System Functions and UtilitiesD-9

Altos V ..D-10
Screen Character Set ...D-10
Downloadable Fonts..D-10
Alternate Character Set (Pixel Graphics)...D-10
Non-English Character Set...D-10
Character Translation ..D-11
Box Graphics ...D-11
Attributes ...D-11
Cursor Handling ..D-12
Support for 132-Column Mode...D-12
Keyboard Characteristics ..D-12
Local Printer Support ..D-15
Configuration Requirements ...D-16
Use as a Remote Terminal...D-16
Use with Native Operating System Functions and UtilitiesD-17

Bull HDS 1...D-17
Screen Character Set ...D-17
Downloadable Fonts..D-17
Alternate Character Set (Pixel Graphics)...D-17
Non-English Character Sets...D-17
Character Translation ..D-17
Box Graphics ...D-17
Attributes ...D-18
Cursor Handling ..D-18
Support For 132-Column Mode..D-18
Keyboard Characteristics ..D-18
Configuration Requirements ...D-22
Use As Remote Terminals...D-22
Use With Native Operating System Functions And Utilities.......................D-22

Bull HDS 3...D-23
Screen Character Set ...D-23
Downloadable Fonts..D-23
Alternate Character Set (Pixel Graphics)...D-23
Non-English Character Set...D-23
Character Translation ..D-24
Box Graphics ...D-24
Attributes ...D-24

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS D-1 TABLE OF CONTENTS

TOC-30 NPL Programmer’s Guide

Cursor Handling ..D-25
Support for 132-Column Mode...D-25
Keyboard Characteristics ..D-25
Local Printer Support ..D-28
Configuration Requirements ...D-29
Use as a Remote Terminal...D-29
Use with Native Operating System Functions and UtilitiesD-29

DEC VT100 ...D-30
Screen Character Set ...D-30
Downloadable Fonts..D-30
Alternate Character Set (Pixel Graphics)...D-30
Non-English Character Set...D-30
Character Translation ..D-30
Box Graphics ...D-30
Attributes ...D-30
Cursor Handling ..D-31
Support for 132-Column Mode...D-31
Keyboard Characteristics ..D-31
Local Printer Support ..D-34
Configuration Requirements ...D-34
Use as a Remote Terminal...D-34
Use with Native Operating System Functions and UtilitiesD-35

DEC VT200 Series ..D-35
Screen Character Set ...D-35
Downloadable Fonts..D-35
Alternate Character Set (Pixel Graphics)...D-35
Non-English Character Set...D-35
Character Translation ..D-36
Box Graphics ...D-36
Attributes ...D-37
Cursor Handling ..D-37
Support for 132-Column Mode...D-37
Keyboard Characteristics ..D-37
Local Printer Support ..D-40
Configuration Requirements ...D-41
Use as a Remote Terminal...D-41
Use with Native Operating System Functions and UtilitiesD-41

IBM 3151 ..D-42
Screen Character Set ...D-42
Downloadable Fonts..D-42

TABLE OF CONTENTS NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS D-1

NPL Programmer’s Guide TOC-31

Alternate Character Set (Pixel Graphics)...D-42
Non-English Character Sets...D-42
Character Translation ..D-42
Box Graphics ...D-42
Attributes ...D-42
Cursor Handling ..D-43
Support for 132-Column Mode...D-43
Keyboard Characteristics ..D-43
Local Printer Support ..D-46
Configuration Requirements ...D-46
Use as Remote Terminals..D-46
Use with Native Operating System Functions and UtilitiesD-46

NCR 4970 ..D-47
Screen Character Set ...D-47
Downloadable Fonts..D-47
Alternate Character Set (Pixel Graphics)...D-47
Non-English Character Set...D-47
Character Translation ..D-48
Box Graphics..D-48
Attributes ..D-48
Cursor Handling ..D-49
Support For 132-Column Mode...D-49
Keyboard Characteristics...D-49
Local Printer Support ...D-52
Configuration Requirements..D-52
Use As Remote Terminals...D-53
Use With Native Operating System Functions And Utilities..................D-53

Spectrix SPX 701 ..D-54
Screen Character Set...D-54
Downloadable Fonts..D-54
Alternate Character Set (Pixel Graphics)...D-54
Non-English Character Set...D-54
Character Translation ..D-54
Box Graphics..D-54
Attributes ..D-55
Cursor Handling ..D-55
Support For 132-Column Mode...D-55
Keyboard Characteristics...D-55
Local Printer Support ...D-58
Configuration Requirements..D-58

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS D-1 TABLE OF CONTENTS

TOC-32 NPL Programmer’s Guide

Use As Remote Terminals...D-59
Use With Native Operating System Functions And Utilities..................D-60

Wang 2110A..D-60
Screen Character Set ...D-60
Downloadable Fonts..D-60
Alternate Character Set (Pixel Graphics)...D-60
Non-English Character Set..D-60
Character Translation ..D-60
Box Graphics ...D-60
Attributes ...D-60
Cursor Handling ..D-61
Support for 132-Column Mode...D-61
Keyboard Characteristics ..D-61
Local Printer Support ..D-64
Configuration Requirements ...D-65
Use as a Remote Terminal...D-65
Use with Native Operating System Functions and UtilitiesD-65

Wang 2x36 DE/DW...D-66
Screen Character Set ...D-66
Downloadable Fonts..D-66
Alternate Character Set (Pixel Graphics)...D-66
Non-English Character Set...D-66
Character Translation ..D-66
Box Graphics ...D-66
Attributes ...D-66
Cursor Handling ..D-67
Support for 132-Column Mode...D-67
Keyboard Characteristics ..D-67
Local Printer Support ..D-71
Configuration Requirements ...D-71
Use as a Remote Terminal...D-71
Use with Native Operating System Functions and UtilitiesD-71

Wyse 50 ..D-72
Screen Character Set ...D-72
Downloadable Fonts..D-72
Alternate Character Set (Pixel Graphics)...D-72
Non-English Character Sets...D-72
Character Translation ..D-72
Box Graphics ...D-72
Attributes ...D-72

TABLE OF CONTENTS NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS D-1

NPL Programmer’s Guide TOC-33

Cursor Handling ..D-73
Support for 132-Column Mode...D-73
Keyboard Characteristics ..D-73
Local Printer Support ..D-76
Configuration Requirements ...D-77
Use as a Remote Terminal...D-77
Use with Native Operating System Functions and UtilitiesD-77

Wyse 60, 150, and 160 ..D-78
Screen Character Set ...D-78
Downloadable Fonts..D-78
Alternate Character Set (Pixel Graphics)...D-78
Non-English Character Set...D-78
Character Translation ..D-78
Box Graphics ...D-78
Attributes ...D-79
Cursor Handling ..D-79
Support For 132 Column Mode ..D-79
Keyboard Characteristics ..D-79
Local Printer Support ..D-85
Configuration Requirements ...D-86
Use As Remote Terminal ..D-86
Use with Native Operating System Functions and UtilitiesD-86

Wyse 370 ...D-87
Screen Character Set ..D-87
Downloadable Fonts ...D-87
 Alternate Character Set (Pixel Graphics) ...D-87
Non-English Character Set ..D-87
Character Translation ...D-88
Box Graphics ..D-88
Attributes ...D-89
Cursor Handling ...D-89
Support For 132-Column Mode ...D-89
Keyboard Characteristics ...D-89
Local Printer Support ...D-93
Configuration Requirements ..D-93
Color Support ..D-93
Use As Remote Terminals...D-93
Use With Native Operating System Functions And UtilitiesD-94

KEYBOARD KEYWORDS E-1

KEYBOARD KEYWORDS E-1 TABLE OF CONTENTS

TOC-34 NPL Programmer’s Guide

DECOMPILER COMPATIBILITY F-1
Overview...F-1
Differences In Source Code Decompilation...F-2
Differences Between Rev. 1.03 and Later Revs. ...F-9
Summary...F-10

"RAW" DEVICE COMPATIBILITY CHART G-1
"Raw" Diskette Chart ..G-1

GLOSSARY 1-1

TABLE OF CONTENTS DECOMPILER COMPATIBILITY F-1

NPL Programmer’s Guide TOC-35

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter provides a general introduction to the Niakwa Programming Language
(NPL) and its role in the Niakwa Development Environment. In addition, the technical
features and limitations of NPL are presented along with a high-level overview of the
NPL virtual machine environment. Developers new to NPL are encouraged to begin their
NPL training with this chapter.

Section 1.2 discusses the NPL Development Environment.

Section 1.3 discusses NPL’s features.

Section 1.4 discusses NPL’s limitations.

Section 1.5 provides a high-level overview of the NPL virtual machine environment.

INTRODUCTION Overview

NPL Programmer’s Guide 1-1

1.2 The Niakwa Development Environment

The Niakwa Development Environment has been designed to provide the vertical market
developer the best application development environment in which to develop truly port-
able applications for small to medium-sized companies or departments. Niakwa has
brought the best third-generation language features (speed, flexibility, etc.) and combined
them with the powerful functions available in traditional, fourth-generation languages to
produce a development environment that offers the strengths of both generations, but
without the weaknesses.

The Niakwa Development Environment allows developers unparalleled portability as
well as the tools necessary to develop powerful applications quickly and efficiently.

1.2.1 The Niakwa Programming Language (NPL)

The Niakwa Programming Language (NPL) is a portable, high-level programming lan-
guage that operates on hundreds of the computer industry’s most popular computers, un-
der eight major operating environments--AIX, MS-Windows, MS-DOS, Novell
NetWare, SuperDOS, UNIX, VMS, and Xenix. NPL provides its users full object and
source code compatibility across all Niakwa-supported platforms, thereby protecting its
users from reliance on a single technology.

NPL is based upon the original Dartmouth BASIC, however, many extensions beyond
the Dartmouth specification have been incorporated into the language which render it an
excellent tool for the development of software applications in both the commercial and
scientific fields. This is evidenced by Niakwa’s worldwide distribution network of over
500 professional software developers/resellers who represent more than 80,000 users.

An unusual characteristic of NPL not found in other languages is that NPL incorporates
many operating system-like specifications in its language definition. As one example of
this, a detailed and flexible protocol for controlling external devices such as workstations,
disk devices, printers, and communication devices is all formalized as an integral part of
NPL itself.

Specifications such as these, which are internal to NPL, tend to form a consistent "shell"
around NPL-written applications. This shell or "virtual machine environment" contrib-
utes greatly to their portability to new operating systems and hardware.

The Niakwa Development Environment INTRODUCTION

1-2 NPL Programmer’s Guide

NPL is implemented in the form of three physical software products: the NPL Interpreter,
the NPL Compiler and the NPL RunTime Program. The common link between all three
products is that they all create and/or execute NPL pseudo-code (p-code). NPL p-code is
a highly portable and efficient representation of NPL source programs and is an interme-
diate form between pure object and pure source. From the simplest view:

• The Interpreter (RTI) both creates and executes p-code.

• The RunTime Program (RTP) executes p-code.

• The Compiler (B2C) creates p-code.

The intended purpose of each product and considerations for selecting each for certain
tasks is explained below.

The NPL Interpreter is used by software authors as a tool for the efficient development
and maintenance of programs in NPL. Using a powerful "Immediate Mode", the Inter-
preter supports real-time: source code editing, syntax checking, variable inspection, vari-
able modification, program halting, single instruction stepping and trapping, instruction
logic tracing and many other program development and debugging aids.

This is all possible due to Niakwa’s use of incremental compiler technology that allows
for interactive program development and debugging. In addition, this also makes the In-
terpreter appropriate for use at end-user sites for the execution of NPL applications in a
"production" environment. The relatively small code size and high performance charac-
teristics of the Interpreter allow its development capabilities to be used for end-user sup-
port without penalty to application performance.

The NPL RunTime program executes p-code generated by either the Interpreter or Com-
piler. The RunTime program is used for the execution of NPL applications at end user
sites where the smallest possible memory overhead is desired. The RunTime program
executes p-code only, it does not allow for program inspection, modification, variable in-
spection, etc., as provided in the Interpreter.

The NPL Compiler is used by software authors primarily as a tool to assist the Interpreter
in NPL program manipulation, which is most conveniently performed on a batch basis.

INTRODUCTION The Niakwa Development Environment

NPL Programmer’s Guide 1-3

As one example, the compiler can be used to process an entire library of NPL programs
developed under the Interpreter (which contain source REMarks, documentary spacing,
indentation, etc.) and produce a "production" version of the same library with REMarks,
etc., removed all as one operation.

Another typical use of the compiler is in porting to or from the Wang System 2200 proc-
essor. The NPL Compiler can both accept and generate Wang 2200 Basic-2 "atomized"
programs to/from NPL p-code.

P-code generated by the compiler is fully executable by the NPL Interpreter or the NPL
RunTime Program without modification.

Creating NPL Programs
An NPL program is defined as any file of codes (called pseudo-code or p-code) which is
directly executable by the NPL Interpreter or the NPL RunTime Package. This special p-
code storage format of NPL programs is employed due to its highly efficient memory us-
age, execution time performance, and portability.

NPL programs can be created using the NPL Interpreter, the NPL Compiler, and can be
dynamically created by using the $SOURCE/$OBJECT program functions.

Interpreter --With the Interpreter, NPL programs are created by entering new source pro-
gram lines in Immediate Mode with the line editor. As the source program lines are en-
tered, they are immediately compiled by the Interpreter into executable p-code and stored
in program text memory. The original source line is then effectively discarded. Whenever
the original source line must be subsequently viewed (for listing, editing, debugging, etc.)
it is regenerated from the stored p-code by a built-in de-compiler.

Once a program has been created in this way, the completed program p-code in memory
can be saved to disk using a number of Immediate Mode SAVE commands.

The NPL Interpreter is the primary means used for creating, editing, maintaining, and de-
bugging NPL programs.

With the Interpreter, NPL program editing is predominantly performed by the combined
use of two different features of the NPL Interpreter. These are Immediate Mode com-
mands and the Line Editor.

The Niakwa Development Environment INTRODUCTION

1-4 NPL Programmer’s Guide

Immediate Mode commands are integral to program editing in performing such tasks as
loading and saving programs, listing programs, cross-referencing variables and line num-
bers, searching for text strings, renumbering and merging of program text and many other
functions.

The NPL Line Editor is used for the initial creation of program text and for editing exist-
ing program text which resides in memory on a line-by-line basis. This line editor is
closely coupled with the Interpreter and,as a result,allows for immediate syntax checking
of commands and program lines as they are entered. Line editing is further enhanced by
the use of Special Function keys which aid in the rapid correction of program text in a
minimum of keystrokes.

The Interpreter is also fundamental to the NPL program debugging capabilities due to the
high level of integration with program editing. This is done by design because an essen-
tial part of program debugging is the ability to acquire control of an executing program.
Once control is established, the program may then be inspected by the programmer in its
various stages of execution. NPL allows control over an executing program by invoking
Immediate Mode.

Compiler--NPL programs are created with the compiler by reading source program lines
from a file, compiling them, and then saving the resultant p-code into another file. With
the compiler, the source program storage format can be in one of several different forms.
ASCII format, Wang 2200 atomized format, and p-code format itself are all valid as input
source program format to the compiler.

$SOURCE/$OBJECT--$SOURCE, $OBJECT, and their associated library functions
are programmable instructions that can be used by an NPL program to create other NPL
programs dynamically at execution time. The $OBJECT function receives a specified
line of program source (in ASCII) and returns the executable p-code for the given source
to a specified variable. $SOURCE performs the opposite function. By saving p-code gen-
erated in this way to disk, the resulting p-code program may be then loaded and executed
like any other NPL program.

NOTE: NPL programs cannot be directly edited by native operating system editors since
they are stored in p-code format and native editors generally operate on ASCII for-
mat files. However, the NPL Compiler can be used to easily convert p-code into AS-
CII (on a batch basis), thereby enabling the use of native editors or any other native
utilities to manipulate NPL source ASCII files. Once the manipulation is complete,
the compiler is used to convert from ASCII back to p-code for execution.

INTRODUCTION The Niakwa Development Environment

NPL Programmer’s Guide 1-5

NPL Add-Ons
In addition to the above, Niakwa also provides access to the following add-ons with NPL.

Utilities --The NPL Development Package also contains a set of convenient utilities de-
signed specifically to aid NPL developers (i.e., file backup, recovery, copy, diskimage
creation, listing, scratching, device settings, options, etc.).

Libraries-- As of Release IV, NPL allows NPL developers the ability to develop and use
NPL libraries. By using libraries, developers can easily integrate added functionality with-
out spending time writing the routines. Niakwa is acting as a clearinghouse for these li-
braries by offering a BBS forum and periodic catalog listing of available NPL libraries.
Please contact your Niakwa Sales Representative for more information on the Niakwa Li-
brary Program.

1.2.2 The Niakwa Development Tools

NPL is complemented in the Niakwa Development Environment by the Niakwa Develop-
ment Tools product line. This is a group of products that bring features found in fourth
generation languages to users of NPL. The Niakwa Development Tools product line cur-
rently consists of the Niakwa Data Manager for data management and Intelligent Query
(IQ) for structured queries and report generation.

Niakwa Data Manager
The Niakwa Data Manager is the heart of the Niakwa Development Tools product line.
Using the external call facility of NPL, the Data Manager is an application program inter-
face (API), developed by Niakwa, to provide a consistent, fully portable interface to com-
monly used ISAM products, such as C-ISAM, Btrieve and RMS. The primary feature of
the Data Manager is data independence. Data independence means NPL files are no
longer stored in a proprietary format. Therefore, NPL applications can now share files
with popular third-party products such as Informix and Focus. In addition, NPL applica-
tions can be enhanced with third-party utilities such as IQ because NPL files are stored in
a standard format. Other significant benefits of the Data Manager are improved perform-
ance, often substantial, and increased productivity because application developers can off-
load ISAM maintenance and development to the Data Manager.

The Niakwa Development Environment INTRODUCTION

1-6 NPL Programmer’s Guide

Intelligent Query
Once the Data Manager is in use, Intelligent Query (IQ), from Programmed Intelligence,
offers simple, English-like access to NPL data files--without the time and expense of spe-
cial programming. IQ allows end-users to present NPL application data in four different
ways:

• Preformatted reports, queries, and labels

• Custom reports, queries, and labels

• XY-graphs or histograms for visual interpretation

• Data export capabilities to other programs (i.e., Lotus 1-2-3 and dBase)

IQ also allows end-users to merge NPL application data with standard ASCII, Lotus 1-2-
3, or dBase files for even more useful information. Intelligent Query enhances NPL appli-
cations by giving end-users new and more effective ways of retrieving company
information.

1.2.3 Niakwa’s Objectives

Niakwa’s mission is to provide high quality, high performance, highly portable applica-
tion development software and services to application developers worldwide who target
small to medium-sized companies or departments. The Niakwa Development Environ-
ment and its primary components are designed to meet this goal and provide professional
developers the best solution for developing mission-critical applications.

Niakwa’s future plans related to NPL and the Niakwa Development Environment are de-
signed to service our existing customer base, while positioning the company for future
growth. This is being done by:

• Servicing the core Niakwa market with our established high quality standards ap-
plied to products and services.

• Maintaining our technological edge with an aggressive development agenda.

• Continuing to embrace computer industry standards (we will always be on the
major operating environments--whatever they may become).

INTRODUCTION The Niakwa Development Environment

NPL Programmer’s Guide 1-7

• Expanding our developer/reseller base by pursuing additional market opportuni-
ties.

1.3 NPL Technical Features

Continuing in the tradition of its successful predecessors, NPL Release IV is the applica-
tions programming language solution for the future. While remaining fully upward com-
patible with traditional Wang Basic-2, NPL offers significant improvements which can
substantially improve application development productivity. In addition, NPL includes a
set of powerful utilities, access to commercially available library products, and integra-
tion with the Niakwa Development Tools product line.

Specifically, NPL’s technical features as described in the following sections.

1.3.1 Performance

Application programs written in NPL exist in a pseudo-code (p-code) format that allows
faster execution than a pure interpreter, without sacrificing the convenience. In addition,
NPL has added many high-level functions that quickly perform entire operations that, in
other languages, require significantly more code. Niakwa also maintains two sets of
source code. The first is an assembler set for all Intel-based systems that is optimized spe-
cifically for increased performance on the Intel chips sets. The second is an optimized C
version used for all, generally faster, non-Intel based chip sets. This C version allows for
greater flexibility in terms of future platforms supported than the assembler version.

1.3.2 Interactive Environment

Using incremental compiler technology, NPL is easy to learn and makes coding and de-
bugging rapid and straightforward. The interpretive NPL environment and editing facili-
ties allow developers to interrupt an executing program, examine the state of the
application, edit the code and modify variables, and resume execution from the point of
interruption. This capability can greatly simplify real-time customer support and customi-
zation. NPL also allows the developer to define appropriate character sets and configura-
tion tables, as well as interactive program editing methods.

NPL Technical Features INTRODUCTION

1-8 NPL Programmer’s Guide

1.3.3 Debugging Facilities

Niakwa also provides a series of powerful debugging commands that make NPL one of
the easiest languages to debug. These commands include

For inspection of program logic:
STEP
STEP LINE # RANGE
STEP OFF
CONTINUE RETURN
CONTINUE NEXT
CONTINUE LOAD
TRACE
TRACE #
TRACE ’
TRACE V
TRACE OFF
LIST STACK
LIST DT
MODULE

For logic modification:
GOTO
RETURN
RETURN CLEAR
NEXT
RUN #
RUN

For inspection of program variables:
PRINT
PRINT USING
MAT PRINT
LIST DIM
LIST STACK DIM

For automatic variable inspection:
TRACE V

INTRODUCTION NPL Technical Features

NPL Programmer’s Guide 1-9

For variable modification:
LET alpha and numeric
INPUT LINPUT
KEYIN (non-polling)
PACK
UNPACK
CONVERT
MAT COPY
MAT MOVE
MAT SORT
DATA LOAD DA
DATA LOAD DC
DATA LOAD BA
Etc.

For inspection of program text:
LIST commands (many)

For inspection and modification of the program environment:
LIST DT
LIST DC
$SHELL
SPACE instruction
LIST PUBLIC

For program editing:
RENUMBER
RENAME [V, etc.]
LOAD [merge]
CLEAR P

For defining and inspecting system variables:
$BOXTABLE
$KEYBOARD
$OPTIONS
$MACHINE
$PSTAT
$SCREEN
$PRINTER
$PROGRAM
$REV
$KEEPREMS
#TERM
#PART
#ID
#NETID

NPL Technical Features INTRODUCTION

1-10 NPL Programmer’s Guide

1.3.4 Portability

Portability has been the key to NPL’s success. NPL’s virtual machine environment pro-
vides absolute portability (binary-level compatibility) of applications and data across all
contemporary operating environments including MS-DOS, MS-Windows, Novell Net-
Ware, UNIX, Xenix, SuperDOS, AIX, and VMS. In addition, users of Niakwa’s Data
Manager are provided a set of utilities to migrate NDM data files from one native ISAM
to another.

1.3.5 Multi-User

NPL was specifically designed for multi-user systems such as UNIX, SuperDOS, and
Novell NetWare networks. Critical features such as unique terminal, task, and user identi-
fication as well as file locking are integral to NPL. The optional Niakwa Data Manger
adds another level of data manipulation features, utilities, and performance gains for
multi-user installations.

1.3.6 Program Constructs

NPL offers the following structured constructs:
WHILE/WEND
REPEAT/UNTIL
IF/ELSE/END IF
SWITCH/CASE
FOR/BEGIN/NEXT

1.3.7 Program Modules (Libraries)

Program modules allow development of true NPL "black box" routines. Once a group of
functions is fully developed and debugged, it can be incorporated as a module and can be
used by any application without concern for identifier names (which are local to the mod-
ule unless defined as public) or line number (line numbers are always local to the mod-
ule) conflicts (pointer parameters are supported for transfer of large blocks of data). All
the calling application needs to know are the entry points and the calling conventions (pa-
rameter lists and return values). Thus, true application-independent libraries can be writ-
ten in NPL.

INTRODUCTION NPL Technical Features

NPL Programmer’s Guide 1-11

NOTE: Niakwa is acting as a clearinghouse for NPL libraries and Niakwa’s Library pro-
gram is designed to promote the distribution of these modules within the NPL com-
munity. Contact your Niakwa Sales Representative for more information on the
Niakwa Library program.

1.3.8 FUNCTION Interface

The FUNCTION/PROCEDURE interface provides a structured methodology for subrou-
tine development and access. Designed to perform a specific operation, functions and pro-
cedures can have a unique identifier name and parameter list, can support value or
reference parameter types, may be defined as public or private, can be used to access ex-
ternal routines written in C, and may be used to return error codes.

NOTE: FUNCTIONs and PROCEDUREs are very similar; the main difference is that
FUNCTIONS can return values, and PROCEDUREs cannot.

1.3.9 Mixed Language Programming

NPL allows integration to external subroutines written in other non-NPL languages. This
offers the NPL developer the ability to increase execution speed for selected processor-in-
tensive functions and the capability to access resources and features of a specific environ-
ment. NPL currently supports C, PASCAL (limited), and ASSEMBLER (limited).

1.3.10 Data Conversion Statements

NPL supplies several statements designed explicitly to aid in the conversion of data.
These include statements designed to: convert alpha-variables to numeric-variables or
vice-versa; store a list of numeric values in an alpha-variable in a packed decimal format
defined by an image; pack or unpack a buffer-variable with any number of values in vari-
ous formats; convert the integer result of a numeric-expression into character string for-
mat (binary representation); and convert the binary value of a specified alpha-variable or
literal string to a numeric value.

1.3.11 Advanced Math Functions

NPL provides many advanced math functions in NPL itself (i.e., trigonometric functions,
boolean statements, etc.). Numeric accuracy is maintained to 13 significant digits.

NPL Technical Features INTRODUCTION

1-12 NPL Programmer’s Guide

1.3.12 String Handling

NPL supports dynamic strings of 64K on non-32-bit operating environments and up to 2
GB on 32-bit operating environments. Strings are easily concatenated, subdivided and
searched. Data formatting and low-level bit operations are also supported.

1.3.13 Advanced Matrix Manipulation

NPL provided both numeric and string arrays of up to two dimensions. Arrays are dy-
namic and allow programmer-specified subscript ranges. Array input, output, and manipu-
lation functions are all provided. Matrix arithmetic for numeric arrays is supported.

1.3.14 Device Independent

NPL’s virtual machine environment provides not only portability but sophisticated con-
trol of all native device types (i.e., terminals, printers, storage devices, serial I/O devices,
etc.) across all NPL-supported operating environments.

1.3.15 Native Operating System Calls

$SHELL allows the calling of a native operating system command or a non-NPL ex-
ecutable file from within NPL. After execution, NPL is restored to its previous condition.

1.3.16 Data Verification and Error Handling

Interactive applications require sophisticated error handling. NPL offers error handling at
the program, line, function, and command levels. Additional functions make it easy to
create generic error traps. Built-in input verification makes it easy to design "user-proof"
applications.

1.3.17 HELP Subsystem

The NPL HELP processor is a feature which provides the user with access to a series of
information screens and options relative to the operation of a particular application pro-
gram or the NPL RunTime program itself. Nested entries and index files are all available
with full multi-screen and mouse support (on operating environments where NPL sup-
ports the operation of a mouse).

INTRODUCTION NPL Technical Features

NPL Programmer’s Guide 1-13

1.3.18 $DEMO

The $DEMO feature of NPL provides a mechanism that allows for the generation of "self-
demonstrating" software. With this technique, live software is operated by using key-
strokes and informational text from an ASCII text file as opposed to the keyboard. This
allows for an application software demonstration that uses a prepared "script" to automat-
ically fill in all operator-entered fields. The operator can be provided with informational
text along the way and is only periodically required to press the space bar to continue
with the demonstration. In addition, automatic tutorials can be created for self-training at
end-user sites.

1.3.19 Program Encryption

Sensitive code can be protected with NPL exclusive "scramble-protected" mode. This
function can be used from the NPL Interpreter or through the Compiler. This feature uses
a complex algorithm to actually encrypt the source program. This encryption does not al-
low for listing or saving of the program that has been scrambled.

1.3.20 Wang 2200/Basic-2 Upward Compatibility

NPL offers nearly 100% upward compatibility for users moving off Wang 2200/Basic-2
systems. In addition, many of the existing Wang peripherals (i.e., terminal, printers, etc.)
are also supported (this is operating system-dependent).

1.4 NPL Limits

The following represents a summary of the major NPL limitations.

NOTE: Although NPL has preestablished theoretical limits, as presented below, many of
these values are constrained by one or more possible system limits. Consequently,
the actual NPL limits are often operating environment-dependent (actual limits are
also subject to limits due to system memory or the NPL handle table). Where nota-
tions appear, practical limits are likely to be encountered long before theoretical lim-
its.

Maximum number of users = 512

NPL Limits INTRODUCTION

1-14 NPL Programmer’s Guide

Maximum number of lines in one program module = 32,118 (H)

Maximum number of variables in one program module = 65,534 (H/2)

Maximum level of recursion FUNCTION/PROCEDURE = 64 or 512 on 32-bit operat-
ing environments (W)

Maximum variable size = 64K or 2 GB on 32-bit operating environments (M)

Maximum variable name length = 255 characters

Variable ranges:

String length: 0 to 65,534 or 2 GB on 32-bit operating environments

Signed 8-bit integers: -140,737,488,355,328 to +140,737,488,355,327

Real numbers:

Signed 8-bit: +/-140737488355327

Signed 16-bit: +/-140737488355327 E+/-32767 (exponent of 10)

NOTE: In NPL, the terms "integer", "long integer", and "single/double precision" do not
apply. The data type for all NPL numerics is the same, and converted to "floating
point" as required. The above numbers represent the largest for which no precision
is lost.

Array size (all elements) = 64K or 2 GB on 32-bit operating environments (M)

Number of dimensions allowed = 2

Array subscript value = 0 to 65,535 or 0 to 2 GB on 32-bit operating environments.

Maximum sizes associated with FUNCTION/PROCEDURE size = (M)(H)

Number of arguments passed = 0 to 255

Data file numbers (NPL) = 255 (F)

INTRODUCTION NPL Limits

NPL Programmer’s Guide 1-15

Number of logical files in one diskimage = 4079

Data file record number (NPL) = 64K normal, 16 MB extended

Data file size (NPL) = 16 MB normal, 4 GB extended

Error message numbers = 0 to 999

$HELP entries per index = 3270 or limited only by physical memory on 32-bit operating
environments(U)

Maximum program size = limited only by physical memory

NOTES:

(H) Each program line requires an entry in the handle table. The maximum handle ta-
ble contains 16,383 entries or 65,536 entries on 32-bit operating environments (re-
quires the use of the /H start-up option to exceed 16K handles).

(H/2) Each variable can require from 0 to 2 entries in the handle table. One entry may
be required for the variable data (if not recursively allocated), one entry is re-
quired for each distinct long identifier used.

(W) Recursion may be limited by the availability of temporaries used for storage of in-
termediate numeric expressions and constants, if more than two intermediate re-
sults are pending at each level of recursion.

(M) The limiting size of variables in a 32-bit operating environment are limited by
available physical memory (or in a VMM environment by the size of the backing
store dedicated to virtual memory) and any per-process quotas imposed by the op-
erating environment.

(F) NPL allows up to 256 open data files if a SELECT #nn statement appears in the
program. However, most operating environments have a smaller limit to the num-
ber of files that can be open concurrently. Consequently, if the files are on differ-
ent diskimages, the files may not be concurrently accessible.

(U) The limit of help entries is imposed by the indexing utility based on the available
array size on the host operating environment.

NPL Limits INTRODUCTION

1-16 NPL Programmer’s Guide

1.5 The NPL Virtual Machine Environment

NPL’s strength is the consistent interface it provides its users from one operating system
to another. This is maintained by creating a "virtual machine environment" on each hard-
ware platform NPL supports. Because of this environment, NPL applications can operate
on many different types of hardware while still maintaining a consistent look and feel.

NPL provides a generalized method of accessing peripheral devices that is hardware-inde-
pendent. This method employs the use of unique three-character "device addresses"
which are used by NPL programs to reference external devices.

NPL "devices" are logical devices, not physical devices. Each logical device address is
mapped to a physical native operating system device or file name by use of the Device
Equivalence Table (DET).

In addition to the three-character device address, NPL provides a mechanism for estab-
lishing default addresses for subsequent use by NPL programs. This is accomplished by
the Internal Device Table (DT).

NOTE: This implementation of device addresses is fully compatible with the Wang 2200.

NPL provides mechanisms for gaining exclusive access to selected devices, an essential
capability in multi-user environments.

For NPL I/O routines to function properly, the I/O operation must be directed to the cor-
rect native operating system file or device. The Device Equivalence Table (DET) is used
to establish an equivalence between the NPL logical device addresses and the equivalent
physical files or devices maintained within the native operating system for the particular
hardware.

For each NPL device address that is used by a given application, the DET will contain an
entry with that particular address, and the equivalent native operating system file or de-
vice name. During program execution, whenever the RunTime Program encounters a
logical NPL device address in program syntax, the DET is inspected to determine the
equivalent physical native operating system device or file name that it references. The
I/O operation is then directed to that file or device. If it is the first access to the specified
NPL device address since the device equivalence was established, a logical open is per-
formed for the native operating system file or device before the I/O operation is per-
formed. This mapping operation is entirely transparent to the NPL program.

INTRODUCTION The NPL Virtual Machine Environment

NPL Programmer’s Guide 1-17

1.5.1 Input/Output

NPL can be used to address any native operating system device (access is limited to sim-
ple read or write operations unless a specialized device driver is used). The simplest
method of directing output to such a device is to PRINT to it (NPL will permit the auto-
matic translation of characters as they are sent to a print device using a simple look-up ta-
ble).

NOTE: Print output to an native operating system file is also supported.

The Runtime also contains limited ability to read and write raw data from a serial port.
With this functionality, serial devices are easily supported.

Mouse support is also available on many of the NPL supported platforms by use of a Run-
Time start-up option.

1.5.2 Storage Devices

Disk I/O for NPL applications can be implemented in two ways. The first, and most com-
mon way, provides for a high degree of compatibility between the NPL environment and
the Wang 2200/CS environment. This also provides a common access method across the
various hardware/operating system platforms which are supported by NPL which allows
the porting between NPL platforms to be done with little or no change to the application
code.

The fundamental way in which information, both programs and data, is stored on disk for
use with NPL is the diskimage.

NOTE: Niakwa’s Data Manager is often a better solution for storing key-indexed data files.

An NPL diskimage is a logical disk device which may be equated with a physical native
operating system file or device by use of the Device Equivalence Table.

The use of NPL diskimages on any machine does not interfere in any way with other data
stored on a shared disk. All NPL disk operations are contained within the diskimage.

Every NPL diskimage may contain up to 4079 logical files. These may be either program
or data files. Diskimages have a specialized internal format which is used to maintain in-
formation about these files within the disk. This format consists of an index area, a cata-
log area, and an optional non-cataloged area.

The NPL Virtual Machine Environment INTRODUCTION

1-18 NPL Programmer’s Guide

The Index contains the name and sector location of every cataloged program and data file
on the diskimage. The Catalog Area is where each cataloged program file and data file is
physically stored.

The Index is always stored at the beginning of each diskimage, starting at sector zero.
Each sector of the Index contains 16 file entry slots. The first sector of the Index uses the
first file entry to store the hash method, index size, current end of the Catalog Area, and
the upper limit (END) of the Catalog Area. All other file entry slots are used to maintain
information about individual files. Files listed in the Index are referred to as CATA-
LOGED files.

Refer to Chapter 5 on using diskimage files and Chapter 7 on the technical details of NPL
diskimages.

Native Operating System Files
Native operating system files are easily created and/or used by NPL programs. This flexi-
bility is typically used by NPL programmers for generating files which can be used as in-
put to native operating system applications or generating a file that can be printed at a
later time (typically ASCII format).

ISAM Files
Through the use of the Niakwa Data Manager (NDM) NPL developers have access to
state-of-the-art native ISAM products (i.e., Btrieve by Novell, C-ISAM by Informix, etc.)
to store data while retaining full portability. This option allows NPL developers to share
data files with popular third-party products that also make use of these industry-standard
file formats, improve application performance, and increase programmer productivity.
Refer to Section 1.2.2 for more information on Niakwa’s NDM product.

INTRODUCTION The NPL Virtual Machine Environment

NPL Programmer’s Guide 1-19

1.5.3 Display Devices

As with other I/O operations, the NPL method of screen output for display devices is de-
signed to be compatible across all machines on which NPL operates. However, because
of the variety of devices available (controllers, monitors, terminals, consoles, etc.) this
area of NPL support is very devices-specific. In general, NPL can address 80 columns
and 24 rows, character output is used, the output is displayed at the current cursor posi-
tion--unless explicitly specified, line wrapping is automatic, and screen scrolling is auto-
matic. Additional features such as color, graphics, local terminal printing, and 132
column support are also available on some devices (refer to the appropriate NPL Operat-
ing-Specific Supplement for more information).

To provide this level of compatibility, Niakwa provides a series of generic files designed
to allow different display devices to work similarly on all platforms. These include screen
driver files that contain a built-in translation table between the devices, available charac-
ters, and NPL’s character set (refer below), and font files to support the NPL character
sets on the various display devices. All of these NPL-supplied device driver files and ta-
bles are modifiable by the NPL Utilities and easily customized to a developer’s particular
needs.

1.5.4 NPL Character Sets

NPL programs typically make use of the standard or alternate NPL character set or a de-
veloper modified version of this (as discussed above).

The NPL Virtual Machine Environment INTRODUCTION

1-20 NPL Programmer’s Guide

The NPL standard character set is as follows:

NPL Standard Characters

0 1 2 3 4 5 6 7 8 9 A B C D E F

1x â ê î ô û ä ë ï ö ü à è ù Ä Ö Ü

2x ! " # $ % & ’ () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ↑ ←

6x ° a b c d e f g h i j k l m n o

7x p q r s t u v w x y z § £ é ç ¢

8x ♦ > < → | ⋅⋅ ’ ‘ ^ !! ß ¶

9x â ê î ô û ä ë ï ö ü à è ù Ä Ö Ü

Ax _ ! " # $ % & ’ () * + , - . /

Bx 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

Cx @ A B C D E F G H I J K L M N O

Dx P Q R S T U V W X Y Z [\] ↑ ←

Ex ° a b c d e f g h i j k l m n o

Fx p q r s t u v w x y z § £ é ç ¢

INTRODUCTION The NPL Virtual Machine Environment

NPL Programmer’s Guide 1-21

The NPL alternate character set is as follows:

NOTE: The lines surrounding characters in the range HEX(C0)-HEX(FF) are not part of
the character. They are included to help distinguish the boundaries of each charac-
ter.

NPL Alternate Characters

0 1 2 3 4 5 6 7 8 9 A B C D E F

1x â ê î ô û ä ë ï ö ü à è ù Ä Ö Ü

2x ! " # $ % & ’ () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ↑ ←

6x ° a b c d e f g h i j k l m n o

7x p q r s t u v w x y z § £ é ç ¢

8x ♦ t t → ¬
| ⋅⋅ ’ ‘ ^ ❚❚ !! Ã ß ¶

9x • ◊ ▲ ▼ ↓ ¬ ✓ ° { } ∇

Ax - - ⊥ ❘ ⊥

Bx

Cx

Dx

Ex

Fx

The NPL Virtual Machine Environment INTRODUCTION

1-22 NPL Programmer’s Guide

1.5.5 NPL Virtual Keyboard

In addition to the various display options available on different NPL operating environ-
ments, the keyboard layouts to these devices differ as well (like the screen driver files,
the keyboard files can be modified by the developer with the use of the NPL utilities).
Consequently, Niakwa has also provided a standard keyboard layout as shown below.

NOTE: This keyboard layout corresponds to the keyboard layout of the Wang 2200 termi-
nals.

INTRODUCTION The NPL Virtual Machine Environment

NPL Programmer’s Guide 1-23

The NPL Virtual Machine Environment INTRODUCTION

1-24 NPL Programmer’s Guide

CHAPTER 2

RUNTIME OPERATIONS

2.1 Overview

This chapter discusses the operation of the NPL RunTime programs (RTP and RTI), the
various methods of starting and exiting the RunTimes, command line (start-up) options,
and the operation of the Immediate Mode facility. In addition, the RunTime’s HELP proc-
essor and its REDIRECT option for remote support are detailed along with the Run-
Time’s Print Control functions.

Section 2.2 outlines the technical differences between RTP and RTI.

Section 2.3 provides the general format for start-up of the RunTime program.

Section 2.4 discusses the use of various options available in the RunTime program.

Section 2.5 discusses the operation of the Immediate Mode facility.

RUNTIME OPERATIONS Overview

NPL Programmer’s Guide 2-1

Section 2.6 discusses the various methods of exiting the RunTime program.

Section 2.7 discusses the HELP processor and associated HELP options.

Section 2.8 discusses the Printer Control feature of the RunTime.

Section 2.9 discusses how the REDIRECT feature of the HELP Processor can be used for
remote support.

Section 2.10 discusses how the RunTime program handles program errors.

2.2 RTP Versus RTI

Included in the RunTime Package are two RunTime programs. One program is non-inter-
pretive (RTP), and the other is interpretive (RTI). The non-interpretive version allows for
execution of NPL object code, without any capabilities for "Immediate Mode" command
entry or functions (refer below). The interpretive RunTime program allows for full devel-
opment capabilities, such as program text editing and debugging. The interpretive version
requires more memory (refer to Chapter 3 or the appropriate operating environment ad-
dendum).

Feature RTP RTI
Object Code Execution Yes Yes
Development Capabilities No Yes
Requires ENABLED File No Yes
Extended Error Displays No Yes

2.2.1 Enabling RTI

Software vendors may choose whether or not end-user sites shall have the optional inter-
pretive capabilities. This is done through the installation of the "ENABLED" file. This
file is required for operation of the Interpretive RunTime program. Niakwa recognizes
that while interpretive capabilities at the end-user site may be useful for support pur-
poses, these same capabilities allow an end user access to the vendor’s source code,
which may not always be desirable.

RTP Versus RTI RUNTIME OPERATIONS

2-2 NPL Programmer’s Guide

NOTE: The use of the Interpreter at end-user sites requires execution of the End-User Sup-
port Only License Agreement. Refer to the appropriate Operating System-Specific
Supplement for more details on the use of the "ENABLED" file.

2.3 Starting the NPL RunTime

There are a variety of methods available for starting the execution of either the non-inter-
pretive (RTP) or interpretive (RTI) RunTime program. However, before the RunTime
program can be executed, the user must pass a security check. The RunTime uses a vari-
ety of security methods, which are dependent on the operating environment in use. Some
versions may request that a Gold Key diskette be installed or be available for the security
check. If the Gold Key diskette has been installed, there is no prompt for the Gold Key. If
the Gold Key has not been installed, the diskette is requested. The RunTime program will
not start without it. The discussion in this chapter assumes that the proper security re-
quirements have been met for each particular operating system. Refer to Section 2.5 of
the appropriate NPL Supplement for details on security considerations and implementa-
tion for the operating environment in use.

2.3.1 Starting from the Command Processor

The examples provided in this chapter use the IBM MS-DOS operating system as a de-
fault. Please refer to the appropriate NPL Supplement for detailed information concern-
ing the operating system being used.

While at the MS-DOS prompt, the general form of a command line to execute either Run-
Time program is:

RUNTIME OPERATIONS Starting the NPL RunTime

NPL Programmer’s Guide 2-3

Refer to Section 2.4 for a detailed explanation of these options.

2.3.2 Starting from Batch/Script Files

Batch or script files can be written to execute the RunTime program directly. The batch
or script file can perform the various activities necessary to invoke the RunTime program
for a specific application in use. Refer to the appropriate NPL Supplement for more de-
tails on invoking the RunTime program from batch or script files.

2.3.3 Starting from a Menu

For a more user-friendly approach to starting an NPL application, the RunTime program
can be started from a menu system. Many third-party products can be used for this pur-
pose, including some operating systems’ menuing facilities.

{RTP} [option] [progname] (non-interpretive version)

{RTI} [option] [progname] (interpretive version)

where:

option = RunTime startup option or combina-
tion of startup options.

progname = the filename of the NPL object
program to be executed. If no
progname is specified, the Run-
Time Program assumes the program
"BOOT.OBJ" is to be executed. If
an extension is not supplied, NPL

Starting the NPL RunTime RUNTIME OPERATIONS

2-4 NPL Programmer’s Guide

2.4 Command Line (Start-up) Options

The NPL RunTime environment is set up internally by the RunTime program on execu-
tion. A series of start-up options may be specified on execution of the RunTime that give
the programmer a limited ability to modify the default RunTime environment. These op-
tions may be used to control a variety of RunTime execution features, however, many op-
tions are operating environment-specific. Refer to Section 4.4 of the appropriate NPL
Supplement for information on which options are supported on the operating environ-
ment in use.

NOTE: The format of the command line (start-up) options described below can be either a
slash "/" or a hyphen "-", depending on the operating system being used. Refer to
the appropriate NPL Supplement for information on which is appropriate.

2.4.1 /B (Background Partition)

The "/B" RunTime option is used to inform the RunTime that it is operating in a back-
ground partition.

{RTP} [/B=nn]

{RTI} [/B=nn]

where:

 nn = the background partition number,
where supported.

RUNTIME OPERATIONS Command Line (Start-up) Options

NPL Programmer’s Guide 2-5

This option is not available on all versions of NPL (e.g., it is not supported under Novell
NetWare). It is extremely operating-system dependent.

The "= nn" specification is not permitted on all operating environments.

Refer to the NPL appropriate Supplement for information regarding availability of this
option.

2.4.2 /D (DET Entries)

The "/D" RunTime option specifies the number of device equivalence table (DET) entries
defined. The number of DET entries may range from 16 to 255.

The number of DET entries specified by "/D" is available to the application in byte 16 of
$MACHINE in binary format.

If "/D" is not specified, the default of 16 DET entries is used.

Each DET entry above the default of 16 results in additional memory being used. The
amount of memory used for DET entries varies widely among different NPL platforms.
The programmer must consider the effects of this additional memory use. On systems
with limited physical memory, use of the "/D" option to specify more than 16 DET en-
tries may result in the user partition being reduced in size. On systems with paged or vir-
tual memory, the higher amount of memory required by the user’s task may cause
swapping or paging, that will reduce system performance.

The programmer should also be aware that there may be limits imposed by the host oper-
ating system on the number of files that may be open concurrently.

{RTP} [/B /T=xx]

{RTI} [/B /T=xx]

where:

 xx = a defined SuperDOS port number

Command Line (Start-up) Options RUNTIME OPERATIONS

2-6 NPL Programmer’s Guide

NOTE: The use of /D, or even $DEVICE, in itself does not cause files to be opened. Rather,
files are opened when first accessed.

The "/D" option is only valid for NPL Revision 3.0 or greater.

For more details on the "/D" option refer to $DEVICE in the NPL Statements Guide. Re-
fer to Chapter 4 of the appropriate NPL Supplement for details on host operating system
open file limits.

2.4.3 /G (Graphics Mode)

The "/G" option is used to invoke graphics mode on an EGA or Hercules controller on
the IBM PC under supported operating systems. When invoked, the RunTime attempts to
use available true box graphics and user-definable fonts on an IBM PC or compatible sys-
tem. The "/G" may be immediately followed by a letter indicating the type of graphics
display to use ("E" for EGA - "H" for HERCULES).

For example:

RTI /GE [progname]

uses the EGA graphics support,

while:

RTI /GH [progname]

uses the Hercules graphics support.

If no letter is used, then the RunTime attempts to determine if an appropriate adapter
(EGA or Hercules) and support files, such as the font download file, are present. If nei-
ther adapter is available, the "/G" option is ignored. If the "/G" option is immediately fol-
lowed by an "E", only an EGA adapter is used (if available). If the "/G" option is
immediately followed by an "H", only a Hercules adapter is used (if available). This al-
lows for the use of Hercules adapters on systems which have both EGA and Hercules dis-
plays (either on separate adapters or combination adapters).

{RTP} [/G[H,E]]

{RTI} [/G[H,E]]

RUNTIME OPERATIONS Command Line (Start-up) Options

NPL Programmer’s Guide 2-7

The /G option is not available on all operating systems.

The /G option is not implemented on NPL revisions prior to 2.01.20.

For more details on the availability of graphics mode, refer to Chapter 4 and 6 of the ap-
propriate NPL Supplement.

2.4.4 /H (Handle Table Size)

The handle table is an internal table used by the RunTime to translate two byte p-code
pointers into four-byte memory addresses. Handle table entries are created at program
resolution time. An entry is required for:

• Every unique variable

• Each unique line number

• Each DO/ENDDO group

• Each internal DEFFN’

• Each loop construct

• Each PROCEDURE or FUNCTION

It not specified, the RunTime program initially allocates a small amount of memory for
the handle table and expands it as required. This can cause difficulties for applications
since the routine for expanding the table requires some temporary memory to make a
copy of the existing table. If there is not sufficient memory, an error A01- Memory Over-
flow or 200 - Handle table full / cannot expand could result. This problem particularly af-
fects systems with fixed task sizes such as SuperDOS but could also affect very large
applications under MS-DOS.

The /H option can be used to pre-allocate a minimum size for the handle table on all non
32-bit versions of NPL (MS-DOS, SuperDOS, MS-Windows and Intel Xenix). The /H op-
tion is used to specify the minimum size of the handle table in number of K entries.

For example:

RTP /H4

Command Line (Start-up) Options RUNTIME OPERATIONS

2-8 NPL Programmer’s Guide

Causes the minimum size of the handle table to be set to 4K entries.

RTP /H16

Causes the minimum size of the handle table to be set to 16K entries (the maximum value
of non 32-bit versions of NPL).

NOTE: The value specified in the /H option represents the number of entries, in kilobytes.
Since each entry requires four bytes, the amount of memory allocated to the handle
table, in kilobytes, is four times the value specified by the /H option. For example,
/H4 causes 16K to be allocated to the handle table.

If /H is not specified, the RunTime continues to initially allocate only a very small handle
table and expands it as needed.

Developers who have encountered difficulty with A01 or 200 errors due to handle table
reorganizations are encouraged to use the /H option to set the handle table size large
enough to prevent reorganizations.

Byte 21 of $MACHINE contains the maximum number of entries allocated to the handle
table (in K) during a RunTime session. This value is used to determine the proper value
to use with the /H option described above. Developers who wish to use this feature are ad-
vised to execute every function module of the application before examining this value.
This ensures that the value observed actually does represent the highest value possible
with the application.

NOTE: The value returned in byte 21 of $MACHINE is in binary, but the value used for the
/H option must be in decimal.

For 32-bit versions of NPL (Intel UNIX, and the 386/DOS-Extender), the /H is used to
specify a maximum size for the handle table in number of K entries. This value may be
up to 64 on 32-bit versions of NPL.

{RTP} [/Hk]

{RTI} [/Hk]

where:

k = the number of entries, in kilo-
bytes.

RUNTIME OPERATIONS Command Line (Start-up) Options

NPL Programmer’s Guide 2-9

For example:

RTP /H32

allocates a handle table large enough for 32K entries.

This enhancement is useful for very large applications that may actually exceed 16K en-
tries.

NOTE: Considerable memory can be used by the handle table if this option is used. Each
handle table entry requires four bytes. Thus, for example, a specification of /H64 re-
quires 256K for the handle table. As such, do not make this entry larger than re-
quired. Byte 21 of $MACHINE can be used to determine the size required as
described above.

The /H option is only supported on NPL Revisions 3.20 or greater.

2.4.5 /K (Mouse Support)

On some operating environments, the /K option is used to explicitly request mouse sup-
port.

The /K option is required in environments where the NPL internal technique used to pro-
vide mouse support may not be 100% compatible with all hardware platforms or operat-
ing environment variations.

Refer to Section 7.6 on mouse support in NPL. Refer to Section 5.6 of the appropriate
NPL Supplement for information on mouse support and the /K option on specific operat-
ing systems.

{RTP} [/K]

{RTI} [/K]

Command Line (Start-up) Options RUNTIME OPERATIONS

2-10 NPL Programmer’s Guide

2.4.6 /L (Leave Overhead Memory)

The "/L" RunTime option specifies that the memory allocated by the RunTime should be
contained within that task’s own memory, and not use any available overhead memory.

This option is not available on all versions of NPL. It is extremely operating environment
dependent.

Refer to Chapter 4 of the NPL Supplement(s) for information regarding RunTime version
support of this option.

2.4.7 /M (XMS Memory)

NPL for standard MS-DOS environments supports the optional use of HMA memory.
Use of HMA memory can result in up to 64K additional memory being available to NPL
applications.

Refer to Chapter 4 of the MS-DOS Supplement for more information on the use of this
option.

This start-up option requires Revision 3.20 or greater.

2.4.8 /P (Pre-boot)

The "/P" RunTime option allows for a "pre-boot" configuration program. If the /P option
is specified on the RunTime command line, NPL loads and executes a "pre-boot" pro-
gram.

{RTP} [/L]

{RTI} [/L]

RUNTIME OPERATIONS Command Line (Start-up) Options

NPL Programmer’s Guide 2-11

The purpose of this program is to set programming preference options, (especially $OP-
TIONS values), and then perform a LOAD BOOT of the specified program. The BOOT
program must be a different program than the pre-boot program. Other operations, such
defining standard device addresses for library modules, could also be done here. How-
ever, operations in general should be restricted to setting values that are globally applica-
ble.

The name of the pre-boot program may be specified in three ways:

1. Immediately after the /P option, with no space. For example:

/PSTARTUP

2. If no filename immediately follows the /P option, and the new environment variable
NIAKWA_PREBOOT defines the program to be used, this filename is used. If such a
name is specified it should usually include a drive and directory.

3. If no filename immediately follows the /P option, and no environment variable
NIAKWA_PREBOOT is defined, the filename PREBOOT.OBJ is used (current direc-
tory assumed).

In all cases, if the file has no extension, a ".OBJ" is assumed. The pre-boot program is
loaded and executed only once. The pre-boot option is available on all NPL platforms,
for both the interpretive and non-interpretive RunTime. Operating systems which do not
support an environment may not use option (2) to specify the pre-boot file name.

The last statement the pre-boot program should execute is a LOAD BOOT statement
(with no parameters). This will load in the boot file (if any) specified on the command
line. Other statements which can affect the default boot program name (LOAD BOOT
"name" or SAVE BOOT "name") should not be used by the pre-boot program.

{RTP} [/Pfilename]

{RTI} [/Pfilename]

where:

filename = the filename of the pre-boot
program to be loaded.

Command Line (Start-up) Options RUNTIME OPERATIONS

2-12 NPL Programmer’s Guide

For example:

0000 ;PREBOOT
 : DIM O$64,S$256,K$32+256+32+256
 : O$=$OPTIONS
 : STR(O$,38,1)=BIN(1) : ;require all declarations
 : STR(O$,42,1)=OR HEX(01) : ;turn off error beeping! : $OPTIONS=O$
 : S$=$SCREEN
 : STR(S$,VAL(HEX(5F))+1,1)=HEX(5F) : REM underline fix
 : $SCREEN=S$
 : K$=$KEYBOARD
 : STR(K$,1+32+VAL(HEX(5F)),1)=HEX(5F) : ;underline generates HEX(5F)
 : STR(K$,1+VAL(HEX(5F))/8,1)=AND HEX(7F): ;not a special function key
 : $KEYBOARD=K$
 : LOAD BOOT : ;load specified boot program

WARNING--Exercise caution when testing a pre-boot program. If the pre-boot program
is loaded (i.e., using LOAD BOOT) then typically RUNning the program will result in an
infinite loop, since the LOAD BOOT at the end will reload the same pre-boot program.
This can be stopped with the HALT key.

2.4.9 /R (Remote Control)

The /R option is used to force the RunTime program to use generic native operating sys-
tem screen access techniques instead of direct video mapping. This feature is primarily in-
tended to be used in conjunction with third party communication products for remote
control maintenance.

Redirection is supported directly by the RunTime without requiring the use of the /R op-
tion. Refer to Section 2.9 for complete details on using the NPL REDIRECT feature.

2.4.10 /S (Separate Program Segments)

The /S option performs no operation. It is supported only for syntactical compatibility
with prior revisions of NPL.

{RTP} [/R]

{RTI} [/R]

RUNTIME OPERATIONS Command Line (Start-up) Options

NPL Programmer’s Guide 2-13

2.4.11 /T (Terminal/Port Number)

The "/T" RunTime option is used to inform the RunTime of the value to use for the termi-
nal number. The specified value becomes the #TERM value of the partition. On some sys-
tems, in conjunction with the "/B" option, this option specifies the port which can control
the background partition.

This option is not available on all versions of NPL and is extremely operating environ-
ment-dependent.

Refer to the NPL Supplement(s) for information regarding availability of this option.

2.4.12 /U (UMB Memory)

NPL for standard MS-DOS environments only, NPL supports the optional use of XMS
memory. Use of XMS memory can result in up to 200K additional memory being avail-
able to NPL applications.

Refer to Chapter 4 of the MS-DOS Supplement for more information on the use of this
option.

{RTP} [/S]

{RTI} [/S]

{RTP} /T=xx [progname]

{RTI} /T=xx [progname]

where:

xx = a numeric-constant which indicates
which terminal number to use (over-
rides default terminal number de-
termination).

Command Line (Start-up) Options RUNTIME OPERATIONS

2-14 NPL Programmer’s Guide

This start-up option requires Revision 3.20 or greater.

2.4.13 /X (External Library)

The "/X" option is used to specify that an external subroutine library of functions is to be
loaded. The filename for the external library must immediately follow the /X option. An
extension of .QLB is assumed (.DLL if the MS-Windows version of the RunTime is be-
ing used).

If the /X option is specified without a quick library name, NPL uses the default filename
"RTPXSUBS.QLB" for MS-DOS or "RTPXSUBS.DLL" for MS-Windows

The "/X" option is only valid for revisions of the NPL RunTime greater than 3.0.

The method of loading external libraries is extremely operating system-dependent and
"/X" may not be supported on all operating systems.

For more details on the implementation of external calls, refer to Chapter 16 of the Pro-
grammer’s Guide and Chapter 11 of the appropriate NPL Supplement.

{RTP} /X[quicklib]

{RTI} /X[quicklib]

where:

 /X = an external library must be at-
tached to NPL and "quicklib" is
the file name of the quick library
module. No spaces should appear
between /X and the library name.

RUNTIME OPERATIONS Command Line (Start-up) Options

NPL Programmer’s Guide 2-15

2.4.14 Boot Program

The RunTime program assumes that the first program to be executed is not in an NPL
diskimage, but rather is a true native operating system file. This first program can be
thought of as a "boot" program. Its job generally is to setup or customize the operators
Device Equivalence Table and run a start-up program in a diskimage. That is, the "boot"
program assigns device addresses to all NPL diskimage files that will be used by the vari-
ous application programs about to be run. The last statement of this program would then
"LOAD RUN" the desired starting program in one of the established diskimages.

The "boot" program does not have to reside in the user’s current directory, however, it is
a good idea to put it there. This would allow for relocating an entire application system to
a new directory, if desired.

Niakwa has provided a sample BOOT.SRC and BOOT.OBJ program in the /BASIC2C
directory. This program simply requests the operator to specify the application program
name and disk address which is to be executed. This would typically be the "start" pro-
gram for an application. The vendor may modify and recompile this program to suit a par-
ticular need or write a new one. Typical modifications would include:

• Establishing disk or printer addresses using the $DEVICE statement. Refer to the
NPL Statements Guide, $DEVICE, for details.

• Automatically running the desired start-up program for an application without op-
erator prompting.

NOTE: Any number of different boot programs can be set up. By executing the RunTime
program with different progname options or from different current directories, vari-
ous applications can be accessed independently.

Command Line (Start-up) Options RUNTIME OPERATIONS

2-16 NPL Programmer’s Guide

For example, under MS-DOS an example Boot Program might appear as:

10 REM
20 REM SET-UP DEVICE EQUIVALENCE TABLE
30 REM FOR ACCOUNTS RECEIVABLE RUN
40 REM
50 $DEVICE(/D11)="\PROGS\ARPROGS.BS2" :REM SETUP AR PROGS DISK
60 $DEVICE(/D12)="\DATA\ARMAST.BS2" :REM SETUP MASTER FILE
70 $DEVICE(/215)="LPT1" :REM SETUP PARALLEL PRINTER
80 REM
90 REM RUN A/R Startup PROGRAM
100 REM
110 SELECT DISK/D11 :REM SELECT AR PROGS DISK
120 LOAD RUN T "ARMENU" :REM RUN START PROGRAM

Line 50: Sets up device /D11 as the "ARPROGS.BS2" diskimage. Presumably this
diskimage would contain all accounts receivables programs.

Line 60: Sets up device /D12 as the diskimage ARMAST.BS2. This diskimage could con-
tain all data files related to the accounts receivable system. This diskimage is stored in a
directory called \DATA.

Line 70: Sets up device /215 as the system printer.

Line 120: Loads program "ARMENU" for the accounts receivable application from the
ARPROGS.BS2 diskimage.

This boot program would be stored in an MS-DOS directory (the \PROGS directory
would be a reasonable choice in this case) with a name like ARBOOT.OBJ. To run it
from the MS-DOS command processor, select the \PROGS directory (using the "cd" com-
mand) and enter:

RTP ARBOOT

(or)

RTI ARBOOT

This loads and runs the RunTime program, which in turn scans the current directory
(\PROGS) for the program ARBOOT.OBJ, loads it and runs it. The activities of the boot
program as described above are then performed.

RUNTIME OPERATIONS Command Line (Start-up) Options

NPL Programmer’s Guide 2-17

2.5 Immediate Mode Operation

Immediate Mode is the doorway to the entire NPL program development support system.
That is, all NPL program editing and debugging tools are accessed from this mode. The
Immediate Mode facility is available from the Interpretive RunTime only (RTI). The non-
interpretive RunTime program (RTP) does not support Immediate Mode.

The term "Immediate Mode" is derived by the fact that commands or program lines
which are entered in this mode are immediately parsed, compiled and, in some cases, exe-
cuted as directed.

The availability of Immediate Mode is signaled when the ":" prompt is displayed during a
session with the NPL Interpreter. The presence of the ":" prompt on the display means
that processor control has been taken away from the NPL program and is given to the
console (programmer). Here, Immediate Mode commands or program lines may be en-
tered (facilitated by the NPL line editor, Section 2.5.3) to be immediately processed by
the Immediate Mode processor.

With the Immediate Mode facility, variable values can be examined or modified at any
time during program execution. Programs can be executed one statement at a time for pin-
point debugging and logic testing. Programs can be loaded, modified, and saved "on the
fly", removing the burden of recompilation after even the smallest changes. Program line
syntax errors are detected and reported immediately after each line is entered to maxi-
mize the programmer’s efficiency while creating new programs or editing existing pro-
grams.

2.5.1 Two Types of Immediate Mode Entries

There are two types of entries which can be made in Immediate Mode. The primary dis-
tinction between the two is that one type is immediately executed, the other is not. Other
than the allowance for this distinction, the syntax of either type of entry is largely identi-
cal.

Immediate Mode Program Lines (Deferred Execution)
Any text entered in Immediate Mode which is prefixed by a number (up to five digits) is
considered to be an NPL program line. Here, the program line text is immediately parsed
and compiled into p-code, and syntax errors, if any, are reported. However, the program
line itself is not executed. Rather it is stored in the NPL program text area in memory for
later execution.

Immediate Mode Operation RUNTIME OPERATIONS

2-18 NPL Programmer’s Guide

This branch of Immediate Mode generally relates to NPL program text editing. With this
facility of Immediate Mode, the programmer has full access to the NPL program text cur-
rently in memory for editing functions such as inserting new program text, modifying ex-
isting text, deleting text and many other functions. To aid the programmer, the Immediate
Mode processor at all times performs syntax checking and reporting after each program
line is entered.

The program editing facility of Immediate Mode is discussed in detail in Chapter 5.

Immediate Mode Commands (Immediate Execution)
Any text entered in Immediate Mode which is not prefixed by a number is considered to
be a "command". Like an Immediate Mode program line, command text is immediately
parsed and compiled into p-code, and syntax errors if any are reported. However in addi-
tion, the command is immediately executed if no system errors are found.

The power of the Immediate Mode command is employed largely as a debugging tool.
This is derived partly from the fact that virtually any statement of the NPL language can
be entered as a command, thereby allowing for its immediate execution and the immedi-
ate availability of its result (with some exceptions, as documented in Section 2.5.3).

This is further enhanced in that the Immediate Mode command text does not disturb the
NPL program currently in memory, since commands are entered, compiled and executed
in a separate self-contained buffer from that of the resident NPL program.

With this facility, Immediate Mode commands can be used for variable inspection, modi-
fication, program listing, cross-referencing, etc., of the NPL program text and data vari-
ables currently defined in memory for the current module.

For example, entering the following command in Immediate Mode:

PRINT A,STR(B$,1,3),VAL(C$,3)*2^8R

would print the values of A, the first 3 bytes of B$, and the numeric value of C$ times 2
to the eighth power. If the variables A, B$ and C$ are already defined (by the resident
and executed NPL program), then the current values of these variables are used in the
computation for the final result. Since variable inspection in this manner also allows for
computations, the programmer can easily manipulate data in a fashion which renders it
more meaningful for debugging purposes.

This branch of Immediate Mode is discussed in full detail in Chapter 6, Debugging Code.

RUNTIME OPERATIONS Immediate Mode Operation

NPL Programmer’s Guide 2-19

2.5.2 Invoking Immediate Mode

There are many different events within the NPL language which cause Immediate Mode
to be invoked. However, generally, these events fall into four categories. Immediate
Mode may be invoked:

1. From the keyboard (on demand) during real-time execution of a program.

2. Programmatically by placing certain statements within a program in advance which,
when executed, cause Immediate Mode to be invoked.

3. Conditionally on the occurrence of certain pre-determined events.

4. Automatically when a RunTime error condition is encountered.

In all cases, invoking Immediate Mode involves taking control away from an executing
NPL program and controlling the partition from the keyboard once in Immediate Mode.

Before invoking Immediate Mode, it is important to choose the method of invoking
which best takes into account the program’s situation once the Immediate Mode session
is complete. This is because some methods of Immediate Mode invocation disturb the
RETURN stack and CONTINUE status of the executing program, thereby potentially for-
feiting the option of resuming its execution once the Immediate Mode session is com-
plete.

The following is a discussion of each method of invoking Immediate Mode, together with
some insight as to the circumstances under which each would typically be used.

Invoking Immediate Mode from the Keyboard
There are three methods of invoking Immediate Mode from the keyboard during the exe-
cution of an NPL program. These are the STEP and RESET functions of the HELP key,
and the HALT key sequence.

With all three methods, execution of the resident program is halted and Immediate Mode
is invoked (i.e., the colon prompt (":") is displayed). However, the availability of each
method and the effect that each has on program continuation differ as follows:

Immediate Mode Operation RUNTIME OPERATIONS

2-20 NPL Programmer’s Guide

STEP and RESET are both functions of the HELP display, and as such may only be ac-
cessed when the NPL program is waiting for keyboard input. Therefore, STEP and RE-
SET may only be used to invoke Immediate Mode when an INPUT, LINPUT or KEYIN
statement has been executed.

The HALT key, however, invokes Immediate Mode at any point during NPL program
execution (under most operating systems). Therefore, the HALT key can be used to in-
voke Immediate Mode under circumstances where the operating program’s logic is out of
control (e.g., infinite loop) and is not requesting keyboard I/O which would allow control
to be acquired from HELP.

The STEP function and HALT key methods of invoking Immediate Mode are most often
used in program debugging, since both of these methods preserve the subroutine RE-
TURN stack and CONTINUE status of the interrupted program. Therefore, this allows
that normal program execution may be resumed from the point of interrupt once the Im-
mediate Mode session is completed.

The RESET function, however, clears both the RETURN stack and the CONTINUE
status of the executing program, thereby forfeiting the option of resuming normal execu-
tion of the interrupted program. The RESET function is generally used to recover control
under circumstances where the executing program is "hung". A typical case of this is
where I/O to an external device (like printer, disk drive, etc.) is not resulting in a response
and the program logic cannot continue.

For further details on RESET and STEP, refer to the NPL Statements Guide .

Refer to the appropriate NPL Supplement for details on the HALT key sequence for the
hardware and operating environment being used.

Invoking Immediate Mode from Program Control
Immediate mode may be invoked under program control by use of the STOP, STEP and
END statements. At any time that one of these statements is encountered during the exe-
cution of a program, program processing is halted and the partition is placed in Immedi-
ate Mode.

Strategic placement of these statements in program logic allows for rapid progression
through correct program logic to temporarily stop processing at areas where known bugs
exist. This allows for detailed analysis of program logic and variables from Immediate
Mode commands in only areas of the program code which are of interest.

RUNTIME OPERATIONS Immediate Mode Operation

NPL Programmer’s Guide 2-21

The STOP and STEP statements are the most commonly used methods for programmati-
cally invoking Immediate Mode. Both of these methods preserve the RETURN stack and
CONTINUE status of the interrupted program, thereby allowing for normal resumption
of the program once the Immediate Mode session is completed.

The END statement preserves the RETURN stack when executed, but does not preserve
the CONTINUE status. Consequently, resumption of program execution may not be pos-
sible. For this reason, the END statement is most often used to "formally terminate" exe-
cution of a program or system.

There are other statements which may also cause invocation of Immediate Mode under
program control, but with the additional attribute that invocation is conditional. These are
discussed in the following section.

For further details on STOP, STEP and END, refer to the NPL Statements Guide.

Conditionally Invoking Immediate Mode
There are a number of methods under which the programmer may instruct the Interpreter
to conditionally invoke Immediate Mode. That is, the Interpreter normally executes a
given program(s) until such time as a certain condition or event takes place. When the
condition or event takes place, program execution is halted and Immediate Mode is in-
voked.

These methods are useful in that they allow execution of program logic to take place at
high speed until such time as a point of interest (for debugging purposes) is encountered.

For example, it is possible to instruct the Interpreter to resume program execution until
such time as a certain variable is modified in a LET statement, or until a program line in a
certain range of line numbers is encountered, or until a certain subroutine completes exe-
cution.

The following is a summary of the instructions which provide conditional invocation of
Immediate Mode. Each of these instructions may be issued as Immediate Mode com-
mands or as a statement in an NPL program. Further, in all cases the RETURN stack and
CONTINUE status are preserved, thereby allowing for resumption of program execution
from the point of interrupt.

CONTINUE Continue execution until a program LOAD statement is en-
countered, at which point invoke Immediate Mode.

Immediate Mode Operation RUNTIME OPERATIONS

2-22 NPL Programmer’s Guide

CONTINUE RETURN Continue execution until execution of the current subroutine
is completed, at which point invoke Immediate Mode.

CONTINUE NEXT Continue execution until the current FOR/NEXT loop is
completed, at which point invoke Immediate Mode.

STEP # Invoke Immediate Mode when a program line number in the
specified range is encountered (also places the program in
STEP Mode).

TRACE V or # or ’ Invoke Immediate Mode when either one or a range of: vari-
ables, program line numbers, or marked subroutines are ac-
cessed.

For further details on CONTINUE LOAD/RETURN/NEXT, STEP # and TRACE V/#/’,
refer to the NPL Statements Guide.

Invoking Immediate Mode on ERROR Conditions
When a RunTime error condition occurs during execution of an NPL program, the Inter-
preter displays debugging information and automatically invokes Immediate Mode. The
exact sequence of events is as follows:

1. Program execution is halted.

2. The program statement currently executing at the time of the error is dis-
played.

3. A visual pointer is displayed at the approximate section of code in the state-
ment which caused the error.

4. A descriptive error diagnostic is displayed.

5. Immediate Mode is invoked.

At this point, all Immediate Mode functions are available to the programmer to aid inves-
tigation of the error condition.

RUNTIME OPERATIONS Immediate Mode Operation

NPL Programmer’s Guide 2-23

NOTE: The RETURN stack of the executing program is preserved when an error condition
occurs, but the CONTINUE status is not. Therefore, to resume processing after an
error condition has occurred, the error condition must first be corrected (if possi-
ble) and then the CONTINUE status must be reinstated (e.g., with an Immediate
Mode GOTO command). For further details on resuming program execution from
Immediate Mode, refer to Section 2.5.3.

Summary Table
The following is a summary of all methods of invoking Immediate Mode, and the effect
of each on the RETURN stack and CONTINUE status.

METHODS OF INVOKING IMMEDIATE MODE

Method From
Return Stack

Preserved
CONTINUE Status

Preserved
STEP (HELP) key Keyboard Yes Yes
RESET (HELP) key Keyboard No No
HALT key Keyboard Yes Yes
STOP statement Program Yes Yes
STEP statement Program Yes Yes
END statement Program Yes No
CONTINUE LOAD Conditional Yes Yes
CONTINUE RETURN Conditional Yes Yes
CONTINUE NEXT Conditional Yes Yes
STEP # Conditional Yes Yes
TRACE V/#/’ Conditional Yes Yes
Error Condition Automatic Yes No

2.5.3 Immediate Mode Operation

The intended capability of Immediate Mode operation as it relates to program editing and
debugging is reserved for discussion in Chapter 5, Creating NPL Programs and the NPL
Editor, and Chapter 6, Debugging Code.

This section addresses the symptomatic effects that Immediate Mode or an Immediate
Mode session may have on the operation of certain statements and on the operation of a
program which resides in memory.

Immediate Mode Operation RUNTIME OPERATIONS

2-24 NPL Programmer’s Guide

Statements Which Are Illegal As Commands
Although the vast majority of statements in the NPL language are legal as Immediate
Mode commands, there are some statements which are not legal in Immediate Mode.

The following statements are never legal as Immediate Mode commands:

DATA
DEFFN and DEFFN’
FUNCTION and PROCEDURE

Further, any statement which references a program line number is legal in Immediate
Mode, but only if the program line exists in the currently loaded program, and only if the
program is resolved (refer to RUN, Statements Guide).

For example:

:GOTO 2500 :REM alters next instruction
 execution pointer

:PRINTUSING 1000,A,B,C :REM print using an image defined
 in the program text area

:IF A=B*256+1 THEN 100 :REM alter next instruction
 execution pointer if
 condition true

If an attempt is made to execute commands which reference line numbers when the resi-
dent program is not resolved, the message "PROGRAM NOT RESOLVED" is issued. A
program may be resolved, without executing it by typing the STEP command, followed
by the RUN command.

Statements Which Operate Differently As Commands
There are a number of NPL statements which operate differently when executed as an Im-
mediate Mode command as opposed to as a program statement. These differences are
largely introduced as a convenience for debugging and generally make use of the state-
ment more appropriate in Immediate Mode.

There are four classes of statements which are affected in this manner:

RUNTIME OPERATIONS Immediate Mode Operation

NPL Programmer’s Guide 2-25

1. Transfer of Control Statements
Statements which cause a transfer of control (e.g., GOTO) operate differently in Immedi-
ate Mode than in a program line. In a program line, this class of statements immediately
performs a transfer of control (i.e., jump). In Immediate Mode however, after the state-
ment is entered, the system processes the statement (to register the transfer of control) but
then performs an implicit HALT (which causes a display of the statement that will be
branched to) and returns to Immediate Mode. To actually execute the jump, the EXE-
CUTE key, or CONTINUE statement must be entered. This provides the programmer
with the opportunity to verify a jump before it is executed.

Statements in this class are:

GOTO
RETURN
NEXT

2. Program LOAD Statements
Statements which LOAD program text operate differently as Immediate Mode com-
mands. LOAD in a program line clears all program lines from memory (when line num-
bers are not specified), clears all non-common variables, then LOADs in the current
RUN Module and automatically RUNs the loaded program. In Immediate Mode, LOAD
does not clear the existing program or variables from memory. The specified program is
merged with existing program text in the current LIST Module. Further, the resultant pro-
gram is not automatically RUN. An explicit RUN statement is required.

These differences are implemented primarily to facilitate program text merging and edit-
ing.

Statements in this class are:

LOAD [DC]
LOAD DA
LOAD BOOT

NOTE: The LOAD RUN command is an exception to this rule. It operates identically both
as a program line and as a command.

Immediate Mode Operation RUNTIME OPERATIONS

2-26 NPL Programmer’s Guide

3. PRINT Statements
PRINT statements operate differently as Immediate Mode commands. All PRINT com-
mands (entered in Immediate Mode) print to the screen irrespective of the current SE-
LECT PRINT address. This facilitates program debugging by allowing inspection of
program variable values from Immediate Mode even while programmed output is di-
rected to a printer or spool file.

Statements in this class are:

PRINT
PRINTUSING

4. $SHELL Statement
The syntax of the abbreviated form (!) of the $SHELL command is different when issued
in Immediate Mode. Specifically, enclosing quotes about the command argument are not
required (in program mode they are mandatory).

Preserving a Program’s "Execution Status"
Immediate Mode is often entered with the intention that program execution be resumed
from the point at which it was interrupted once the Immediate Mode session has been
completed. There are, however, certain Immediate Mode commands which disturb the
execution status of the interrupted program. When it is intended that a program be re-
sumed, the programmer must take care to avoid, or at least be aware of, their effect.

To preserve the execution status of an interrupted program while in Immediate Mode:

• Immediate Mode must be originally invoked using a method which preserves the
subroutine RETURN stack and the program CONTINUE status of the interrupted
program. For further details, refer to Section 2.5.2.

• Use of commands which clear the RETURN stack or CONTINUE status of the
interrupted program should be avoided. Commands which cause this are:

CLEAR [P or V] Clear program or variables
RENUMBER Renumber program lines
RESET (help function) Reset the partition
LOAD Merge other program text

RUNTIME OPERATIONS Immediate Mode Operation

NPL Programmer’s Guide 2-27

• Further, editing of the interrupted program text of any kind while in Immediate
Mode (i.e., text additions, deletions or changes) should be avoided as this forfeits
the ability to resume the program.

NOTE: These events only indicate circumstances under which a program may not be re-
sumed from the point at which it was interrupted. They do not imply that execution
of the remaining program cannot be restarted from its beginning (or some other pre-
determined point).

There are other Immediate Mode commands which, although they do not clear or even
modify the RETURN stack or CONTINUE status of the program, may alter the normal
logic path of the program when execution is resumed.

An example of this is the contents of a variable being modified by the programmer in an
Immediate Mode assignment. This external influence on the variable’s contents may
cause operations or logic to take place within the program which otherwise would not oc-
cur.

Another example of this is the issuing of a GOTO command from Immediate Mode. This
could bypass code which would otherwise be executed in normal program logic.

NOTE: Most often, actions such as these are intended by the programmer and are a useful
debugging tool when used properly.

2.5.4 Exiting Immediate Mode

There are several methods by which Immediate Mode may be exited when an Immediate
Mode session has been completed.

CONTINUE Command
The CONTINUE command (either as entered on the command line or selected from the
HELP display) terminates Immediate Mode and resumes program execution from the
point at which the program was interrupted.

NOTE: If the CONTINUE status of the program has been modified (e.g., by a GOTO), then
execution resumes from that point. If the CONTINUE status of a program has been
cleared (for further details refer to Section 2.5.2), then the CONTINUE command is
inoperable.

Immediate Mode Operation RUNTIME OPERATIONS

2-28 NPL Programmer’s Guide

Use of CONTINUE implicitly turns STEP Mode off. If TRACE V, TRACE # or TRACE
’ is in effect at the time CONTINUE is entered, exit from immediate mode may only be
temporary (for further details on TRACE statement, refer to the NPL Statements Guide).

EXECUTE Key
The EXECUTE key exits Immediate Mode and resumes program execution in the same
manner as the CONTINUE command, with one exception. If the program has been
placed in STEP Mode, then execution resumes to execute only the next single instruction
of the program, after which Immediate Mode is reentered.

This is intended as a convenient method of single-instruction-stepping through program
execution.

The EXECUTE key works this way only when the command lines in Immediate Mode is
empty and the cursor is at column 1.

RUN Command
The RUN command exits Immediate Mode and starts execution of the program currently
in memory. The RUN command always causes resolution of the program before execu-
tion. That is, the RETURN stack is cleared and the entire program is scanned for syntax
errors.

If no line number is specified in the RUN command, all non-common variables are
cleared and execution proceeds at the first line in the program.

If a line number is specified, all currently defined variables remain intact and execution
proceeds at the specified line number.

The RUN command does not allow for resumption of a program indicated by the current
RETURN stack or CONTINUE status. Execution always begins from the point specified
by the command itself.

$END Command
The $END command exits Immediate Mode and also terminates the NPL session by re-
turning to the host operating system. All program text and data are cleared from memory
by this command.

RUNTIME OPERATIONS Immediate Mode Operation

NPL Programmer’s Guide 2-29

2.6 Exiting NPL

There are several methods available to either the programmer or end user for exiting from
the RunTime program (and consequently the application it is executing). In most cases,
exiting the RunTime returns to the point at which it was invoked. That is, if the MS-DOS
command processor was the starting point, exiting returns there. If a menu was the start-
ing point, exiting returns to the same menu. A brief discussion of the various exiting
methods follows.

2.6.1 Exiting under Program Control

The RunTime program may be exited under program control by any one of the following
events:

• When working in the interpretive RunTime (RTI), execution of the NPL "END"
or "STOP" statement. With either of these statements, a ":" is placed on the
screen with the cursor immediately following.

When in the non-interpretive RunTime (RTP), pressing the CANCEL or HELP
key with the KILL NPL option at that point exits the RunTime program (refer to
Section 2.7 for more details).

• By program logic which falls through the logical end of the program. In this
event, the RunTime is automatically exited without further action required. This
is only true for the non-interpretive (RTP) RunTime.

• The non-interpretive RunTime (RTP) also exits if an application error condition
is encountered.

• By execution of a $END statement. This statement causes the RunTime to end
operation, returning control to the native operating system. This is the preferred
method of exiting under program control. Refer to the Statements Guide, $END
for more details.

Exiting NPL RUNTIME OPERATIONS

2-30 NPL Programmer’s Guide

2.6.2 Exiting Using the HELP Key

The end-user may call for cancellation of program execution using the HELP key. Press-
ing the HELP key suspends current program execution. The screen is saved and the
HELP screen is displayed, with various options. The end user may at this point select the
KILL NPL option to terminate program execution unless this option has been disabled by
the application. If the LEAVE HELP option is selected the screen is restored and pro-
gram execution resumes.

NOTE: The HELP key is active only when the application program is polling for keyboard
input (e.g., executing a KEYIN, INPUT or LINPUT). For full details on the HELP
key, refer to Section 2.7.

2.6.3 Exiting Using the Interrupt Key

All operating systems provide their own methods for terminating program execution. The
interrupt key (e.g., MS-DOS--pressing CTRL-C) termination method is one of these.
When the interrupt key is pressed, the usual HELP display is provided, and program exe-
cution may be terminated or resumed using the same methods as described for the HELP
key.

NOTE: The interrupt key only takes effect when the application program issues a disk I/O
request (e.g., DATALOAD, DATASAVE, LOAD DC, etc.). If the interrupt key is
pressed when the application is waiting for keyboard input, it is treated as a normal
keystroke.

The interrupt key for MS-DOS is the CTRL-C combination, or CTRL-BREAK (some-
times labeled SCROLL LOCK).

NOTE: The interrupt key can be disabled on some operating systems. Refer to the appropri-
ate NPL Supplement for more details.

2.7 The HELP Processor

The HELP processor can be accessed by pressing the HELP key. The HELP key is en-
abled whenever the RunTime is waiting for a key from the keyboard. Upon depression,
application program execution is suspended, the contents of the screen are saved, and the
following is displayed:

RUNTIME OPERATIONS The HELP Processor

NPL Programmer’s Guide 2-31

The Help Display under the interpretive RunTime (RTI) appears as:

At the top right hand corner of the display, the word HELP is displayed. This lets users
know they are in the HELP processor (as opposed to the ERROR processor, which looks
similar). Notice the series of highlighted phrases on the display, LEAVE HELP, DIS-
PLAY, DIAG, PRINTER CONTROL, PRINT SCREEN, PRINT HELP, KILL NPL,
O/S, RESET, STEP and CONTINUE. These are the HELP options and they are available
to the user on all HELP screens.

NOTE: The RESET, STEP and CONTINUE options are not available under the non-inter-
pretive RunTime (RTP). The use of each is discussed below.

The user may cancel HELP processing and return to the application program at any point
by pressing the CANCEL key, or by selecting the LEAVE HELP or CONTINUE (not
available under RTP) options. Upon depression of either of these keys, the application
screen is restored and program execution resumes.

2.7.1 Selecting HELP Options

A HELP option is selected by moving the input block to the desired option and pressing
EXECUTE.

The HELP Processor RUNTIME OPERATIONS

2-32 NPL Programmer’s Guide

NOTE: $OPTIONS byte 46 can be used to treat the RETURN key as if it were the EXE-
CUTE key. Developers can enable this feature be setting byte 46 of $OPTIONS to
HEX(01).

The input block is controlled by any of the following keys.

RETURN, TAB
& EAST Moves to the next option on the screen (row order).

BACKSPACE
& WEST Moves to the previous option on the screen (row order).

NORTH Moves to the previous option on the screen (column order).

SOUTH Moves to the next option on the screen (column order).

BACKTAB
SHIFT-TAB Moves to the previous option on the screen (row order)

PREV Page backward through help entries with greater than 19 lines of text

NEXT Page forward through help entries with greater than 19 lines of text.

Letter keys move the acceptance block to the next highlighted option with the first letter
matching the letter keyed in.

All movement keys "wrap" when the top or sides of the screen are encountered.

The HELP processor automatically supports the use of a mouse and all mouse functions,
where supported by NPL. Refer to Section 7.6 for a discussion on NPL mouse support.

2.7.2 HELP Options

LEAVE HELP Selection of this option cancels HELP processing and contin-
ues program execution. Upon selection, the application
screen is restored and program execution resumes. This is
the default HELP option.

RUNTIME OPERATIONS The HELP Processor

NPL Programmer’s Guide 2-33

DISPLAY The DISPLAY option displays the application screen as it
was before HELP was executed. This is useful when review-
ing User Defined HELP Screens (refer to text below).

DIAG The DIAG option allows the user to invoke the REDIRECT
feature to transfer system control to a remote terminal for an
on-line troubleshooting session or Enable or Disable Key-
board Logging.

The REDIRECT function allows the user to transfer control
of their system to a remote terminal. For a complete discus-
sion of the REDIRECT option, refer to Section 2.9.

The Enable/Disable Keyboard Logging feature allows the
user to turn on and off the Keyboard Logging feature of
NPL. Display of this feature can be suppressed using byte
33 of $OPTIONS. Refer to the Statements Guide, $OP-
TIONS for details. Refer to Chapter 12 of the Programmer’s
Guide, and the Statements Guide, SELECT LOG, for a de-
tailed discussion of Keyboard Logging.

PRINTER CONTROL Selection of this option invokes the printer control options
screen. Refer to Section 2.8 below for details on printer con-
trol.

PRINT SCREEN Selection of this option causes the contents of the applica-
tion screen to be printed on the system printer.

PRINT HELP Selection of this option causes the contents of the HELP
screen to be printed on the system printer.

KILL NPL The KILL NPL option terminates execution of the applica-
tion program and returns to the native operating system.

O/S Selection of this option effects a temporary exit from the ap-
plication program to the native operating system. Upon re-
turn, control is passed back to the HELP processor.

NOTE: The text displayed on the HELP PROCESSOR screen is the name of the native oper-
ating system (e.g., MS-DOS, SuperDOS, Xenix, etc.).

The HELP Processor RUNTIME OPERATIONS

2-34 NPL Programmer’s Guide

RESET Selection of this option invokes Immediate Mode and pre-
vents continuation of the program currently in memory. This
may be useful for viewing a program listing, or inspecting
the contents of one or more program variables. Refer to the
Section 2.5.2 for more details on RESET.

STEP Selection of this option invokes Immediate Mode following
completion of the NPL statement being executed within the
program currently in memory. This may be useful for then
"stepping" through the program one statement at a time, for
debugging program logic or variable inspection. Refer to
Chapter 6 of the NPL Programmer’s Guide for details on
STEP mode.

CONTINUE This option appears on the HELP display only after return-
ing to HELP after previously selecting the STEP option. Se-
lection of this option cancels HELP processing and
continues program execution. Upon selection, the applica-
tion screen is restored and program execution resumes.

NOTE: The RESET, STEP and CONTINUE options are only available under the interpre-
tive RunTime (RTI).

2.7.3 Disabling Immediate Mode Options

From the HELP display under the Interpretive RunTime (RTI), the programmer can enter
Immediate Mode processing, with development and debugging commands such as RE-
SET, STEP and CONTINUE available for use. In addition, under both the interpretive
(RTI) and non-interpretive (RTP) RunTimes, the O/S , DIAG and KILL NPL options ap-
pear on the HELP display by default.

All of the above options can be suppressed under program control by setting byte 12
and/or byte 33 of the $OPTIONS system variable appropriately. Refer to the NPL State-
ments Guide, $OPTIONS for details on the exact syntax and use of the $OPTIONS vari-
able.

RUNTIME OPERATIONS The HELP Processor

NPL Programmer’s Guide 2-35

2.8 Print Control

The print control functions allow various printer functions to be easily modified by the
operator at program execution time. The intention is to allow the use of printers which
have very limited front panels but which can be programmed for different characters per
inch, lines per inch, or fonts by sending proper control sequences.

Through the print control feature, characters per inch (pitch), lines per inch, form feed,
line feed, and other printer control codes can be sent to the system printer.

2.8.1 Accessing Printer Control

Printer control is a function of the HELP processor and may be accessed whenever the
HELP processor is active. Refer to Section 2.7 above for details on the HELP processor.

2.8.2 The Print Control Screen

When the Printer Control function is accessed, a screen similar to the following is dis-
played.

NOTE: Refer to Section 2.8.4 below for an explanation of default values.

Print Control RUNTIME OPERATIONS

2-36 NPL Programmer’s Guide

Printer control may be exited at any time by pressing CANCEL or by selecting the CAN-
CEL PRINTER CONTROL option.

Options on the printer control screen may be selected simply by moving the highlighted
acceptance block to the option desired and pressing EXECUTE. Refer to Section 2.7
above for detailed instructions on how to move the acceptance block.

2.8.3 Printer Control Options

The printer options which can be set are:

PRINTER ADDRESS This option directs Help Processor and Print Control Output
to the specified NPL print address. This must be a config-
ured NPL device address such as 204 or 215. The initial
value of this field at boot time is 004, but can be changed at
any time for the duration of the current RunTime session.

RUNTIME OPERATIONS Print Control

NPL Programmer’s Guide 2-37

CHARACTERS
PER INCH This option allows the pitch (number of characters printed

per inch) to be changed. By moving the acceptance block to
the desired characters per inch and pressing EXECUTE, the
pitch is set as specified.

NOTE: Not all printers have the ability to print at the different pitches. Refer to Section
2.8.4 below for details on default values.

LINES PER INCH This option allows the vertical spacing of reports to be modi-
fied. Simply move the acceptance block number to the de-
sired lines per inch and press EXECUTE.

NOTE: Not all printers have the ability to print at the different values for lines per inch. Re-
fer to Section 2.8.4 for details on default values.

PAPER CONTROL This option advances the paper in the printer. LINE FEED
advances the paper one line each time it is executed. FORM
FEED advances the paper to the top of the next page each
time it is executed. This option is not dependent upon a
printer driver.

AUTO LINE FEED This option tells the RunTime program whether or not to per-
form special end-of-line handling for the specified print ad-
dress. Refer to Section 7.8.9 for further information on
special end-of-line handling.

Print Control RUNTIME OPERATIONS

2-38 NPL Programmer’s Guide

CONTROL
SEQUENCE Many printers have sophisticated functions which can be

controlled by certain control sequences. This option is used
to enter the control sequences to be sent to the printer. These
control sequence characters may be entered in pairs of hex
codes or as "= x" where "x" is a printable character. The "="
as a prefix indicates that the character(s) following are nor-
mal printable characters, not hex codes.

For example, the Okidata model 2410 printer has a corre-
spondence quality mode. The hex codes 1B37 cause the
2410 to print in correspondence quality. The hex codes
1B38 cause the 2410 to print in draft mode. To activate cor-
respondence quality, simply enter 1B37 on the control se-
quence line.

If EXECUTE or HELP is pressed while the acceptance
block is at CONTROL SEQUENCE, HELP information
from the file CTRLSEQ.HLP is displayed, if available. This
HELP information should be set up by the application soft-
ware vendor and should contain a description of the features
of the printer being used with the corresponding hex codes
to be used for control sequences.

SEND CONTROL
SEQUENCE This function, when executed, sends the control sequence en-

tered above to the printer.

2.8.4 Print Control Values

It is clear that no standards exist for printer control protocol. Consequently, printer con-
trol specifications vary dramatically from printer to printer. The print control feature of
the RunTime program has built-in defaults. These default control codes vary by operating
system. Refer to Section 4.5 of the appropriate NPL Supplement for default printer con-
trol codes on specific operating systems.

When the RunTime program is invoked, it always looks for a table of printer control val-
ues under the name "PRINTCTL.TBL" (first in the current directory, then in the default
BASIC2C directory). If no such table is found, the built-in defaults are used.

RUNTIME OPERATIONS Print Control

NPL Programmer’s Guide 2-39

The Edit Printer Control Codes program allows the user to define up to 4 values for "char-
acters per inch" and 4 values for "lines per inch" for the printer. In addition, the se-
quences used to perform Line Feed and Form Feed operations may be defined.

If these values are saved in the file "PRINTCTL.TBL" in the current directory or the de-
fault BASIC2C directory, the next time the RunTime program is invoked these values
will be loaded for use by the Printer Control screen.

2.9 Redirect Feature for Remote Support

The REDIRECT option of the HELP Processor assists in support of end-user systems, by
allowing "on the fly" turnover of system control.

There are essentially four steps in the remote support of an end user using the REDI-
RECT option:

1. Establishing the communications link.

2. Turning control over to the remote terminal.

3. Troubleshooting from the remote site.

4. Relinquishing control back to the end-user site for continuation of processing.

Each of these steps is discussed in detail in the following sections.

2.9.1 Establishing the Communications Link

Once it is decided that remote support is necessary, and both vendor and end-user sites
have compatible telecommunications equipment (i.e., a modem), the communications
link should be established.

To establish the communications link the user must ensure that the modem is properly
connected to the system and to the telephone line. The user should also know the follow-
ing information:

Terminal Type Refer to Section 2.9.2 for supported terminal types.

Redirect Feature for Remote Support RUNTIME OPERATIONS

2-40 NPL Programmer’s Guide

System name of TC port Device name of the port used to establish communication
link (i.e., under MS-DOS either COM1 or COM2).

Baud Rate 1200 baud is recommended. If using higher baud rates, the
system requires that the terminal and the driver have a com-
patible flow control (i.e., XON/XOFF) and have sufficient
buffering to avoid loss of data.

Parity This is necessary since redirecting to a nonexistent or im-
properly set-up device (e.g., baud rate or parity incompatibil-
ity) causes the system to "hang".

Stop Bits Usually set to 1.

Once the end users know this information, they should set their communications ports us-
ing the appropriate operating system specific commands. The vendor should then estab-
lish the communications link in the normal way (i.e., dial the user’s number, perform the
necessary steps to establish the carrier signal). Once the communications link is estab-
lished, it is a good idea to test the link prior to redirecting.

NOTE: The discussion above refers to use of a serial terminal as the remote device. Use of a
PC as the remote device requires that the PC be executing a terminal emulation pro-
gram. Niakwa does not support the use of terminal emulation programs. However,
periodically Niakwa may review terminal emulation programs in the Niakwa News-
letter.

2.9.2 Turning Control Over to the Remote Terminal

Once the connection has been established, the user releases control of the RunTime to the
remote terminal by entering the HELP processor, selecting DIAG, and then selecting RE-
DIRECT (a sub-item of DIAG). The REDIRECT screen contains user-modifiable entries
for the device name to which the RunTime’s screen and keyboard I/O are to be switched
(e.g., COM1), and the type of terminal to be used at the remote site.

As of this release the following terminals are supported:

RUNTIME OPERATIONS Redirect Feature for Remote Support

NPL Programmer’s Guide 2-41

Terminal Name Terminal Type
ALTOS III altos
ALTOS V al5
Bull HDS I wy50
Bull HDS III vt100
DEC VT100 vt100
DEC VT200 vt200
IBM 3151 i3151
PC Monitor with ANSI.SYS Driver IBMPC
PC Monitor function as a console under UNIX or Xenix IMON
NCR 4970 vt200
Spectrix SPX 701 spx
Wang 2110a w2110a
Wang 2x36 DE/DW w2236
Wyse 50 wy50
Wyse 60, 150, 160 wy60
Wyse 370 wy370

NOTE: Use the exact terminal type name given above. An example of the screen is shown be-
low:

Redirect Feature for Remote Support RUNTIME OPERATIONS

2-42 NPL Programmer’s Guide

This example shows the default values for an IBM PC.

The user must ensure that the appropriate values are entered in the "Redirect Device
Name" and the "Terminal Type" fields. The default values in these fields are rarely cor-
rect.

NOTE: If the HELP key is pressed when in the "Redirect Device Name" field, the system
performs a normal HELP look up for the $HELP value "REDDEVIC". If the
HELP key is pressed when in the "Terminal Type" field, the system performs a nor-
mal HELP lookup for the $HELP value "REDTTYPE". If this feature is to be used
extensively with the application, the user may wish to provide .HLP files which spec-
ify typical values to use in these fields. The Redirect Device Name is typically the
name that would be given to the port if it were used as a serial printer under NPL.
Refer to Chapter 13 for detailed information on the use of HELP files.

Once the correct values have been entered, the user then must move the acceptance block
to PROCEED and press the EXECUTE key. The RunTime validates the terminal type
and device name (as far as possible), and then switches subsequent screen and keyboard
I/O control to the specified device. At this point, assuming that the device baud rate, par-
ity, stop bits, terminal type, and port are all properly set, the REDIRECT display should
appear on the vendor’s terminal screen at the remote site.

RUNTIME OPERATIONS Redirect Feature for Remote Support

NPL Programmer’s Guide 2-43

2.9.3 Example of Redirect Feature

Listed below are the steps necessary to use the Redirect option. This example assumes
that the end-user site has an IBM PC and the remote support site is using a VT100 termi-
nal running at 1200 baud, 8 data bits, 1 stop bit and no parity.

1. Ensure that the communications port is functioning with the same communication pa-
rameters as the VT100. On the IBM PC under MS-DOS this can be accomplished by
use of the "MODE" command shown below:

MODE COM1:1200,N,8,1

where:

COM1 indicates which serial port to set
1200 indicates baud rate
N indicates no parity
8 indicates 8 data bits
1 indicates 1 stop bit

2. Make sure that the modems at the remote support site and the end-user site are func-
tioning properly. This can be accomplished by the "ECHO" command shown below:

ECHO "HELLO" > COM1

This should print the word "HELLO" on the VT100 terminal.

3. After executing the RunTime, enter the HELP Processor, select the DIAG option, and
then select the REDIRECT option (a sub-item of DIAG). The end user should then en-
ter the Redirect Device Name and Terminal Type. For this example, the screen should
appear as follows:

Redirect Feature for Remote Support RUNTIME OPERATIONS

2-44 NPL Programmer’s Guide

The end-user should then execute the Proceed option. This turns over control to the
remote sites VT100 terminal.

2.9.4 Troubleshooting from Remote Sites

Once the REDIRECT display appears on the remote sites terminal, the user may leave
the redirect display as if the remote site were the actual monitor/keyboard on the system.
Troubleshooting can then commence, providing the following restrictions are kept in
mind:

• Communications parameters cannot be changed while connected. These parame-
ters should be set prior to linking and should be used for the entire session.

RUNTIME OPERATIONS Redirect Feature for Remote Support

NPL Programmer’s Guide 2-45

• The appropriate screen and keyboard tables must be available on the host system
for the remote terminal in use.

• The HALT key may not be supported on the remote terminal in use. Care should
be taken to avoid processing programs which require halting before completion,
but do not poll the keyboard. Halting can be accomplished by using the STEP op-
tion available on the HELP screen. In some cases, if the HALT key does not re-
spond, pressing the HALT key at the original monitor may cause a HALT to be
executed.

• Use of $SHELL or Invoke (!) should be done with caution. Some programs (espe-
cially under MS-DOS) may not operate properly with output redirected to a de-
vice.

• Exiting the RunTime for any reason (using $END or KILL NPL on HELP
screen) automatically returns control to the host (IBM PC) system keyboard.

• If the attached terminal supports a local printer using an LCL= Y type $DEVICE
statement, this can be used to get printouts. Please refer to Appendix D for infor-
mation on terminals that support local printers. Refer to Section 7.8.8 for imple-
mentation of the local printing convention (LCL= Y).

2.9.5 Relinquishing Control Back to the End-User Site

The easiest (and recommended) way of returning control back to the end-user is to exit
the RunTime. If this is inconvenient (e.g., because of a long process which must be com-
pleted or cause recovery of files), it is possible on most systems to transfer control back
to the end-user "on the fly".

Returning control back to the end user "on the fly" requires essentially the same steps
(only in reverse). First, users at the remote site should select themselves back to the Redi-
rect command in the DIAG section of the HELP screen. Then they should select the fol-
lowing options:

Redirect Device Name : CON
Terminal Type : IBMPC

Since the communication link was previously established, the transfer of control back to
the Host uses that same link. By selecting EXECUTE, control of the host computers
screen and keyboard I/O is passed back to the host computer.

Redirect Feature for Remote Support RUNTIME OPERATIONS

2-46 NPL Programmer’s Guide

The following consideration should also be noted.

IBM PC compatible systems must be configured with the ANSI.SYS driver to regain con-
trol in this way. The type used for the normal host screen and keyboard on IBM systems
is "ibmpc". Here, the user the equivalent of running the RunTime with the /R option. This
means that some capabilities will be lost (e.g., faster speed, box graphics, downloadable
fonts), and normal requirements for operation under /R must be met (e.g., ANSI.SYS
driver configured). Because of these restrictions it is often more suitable to return control
back to the user by exiting the RunTime Package, rather than redirecting back. Refer to
Section 2.4.6 for details on invoking the RunTime with the "/R" option.

2.10 RunTime Errors

When application program errors are detected by the RunTime program, one of two possi-
ble error handling procedures is used, depending upon whether the interpretive or non-in-
terpretive RunTime version is in use. The discussion of how each version handles errors
follows.

2.10.1 Error Handling Under RTP

Under the non-interpretive version of NPL, when the RunTime program encounters a
RunTime error, the following screen is displayed:

RUNTIME OPERATIONS RunTime Errors

NPL Programmer’s Guide 2-47

The contents of the fields displayed on the error screen are as follows:

RunTime error # This is the RunTime error code. For ease of use, it is equiva-
lent to the error codes as produced on the Wang 2200 sys-
tem.

On line # This is the line number of the original source program that
caused the error condition.

Offset This is the offset of the sub-statement in number of bytes
from the first byte of the line number. This is useful in deter-
mining the exact statement in a multi-statement line on
which the error occurred.

SI & IP These fields refer to internal RunTime program routines and
are intended for use by Niakwa only.

O/S error code The operating system error code. Refer to the operating sys-
tem documentation for a detailed listing of error codes.

RunTime Errors RUNTIME OPERATIONS

2-48 NPL Programmer’s Guide

NOTE: The error code’s meaning, in this example "File not found", is supplied in the RTIx-
ERR.HLP file and appears following the error code, provided that this file is in the
default NPL directory. Refer to Appendix B and Section 2.10.4 below for informa-
tion on Error Code files.

Message line Wherever possible, the RunTime program provides further
diagnostic information about the run time error on this line.
This verbiage is supplied in the ERRORMSG.HLP file. In
this example, this line states "Illegal device specification".
Refer to Appendix B and Section 2.10.4 below for informa-
tion on Error Code files.

Program Load
Sequence This field lists the names of the first program in memory,

plus the last 5 programs overlaid at the time of the error.

NOTE: Releases prior to 2.01.18 displayed the names of the last program overlayed in mem-
ory, plus the first 5 programs overlayed at the time of the error.

User-defined
information The error screen displays the contents of the user-defined

HELP file called RUNERROR.HLP in the current directory,
if present. This file may created or modified by the program-
mer. It is expected that this file contains general information
about what to do in case of a program error (e.g., whom to
call). Message screens may be nested like HELP screens. Re-
fer to Section 11.4 for details on nesting.

NOTE: The RUNERROR.HLP file must be limited to 8 lines of text. Exceeding 8 lines
causes error information to scroll off the screen and be lost.

The options (DISPLAY, DUMP, PRINTER CONTROL, PRINT SCREEN, PRINT ER-
ROR, and KILL NPL) can be accessed and executed on the ERROR screen as in a HELP
screen (refer to Section 2.7.2 - HELP options) with the exception that the LEAVE HELP
option is not available.

RUNTIME OPERATIONS RunTime Errors

NPL Programmer’s Guide 2-49

2.10.2 Error Handling Under RTI

Because of the nature of an Immediate Mode environment, with all development and de-
bugging capabilities available, all program error displays under the Interpreter are "pro-
grammer friendly". This means that the somewhat limited error screen generated by the
non-interpretive version of the RunTime is not used. Instead, the entire program line of
code where the error occurred is displayed, along with the appropriate error code, and an
arrow pointing to the approximate position of the actual error.

For example, assume that the following short program is being executed:

10 A$="ABC"
20 CONVERT A$ TO X

This program generates an execution phase error because the CONVERT statement re-
quires that the contents of the alpha variable being CONVERTed contain only numbers.
The error display looks like:

20 CONVERT A$ TO X
 ^

ERR X75: Illegal number

At this point, all Immediate Mode aids for debugging or variable inspection and modifica-
tion are at the disposal of the user, such as full Immediate Mode, HALT/STEP, LIST,
TRACE, EDIT/RECALL and more.

Refer to Chapter 5 of the Programmer’s Guide for more details on error handling. Refer
to the Statements Guide, HALT/STEP, LIST, TRACE, EDIT/RECALL for syntax and us-
age of these commands.

2.10.3 Device Not Ready Conditions

For certain I/O related errors, generation of standard RunTime errors is not possible.
Here, the RunTime program attempts to displays a special error screen referred to as the
"Device Not Ready" screen.

For example, under MS-DOS, attempting to access a diskimage file on a diskette when
no diskette is in the drive, as in:

:0010 $DEVICE(/D20)="A:PLATTER1.BS2"
:0020 LISTDCT/D20,
:RUN

would produce the following screen:

RunTime Errors RUNTIME OPERATIONS

2-50 NPL Programmer’s Guide

This screen operates very much like the standard ERROR or HELP screen in that listed
options may be selected by moving to the desired option and pressing the EXECUTE key.

The options at the bottom of the screen perform the same functions as on the HELP
screen.

NOTE: The Native O/S option is not available on this screen because exiting to the native op-
erating system while an error condition is in effect is not possible.

The Reset, Step, and Continue options are available only in the Interpretive version (RTI).

The LEAVE HELP option operates differently depending on the type of I/O operation
that was being performed when the error occurred. If the operation was a disk operation,
specifying LEAVE HELP causes the operation to be retried. This allows for recovery
from diskette-not-mounted situations. For instance, in the example above inserting a disk-
ette with a file named PLATTER1.BS2 and then specifying LEAVE HELP would allow
the LISTDCT statement to proceed normally. For print class operations, specifying
Leave Help causes the operation to be skipped. RTP attempts to continue with normal
processing.

LEAVE HELP Fail Operation HELP

Drive A: error - Drive not ready

during read in File Allocation Table Area

Display Kill RunTime

Reset Step Continue

RUNTIME OPERATIONS RunTime Errors

NPL Programmer’s Guide 2-51

NOTE: Most print class statements actually generate a series of print class operations.
Thus, to get past one statement may require pressing LEAVE HELP many times.

The Fail Operation causes the RunTime to abort the attempted operation and return con-
trol to the application. In the case of disk class operations, the Fail Operation usually re-
sults in a disk class error being generated. For instance, in the example above specifying
Fail Operation would result in a P48 - Illegal Device Specification error with an MS-
DOS error code of 0D02 (drive not ready) being generated. If RTP were being used, the
standard RTP error screen would be generated.

In some cases it is necessary to specify the Fail Operation twice to get the standard Run-
Time error. For print class operations, specifying the Fail Operation generates a RunTime
error only if the ERR= Y clause is specified in the $DEVICE statement for the device ad-
dress used.

NOTE: The Fail Operation option should only be used in cases where generation of an NPL
error code is essential to determining the cause of the problem.

The fail operation option is only available under NPL Revision 3.0 or greater.

NOTE: The conditions which generate the Device Not Ready screen may vary widely from
one operating system to the next. On many operating systems, detection of device
not ready conditions is not possible at all at the program (RunTime) level.

2.10.4 Error Descriptions

In addition to displaying the NPL error code, a description of the error code is displayed
if files containing these error descriptions are present.

NOTE: The native operating system error message will also be displayed, when appropriate
if the proper help files are available. Refer to Section 8.5. for more information.

Located on the RUNTIME PACKAGE diskette are four files, labeled ER-
RORMSG.HLP, RTIxERR.HLP, ERRORMSG.IDX, and RTIxERR.IDX which should
be copied to the default directory on the hard disk where the RunTime is installed. The
files with the extension of .HLP contain the literal description of all NPL error code and
applicable native operating system error codes respectively. The files with the .IDX ex-
tension are the Indexed Help files required to "find" the proper entry in the descriptive
file.

RunTime Errors RUNTIME OPERATIONS

2-52 NPL Programmer’s Guide

When these files are installed, the error code is accompanied by the literal translation,
and in cases where the error generates an operating system error, that code and literal
translation are also provided.

For examples:

20 CONVERT A$ TO X
 ^

ERR X75: Illegal number

NOTE: This error does not generate an operating system error code. Therefore, no further
information is reported.

10 $DEVICE(/D12)="LISTTEST": REM "LISTTEST" DOES NOT EXIST
20 LISTSDCT/D12,

 ^
ERR P48: Illegal device specification

"LISTTEST"
O/S error code 0002: File not found

In the example above the file "LISTTEST" was not a valid native operating system file.
Therefore, a native operating system error code (0002) was generated along with the de-
scriptive message "File not found" contained in RTIxERR.HLP (x refers to the host oper-
ating system designation).

Refer to Chapter 11 for details on the use of Help files. Refer to Chapter 13 for details on
the Indexed Help File Processor. Refer to the NPL Statements Guide, $OSERR, ERR$
for information on the literal descriptions of error codes.

RUNTIME OPERATIONS RunTime Errors

NPL Programmer’s Guide 2-53

CHAPTER 3

RUNTIME MEMORY USE

3.1 Overview

This chapter discusses how the RunTime allocates memory and handles program and
variable storage.

Section 3.2 discusses dynamic partitioning under NPL.

Section 3.3 discusses the determination of memory using the SPACE statements.

Section 3.4 addresses the issue of p-code size relative to code on the Wang 2200.

RUNTIME MEMORY USE Overview

NPL Programmer’s Guide 3-1

3.2 Dynamic Partition Size

All NPL program code and defined variables reside within a section of memory defined
as the "user partition". As of Release III, the size of the user partition is limited only by
the available physical memory or logical task size of the host operating environment.

Upon execution of NPL, the RunTime interrogates the operating system environment and
determines the amount of memory available for the user partition. The amount of mem-
ory available to the RunTime is dependent upon, but not limited to the following ele-
ments:

• The revision of the native operating system being used.

• Any operating environment loaded on top of the operating system.

• The number of files, buffers, processes and other operating-system dependent pa-
rameters defined in the system configuration.

• Which RunTime program is being executed: RTP or RTI.

• RunTime options invoked at startup.

• Operating system task size limitations.

On most NPL operating environments, memory allocation is dynamic (refer to Chapter 8
of the appropriate NPL Supplement for details). Due to this dynamic nature of memory al-
location, the RunTime (on most platforms) allocates an initial 141K to the user partition.
As such, SPACEW returns the minimum size of the user partition because attempting to
allocate the full amount of the memory available would cause performance degradation.
As additional memory is needed by the application, the RunTime automatically attempts
to allocate another 64K of memory to the user partition. The process continues, based on
the applications memory need, until all available system memory is used.

NOTE: Once memory is allocated in this fashion, it is not released until the Runtime is ex-
ited.

On other environments, memory allocation may be static. In this case, the RunTime allo-
cates all available memory at startup and SPACEW shows the total amount of memory
available to the application.

Dynamic Partition Size RUNTIME MEMORY USE

3-2 NPL Programmer’s Guide

3.3 Space Functions

NPL provides a number of functions for determining memory available to the RunTime.
The following is a list of these available SPACE functions:

SPACEW This reports the minimum size of the user partition on those
operating environments with a dynamic partition size or re-
turns the total size of the user partition in environments with
static partition size. SPACEW always returns a number of
bytes.

SPACEF Returns the current amount of space available for additional
program code or variables in bytes. On those operating envi-
ronments that support a dynamic partition size, when the
value of SPACEF drops below 64K, the RunTime automat-
ically attempts to allocate another 64K of memory to the
user partition. Values greater than 64K may be returned.

SPACE Returns the minimum of SPACEF or 65488 bytes.

SPACEK Returns the total size of the user partition in kilobytes
(bytes/1024), up to a maximum of 61.

SPACEP Syntactically supported for compatibility with previous re-
leases of NPL. Returns same value as SPACE.

SPACEV Syntactically supported for compatibility with previous re-
leases of NPL. Returns same value as SPACE.

Refer to the NPL Statements Guide for further details on these statements.

RUNTIME MEMORY USE Space Functions

NPL Programmer’s Guide 3-3

3.4 P-Code Size Relative to Wang 2200

When compiling Wang 2200 format (atomized) code to NPL (p-code), be aware that
memory requirements for each program may increase. As a point of reference, expect
anywhere between a 10 to 20 percent increase in the size of the code. This is due to the
radically different internal storage format of p-code as opposed to atomized code.

NOTE: The actual difference in memory required may vary widely from one program to an-
other.

 for each program may increase. As a point of reference, expect anywhere between a 10
to 20 percent increase in the size of the code. This is due to the radically different internal
storage format of p-code as opposed to atomized code.

NOTE: The actual difference in memory required may vary widely from one program to an-
other.

P-Code Size Relative to Wang 2200 RUNTIME MEMORY USE

3-4 NPL Programmer’s Guide

CHAPTER 4

NPL PROGRAMMING
CONSTRUCTS

4.1 Overview

This chapter discusses the programming constructs offered in NPL Release IV that aid in
a programmer’s ability to develop well-structured, modularized code.

Section 4.2 discusses the general topic of logical program organization.

Section 4.3 discusses the use of line numbers and statement labels along with their effect
on the order of execution and transfer.

Section 4.4 discusses data types.

Section 4.5 discusses the definition and use of literals and constants.

NPL PROGRAMMING CONSTRUCTS Overview

NPL Programmer’s Guide 4-1

Section 4.6 discusses the different types and classes of variables and their allocation and
scope.

Section 4.7 discusses operations and expressions for numeric and string (alpha) variables.

Section 4.8 introduces FUNCTIONs and PROCEDUREs.

Section 4.9 discusses the function call interface. It also covers different types of parame-
ter passing and the referencing of a function.

Section 4.10 discusses the concept of program modules.

Section 4.11 discusses the various logical constructs introduced with NPL Release IV.

Section 4.12 discusses the use of RECORDs and FIELDs.

4.2 NPL Logical Program Organization

The design of a computer program involves three fundamental steps:

• Identifying the task to be carried out

• Devising an algorithm to carry out the task

• Implementing the algorithm in a programming language

Structured programming techniques and code modularization enable developers to ac-
complish both design and programming simultaneously. Through features and tools avail-
able in NPL Release IV, NPL developers, in particular are able to make use of these
constructs and methods, resulting in more logical program organization (structured pro-
gramming, code modularization and program lines are discussed in the following sec-
tions).

NPL Logical Program Organization NPL PROGRAMMING CONSTRUCTS

4-2 NPL Programmer’s Guide

4.2.1 Structured Programming

To understand the application of different programming elements of Release IV, it is im-
portant to recognize the varied interpretations of the term "structured programming." For
example, a structured program can be a program that is constructed using smaller pro-
grams as "building blocks" or modules. A structured program can also use certain pro-
gramming statements or constructs such as conditional branches or loops that make the
program well organized. A structured program can sometimes be called a "GOTO-less"
program. For further illustration, any of the following can be considered a structured pro-
gram:

• A null program.

• A statement which does not cause a branch (other than function calls).

• A call to a function or procedure whose body is a structured program.

• A conditional test which executes one structured program if the test is true or an-
other structured program if the test is false, and each case continues at a single
exit point of the condition.

• A conditional test which executes a structured program if the test is true, then re-
peats the same test, or if the test is false continues at a single exit point.

• A structured program followed by another structured program.

Several programming elements are offered in NPL Release IV that allow the developer to
implement virtually any program in a structured style.

These include:

• IF...ELSE...ENDIF structures. These are used as a true/false conditional state-
ment.

• WHILE...WEND loop structures. These continue only while a condition, speci-
fied at the start of the body, is true.

• REPEAT...UNTIL loop structures. These execute once, then continue only while
a condition, specified at the end of the body, is true.

NPL PROGRAMMING CONSTRUCTS NPL Logical Program Organization

NPL Programmer’s Guide 4-3

• SWITCH...CASE...END SWITCH. This is a conditional for multiple and mutu-
ally exclusive true/false cases, eliminating the need for nested IF statements.

• FOR/BEGIN...NEXT loop structures. These execute using an index or counter
that regularly changes with each iteration of the loop.

Refer to Section 4.3 for more information on these program elements.

NOTE: Some structured programming elements are implemented for expediency, and in
some respects contradict the spirit of structured programs. Over using of these fa-
cilities can make the logic of an otherwise structured program difficult to follow.
These expediency elements include:

• BREAK allows an unconditional exit from a WHILE...WEND or FOR/BE-
GIN...NEXT structure.

• LOOP allows skipping over the body of a loop, to perform the next iteration.

NOTE: Refer to Section 4.3 for more on the use of BREAK and LOOP.

In addition to these statements, NPL Release IV supports the use of Long Identifier
Names, important in structured programming. Long Identifier Names, or LINs, can be up
to 255 characters in length and can consist of any combination of alpha-numeric charac-
ters or underscore characters. The use of LINs in a program also aids in clarity by allow-
ing for more descriptive variable names, as well as a virtually unlimited number of
identifiers. Variables are discussed in more detail in Section 4.6.

4.2.2 Code Modularization

The idea of modularized code is an extension of structured programming. While the use
of structured constructs aids in the design of logical easy-flowing programs, division of
the code into specific tasks (FUNCTIONs and PROCEDUREs) improves upon that goal.
Each division, or module, is written to perform some specific task. It may receive values
(parameters) as input and may return results as output. The internal operation of the mod-
ule used to obtain the results has no dependence or effect on the rest of the program. This
type of modularization is sometimes referred to as "black-box" programming. When a pa-
rameter is passed to a function or procedure, it doesn’t matter how the calculation or task
is performed, as long as a result (if applicable) is produced.

NPL Logical Program Organization NPL PROGRAMMING CONSTRUCTS

4-4 NPL Programmer’s Guide

NPL Release IV provides a number of facilities to aid in code modularization:

Program modules allow the creation of separate address spaces for line numbers, variable
names, and marked subroutine names. This allows for separate program workspaces
where programs can be written which are completely independent of each other, using
the same line numbers or variables, while still allowing communication with each other.
Modules are discussed in more detail in Section 4.10.

Statement labels may be used to identify the start of subroutines, and can also be used as
an entry point for transfer of execution from a GOTO or GOSUB. Statement labels are
discussed in more detail in Section 4.3.

A function interface allows parameter passing with variable identifiers, references (point-
ers), and permits recursive use of variables. This also allows for a standard method for re-
turn values and error indication. The body of the function provides a local scope,
allowing variables to be declared and accessed only from within the function. FUNC-
TIONs, PROCEDUREs, and the function call interface are discussed in more detail in
Sections 4.8 and 4.9.

4.3 Program Lines

At a very low level, an NPL program can be viewed as a set of numbered program lines,
each containing one or more statements delimited by a statement separator. A statement
is the smallest executable unit of NPL. A program line containing more than one state-
ment is termed a multi-statement program line. Line numbers can be any number in the
range 0 to 32117. The same line number can be used in any NPL module without con-
flict. A REM statement may be used to indicate a comment until the next colon or pro-
gram line. A semi colon may be used to indicate a comment up to the end of a physical
text line.

NPL PROGRAMMING CONSTRUCTS Program Lines

NPL Programmer’s Guide 4-5

For example:

0100 REM ignored until the next colon : PRINT "This will print."
0110 ; until the end of line is ignored : PRINT "This won’t print."

4.3.1 Statement separators

Each line of an NPL program can contain one or more statements separated by a state-
ment separator. By default the statement separator is a colon. To make programs even
more readable, it is possible to embed "soft" carriage returns in the program line before a
statement separator. The statements after a soft carriage return appear on the next line.
This makes NPL code more readable and easy to follow. Refer to the appropriate hard-
ware supplement for the proper key sequence to insert soft carriage returns when editing
programs. The following is an example of a program without soft carriage returns, and
the same program with soft carriage returns.

0010 FOR Number=1 TO 10 : Cube=Number^3 : PRINT "Cube of ";Number;"
is:";Cube : NEXT Number

0010 FOR Number=1 TO 10
: Cube=Number^3
: PRINT "Cube of ";Number;" is:";Cube
: NEXT Number

In some cases, a soft carriage return can be used without a statement separator. In DIM
statements and FUNCTION and PROCEDURE declarations, soft carriage returns can be
used after commas to separate variable declarations, such that variables can be grouped
on a line, with comments added. For example:

0005 DIM Buffer$256, Matrix(3,3), _CompanyName$="Acme", Count1, Count2

0005 DIM Buffer$256, ; Record buffer variable
Matrix(3,3), ; 3x3 matrix array
_CompanyName$="Acme", ; Constant String
Count1,Count2: ; Number counters

4.3.2 Order of Execution

Program lines are executed sequentially in line number order and statements within a
multi-statement line are executed left to right. This order of execution is only altered by
an instruction which transfers control to another program location or into another mod-
ule, such as a GOTO, GOSUB or call to a FUNCTION or PROCEDURE (refer to Sec-
tion 4.3).

Program Lines NPL PROGRAMMING CONSTRUCTS

4-6 NPL Programmer’s Guide

4.3.3 Statement Labels

Identifiers may be used to mark locations in the program, making code more readable. If
a GOTO or GOSUB is required, a descriptive label, rather than a line number, should be
used for its target location. This makes the code more self-documenting and reduces the
number of line numbers required in a program.

For example:

0010 Counter=10
0020 =Top_of_Loop

: GOSUB prt_counter
: Counter-=1
: IF Counter > 0 THEN GOTO Top_of_Loop

0030 END
0040 =prt_counter

: PRINT Counter
: RETURN

Statement labels which occur inside a function body are local to the function. Statement
labels which occur outside all function bodies are not accessible from inside any func-
tion. The same label may be used in multiple functions within a module without conflict,
or may be used in both the mainline and a function without conflict.

Statement labels are not permitted in immediate mode. An immediate mode reference to
a statement label (e.g., GOSUB process_record) is executed in the context of the cur-
rently executing function (if any).

4.3.4 Transfer of Control

The GOTO/GOSUB or ON...GOTO/ON...GOSUB statements may be used to transfer
control from one area of a program to another. Where possible, these statements should
be replaced with a suitable structured construct making the logical flow of the program
more apparent. Subroutines called with GOSUB statements that perform reasonably large
amounts of logic, and that do not reference many local variables may be easily replaced
with a PROCEDURE that has a few well-defined parameters. ON...GOTO/ON...GOSUB
statements can be easily replaced with a SWITCH...CASE construct.

NPL PROGRAMMING CONSTRUCTS Program Lines

NPL Programmer’s Guide 4-7

NOTE: If a GOTO or GOSUB statement is unavoidable, it is recommended that a descrip-
tive label rather than a line number be used for clarity.

The BREAK and LOOP statements also transfer control, but can be used only inside logi-
cal constructs. These statements contradict the spirit of structured programming because
they provide an alternate exit point from a module. However, they are provided for maxi-
mum flexibility. When used in a FOR/BEGIN...NEXT loop, the BREAK statement offers
the best "clean" way of terminating a loop without leaving entries in the program stack.

The BREAK statement allows an unconditional exit from WHILE...WEND, RE-
PEAT...UNTIL, and FOR/BEGIN...NEXT loops.

For example:

0010 Counter=0
:; Check first 30 sectors
: REPEAT
: DATA LOAD BA T/D11,(Counter) Buffer$
: Counter+=1
: IF Counter>30 THEN BREAK
: GOSUB CheckSector
: UNTIL FALSE

0020 PRINT "Program continuing..."

In the above example, The FALSE statement is a keyword that can be used as an expres-
sion that always carries a false condition, thus the REPEAT...UNTIL will always con-
tinue, since the expression is never true. Thus, the only way to terminate the loop is with
the BREAK statement.

The LOOP statement passes execution to the end of the current loop structure. The end-
ing statement then evaluates whether to continue at the beginning of the loop or to exit
the loop.

For example:

0010 FOR F=1 to 20 BEGIN
: IF F=13 THEN LOOP ; Skip the 13th floor
: PRINT "Floor #";F
: NEXT F

Program Lines NPL PROGRAMMING CONSTRUCTS

4-8 NPL Programmer’s Guide

4.4 Data Types

NPL supports two data types: strings and numerics. Each data type is discussed below.

4.4.1 String

A string is any sequence of characters in which each character may have an ASCII value
of 0 to 255 inclusive. In general, strings have a maximum length of 64K, however, this
limitation is not imposed on 32-bit operating environments. If requested, string alloca-
tions up to the largest signed 32-bit number (2048 megabytes) will be attempted. Restric-
tions imposed by the operating environment will determine whether such allocations can
succeed.

4.4.2 Numeric

All numbers are represented in floating point format with approximately 14 (fourteen)
digits of precision. There is no explicit integer type. Numbers are stored internally with a
signed 47 bit mantissa and a signed 15 bit exponent. A numeric value is represented as:

Mantissa * 10Exp

where Mantissa = 247 and Exp = 215

The range for positive numbers is:

1.0E-32767 to 140737488355329E+ 32767

and the range for negative numbers is:

-1.0E-32767 to -140737488355329E+ 32767

4.5 Literals and Constants

As used in NPL, literals and constants are values or expressions which do not change dur-
ing program execution. Literals are expressed as a specific value, while constants are ex-
pressed using an identifier which was previously declared with a specific value.

NPL PROGRAMMING CONSTRUCTS Data Types

NPL Programmer’s Guide 4-9

The following sections provided detailed descriptions of literals and constants, respec-
tively.

4.5.1 Literals

A string literal may be either a sequence of ASCII characters enclosed in double quotes
(") or a HEX() literal.

NOTE: To specify a double quote within a string, enter it twice. For example, the string
A$= """" consists of one double quote character.

Some examples of string constants include:

"This is a string literal" "The title is ""A TITLE""."
 HEX(4142430D) represents "ABC" followed by a carriage return.

4.5.2 Numeric Constants

A numeric constant is a sequence of decimal digits followed by an optional decimal
point, one or more digits and/or an exponent. An exponent consists of either the letters
"e" or "E" followed by one or more decimal digits. Both the number and exponent may
be preceded by a plus or a minus sign. The number preceding the decimal point may be
omitted.

Some examples of numeric constants are:

1 1. 1.2 1.2e-34 0.2
-.2E34 + 4.1234 e+ 56

4.5.3 Constant Variables

Constant variables are defined as identifiers which can only be assigned a value once, dur-
ing declaration. Constant variables are a special class of variables which can only be as-
signed a value when they are created. They may not be assigned a new value at execution
time.

A constant is defined using the DIM statement. A constant identifier must begin with an
underscore "_" and can use any combination of alpha numeric characters (A-Z, a-z, 0-9)
or underscores. Constant identifiers can be used anywhere a variable identifier can, ex-
cept on the left-hand side of an equal sign.

Literals and Constants NPL PROGRAMMING CONSTRUCTS

4-10 NPL Programmer’s Guide

For example:

DIM _TaxRate = 0.0625
DIM _Flavor$16 = "BananaStrawberry"
PRINT Price*_TaxRate

4.6 Variables

The following sections detail the variable options available under NPL.

4.6.1 Naming Conventions

NPL Release IV supports long identifier names (referred to as LINs), which can be up to
255 characters in length, for the naming of program variables, statement labels, and
FUNCTIONs. Identifiers must start with an alphabetic character (a-z, A-Z), followed by
any combination of alphanumeric characters (a-z, A-Z, 0-9) and the underscore charac-
ters.

NOTE: NPL displays the underline as a left-pointing arrow under the standard NPL charac-
ter set. On IBM-PCs, this default can be changed by using the Screen Translation
Utility to map NPL HEX(5F) to a native HEX(5F), which is the underscore charac-
ter.

Significance of Spaces in Syntax

To enter long identifiers, separate the start and end of the identifier from keywords by a
space or other punctuation character which clearly distinguishes the identifier. For exam-
ple, on previous releases of NPL, the statement:

 FOR I = A TO B

could be entered without any spaces between the identifiers and keywords, as:

 FORI=ATOB

However, since NPL supports long identifier names, the second form (without spaces)
has a different meaning, equivalent to an assignment statement. Instances of this type ex-
emplify possible syntactic ambiguities.

NPL PROGRAMMING CONSTRUCTS Variables

NPL Programmer’s Guide 4-11

When a syntactic ambiguity occurs, the NPL compiler assumes the new rules apply. In
the above example, NPL treats the second form as an assignment statement under Re-
lease IV. In such cases, if the first form was intended, reenter the line with the necessary
additional spaces.

Identifier Abbreviations

To help developers avoid typographical errors when entering long identifier names, the
"Recall" key may be used (in immediate mode) to complete the name of the identifier af-
ter entering a partial name at the current end of a line.

For example: (the "|" represents the cursor position)

 :10 DIM SausageName$27
 :20 PRINT Sau|

At this point, if "Recall" or the right-arrow is pressed, NPL looks for a unique identifier
beginning with "Sau..." If only one identifier exists, NPL completes the name with the
standard case. If more than one identifier starts with the partial name entered, the system
beeps and no change is made to the line.

HINT: Developers using LINs may also find it useful to set byte 38 of $OPTIONS to HEX(01),
which requires all identifiers to either be declared as common (COM) or in a DIM state-
ment before any other reference. A P55-Undefined Variable error occurs at resolve time
for the first reference not preceded by a declaration.

This can help avoid programming errors such as:

 10 DIM SausageCount
 20 SausageCoutn = 12 ; Oops, meant SausageCount

With byte 38 of $OPTIONS set to HEX(01), the above example would produce an error
P55-Undefined Variable on line 20 at resolve time, indicating that a variable appeared be-
fore its declaration in a DIM or COM statement. Otherwise, the misspelled variable iden-
tifier causes a new variable to be implicitly declared. Refer to the Statements Guide for
more information on the use of $OPTIONS.

4.6.2 Case Conventions

Differences between upper and lower case are ignored by NPL. Enter an identifier as any
combination of lower and upper case. An identifier may not contain embedded spaces.

NPL displays all instances of an identifier using consistent case.

Variables NPL PROGRAMMING CONSTRUCTS

4-12 NPL Programmer’s Guide

Short Identifier Names

NPL always displays short variable identifiers (supported on previous releases) in upper
case.

NOTE: Short variable names are defined as all variable names supported prior to NPL Re-
lease IV.

 :10 dim a61
 :list
 0010 DIM A61

The above example illustrates the declaration of a short variable name. In this case, NPL
converts it to upper case.

This example illustrates the declaration of a LIN and, thus, NPL retains its lower case.

 :10 dim sd9
 :list
 0010 DIM sd9

Long Identifier Names (LINs)

While short variable names are always displayed in upper case, long identifier names
(LINs) retain the case as entered most recently. Continuing the above example:

:10 dim sd9 ;will display the case of its last reference in the module
:20 Sd9=2
:list
0010 DIM Sd9
0020 Sd9=2

The variable was most recently referenced with a capital "S" so the entry in the variable
table was updated. Now all references in the program reflect the change accordingly.

NPL PROGRAMMING CONSTRUCTS Variables

NPL Programmer’s Guide 4-13

NOTE: For LINs, the first instance in a (B2C) compiled program determines the case. Any
manual program modifications (made in RTI) change the case convention to that
which was last entered. Array variables and scalar variables which use the same
root identifier can have different case conventions. String variables and numeric
variables which use the same root identifier can also have different case conven-
tions. In fact, each different context in which a variable identifier appears (state-
ment label, function name, interface package label) may use different case
conventions. For example, MainLine, MAINLINE(X) and Mainline$ could all ap-
pear in the same program listing and represent different variables. Immediate mode
commands do not implicitly change the case.

HINT: Due to the large number of reserved words in NPL, it is recommended that at least some
lower case letters be used in long identifiers. This may help minimize any confusion be-
tween identifiers and reserved words as NPL will always display a reserved word entirely
in upper case. Although reserved words are displayed in upper case, they may be entered
in any mix of upper and lower case.

4.6.3 Variable Types

The following section discusses the various NPL variable types.

String Variables

String variables are used for representing a sequence of characters. Identifier names are
always followed by the type specifier "$". String variables can be either scalars or arrays.
The term ’alpha-variable’ is used throughout the documentation to refer to a more gen-
eral string class which may be either a scalar string variable, an element of a string array
variable, an entire string array, a substring of another alpha-variable (using STR() func-
tion), a string function, or a string field-expression. Arrays and field-expressions are cov-
ered later in this section. Identifier names should follow the naming conventions outlined
in section 4.6. Examples of some valid string variable names include:

A$ b2$ char$ Employee_Name$ R2D2$

String variables can be allocated an initial size when declared. If a size is not specified, it
defaults to sixteen characters. Strings can later be dynamically increased in size if neces-
sary. String variables may be initialized upon declaration with a valid literal. Non-initial-
ized string variables are filled with all bytes containing HEX(20) (blanks).

Variables NPL PROGRAMMING CONSTRUCTS

4-14 NPL Programmer’s Guide

String variables do not have a "current" length maintained and it is not possible to have
an "empty" string. The LEN() function can be used to return the number of characters in
a string ignoring any trailing blanks. LEN(STR()) can be used to determine the defined
length of a string.

For example:

COM CommonStr$1 = HEX(ff)
DIM aString$6 = "ab cd" , ControlCodes$10 = HEX(030A0D)

then the following:

PRINT LEN(aString$) would display 5 and
PRINT LEN(STR(aString$)) would display 6

The total size of a string variable may not exceed 64KB on many NPL platforms. Pro-
grams which must be portable should avoid the use of variables larger than this. With
NPL Release IV in 32-bit environments, larger variables are permitted. Refer to section
4.6.7 for details on restrictions.

Numeric Variables

A numeric variable is used to represent a floating point number. There is no explicit inte-
ger type. Numeric identifier names should follow the naming conventions outlined in Sec-
tion 4.6. Numeric variables do not require or permit a type specification character "$".
Some examples of valid identifier names include:

A X6 hourly_wages Account_Num_1234

Numeric variables may be initialized upon declaration with any valid numeric expression
or constant. Uninitialized numeric variables are assigned the value zero.

For example:

COM CommonNumeric ; default value is zero.
DIM aNumber = 10, Sqr_Root_2 = SQR(2.0)

NPL PROGRAMMING CONSTRUCTS Variables

NPL Programmer’s Guide 4-15

Array

Arrays may be either numeric or string with identifier names following the naming con-
ventions outlined in Section 4.6. The array type is determined the same way as for ordi-
nary variables (i.e., with string arrays having a "$" appended to the identifier name).
Arrays are one or two dimensional tables of values of the same type. Arrays can also be
constants. Constant arrays must have an underscore "_" at the beginning of the identifier.
The same name may be used for both an array and an ordinary variable. Array names are
generally followed by an opening parenthesis.

The following are valid numeric array variables:

A() B2() Matrix() Salaries()

The following are valid alpha array variables:

A$() B2$() SillyStrings$() Names_of_Sisters$()

The following are valid constant arrays (numeric and alpha examples):

_A() _B2$() _PostalCodes$() _Cloud_Types$()

String or numeric array elements are accessed by positive numeric subscripts starting at 1
(fractional subscripts are truncated to the integer value). All elements of a string array are
of the same length.

Single dimensional arrays may have a maximum of 65535 elements and two dimensional
arrays may have up to 65535 by 65535 elements. On 32-bit platforms this restriction is
not imposed and arrays may be dimensioned up to the largest signed 32-bit number pro-
vided there is enough memory. A two dimensional array requires two subscripts sepa-
rated by a comma.

For example:

DIM Strings$(100)80, Numbers(20), Matrix(100,10)
DIM Buffer$(20)_MaxBufferSize
Strings$(1) = "This is a sentence."
Strings$(2) = STR(Buffer$(CurrentBuffer),1,80)
Matrix(i,j) = Numbers(’index(i,j))
PRINT _Month$(7)

Statically allocated arrays may be expanded beyond their initial allocation with the use of
the MAT REDIM statement. Refer to Section 4.6.8 for details and restrictions.

Variables NPL PROGRAMMING CONSTRUCTS

4-16 NPL Programmer’s Guide

Pointer

Arguments to FUNCTIONs or PROCEDUREs are passed either by value or by refer-
ence. Parameters passed by reference are called pointer variables and are indicated by the
type specification keyword /POINTER. Here, any reference to the parameter within the
function body refers to the argument directly. Refer to Section 4.8 for more information
on FUNCTIONs and PROCEDUREs.

For example, given the following function:

0010 PROCEDURE ’Whatever(Argument1, /POINTER Argument2)
: Argument1=0
: Argument2=0
: END PROCEDURE

0020 ; Start of main program
0030 A=1:B=2

: ’Whatever(A,B)
: PRINT A; B

would show that A was still equal to one but that B had been changed to zero.

NOTE: Pointers are designed to be used when referencing very large sets of information or
where multiple result values are produced by a PROCEDURE.

Constant Variables

Constant variables are variables that are given a value upon declaration and are not al-
lowed to be modified during a program’s execution. Constant variables are indicated by
an underscore character preceding the identifier name.

For example:

COM _a_Common_variable=9
DIM _MaxTableLength=100
DIM _PI_DIV_2=#PI*0.5
DIM _Str_Constant$4="ABCD"

Constant variables are also covered in Section 4.5.

Field Identifiers and Logical Records

A field identifier is a variable type which provides easier examination and modification
of values in logical data records. A logical RECORD is defined as a block of code, start-
ing with the RECORD keyword and ending with the END RECORD keyword. Field
identifiers follow the same conventions as variable identifiers, but are grouped together
using the logical RECORD structure and use relative offset, length, and format specifica-
tions to determine placement within a RECORD.

NPL PROGRAMMING CONSTRUCTS Variables

NPL Programmer’s Guide 4-17

Refer to Section 4.12 for a more detailed discussion of Logical Records and the use and
definition of Field Identifiers.

4.6.4 Allocation Classes of Variables

The allocation class of a variable refers to the method used by NPL to allocate and re-
lease memory for the variable. NPL supports two allocation classes:

Static Allocation

Memory for statically allocated variables is reserved when a program is resolved (when
first RUN, or before an overlay).

Memory for statically allocated variables is released when either a CLEAR N or CLEAR
V command is executed, to clear non-common or all variables, respectively. The CLEAR
N command occurs implicitly each time an overlay occurs.

Recursive Allocation

Recursively allocated variables are always associated with a function.

Memory for a new copy of recursively allocated variables is reserved each time the asso-
ciated function is called. While executing the body of the function, the most recently allo-
cated copy is referenced by the variable name.

Memory for recursively allocated variables is normally released when the function re-
turns to the calling program.

Within a module, any variable which has not been declared within a function or proce-
dure body will have an implicit storage class of Static. Any variable within a module, in-
cluding those within a function or procedure body, may be explicitly given a Static
storage class by using the /STATIC keyword in the variable’s declaration. All variables
declared within either a function or procedure are implicitly given a storage class of Re-
cursive. The only time one really needs to be concerned with a variable’s storage class is
when a variable’s value must be retained across successive function calls. In such cases
the variable must be explicitly given a Static storage class upon its declaration within the
function or procedure.

Variables NPL PROGRAMMING CONSTRUCTS

4-18 NPL Programmer’s Guide

For example:

0010 ;
: PROCEDURE ’anyProc /FORWARD
: COM string$10,n :; always implicitly static
: DIM letter$1 :; implicit static
: DIM /STATIC age=1 :; explicit static, not necessary
: ;
: char$="c" :; undeclared variable, implicit static
: ;
: ’anyProc
: ’anyProc
: ’anyProc
: END
: ;

0020 PROCEDURE ’anyProc
: ; recursive storage class always implied
: DIM height=0
: ; recursive storage class specified explicitly, not necessary
: DIM /RECURSIVE width=0
: ; explicit static storage class, required to preserve value
: ; of variable ’weight’ across multiple function calls.
: DIM /STATIC weight=0
: ;
: height+=1
: weight+=1
: PRINT "Height = ";height;" Weight = ";weight
: END PROCEDURE

:RUN
Height = 1 Weight = 1
Height = 1 Weight = 2
Height = 1 Weight = 3

In the above program, each call of the procedure ’anyProc modifies the value of the vari-
able "weight," by adding 1 to its previous value that was calculated during the last call.
Although the variable "height" also has its value modified within each call, the value is
not preserved since it is of recursive class.

4.6.5 Scope of Variables

The scope of a variable refers to the range of statements within a program where it is per-
mitted to use a previously declared variable name, and have it refer to the same declara-
tion.

NPL PROGRAMMING CONSTRUCTS Variables

NPL Programmer’s Guide 4-19

It is possible, within a program, to declare the same variable name for different purposes,
either by accident or design. For example, a parameter common to several related func-
tions might, in all functions, be called "Buffer". In such cases, each reference to the vari-
able by name is, at least potentially, ambiguous. However, by clearly defining the scope
of each declaration of a variable in such a way that one declaration takes precedence, this
potential ambiguity disappears.

A variable declaration is said to be "in scope" at a given point in a program if a reference
to the variable is legal there and refers to the variable intended (not to another variable
with the same name declared for a different purpose).

NPL supports three variable scope types, Function-private, Module-private, and Public.

Function Private Variables

The declaration of the variable occurs within a function body.

The declaration is "in scope" on all statements which appear within the same function
body and after the declaration.

Module Private Variables

The declaration of the variable does not occur within a function body or PUBLIC section,
or in any COM declaration. The declaration may not have the /PUBLIC keyword.

The declaration is "in scope" on all statements in the same module and after the declara-
tion, unless a function-private variable declaration with the same name is already "in
scope."

Public Variables

The declaration of the variable occurs in a PUBLIC section, or has the /PUBLIC key-
word.

The variable is "in scope" on all statements in the module following the declaration, un-
less a function-private variable or module-private variable declaration with the same
name is already "in scope." A specific variable name may only be declared PUBLIC by
one module (its "owner.")

In addition, the variable is "in scope" on any statement in any other modules that IN-
CLUDE the variable’s "owner" module, provided:

Variables NPL PROGRAMMING CONSTRUCTS

4-20 NPL Programmer’s Guide

1. The statement is after the INCLUDE statement.

2. No function-private or module-private variable of the same name is already "in
scope."

3. If the declaration is in a named PUBLIC section, the statement must also be after a
USES statement for the named section.

NOTE: If a PUBLIC section contains other nested INCLUDE or USES statements, the pub-
lic variables that become "in scope" due to these statements are also brought "in
scope" when the containing section is INCLUDEd.

4.6.6 Variable Declaration

Variables can be declared either explicitly or implicitly, and can be declared with an in-
itial value.

Explicit declarations are performed using the DIM and COM statements, and also using
parameter syntax in FUNCTION and PROCEDURE declarations. Refer to the State-
ments Guide for specific rules on the use of these commands. Refer to Section 4.8 for
more on FUNCTIONs and PROCEDUREs. The following are some examples of explicit
declarations:

0010 COM Buffer$30 ; Declares common alpha var.
0020 COM _CommonNumber=14 ; Declares constant with initial value
0030 DIM SillyString$40 ; Declares 40-byte alpha var.
0040 DIM Array$(10)24 ; Declares alpha array with 10

 :; elements of 24 bytes each.
0050 DIM Number1,Number2 ; Declares two numeric vars.
0060 DIM Month$10="January" ; Declares alpha with initial value.

Explicit declaration also takes place when parameters to FUNCTIONs or PROCEDUREs
are specified.

For example:

0010 FUNCTION ’PieceOfString$(String$40,Byte,Length)

The parameters are explicitly declared and by default, are recursive and private to the
function. There are other ways to declare variables in a parameter list. This is covered in
Section 4.8 and 4.9.

NPL PROGRAMMING CONSTRUCTS Variables

NPL Programmer’s Guide 4-21

Undeclared Variables

For historical reasons, NPL permits string and numeric scalar variables (and, under some
circumstances, numeric and string arrays) to be used without declarations. An implied
declaration occurs when a previously undeclared variable is referenced in a program (for
arrays, only references in some MAT statements qualify to force an implied declaration).
The variable is allocated as if a DIM statement (with default sizes for strings and arrays)
preceded the statement.

NOTE: Although undeclared variables are still permitted in some cases for upward compati-
bility with previous releases, their use is discouraged.

Undeclared numeric and string variables whose default declaration would make them
PUBLIC (in PUBLIC section) or RECURSIVE (in function bodies) are diagnosed as er-
rors.

NPL can be forced to treat all references to undeclared variables as errors if $OPTIONS
byte 38 is set to HEX(01), This would require all variable references to be preceded by a
declaration in a DIM or COM statement; otherwise, a P55-Undefined variable error oc-
curs.

4.6.7 Variables Larger than 64KB

With NPL Release IV under 32-bit environments, the RunTime attempts any variable al-
locations up to the largest signed 32-bit number (2048 megabytes). However, restrictions
imposed by the operating environment will determine whether such allocations can suc-
ceed.

In particular, operating environments which do not use virtual memory have a limit due
to the amount of available real memory. Operating systems which use virtual memory
have a limit due to the amount of backing store in the system swap area(s). Additional
quota limitations per process may be present in multi-tasking sites which are designed to
prevent accidental or intentional overuse of virtual memory allocations that could impair
other users’ operations.

In virtual memory environments, allocating extremely large variables may result in
"thrashing", depending on the amount of available real memory. NPL, by default, per-
forms initialization of all variables to either blanks (for strings) or zeroes (for numerics).
This can result in significant amounts of I/O to the swap area.

Variables NPL PROGRAMMING CONSTRUCTS

4-22 NPL Programmer’s Guide

Restrictions on Use

Some NPL statements are designed to return string positions as a 2-byte binary value, un-
der the assumption that no variable exceeds 64K bytes. These statements include:

• MAT SEARCH

When an alpha array is specified as a locator, a maximum index of 64K-1 bytes
into the search array can be returned. If MAT SEARCH is executed (which
would return a result out of range), an error P34-Illegal value error occurs. The
recommended correction in this case is to use a numeric locator array for the re-
sult, which does not have this restriction. If the STEP value is bigger than 1, us-
ing the ELEMENT keyword can also reduce results so that the range error does
not occur.

• $GIO returned length

Return lengths of output or input using $GIO in the arg-2 variable may not ex-
ceed 64K. Attempts to use I/O with buffers in excess of this size, when arg-2 is
specified, result in an error P52-Variable or value too large.

• PRINTUSING TO/ PRINT TO buffers

The initial 2 bytes used to contain the "amount of buffer used" as a two-byte bi-
nary value restricts the total size of a PRINTUSING TO or PRINT TO buffer to
64K.

• MAT SORT array size limitations

The design of the MAT SORT pointer array normally limits the use of this state-
ment to two-dimensional arrays with up to 255 rows and 255 columns, and to
one-dimensional arrays with up to 65535 elements.

NPL Release IV allows the use of a pointer array with 4 bytes per element, per-
mitting one-dimensional arrays larger than 65535 elements and two-dimensional
arrays of up to 65535 by 65535 to be sorted. Here, the work array requirement
also increases to 4 bytes per element. The resulting pointer array contains
BIN(,4) format array indices for one-dimensional arrays, or BIN(,2)&BIN(,2) ar-
ray indices for two-dimensional arrays, and may be used in MAT MOVE.

NPL PROGRAMMING CONSTRUCTS Variables

NPL Programmer’s Guide 4-23

WARNING--The sort algorithm performs multiple non-linear passes through the key ar-
ray. In virtual memory environments, this can result in excessive paging on very large
key arrays.

• MAT MOVE array size limitations

The design of the MAT MOVE pointer array normally limits the use of this
statement to two-dimensional arrays with up to 255 rows and 255 columns, and
to one-dimensional arrays with up to 65535 elements, when a pointer array is in-
volved.

Release IV allows the use of a pointer array with 4 bytes per element, permitting
one-dimensional arrays larger than 65535 elements and two-dimensional arrays
of up to 65535 by 65535 to be moved. The pointer array must contain BIN(,4)
format array indices for one-dimensional arrays, or BIN(,2)&BIN(,2) array indi-
ces for two-dimensional arrays, as produced by MAT SORT.

• MAT MERGE array size limitations

When used with 2-byte pointer arrays, the design of the MAT MERGE control
array continues to limit the use of this statement to two-dimensional arrays with
up to 255 rows and 254 columns.

If four-byte pointer arrays are used, the specifications for a control array change,
requiring two bytes per row and two bytes for the status information. The value
HEX(FFFF) is reserved to mean "row empty" in the extended control vector for-
mat. In addition, the work-variable requirements increase to 4 bytes per row plus
3 bytes (to ensure an aligned work area is always available).

4.6.8 Expanding Array Size

Arrays can be expanded beyond their initial allocation with the use of the MAT REDIM
statement, provided the following two conditions are met:

1. There must be sufficient memory to allocate both the old variable and the new larger
allocation.

2. There may not be any pending /POINTER or stack references to the variable.

Variables NPL PROGRAMMING CONSTRUCTS

4-24 NPL Programmer’s Guide

If either condition is not met, an error 304 - Cannot expand array variable (which is a re-
coverable error) occurs.

Newly allocated space in the variable contains either blanks (if a string) or zeroes (if nu-
meric). Previously allocated space is unchanged.

This extended capability of MAT REDIM also applies to implied or explicit array redi-
mensioning operations in the matrix math statements. Refer to the NPL Statements Guide
for other matrix operations with the MAT statement.

The scope of the statically allocated array may be either PUBLIC, module private, or lo-
cal to a function (refer to Section 4.8.5 for more information on "scope.")

4.7 Numeric and String Expressions

The following section details the use of numeric and string expressions in NPL.

4.7.1 Numeric Operators

The following is a list of the numeric operators in order of priority:

^ Exponentiation
- Negation (unary minus)
* , / Multiplication, division
+ , - Addition, subtraction

For example:

A = B + C / D

In the above expression, C / D is evaluated first and then added to B, because the division
sign "/" has higher priority than addition.

NPL PROGRAMMING CONSTRUCTS Numeric and String Expressions

NPL Programmer’s Guide 4-25

4.7.2 Numeric Expressions

A numeric expression may contain a series of terms separated by arithmetic operators. A
term may consist of scalar variables, array elements, constants, functions and other ex-
pressions, all of which must be of the numeric type. Evaluation of expressions is from left
to right except where affected by operator priority. The order of evaluation may be
changed by using parentheses.

A = (B + C) / D

Continuing the example from the previous section, adding the parentheses changes the or-
der of evaluation so that B + C is evaluated first, then the result is divided by D.

The operands for numeric functions may themselves be numeric expressions. Here, the
evaluation of these nested expressions starts with the innermost expression. Where more
than one expression exists at the same level of nesting, evaluation proceeds from left to
right, following the rules stated above.

For example:

X = MAX(A * 2 , (B - C) / D)

consists of four numeric expressions which are evaluated as follows:

1. A * 2

2. (B - C)

3. Result of (B - C) divided by D

4. MAX of the results of expressions 1 and 3

In addition, the numeric functions may also be part of a numeric expression.

For example:

X=5*SQR(2)

where the SQR(2) (square-root of two) function is part of the numeric expression, multi-
plied by five.

Numeric and String Expressions NPL PROGRAMMING CONSTRUCTS

4-26 NPL Programmer’s Guide

The following is a list of numeric functions that can be used in a numeric expression:

ABS(n) ARCSIN(n) ARCCOS(n) ATN(n) COS(n) ERR
EXP(n) FIX(n) #GOLDKEY #ID INT(n) LEN(...)
LGT(n) LOG(n) MAX(...) MIN(...) MOD(m,n) NUM(...)
#PART #PI POS(...) RND(n) ROUND(m,n) SGN(n)
SIN(n) SPACE SPACEK SPACEP SPACEV SQR(n)
TAN(n) #TERM VAL(...) VER(...)
#FIELDLENGTH #FIELDSTART #RECORDLENGTH

4.7.3 Matrix Support

The NPL MAT statement provides extensive support for both one and two dimensional
arrays. Refer to the Statements Guide for more information on the MAT statement.

4.7.4 String Operators

String operators operate differently from numeric operators. String operators are strictly
evaluated left to right, and have no order of priority assigned. The following is a list of
operators:

& Concatenation
ADD Binary addition
ADDC Binary addition with carry
AND Bitwise logical AND
*BOOLx Boolean operations
DAC Decimal addition with carry for BCD data
DSC Decimal subtraction with carry for BCD data
OR Bitwise logical OR
SUB Binary subtraction
SUBC Binary subtraction with carry
XOR Bitwise logical XOR

* where x is any hexadecimal digit 0-F.

NPL PROGRAMMING CONSTRUCTS Numeric and String Expressions

NPL Programmer’s Guide 4-27

4.7.5 String Expressions

In NPL, there are two distinct string expressions which are handled separately. These in-
clude string concatenation and the order of evaluation of alpha-operators.

The string concatenation combines two string operands into a single string, using the con-
catenation operator "&". String concatenation is handled specially and may not be com-
bined with any other alpha operator except itself.

A string expression may contain any number of alpha-operands and alpha-operators. An
alpha operand may be a string-literal, an alpha-variable, a string-function or a system vari-
able. The expression is always evaluated from left to right on an operator-by-operator ba-
sis. The result of the first operation is placed in an alpha-receiver and each subsequent
operation is conducted left to right on the subsequent new values of the receiver. The or-
der of evaluation cannot be changed with parentheses.

For example, in the statement

A$ = B$ AND C$ OR D$

the contents of the alpha operand B$ is first assigned to the alpha receiver A$. C$ is then
ANDed with A$ and the result is ORed with D$. The final result is in A$.

The first alpha operand after the assignment operator is optional in all string expressions
except those involving concatenation.

For example, in the statement

A$ = AND B$ OR C$

the contents of A$ is ANDed with B$ and the result is ORed with C$. This statement is
equivalent to A$ = A$ AND B$ OR C$.

If more than one alpha receiver is specified, then the assignment is made to the last re-
ceiver first, with the evaluation proceeding as if several assignment statements were
made in series.

Some examples of string expressions include:

A$ = "ONE" & HEX(2B) & STR("**TWO**",3,3) = "ONE+TWO"
A$(1) = STR(A$,1,3) OR ’a_string_fnc$
A$, STR(B$(1),3,4) = "fred" AND HEX(1010) XOR "sam"

Numeric and String Expressions NPL PROGRAMMING CONSTRUCTS

4-28 NPL Programmer’s Guide

4.7.6 Data Conversion

The CONVERT statement allows general conversion between displayable alpha to nu-
meric or numeric to alpha. Thus, NPL provides an easy why to convert between numeric
and string expressions.

For example:

0010 CONVERT Price$ to P

This line translates ASCII digits in Price$ into a single number and stores it in the vari-
able P.

The BIN and VAL functions allow conversion between binary alpha and numeric data
types also.

Data can also be converted using $PACK/$UNPACK statements. Refer to the Statements
Guide for proper use of these statements.

4.8 FUNCTIONs and PROCEDUREs

A PROCEDURE is a set of NPL statements designed to perform a specific task, given a
number of parameters. A FUNCTION is a special type of PROCEDURE, for which the
specific task is to determine a RETURN value of either numeric or string type.A FUNC-
TION reference can be included within any expression which would otherwise use a con-
stant of the same type (numeric or string.) A PROCEDURE is called by name in a single
statement, and has no return value. A FUNCTION or PROCEDURE may have values
passed to it in the form of a parameter list, which immediately follows the FUNCTION
identifier.

The following is an example of a FUNCTION:

0010 FUNCTION ’Highest(Var1,Var2)
: IF Var1>Var2
: RETURN(Var1)
: ELSE
: RETURN(Var2)
: ENDIF
: END FUNCTION

NPL PROGRAMMING CONSTRUCTS FUNCTIONs and PROCEDUREs

NPL Programmer’s Guide 4-29

The following is an example of its use in an expression:

0100 PRINT ’Highest(A,B)
0110 BigValue=10+’Highest(Value1,Value2)*0.5

The following is an example of a PROCEDURE:

0010 PROCEDURE ’Chars(Byte$1,Number)
: FOR I=1 TO Number
: PRINT Byte$;
: NEXT I
: PRINT
: END PROCEDURE

The following is an example of its use as a statement:

0100 PRINT "Main Menu"
: ’Chars("=",9)

4.8.1 Parameter Types of Functions

Parameters to the function specify the names of variables which receive values required
by the function. If the identifier is preceded by an underscore "_", the parameter is treated
as a constant value in the function body and modifications to the parameter are inhibited
(as with constant variables, each reference to the parameter must include "_" preceding
the identifier).

NOTE: All parameters of a function are function private /RECURSIVE class variables.

4.8.2 Parameter Passing Conventions

Function parameters with the /POINTER keyword are passed by reference. All other pa-
rameters are passed by value (a copy of the value is made at the time of the call.) String
parameters which are passed by value (not /POINTER type) must have a declared maxi-
mum length. This length is evaluated once only at resolve time. If a string argument to
the function exceeds this length, the value received by the parameter will be truncated to
the maximum length. Array parameters passed by reference may not specify dimensions.
Array parameters passed by value can only accept arguments with identical dimensions.

FUNCTIONs and PROCEDUREs NPL PROGRAMMING CONSTRUCTS

4-30 NPL Programmer’s Guide

4.8.3 Parameter Specifying Modifiable Arguments

The values of Function parameters which both have the /POINTER keyword and are not
constant may be used both as input and output in a function. Changes made to parameter
variables of this kind are made to the argument used in the corresponding function call.
For this reason, values specified as arguments for this type of parameter must be modifi-
able scalar or array variables, array elements, or STR() functions. Constants, evaluated
expressions and constant class variables are not permitted as arguments to this type of pa-
rameter.

4.8.4 Passing Large Arguments by Reference

Passing a large argument by reference (using /POINTER) can be more efficient than by
passing by value. This is possible because unlike passing arguments by value, passing by
reference does not involve copying the arguments when the function is called. Therefore,
passing by reference may be faster and less memory-intensive.

If the parameter is passed by reference only for reasons of efficiency, it is good program-
ming practice to declare the parameter as a constant (preceded by a "_") so that it is clear
that the parameter is not modifiable (changes to the argument are not expected within the
function body). This also avoids the requirement that arguments for the /POINTER pa-
rameter must be modifiable variables.

Passing a parameter by reference could have side effects if other functions (called from
inside the function body) were able to modify the value of the argument, for example if
the argument were a /STATIC or /PUBLIC variable.

Declaring a string parameter as both constant and /POINTER allows arguments to the
function to be either a string variable of any length or a literal-string, which may be desir-
able in many cases.

4.8.5 Scope of Functions

The scope of a function refers to the range of statements within a program where it is per-
mitted to use a function name, and have it refer to the same function body.

NPL PROGRAMMING CONSTRUCTS FUNCTIONs and PROCEDUREs

NPL Programmer’s Guide 4-31

It is possible within a program to declare the same function name for different purposes,
either by accident or design. For example, a function called "Initialize" might be defined
in each of several modules. In such cases, each reference to the variable by name is at
least potentially ambiguous. However, by clearly defining the scope of each declaration
of a function in such a way that one declaration takes precedence, this potential ambigu-
ity disappears.

A function declaration is said to be "in scope" at a given point in a program if a reference
to the function is legal there and refers to the function intended (not to another function
with the same name declared for a different purpose).

NPL supports two function scope types: module private, and public.

4.8.6 Module Private Functions

Module private Functions are functions declared without the /PUBLIC keyword and out-
side of a public section. Only one module private function of a given name may be de-
fined in the same module.

A module private function is in scope only inside the module in which it is declared, pro-
vided the declaration of the function precedes the reference.

To avoid any possible ambiguity, it is advisable to position /FORWARD declarations of
all module private functions immediately after any PUBLIC sections, INCLUDE and
USES statements in the module.

4.8.7 Public Functions

Public functions are functions declared with the /PUBLIC keyword. When a function dec-
laration occurs within a PUBLIC section, it is /PUBLIC by default. Only one public func-
tion of a given name may be defined in the workspace (all modules).

A public function may be in scope in any module in the workspace, provided the declara-
tion of the function precedes it in the module, an INCLUDE or USES statement which de-
clares the function precedes it and no module private function with the same name is in
scope.

To avoid any possible ambiguity, it is advisable to position /PUBLIC function declara-
tions statements, INCLUDE statements and USES statements before any other types of
function declarations in the module.

FUNCTIONs and PROCEDUREs NPL PROGRAMMING CONSTRUCTS

4-32 NPL Programmer’s Guide

4.8.8 Scope of Variables Declared within Functions

Parameters and all variables declared with a DIM statement within a function may only
be referenced within the body of that function.

4.8.9 Coding Restrictions

The following section discusses coding restrictions for FUNCTIONs and PROCEDUREs.

Location of the Body of a Function

The /FORWARD or /EXTERNAL keywords in a FUNCTION or PROCEDURE state-
ment indicate that this function header is a prototype only, used to declare parameter
types and interface specification so that these may be checked at resolve time. No func-
tion body (or END FUNCTION or END PROCEDURE statement) follows the prototype.

If the /FORWARD keyword is used, the actual function body must appear later in the
module, preceded by a second function header statement. The second function leader
statement must contain either a complete set of parameters (all types must match) or the
keyword /BEGINS, which indicates that parameter types must be previously declared by
a /FORWARD declaration.

If the /EXTERNAL keyword is used, the FUNCTION is implemented externally and no
later declaration need appear in the module. At resolve time, all /EXTERNAL declara-
tions are checked to ensure that the named FUNCTIONs are available and have conform-
ing parameter and return types. The /EXTERNAL FUNCTION declarations are required.
It is not possible to access functions in an external library unless an appropriate /EXTER-
NAL function declaration is "in scope".

A function body or prototype must always precede any use of the function in a module.

Branching Restrictions in a Function

While executing the function, branches to outside the body of the function (using GO-
SUB’ or function calls) are permitted, but parameters and other /RECURSIVE or
/STATIC variables which are declared within the function body can only be referenced
within the body of the function.

Branches into the body of a function from outside (using GOTO or GOSUB) are not per-
mitted. These are flagged as errors at resolve time.

NPL PROGRAMMING CONSTRUCTS FUNCTIONs and PROCEDUREs

NPL Programmer’s Guide 4-33

Nesting of Function Bodies

A second FUNCTION or PROCEDURE declaration may not occur within the body of a
FUNCTION or PROCEDURE.

Function Body Skip-over

It is not possible for execution to "fall into" a function body. If a function declaration is
encountered during execution, the function body is skipped and execution proceeds fol-
lowing the matching END FUNCTION (or END PROCEDURE) statement.

DEFFN’ Declarations

DEFFN’ statements are not permitted in the body of a function.

4.9 Calling a Defined Function

The function call interface adds flexibility in the way information is passed from a calling
program to a function. Information can be passed as a string or numeric, scalar or array,
and can be passed directly by value, or indirectly as a pointer.

4.9.1 Argument Type Checking

Arguments must agree in number, order, and type with the parameters declared in the cor-
responding function header. These values are checked at resolve time for direct calls, and
at execution time for indirect calls.

4.9.2 Use of Constant Parameters

Parameters which begin with and underscore "_" are treated as constant values for the du-
ration of the function (changes to the value of the parameter are inhibited within the body
of the function).

4.9.3 Use of /POINTER Parameters

Arguments without the /POINTER keyword are passed by value at the time of the func-
tion call (a copy of the value is made). Arguments with the /POINTER keyword are
passed by reference. In this case, any reference to the parameter refers to the argument di-
rectly.

Calling a Defined Function NPL PROGRAMMING CONSTRUCTS

4-34 NPL Programmer’s Guide

Restrictions on Arguments for POINTER Parameters

If a parameter in the function header is declared as a (non-constant) POINTER type, the
corresponding argument must be a variable (numeric expressions, literals, and constant
class variables are not permitted and are flagged at resolve time as errors). Array ele-
ments and STR() functions are permitted. This restriction does not apply to constant pa-
rameters which are POINTER type.

Arguments are evaluated left to right. All arguments are evaluated before the function
call is made.

4.9.4 Resolution of Function Identifier

Directly named function calls may reference either module private function or public
functions.

NOTE: In situations where both module private and public functions are declared, only one
can be in scope.

4.9.5 Indirect Specification of Function Name

Public function names may also be specified indirectly by entering alpha-variable instead
of an identifier. At execution time, the alpha-variable must contain the identifier of a
valid public FUNCTION or PROCEDURE.

NOTE: Module private FUNCTIONs and PROCEDUREs may not be called in this manner.

The identifier stored in the alpha-variable is not case-sensitive. If it refers to a function re-
turning a string, it may end in a "$". The alpha-variable expression must be followed by a
"$" (after the right bracket.)

For example:

0327 FUNCTION ’Ignore$ /PUBLIC
 : RETURN(" ")
 : END FUNCTION
 : INP_Handler$ = $NAMEOF(FUNCTION Ignore)
 : INP_String$ = ’<INP_handler$>$
 : ...

NPL PROGRAMMING CONSTRUCTS Calling a Defined Function

NPL Programmer’s Guide 4-35

NOTE: When function names are specified indirectly, type checking of parameters is not
done until execution time, and there is a performance penalty.

4.10 Modules

NPL program modules provide a way of compartmentalizing the operations performed in
the NPL workspace. Each NPL workspace may be subdivided into many modules. The
number of such modules and the size of each one is controlled implicitly by the applica-
tion.

4.10.1 Module Concepts

Modules have the following characteristics:

• Identifier names (variables, FUNCTIONs/PROCEDUREs, and DEFFN’s) are lo-
cal to the module (unless defined as public). Thus, different modules can define
the same identifier name without conflict with identifier names used by other
modules.

• Line numbers are also local to the module, thus allowing different modules to use
the same line number range without conflict.

• Each module may contain a series of PUBLIC and private FUNCTIONs, PRO-
CEDUREs, DEFFN’s, and variables. A PUBLIC section can be used to define all
PUBLIC entities.

• Control is transferred from one module to another by issuing a FUNCTION,
PROCEDURE, or DEFFN’ call to a defined PUBLIC entity of the same type.

• Data is transferred from one module to another either by the use of PUBLIC vari-
ables or by the use of function parameters. Large blocks of data can be passed by
the use of POINTER parameters.

• Modules are loaded automatically by the RunTime as required by the application.
Once loaded, the module remains resident as long as subsequent programs refer-
ence it. An overlay in one module does not require that other modules be re-
solved, thus substantially improving load and resolve time.

Modules NPL PROGRAMMING CONSTRUCTS

4-36 NPL Programmer’s Guide

• Modules may be independently scramble-protected. The fact that one module is
scramble-protected does not prevent debugging or development in other modules.

• Each module may contain procedures that are automatically executed when the
module is first loaded or just prior to being unloaded.

• Immediate mode commands operate only on the currently Executing Module or
the currently selected List Module. Other modules may be present but are invis-
ible to immediate mode commands. The List Module can easily be changed in
immediate mode by use of the MODULE command.

The module concept allows development of true "black box" routines. Once a group of
functions is fully developed and debugged, it can be incorporated as a module and can be
used by any application with no concern about identifier name conflicts or line number
conflicts. All the calling application needs to know are the entry points and the calling
conventions (parameter lists and return values). Thus, NPL developers have the ability to
develop true application-independent libraries written entirely in NPL.

4.10.2 Module Categories

To understand how to work with modules, it is necessary to define four categories for
modules--Root, Run, Execution, and List. Only one module may be in each category at a
time. The same module may be (and often is) in more than one category at the same time.

Root Module

The module in which the boot program is originally loaded. The Root Module has no
module name assigned to it.

Run Module

The module in which the next RUN command will begin execution. This module is typi-
cally the Root Module.

Executing Module

The module in which the next program statement is to be executed. The Executing mod-
ule will always be the Run Module except when control has been transferred to another
module by means of a FUNCTION, PROCEDURE, or DEFFN’ call and program execu-
tion is halted by a HALT key, STOP statement, END statement, or unrecovered error
prior to completion of the subroutine.

NPL PROGRAMMING CONSTRUCTS Modules

NPL Programmer’s Guide 4-37

List Module

The module to which any operations affecting program text are to be directed. The List
Module will always be the same as the Executing Module except when explicitly
changed by use of the immediate mode MODULE command, or if a resolution error oc-
curs in a module other than the Run Module (List Module is set to the name of the mod-
ule where the resolution error occurred). Any change made to List Module is temporary.
List Module will be changed to Executing Module as soon as program execution is begun
or resumed.

The current Run Module, Executing Module, and List Module names are displayed by
the LIST DT command.

4.10.3 Choosing Module Names

Module names are not case-sensitive and should be chosen with care. Any subsequent IN-
CLUDE which references the same module name does not reload the module, even if the
reference filename or device is completely different.

For example:

PROGRAM1:

0010 INCLUDE T "LIBRARY"
: LOAD T "PROGRAM2"

PROGRAM2:

0010 INCLUDE T#2,"BIGLIB" TO "Library"

The device and filename in the INCLUDE statement in PROGRAM2 are effectively ig-
nored, since a module called "LIBRARY" is already loaded.

Modules NPL PROGRAMMING CONSTRUCTS

4-38 NPL Programmer’s Guide

NOTE: If the program text of a module has been deleted in immediate mode (from CLEAR
P), or marked as invalid when the module loads but cannot be resolved, any future
INCLUDE statements will reload the specified program file (any remaining text and
non-common variables in the INCLUDEd module are deleted).

4.10.4 Reviewing Loaded Modules

The $PROGRAM and "Program Load Sequence" information displayed in LIST DT ap-
plies to the current RUN module only, and does not show modules loaded from IN-
CLUDE statements.

NOTE: The Executing Module is not displayed unless the program is currently HALTed
and could be CONTINUEd or STEPped.

Following the Program Load sequence, LIST DT displays all modules (except the root
module) which are currently loaded, in the format shown below:

INCLUDE T/xxx, "FILENAME" TO "ModuleIdentifier" :status[:RUN][:COM]

Here, the T/xxx and FILENAME fields identify the device and filename used to initially
load the module, and ModuleIdentifier is the internal module name.

The "status" field displays the current modification state of the module and is one of the
following keywords:

LOAD Module unchanged since loaded from INCLUDE
ERROR Loaded by INCLUDE but could not be resolved
MERGE Module overlaid or otherwise modified since load
CLEAR Module is clear of program lines or
SAVE Module unchanged since last saved (in full)

The RUN indicator shows that the module is currently resolved (public functions may be
called either indirectly or directly, if the module is currently INCLUDEd).

The COM indicator is shown for modules which have common variables declared. This
prevents them from unloading automatically.

4.10.5 Modifying an Active Module

If a program has been RUN that includes a library module (e.g., "LIBRARY"), and it is
determined that a change to "LIBRARY" is required, the correct procedure is:

NPL PROGRAMMING CONSTRUCTS Modules

NPL Programmer’s Guide 4-39

1. Select the currently loaded library as the LIST module using the MODULE com-
mand.

For example:

:MODULE "LIBRARY"

2. Make program changes to the module, and SAVE it. If you want to test that the mod-
ule resolves correctly, a RUN[,STOP] command will do this, assuming that the root
module still INCLUDEs "LIBRARY".

NOTE: RUN also resets the current module to the Root (no name) Module, so if there are er-
rors, the current List Module will have to be reset again.

The usual inclination for programmers accustomed to versions of NPL prior to Re-
lease IV is to do a CLEAR P, LOAD the LIBRARY module (without using the
MODULE command), fix it (SAVE it) and then try to RUN it to check for syntax er-
rors. This doesn’t work properly because:

• The "LIBRARY" module is still loaded and resolved. All PUBLICs will be
flagged as duplicates if an attempt to RUN a second copy in the root (no name)
MODULE is performed.

• If, after making the change, you do a CLEAR P, reload the normal root module
and try to RUN it then the changes made to "LIBRARY" are not detected. The
old module is still running!

4.10.6 Nested Included Modules

Modules can INCLUDE other modules, but INCLUDE statements do not permit circular
references. For example, the following INCLUDEs would be considered errors:

(Module A)
0010 INCLUDE T "B"

(Module B)
0010 INCLUDE T "C"

(Module C)
0010 INCLUDE T "A"

However, repeat references are permitted. The following example is allowed:

(Module A)
0010 INCLUDE T "B"

Modules NPL PROGRAMMING CONSTRUCTS

4-40 NPL Programmer’s Guide

 : INCLUDE T "C"
: INCLUDE T "D"

(Module B)
0010 INCLUDE T "C"

(Module C)
0010 INCLUDE T "D"

In the above example, only one module C and one module D are loaded.

4.10.7 Module Initialization and Cleanup

If a library module has initialization that must be done before other functions can be
called, a procedure should be declared with the /MAIN attribute which performs this in-
itialization. When a module is first INCLUDEd, the /MAIN procedure is executed imme-
diately.

If a library module must be cleaned up before it is deleted from the workspace, a proce-
dure should be declared with the /EXIT attribute. The /EXIT procedure is executed auto-
matically any time a module is about to de-resolve, either because it is about to be
deleted or modified.

Make the logic in /MAIN and /EXIT procedures as simple and failure-proof as possible.

Exiting the runtime with $END de-resolves all modules and ensures all /EXIT procedures
are run.

4.10.8 Discarding Modules

Modules are checked for discardability at the end of a RUN (or program overlay) and af-
ter a CLEAR (with no parameters). The module is discarded if all of the following condi-
tions are met:

• No other modules INCLUDE it anymore (or have RUN it).

• It has no common (COM) variables.

• It does not contain unmodified changes, i.e., it has not been modified by overlays
or immediate mode changes since it was initially created, it has been SAVEd in
its entirety since such changes were made, or the program text has been cleared
from memory or is invalid.

NPL PROGRAMMING CONSTRUCTS Modules

NPL Programmer’s Guide 4-41

The second condition is intended to make a module stay resident more easily.

The third condition is intended to avoid deleting modules that have been changed but not
saved during program development.

NOTE: If a group of overlaid programs all use a particular library, each must have the IN-
CLUDE statement.

Values assigned to /PUBLIC variables survive only as long as the defining module re-
mains resolved.

4.10.9 Effect on Immediate Mode Commands

The effect of the current Run Module, Executing Module, and List Module on immediate
mode commands can be summarized as follows:

• All references to variables will refer to variables within scope at the point of exe-
cution within the current executing module. For example, assignment statements:

A$="XYZ"
X=Y

Display statements that display the value of a variable:

PRINT
LIST DIM
LIST DIM*
LIST STACK DIM

• All references to executable subroutines (DEFFN’s, FUNCTIONs, PROCE-
DUREs, GOSUB #) refer to subroutines within scope at the point of execution
within the current Executing Module.

• All references to program text will refer to program text in the current List Mod-
ule. This includes:

Line editing
LIST (text), LIST D, LIST V, LIST #, LIST ’, LIST T
CLEAR [P,V,N]
RENUMBER
RENAME V
STEP #

Modules NPL PROGRAMMING CONSTRUCTS

4-42 NPL Programmer’s Guide

• Debug commands (STEP, TRACE) refer to all modules. Refer to Chapter 6 of
the Programmer’s Guide for further details.

• Immediate Mode LOAD, LOAD BOOT, SAVE, SAVE BOOT, and RESAVE
commands refer to the current List Module. An immediate mode LOAD RUN
statement executes in the current Run Module.

WARNING--Use of DEFFN’ literals to perform program SAVEs can give unexpected
and unpleasant results if the program is currently resolved (HALTed while running),
since DEFFN’ functions are always referenced in the currently EXECUTING context.

4.10.10 Execution Time LOAD and SAVE

Execution time LOAD statements refer to the current Run Module. That is, the overlay
operation (i.e, non-common variables cleared, lines cleared, and lines loaded) occurs in
the Run Module.

Execution time SAVE, and RESAVE statements refer to the current Executing Module.

4.10.11 Guidelines for Writing Modules

For new programming, use FUNCTIONs and PROCEDUREs, not DEFFN’s.

Use the option ($OPTIONS byte 38=HEX(01)) that requires all variables to be dimen-
sioned.

For maximum reliability, within FUNCTIONs and PROCEDUREs use local variables. In
general, the more local and private the scope of a variable the better, since what other pro-
cedures cannot see, they cannot change. Consequently, if an error is determined to be re-
lated to a wrong value in a specific variable, there are fewer variables to examine.

Use local (recursive) variables where possible, and local STATIC variables only if infor-
mation clearly needs to survive from call to call. Non-local variables should only contain
information that is truly one of a kind, and should never be used as a convenient way of
passing "hidden" information between functions.

NPL PROGRAMMING CONSTRUCTS Modules

NPL Programmer’s Guide 4-43

When a variable of unknown maximum size is required, make it the responsibility of the
caller to declare it and pass it to the library routines. If the caller doesn’t know how big
something should be, provide library functions that will return this information, so that
they can be used in the caller’s DIM statements.

4.11 Logical Constructs

NPL Release IV introduces several block-oriented constructs that can be used to manage
program logic in a more structured fashion. This structured design is both easier to main-
tain and more familiar to programmers trained in other structured languages such as C or
PASCAL. All structured constructs consist of a statement to define the start of the logical
block and a statement to define the end of the logical block.

All structured loop constructs support the use of LOOP and BREAK statements. A
LOOP statement bypasses execution of the current iteration of the loop and transfers con-
trol to the loop evaluation statement. A BREAK statement terminates the loop entirely
and transfers control to the statement immediately following the loop terminator (WEND,
UNTIL, or NEXT).

4.11.1 Structured IF...ELSE...ENDIF

The structured IF...ELSE...ENDIF is a structured statement block allowing conditional
execution or branching based on the evaluation of a logic expression. Any number of
statements may be in an IF block. The block of statements to be executed is determined
by the block terminator which is either an ELSE statement or an ENDIF statement. Use
of DO/ENDDO is not required.

There are no rules regarding use of line numbers within IF blocks. All statements may be
on a single line, each statement may be on a separate line, or any mixture of the two is al-
lowed.

The structured IF statement is distinctive (compared to older forms of the IF statement) in
that it does not require or permit the THEN keyword. Only a logical expression follows
the IF keyword.

Logical Constructs NPL PROGRAMMING CONSTRUCTS

4-44 NPL Programmer’s Guide

Some examples are:

0010 IF X=Y
: PRINT "x = y"
: X-=Y
: PRINT "x is now zero"

 :END IF
 :random_num = RND(seed)
0020 IF random_num < 0.5
 : PRINT "moving left or right"

: IF random_num < 0.25
: ’move_left
: ELSE
: ’move_right
 END IF
: ELSE
: IF random_num > 0.5
: PRINT "moving up or down"
: IF random_num < 0.75
: ’move_up
: ELSE
: ’move_down
: END IF
: ELSE
: PRINT "random number = 0.5, not moving"
: END IF
: END IF

4.11.2 WHILE...WEND

The WHILE...WEND is a structured loop. The WHILE statement evaluates an expression
and executes the loop body until the expression evaluates to false.

For example:

0010 I=0
: WHILE I<10
: ’any_func(I)
: I+=1
: WEND

0020 WHILE TRUE
: char$=’read_a_char(Eof)
: IF Eof<>0 THEN BREAK
: PRINT char$
: WEND

The loop in line 10 continues to execute while I is less than 10, thus the highest value
passed to ’any_func(I) is 9. Line 20 uses the TRUE keyword, which essentially continues
the loop indefinitely. The loop is only broken with the BREAK statement.

NPL PROGRAMMING CONSTRUCTS Logical Constructs

NPL Programmer’s Guide 4-45

4.11.3 REPEAT...UNTIL

The REPEAT..UNTIL is also a structured loop. The loop body following the REPEAT
statement is executed until an expression evaluated by the UNTIL statement is true. The
REPEAT...UNTIL loop always executes at least once.

For example:

0010 I=0
: REPEAT
: ’any_func(I)
: I+=1
: UNTIL I> 79

This loop is a rewritten version of the WHILE...WEND example. Again, the highest
value passed to ’any_func(I) is 9.

4.11.4 FOR/BEGIN...NEXT

The FOR/BEGIN...NEXT is a structured loop with a clearly defined entry and exit point.
The statements contained within the loop’s body are executed a specified number of
times.

If the parameters of the FOR/BEGIN statement indicate that the initial value exceeds the
final value (for a positive STEP value) or is less than the target (for a negative STEP
value,) the loop body will not be executed.

For example:

0010 FOR Counter=1 TO 10 BEGIN
: PRINT Counter
: NEXT Counter

0020 FOR Fraction=0.0 TO 0.5 STEP 0.1 BEGIN
: Integer_part=Fraction*10
: PRINT Integer_part
: NEXT Fraction

0030 I=-0.35
: FOR row_index=1 TO max_row_index BEGIN
: J=0.4
: FOR col_index=1 TO max_col_index BEGIN
: array(row_index,col_index)=I*J
: J+=0.8
: NEXT col_index
: I-=0.7
: NEXT row_index

Logical Constructs NPL PROGRAMMING CONSTRUCTS

4-46 NPL Programmer’s Guide

4.11.5 SWITCH...CASE

The SWITCH/CASE structure is used where a decision results in more than two mutually
exclusive cases. The structure provides multi-decision branching and can be used in place
of ON...GOTO, ON...GOSUB or complex IF statements. Three forms of SWITCH are
provided: String, Numeric, and Logical. Numeric and String forms may use expressions
on both the SWITCH and CASE statements.

Some examples are:

0010 SWITCH char$
: CASE "a"
: PRINT "a"
: CASE "b", "c"
: PRINT "b or c"
: CASE : ; default case must always be last
: PRINT "Not a,b or c"
: END SWITCH

0020 REM Numeric example
: SWITCH ’any_numeric_fnc
: CASE 3,5,7
: PRINT "odd number"
: CASE 2,2*2
: PRINT "even number"
: CASE
: PRINT "value too large"
: END SWITCH

0030 REM Alpha example
: SWITCH last_name$
: CASE "Brown"
: SWITCH first_name$
: CASE "Bob"
: PRINT "Bob";
: CASE "Bill"
: PRINT "Bill"
: CASE "Betty"
: PRINT "Betty"
: CASE
: PRINT "Don’t know any Browns with first name ";first_name$
: END SWITCH
: CASE "Green"
: char$ = STR(first_name$,1,1)
: REM Logical example
: SWITCH
: CASE char$ = "A"
: PRINT "First name starts with A"
: CASE char$ < "M"
: PRINT "First name starts with letters B thru L"
: CASE
: PRINT "First name starts with letters M thru Z"
: END SWITCH
: CASE
: PRINT "Don’t know any one with the last name ";last_name$
: END SWITCH

NPL PROGRAMMING CONSTRUCTS Logical Constructs

NPL Programmer’s Guide 4-47

4.12 RECORDs/FIELDs

The use of RECORDs/FIELDs gives NPL programs the ability to define logical record
layouts. RECORD/FIELD have the following characteristics:

• Each RECORD layout is defined by a block of statements starting with a RE-
CORD statement and ending with an END RECORD statement.

• A logical RECORD can be used for multiple record buffers. The logical RE-
CORD itself allocates no storage space.

• Any number of fields can be defined within a logical record.

• Field characteristics (type, length) can be defined using traditional $PACK speci-
fications or by mnemonic terms using the PCKFIELD module provided by
Niakwa. Mnemonics for $PACK specifications and Niakwa Data Manager field
types are supported.

• References to FIELDs cause implicit data conversion to occur. Use of
$PACK/$UNPACK can be greatly reduced or eliminated.

The following statements support use of RECORDs and FIELDs:

$FIELDFORMAT returns the $PACK specification for the specified field.

#FIELDLENGTH returns the length of the specified field.

#FIELDSTART returns the starting position within the logical RECORD
for the specified FIELD.

LIST RECORD, LIST FIELD statements.

#RECORDLENGTH returns the length of the specified logical RECORD.

Indirect reference for FIELD variables is supported. That is, the name of a field can be
contained in a variable. This, in conjunction with modules, permits a very high level of
abstraction within data base applications.

RECORDs/FIELDs NPL PROGRAMMING CONSTRUCTS

4-48 NPL Programmer’s Guide

4.12.1 Field Identifiers

A field identifier is a variable type which provides easier examination and modification
of values in logical data records. Associated with each field identifier is a relative offset,
length and format specification which defines a field in a logical record. These charac-
teristics can be described using $PACK specifications or by the mnemonics in the
PCKFIELD module provided by Niakwa.

For example:

10 INCLUDE T "NPLDEV"
 : INCLUDE T#_NPLDEV,"PCKFIELD"
 : USES PackFormats
20 RECORD a_record
 : FIELD letters$10
 : FIELD characters$ = HEX(A00A)
 : FIELD string$ = ’StringLength$
 : FIELD name$(10)25
 : FIELD initials$(10)=HEX(A003)
 : FIELD age = HEX(B003)
 : FIELD address$ = ’FieldType$(_PACK_ALPHA_STRING_FORMAT,0,4)
 : FIELD numbers(10) = ’FieldType$(_PACK_SIGNED_BINARY_FORMAT,2,5)
 : END RECORD a_record

defines the logical record "a_record".

Field identifiers are always entered and displayed preceded by a period. When a field
identifier is appended to a string variable, NPL treats that string variable as a record of
the appropriate type. The field identifier becomes equivalent to a single field of that re-
cord. For example, given the previous record definition:

DIM record_buffer$#RECORDLENGTH(a_record)
record_buffer$.name$(1) = "John Black"
record_buffer$.age = 30

When assigning a value to a string field, string concatenation (&), logical string opera-
tions (AND, OR, BOOL, ADD[C] etc), BIN() and ALL() functions are permitted on the
right hand side of the equal sign. For example:

record_buffer$.letters$ = ’MyFunc$(X$)

A multiple string assignment may include a number of string field specifications on the
left hand side of the equal sign, e.g., the following is legal:

MyRec$.field1$, MyRec$.field2$ = ALL("X")

As is the case with non-field string assignments, each member on the left hand side of the
equal sign is treated separately.

NPL PROGRAMMING CONSTRUCTS RECORDs/FIELDs

NPL Programmer’s Guide 4-49

For example, the above is equivalent to:

MyRec$.field2$=ALL("X")
MyRec$.field1$=ALL("X")

When assigning a value to numeric a field-expression, any valid numeric expression is
permitted on the right hand side of the equal sign.

For example:

MyRec$.field1=12

Multiple assignments are not permitted with numeric fields. Only one numeric field may
be specified on the left hand side of the equal sign of a numeric field-expression assign-
ment statement.

4.12.2 Field Expressions

String field-expressions can be used in any context where a STR() function of a buffer al-
pha-variable is acceptable.

For example:

BufferName$.fieldname$

is equivalent to:

STR(BufferName$, #FIELDSTART(fieldname$), #FIELDLENGTH(field name$)).

Consequently, the following syntax is allowed:

DATA LOAD DC #1,Buffer$.String$
’ProcName(Buffer$.String$) ;ok even if parameter is /POINTER
$UNPACK(F=Y$)B$ TO Buffer$.String$
MAT SEARCH Buffer$.String$,=Value$ TO L$()
LOAD T<n> Buffer$.String$
PRINT TO Buffer$.String$;X;
DEFFN’Doit(Feeble$.Mindedness$)
DATA LOAD BA T#1,(Rec,Buffer$.Next$)Buffer$.Sector$
CONVERT X TO A$.Output$,(###)

A numeric field expression may be used:

• In the special numeric field-expression assignment statement, and

• Wherever any numeric value (general numeric expression) is permitted.

RECORDs/FIELDs NPL PROGRAMMING CONSTRUCTS

4-50 NPL Programmer’s Guide

However, it is not always legal to replace a numeric variable with a numeric field-expres-
sion.

A numeric variable is a special type of expression that can be used in a number of con-
texts where not all numeric expressions are allowed. By comparison, a numeric field ex-
pression is also always an expression, but it can only be used in a context where all
numeric expressions are allowed. Since NPL performs special handling to store a nu-
meric value into a numeric field, a numeric field expression does not qualify as a vari-
able.

For example, the following is illegal:

 FOR Buffer$.Invoices$(2).Amount=1 TO 10

A simple test can be performed to help decide when a numeric field expression can be
used in cases other than simple assignments to the field. The numeric field expression can
be replaced by another non-variable expression, such as SQR(2).

For example:

Buffer$.Invoices$(2).Amount=SQR(2) :;works great
FOR SQR(2)=1 TO 10 :;generates syntax errors

The following examples would also be flagged as illegal syntax.

DEFFN’Doit(Feeble$.Number) :;illegal field!
$UNPACK(F=Y$)B$ TO Buffer$.Number :;illegal field!
DATA LOAD BA T#1,(Rec,Buffer$.Next)Sector$:;illegal field!
CONVERT X$ TO A$.Output :;illegal field!

Field identifiers offer no new functionality that $PACK and $UNPACK do not also al-
low, but provide a more convenient way of accessing related data.

The following statements show the equivalence between assignment of a numeric field
and a $PACK statement:

Buffer$.field = numeric_expression

format$ = $FIELDFORMAT(.field)
start = #FIELDSTART(.field)
$PACK(F=format$) STR(Buffer$,start) FROM numeric_expression

NPL PROGRAMMING CONSTRUCTS RECORDs/FIELDs

NPL Programmer’s Guide 4-51

The following statements show the equivalence between evaluation of a numeric field
and a $UNPACK statement:

numeric_var = Record$.field
format$ = $FIELDFORMAT(.field)
start = #FIELDSTART(.field)
$UNPACK(F=format$) STR(Buffer$,start) TO numeric_var

NOTE: The internal format of fields defined in a RECORD is always a data format in which
the byte order is well-defined. This means that data defined using RECORD specifi-
cations can be accessed on any NPL platform. The resolver does not attempt to en-
sure that the instance of a record is associated with the named field.

4.12.3 Indirect Field References

Wherever field identifiers are permitted in expressions, the specific field identifier name
may also be indirectly entered as <alpha-variable>. To ensure uniqueness the field name
must be associated with a PUBLIC record. When the identifier is needed, the specified al-
pha-variable must contain the name of a valid field identifier (if a string, "$" is permitted
at the end of the identifier).

This permits table-driven access to a record specification, at some small cost in perform-
ance.

NOTE: Matching FIELDs to RECORD declarations is not enforced, because the record in-
stances are string variables or substrings whose provenance is not easily established.

RECORDs/FIELDs NPL PROGRAMMING CONSTRUCTS

4-52 NPL Programmer’s Guide

4.12.4 Example of RECORDs/FIELDs

The following example illustrates some of the characteristics of the RECORD/FIELD im-
plementation.

0010 ; AR001 - AR Amount Due Report
0020 DIM TotalAmount,Amount,T$32="Last_Pay"
0030 INCLUDE T/D21,"PCKFIELD"
0040 USES PackFormats
0050 RECORD /PUBLIC cr
 : FIELD name$=HEX(A020)
 : FIELD amount=’FieldType$(_PACK_IBM_PACKED_DECIMAL_FORMAT,2,5)
 : FIELD last_pay=’FieldType$(_PACK_FLOATING_POINT_FORMAT,

 _PACK_BASIC2C_INTERNAL_NUMERIC_FORMAT,8)
 : END RECORD cr
0060 DIM Cust_Record$#RECORDLENGTH(cr)
0065 IF ’Open_File("ARFILE")<> 0
 : ’Display_Error
 : ’Exit_Program
 : END IF
0070 WHILE ’Get_Next_Record("ARFILE",Cust_Record$)=0
 : PRINT Cust_Record$.name$,Cust_Record$.Amount,
 Cust_Record$.last_pay
 : WEND
0080 PRINT "Total ";TotalAmount
0085 ’Close_File("ARFILE")
0090 END

Program AR001 illustrates the typical use of RECORDs/FIELDs. The program is a sim-
ple program that reads through ARFILE, prints the Name, Amount and Last_Pay fields
for every record, and totals Amount. It performs the following tasks:

1. Line 20 dimensions two work variables used by the program. With Long Identifier
Names, it is a good idea to explicitly dimension all variables. In addition, variable T$
is dimensioned for later use in illustrating indirect reference to a field.

2. Line 30 includes module PCKFIELD. This is a module provided in the NPL Devel-
opment Package that contains the ’FieldType function which allows the use of mne-
monic definitions of field types for each field.

3. Line 40 specifies that the PckFormats public entities are to be used. This allows use
of mnemonics equivalent to standard NPL $PACK formats. Alternatively, public en-
tities could be used, which permit use of mnemonics equivalent to Niakwa Data Man-
ager data types.

NPL PROGRAMMING CONSTRUCTS RECORDs/FIELDs

NPL Programmer’s Guide 4-53

4. Line 50 defines a Record and assigns the name "cr" to the record. The use of the PUB-
LIC keyword allows use of indirect references to fields defined within this record (al-
though this feature is not used in this example).

Three fields are defined. The Name$ field is an alpha field, 32 bytes in length, as de-
fined by the explicit $PACK specification (A020). Amount and Last_Pay field types
are defined by use of the ’FieldType function. Amount is defined as packed decimal,
two decimal positions, five bytes in length, equivalent to the $PACK specification
(5205). Last_Pay is defined as NPL internal numeric (F108).

5. Line 60 dimensions a record buffer. The #RECORDLENGTH function is used to de-
termine the size of the record buffer.

6. Line 65 calls a function (not shown) to open the ARFILE.

7. Line 70 defines a loop that reads all records in the file. This logic assumes that the
function ’Get_Next_Record (not shown) will return zero if successful.

8. After all records are processed, the accumulated total is printed, the file is closed, and
the program is ended.

RECORDs/FIELDs NPL PROGRAMMING CONSTRUCTS

4-54 NPL Programmer’s Guide

CHAPTER 5

CREATING NPL PROGRAMS AND
THE NPL EDITOR

5.1 Overview

NPL program editing is easily performed by the combined use of two different features
of the NPL Interpreter: Immediate Mode commands and the Line Editor.

Immediate Mode commands are integral to NPL program editing in performing such
tasks as loading and saving programs, listing programs, cross-referencing variables and
line numbers, searching for text strings, renumbering and merging of program text and
many other functions.

HINT: This chapter discusses the makeup of NPL programs and various methods of creating
them, however, an understanding immediate mode is essential to creating and editing
NPL programs. Refer to Chapter 2 for a complete discussion of Immediate Mode.

CREATING NPL PROGRAMS AND THE NPL EDITOR Overview

NPL Programmer’s Guide 5-1

The Line Editor is used for the initial creation of program text and for editing existing
program text which resides in memory on a line-by-line basis. The line editor is closely
coupled with the Interpreter, and as a result allows for immediate syntax checking of com-
mands and program lines as they are entered. Line editing is enhanced by the use of Spe-
cial Function keys which aid in the rapid correction of program text in a minimum of
keystrokes. This chapter discusses these topics in detail.

Section 5.2 discusses the creation of NPL programs.

Section 5.3 discusses the loading of NPL programs.

Section 5.4 discusses the NPL line editor.

Section 5.5 explains how to edit NPL programs.

Section 5.6 explains how to save NPL programs.

5.2 Creating NPL Programs

This section discusses the creation of NPL programs.

5.2.1 NPL P-Code

An NPL program is defined as any file of codes (called pseudo-code or p-code) which is
directly executable by the NPL Interpretive (RTI) or non-Interpretive (RTP) RunTime
Package. The special p-code storage format of NPL programs is used due to its efficient
memory usage and excellent execution performance.

NPL programs can be created using the NPL Interpreter, the NPL Compiler, and dynami-
cally by using the NPL $SOURCE/$OBJECT program functions.

5.2.2 The NPL Interpreter (RTI)

The most common method of creating, editing and maintaining NPL programs is using
the NPL Interpreter (RTI). NPL programs are created by entering new source program
lines in Immediate Mode with the line editor.

Creating NPL Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-2 NPL Programmer’s Guide

NOTE: It is advisable to first CLEAR the program text area of program lines which may be
resident from a previous edit or RunTime session before entering new program
lines.

As the source program lines are entered, they are immediately compiled by the Inter-
preter into executable p-code and stored in program text memory. The original source
line is then effectively discarded. Whenever the original source line must be subsequently
viewed (for listing, editing, debugging, etc.) it is regenerated from the stored p-code by a
built-in de-compiler.

Once a program has been created in this way, the completed p-code program in memory
can be saved to disk using a number of Immediate Mode SAVE commands. These are
discussed later in this section.

5.2.3 The NPL Compiler (B2C)

NPL programs can be created with the compiler by reading source program lines from a
file, compiling them and then saving the resultant p-code into another file. Using the com-
piler, the source program storage format can be in one of several different forms. ASCII
format, Wang 2200 atomized format and p-code format itself, are all valid input source
program formats to the compiler.

NPL programs cannot be directly edited by native operating system editors since they are
stored in p-code format and native editors generally operate on ASCII format files. How-
ever, the NPL compiler can be used to easily convert p-code into ASCII (on a batch ba-
sis), thereby enabling the use of native editors or any other native utilities to manipulate
NPL source ASCII files. Once the manipulation is complete, the compiler is used to con-
vert from ASCII back to p-code for execution.

NPL programs are not directly executable on a Wang 2200 since the 2200 operates on a
special atomized format. In this case, the compiler could be used to convert p-code pro-
grams (on a batch basis) into Wang 2200 atomized format for execution on that machine.

A complete discussion of the compiler is provided in Chapter 14.

CREATING NPL PROGRAMS AND THE NPL EDITOR Creating NPL Programs

NPL Programmer’s Guide 5-3

5.2.4 $SOURCE/$OBJECT

$SOURCE and $OBJECT are programmable instructions that can be used by an NPL pro-
gram to create other NPL programs dynamically at execution time. The $OBJECT func-
tion receives a specified line of program source (in ASCII) and returns the executable
p-code for the given source to a specified variable. $SOURCE performs the opposite
function. By saving p-code generated in this way to disk, the resulting p-code program
may then be loaded and executed like any other NPL program.

For further details on this method of creating NPL programs refer to the Statements
Guide, $SOURCE and $OBJECT.

NOTE: With the addition of Long Identifier Names in NPL Release IV, routines which use
$SOURCE and $OBJECT need to be adapted to handle Long Identifiers in the
event they are introduced into existing routines. To simplify this process, Niakwa
has provided developers with two libraries, SOURCEIO and OBJECTIO. Refer to
Chapter 3 of the Statements Guide for a complete discussion of these library rou-
tines.

5.3 Loading Programs

Existing NPL programs are loaded into memory for editing purposes by use of the LOAD
command. Programs can be loaded from both diskimages and native operating system di-
rectories. If a program is currently loaded in memory, subsequent LOADed programs are
merged together with the resident program text in that module.

Once a program has been loaded into memory, it may be edited by use of the line editor
as discussed in the next section.

NOTE: The LOAD statement as it relates to program editing is discussed in this section.
The LOAD statement is used for many tasks in addition to loading programs for ed-
iting. For further details refer to LOAD in the NPL Statements Guide.

Loading Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-4 NPL Programmer’s Guide

5.3.1 Program Text Merging

Creation or editing of a program is often assisted by adding existing program text from
standard subroutine libraries to the current program text in memory.

This is facilitated by the LOAD command (as distinguished from the LOAD statement).
Within the current module, the LOAD command does not clear program text from mem-
ory before loading the specified program. Rather, the specified program text is merged
with program text currently in memory. Merging is performed on a program line number
basis.

WARNING--Care should be taken with this procedure since program lines currently in
memory are replaced by program lines of the loading program which have matching line
numbers.

Therefore, when merging of program text is not desired, the program text area should be
CLEARed before loading new program text.

When program merging occurs, a warning message is generated. This is not an error mes-
sage, but merely a confirmation that programs have been merged.

For example:

:LOAD T "PROGRAM1"
:LOAD T "PROGRAM2"
Warning: Programs merged.

NOTE: An immediate mode LOAD command will always merge code into the currently se-
lected LIST module. This will usually be the RUN module, but may also be an IN-
CLUDEd library module.

5.3.2 Loading from Diskimages

A program file is loaded from a diskimage for editing using either the LOAD or LOAD
DA command. The LOAD command is the most common method used for loading pro-
grams.

The LOAD command loads a program by its name whereas the LOAD DA command
loads a program by its starting absolute sector address in a diskimage ("DA" stands for
Diskimage Absolute mode).

CREATING NPL PROGRAMS AND THE NPL EDITOR Loading Programs

NPL Programmer’s Guide 5-5

For example:

:LOAD T/D10,"PROGRAM" Loads a program by searching
the catalog index of
diskimage D10 for program
name "PROGRAM".

:LOAD DA T/D10,(200) Loads the program starting
at sector 200 of diskimage
D10.

A list of all programs within a diskimage can be obtained using the LIST DC command.
This command produces a listing of all programs in a diskimage and other pertinent infor-
mation such as program size, date stamp, time stamp and absolute sector address in the
diskimage, etc. The length of diskimage listings can be reduced with optional wildcards
and relational parameters to the LIST command.

A list of diskimages available within the native operating system directories can be ob-
tained while in the Interpreter by executing the appropriate $SHELL (or "!") command in
Immediate Mode. The command is passed to the native operating system for processing
(presumably a directory listing request). The results of the command are then displayed
and control is returned to the Interpreter.

For further details, refer to the Statements Guide; LOAD, LOAD DA, LIST and $SHELL.

5.3.3 Loading from Native Operating System Files (BOOT and PREBOOT)

NPL programs may be loaded from the native file system for the limited purpose of a
BOOT program. NPL supports two types of boot programs.

A BOOT program is an NPL program stored in a native operating system file system and
is automatically loaded and executed by the RunTime.

A PREBOOT program is also stored in a native operating system file system, but is only
loaded in response to the NPL /P command line startup option. The PREBOOT program
is useful for setting up programming preference options (especially $OPTIONS and then
performing a LOAD BOOT).

For example:

C:\BASIC2C\RTI BOOT Execute Standard BOOT Program

C:\BASIC2C\RTI /PSTARTUP Execute PreBoot Program

Loading Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-6 NPL Programmer’s Guide

In addition to directly executing a BOOT or PREBOOT program file from the native op-
erating system command line, these programs may also be loaded directly into the inter-
preter from the native operating system by using the LOAD BOOT command. When
executed, the program name as specified is loaded into memory.

When loading programs from the native operating system file system, the $SHELL com-
mand may be useful for locating the program within the native file system or any other
preparation required in advance of executing a LOAD BOOT command.

NOTE: Exercise caution when testing a PREBOOT program. If the PREBOOT program is
loaded for editing using the LOAD BOOT command, a subsequent RUN of the pro-
gram will typically result in an infinite loop, since the LOAD BOOT at the end of
the PREBOOT program will reload itself. This can be stopped with the HALT key.

For further details refer to the Statements Guide, LOAD BOOT and $SHELL. Refer to
Chapter 4 of the appropriate NPL Supplement for details on the BOOT and PREBOOT
programs or Section 2.4 of this manual.

5.3.4 Loading Program Text at RunTime

Program text which is currently resident in memory and executing may be accessed for
editing by suspending program execution through invoking Immediate Mode. Once Im-
mediate Mode is invoked (i.e., the colon prompt is displayed) the resident program text is
available for editing.

NOTE: After editing a program interrupted in this way, execution of the program may only
be restarted by the RUN or GOTO commands. Program execution may not be re-
sumed by the CONTINUE command (for further details on Immediate Mode, refer
to Chapter 2).

Further, care should be taken before SAVEing a program edited in this manner.
Many NPL applications dynamically merge program text from several distinct pro-
gram files on disk at run time to form a larger executable program. Therefore, a
program in memory may be significantly modified from its original form on disk as
a result of this run-time activity. SAVEing this modified form of a program on top
of its original form is most likely undesirable.

CREATING NPL PROGRAMS AND THE NPL EDITOR Loading Programs

NPL Programmer’s Guide 5-7

5.3.5 Loading Modules

This section discusses the process of loading and accessing an NPL program module. Re-
fer to Chapter 4 for more information on NPL modules.

Programmers can load and save modules to and from an NPL diskimage just like any
other program. However, modules differ from NPL programs in how they are loaded and
edited under program control.

Modules are loaded using the INCLUDE statement within a program. Program overlays
are LOADed into a program.

For example:

(MODULE "A")
0010 INCLUDE T "B"

(MODULE "B")
0010 INCLUDE T "C"

An INCLUDEd NPL program file is loaded into the workspace in an area (a "module")
which is separate from the program containing the INCLUDE statement.. As the above il-
lustrates, after running MODULE A, there would be 3 program files loaded into memory
as distinct modules in the workspace: MODULE A, MODULE B and MODULE C. Each
module resides in it’s own area and does not conflict with other modules in memory.
Each module can be selected, edited and saved individually.

This modularity simplifies the development process by reducing the need to rely on com-
plex overlay schemes which can easily mask logic errors. Refer to Chapter 4 for more in-
formation on NPL modules.

5.4 The Line Editor

The NPL Line Editor is used to enter and/or edit NPL Immediate Mode commands, Im-
mediate Mode program lines and data values in memory. Immediate Mode commands
are generally used for program debugging, and Immediate Mode program lines are gener-
ally used for program text editing as described here. For further details on NPL debug-
ging, refer to Chapter 6.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-8 NPL Programmer’s Guide

The line editor aids in the entry of text for these purposes by providing such functions as
character insertion, deletion, replacement, line insert, line delete and all directions of cur-
sor movement.

The NPL line editor is automatically activated and controls entry of text whenever:

1. The Interpreter enters Immediate Mode. This is indicated by the presence of the colon
prompt (":") at the beginning of a line on the display:

For example:

 :

2. Whenever data input is requested from the keyboard by an executing NPL program
(using INPUT or LINPUT):

For example:

 INPUT AMOUNT?

As text is entered with the line editor, each character entered is displayed on the screen
and placed in a temporary "edit buffer". This process continues until entry of the text line
is terminated by depression of the RETURN key. At this point, the contents of the edit
buffer is processed by the appropriate routine as follows:

• If the text line is an Immediate Mode program line (i.e., text is prefixed by a pro-
gram line number), then the text is checked for syntax errors and is submitted for
incorporation into the existing program in memory.

• If the text line is an Immediate Mode command (i.e., text is not prefixed by a pro-
gram line number) then the text is checked for syntax errors and submitted for im-
mediate execution.

• If the text line is entered in response to an INPUT or LINPUT statement, then the
text is analyzed and assigned to the receiving variables of the input statement.

The line editor’s use of a temporary edit buffer allows that no changes to the program
text area are effected until such time as entry of the full text line is completed and the RE-
TURN key is depressed. This allows for the opportunity to confirm an entry before com-
mitting to its intended action.

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-9

The size of the edit buffer is important as it represents the maximum text line length that
may be entered or edited by the line editor. If editing a program line with the line editor,
this would be the maximum program line length that is enterable or editable. The size of
the edit buffer is variable since it is dynamically allocated from the current free space in
the partition. The current approximate size of the edit buffer is returned by the SPACE
function. However, at all points in time, the minimum guaranteed size of the edit buffer is
1024 bytes, regardless of the value of SPACE. For further details on SPACE, refer to the
NPL Statements Guide.

It is often the case that a "text line" may exceed the length of a physical line of the dis-
play (usually 80 characters). In this case, the line editor simply performs a carriage return
and line feed, thereby allowing entry to continue at the beginning of the next line. This is
an automatic system function and does not generate characters to the edit buffer. All lines
of a text line are accessible by edit functions regardless of how many physical lines are re-
quired for one text line.

When entering program text, it may be desirable to force a carriage return and line feed
prior to encountering the physical end of line. The LINE INSERT function performs this
action. This is particularly useful for documentary purposes when entering program text
and for multiple character insertion as described later. For further details on LINE IN-
SERT, refer to Section 5.4.

For example, consider the following two program lines:

1000 FOR I=1 TO 1000: PRINT LOG(I): NEXT I

1000 FOR I=1 TO 1000<
 : PRINT LOG(I)<
 : NEXT I

Both program lines perform the same function, however the second one is somewhat
more readable. Here, a carriage return and line feed were forced after each program state-
ment with the LINE INSERT function. The presence of this is indicated by the return
graphic ("< ") at the end of each statement.

Even though the program line requires 3 physical lines it is considered to be only one text
line and is stored as such in the edit buffer. Further, the text line is not processed until all
three statement segments were entered and the RETURN key depressed.

NOTE: The return graphic is an actual character and does occupy one character position in
the edit buffer. The return graphic is subject to rules of syntax and is therefore only
legal in certain contexts as discussed in Section 5.4.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-10 NPL Programmer’s Guide

5.4.1 Multi-Command Buffering

In addition to containing the most recent command or program line edited, the "edit buff-
er" may contain up to 20 previous entries, depending on available memory. Once 20 en-
tries have accumulated, the oldest entries are removed from the buffer as new entries are
made. If insufficient memory is available to store a new entry, it is not retained. No error
or warning is issued when this occurs. All entries in the edit buffer are purged by a
CLEAR (no parameters) command. In addition, entries may also be purged if an attempt
is made to dimension a variable or load program text that would otherwise generate an
A01 - Insufficient memory error.

These entries can be accessed by using the SHIFT PREV key (or SF 18 in Edit Mode) to
scroll backwards through the list, or the SHIFT NEXT key (or SF 19 in Edit Mode) to
scroll forward.

When SHIFT PREV or SHIFT NEXT are used to scroll between different entries, the
command or program line displayed is not executed, and any changes that have been
made are not retained.

When the desired entry is located, it may be edited and processed as though it were the
current entry. When RETURN is pressed, the entry displayed is then resaved in the edit
buffer as the newest entry. The original entry in the edit buffer remains unchanged unless
it is purged due to being the oldest entry. Then, if the entry is an Immediate Mode com-
mand, it is executed, or, if the entry is a program line, it is submitted for incorporation
into the existing program. The cursor is then returned to a colon prompt.

5.4.2 EDIT Functions

In general, the edit functions allow for the correction of text entered with the line editor.
These edit functions are activated by one or more keystrokes from the keyboard.

The physical location and labeling of these keys vary depending on the physical key-
board hardware and the keyboard mapping used (user definable). For discussion purposes
here, the terminology used for key names refers to the virtual key names as defined on
the NPL Virtual Keyboard (refer to Section 7.5.2). To determine the physical location of
these virtual keys on the keyboard, refer to the appropriate hardware specific NPL Sup-
plement.

The line editor uses keys from both the standard key group and the special function key
group of the virtual keyboard to aid in text editing.

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-11

5.4.3 Standard Keys

There are four virtual keys from the standard key group which are relevant to line editing.
These virtual keys are active at all times during entry of text with the line editor.

BACKSPACE Depression of the BACKSPACE virtual key deletes the last character en-
tered from the edit buffer, blanks the character on the display, and moves
the cursor back one position.If the editor is in insert mode, the last char-
acter entered is simply deleted (no blank replaces it).

LINE ERASE Depression of the LINE ERASE virtual key deletes all characters in the
edit buffer, blanks all characters entered on the current text line, and re-
turns the cursor to the first position. Effectively, depressing LINE
ERASE causes all text on the current text line to be removed so that it
may be reentered.

EDIT Depression of the EDIT virtual key switches the mode of the special
function key pad from between DEFFN Mode and EDIT Mode. The
EDIT key and the special function keys are discussed in the following
section in detail.

RETURN Depression of the RETURN virtual key while editing a text line indi-
cates completion of the edit session. After RETURN is depressed, the
text line is submitted for processing by the Immediate Mode processor.

5.4.4 Special Function Keys

The majority of the line editor edit functions are implemented through the special func-
tion keys (virtual). As defined on the NPL virtual keyboard, there are 32 special function
keys. In addition, the line editor implements two "modes" of the SF key pad to allow for
64 possible edit functions.

The first mode is termed "DEFFN Mode" and the second is "EDIT Mode". Each mode
may support up to 32 unique edit functions. Generally, in DEFFN Mode the SF keys are
user definable, and in EDIT Mode the SF keys perform system pre-defined editing func-
tions.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-12 NPL Programmer’s Guide

At any time during entry of text with the line editor, the user may switch SF key modes
by depressing the EDIT virtual key. The EDIT virtual key acts like a toggle switch. If the
SF keys are in DEFFN Mode, depressing EDIT places them in EDIT Mode. If the SF
keys are in EDIT Mode, depressing EDIT again places them in DEFFN Mode.

The current mode of the SF keys is identified by the cursor. A steady cursor means the
SF keys are in DEFFN Mode. A blinking cursor means they are in EDIT Mode.

NOTE: This is true on most terminals. Refer to Appendix D for details.

The SF key mode is always returned to DEFFN mode after a text line is entered by key-
ing RETURN, or removed by keying LINE ERASE.

5.4.5 Special Function Keys - DEFFN Mode

The special function keys may be "programmed" to enter user defined strings of text on a
text line, with a single keystroke as if entered directly from the keyboard. This program-
ming is done using the DEFFN’ Statement (for further details refer to the Statements
Guide, DEFFN’). These text definitions of the special function keys are accessible to aid
text entry only when the SF keys are in DEFFN mode (steady cursor).

When in DEFFN mode, depression of any numbered SF key causes the line editor to
search for the corresponding DEFFN’ routine in the current program text area, with an in-
teger number equal to that of the SF key depressed. If the DEFFN’ statement contains lit-
eral text information immediately after the function number, that text is then passed to
the line editor as if entered from the keyboard. Once completed, the line editor awaits en-
try of further standard keys or special function keys. If a DEFFN’ of that number is not
found, a beep is sounded to indicate the condition and further entry is awaited.

WARNING--If the function does not contain literal text information or parameters, the
current line entry is canceled and the DEFFN’ subroutine is executed.

DEFFN Mode is useful programming tool for assigning frequently used verbs or entire
command lines to SF keys, thus allowing them to be entered as a single keystroke.

For example, the following would program SF Key 10 to become the PRINT verb:

100 DEFFN’10 "PRINT "

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-13

Once entered, touching SF key 10 followed by "A" and "$" would produce the statement:

:PRINT A$

in only 3 keystrokes.

The following DEFFN’ is useful for saving intermittent copies of a program (for backup)
as it is being developed.

For example:

DEFFN’31"RESAVE T";HEX(22);"PROGNAME";HEX(22);HEX(0D)

Depression of SF key 31 (when in DEFFN mode) causes the currently resident program
named "PROGNAME" (or whatever other name is desired) to be saved on disk in place
of its previous version. This presumes that the currently selected diskimage already con-
tains the file "PROGNAME".

WARNING--When working with multiple modules in memory, use of DEFFN’ literals to
perform program SAVEs can give unexpected and unpleasant results if the program is
currently resolved (HALTed while running), since DEFFN’ functions are always refer-
enced in the currently EXECUTING context. Refer to Section 5.3.5 for details.

Other frequent uses of this capability are:

• Printing the values of specific variables or lists of variables during debugging.

• Frequently LISTing a section of program code.

• Entering frequently used debugging commands in Immediate Mode (e.g., "CON-
TINUE RETURN", "CONTINUE NEXT", "STEP", "STEP OFF", etc.).

• Entering multiple spaces for quick "tabbing".

5.4.6 Special Function Keys - EDIT Mode

When in EDIT mode (blinking cursor), the special function keys perform system pre-de-
fined editing functions.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-14 NPL Programmer’s Guide

The special function keys are labeled from 0 to 31. Of these, the keys numbered 0, 1, 16
and 17 are reserved and perform no function. The balance of the keys perform the func-
tions as described in the following table when the special function key group is in EDIT
mode:

SF Key Label Function
 2 PREV Displays the previous screen (23 physical lines) of the text

line (assuming the text line occupies more than one physical
screen).

 3 NEXT Displays the next screen (23 physical lines) of the text line
(assuming the text line occupies more than one physical
screen).

 4 END Moves the cursor to the end of the current text line.
 5 SOUTH Moves the cursor down to the next line of the text line (as

summing the current text line occupies more than one
physical line on the display).

 6 NORTH Moves the cursor up to the previous line of the text line
(assuming the current text line occupies more than one
physical line on the display).

 7 BEGIN Moves the cursor to the beginning of the text line.
 8 ERASE Erases all text from the current cursor position to the end of

the text line.
 9 DELETE Deletes the single character at the current cursor position.
 10 INSERT Inserts a blank at the current cursor position.
 11 EAST 5 Moves the cursor five positions to the east.
 12 EAST Moves the cursor one position to the east. Also,, EAST

duplicates the function of the RECALL key when depressed
at the end of a text line.

 13 WEST Moves the cursor one position to the west.
 14 WEST 5 Moves the cursor five positions to the west.
 15 RECALL Recalls a program text line from memory,, or the last

Immediate Mode line entered, or a data value from memory
to the current text line for editing. More on this below.

 18 SHIFT-PREV Scroll to previous entry in the edit buffer.
 19 SHIFT-NEXT Scroll to next entry in the edit buffer.
 25 LINE

DELETE
Deletes all text from the current cursor position up to the
end-of-text line or up to and including the next
return graphic, whichever comes first.

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-15

SF Key Label Function
 26 LINE INSERT Performs one of two basic functions, depending on where in

the text line the cursor resides when it is depressed.
 1 When depressed at the beginning or end of a physical line, a

RETURN graphic is inserted followed by a statement
separator (":") and one space at the current cursor position.
The cursor is then advanced to the position following the
space. This is useful for inserting a new program statement
between two other statements on a multi-statement program
line formatted with return-graphics.

 2 When depressed anywhere else on a text line, LINE
INSERT inserts a return graphic only at the current cursor
position and the cursor is not advanced. This is useful for
multi-character insertion (discussed below).

NOTE: SF keys 11 an 14 are "sticky" keys. They must be pressed 5 times to skip past a re-
turn graphic. This facilitates getting to the start or end of a program statement
when return-graphics are used.

NPL Release IV has implemented several additional enhancements to the Line Edi-
tor with regard to statement separators and return graphics when working with
multi-statement program lines. Refer to Section 5.4.9 below for details.

5.4.7 Alternative to EDIT Mode SF Keys

Some physical keyboards have keys for which the label matches or nearly matches the
functionality of the EDIT mode SF keys (e.g., arrow keys, INSERT key, DELETE key,
etc.). These keys are often mapped in a manner which allows them to be used as an alter-
native to, or in addition to, the special function key group.

Keys of this type have the advantage that:

• EDIT mode functions may be invoked without the SF key group and without con-
cern for the current mode of the SF key group.

• They are often conveniently located on the keyboard.

• They have appropriate labeling.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-16 NPL Programmer’s Guide

The following is a list of these virtual keys and a description of their functions in Immedi-
ate Mode when not in EDIT mode.

INSERT Insert one character to right of cursor (default), or
switch between insert and overstrike modes. The
exact behavior is controlled by $OPTIONS byte 44.

DELETE Delete one character at cursor location
NORTH Up one line
SOUTH Down one line
WEST Left one character
EAST Right one character
SHIFT-WEST Same as WEST 5. Refer to Section 5.4.6
SHIFT-EAST Same as EAST 5. Refer to Section 5.4.6
SHIFT-INSERT Same as LINE-INSERT. Refer to Section 5.4.6
SHIFT-DELETE Same as LINE-DELETE. Refer to Section 5.4.6
SHIFT-PREV Scrolls backwards through previously entered

commands stored in the edit buffer. Refer to Section
5.4.1 for details.

SHIFT-NEXT Scrolls forward through previously entered
commands stored in the edit buffer. Refer to Section
5.4.1 for details.

TAB Cursor is positioned right to the next defined tab
stop. Refer to Section 5.4.12 for details.

SHIFT-TAB Cursor is positioned left to the next defined tab stop.
Refer to Section 5.4.12 for details.

NOTE: The EAST arrow key, when pressed at the colon prompt, functions as a recall key to
retrieve the last program line or Immediate Mode command entered. Alternatively,
this key allows the user to retrieve any line of code, provided the line has a line num-
ber, by entering a line number and depressing the EAST key.

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-17

5.4.8 Multi-Character Insertion

The default mode of immediate mode, INPUT and LINPUT routines is "Overstrike"
mode. Entering a key overstrikes the character at the current cursor position (except soft-
carriage return), and the backspace key blanks the previous character.

Optionally, developers may choose to customize the NPL environment by invoking an
"INSERT" mode of operation.

The following section discuss the editing process of character insertion using the default
"Overstrike" mode. This is followed up with a discussion of "Insert" mode and it’s func-
tionality.

Overstrike Mode
Insertion of a few characters in between other characters of a text line is easily performed
with the Insert function. Simply position the cursor to the point of insertion and depress
the INSERT key once for each character to be inserted. This inserts enough blank space
for the new characters to be entered.

However, this is inconvenient when more than just a few characters are to be inserted.
Here, a better method is to use LINE INSERT. LINE INSERT allows the insert operation
to be performed in fewer keystrokes (and with less character counting) as illustrated with
the following example:

Assume the following text is on the current text line, the input cursor is at the end of the
line, and the SF keys are in EDIT Mode.

175 = 1000 PRINT A,B,SGN(A+B)

To change this statement to a PRINTUSING statement, with the print image on line
5000, we must insert the characters "USING 5000" after the verb "PRINT".

To do this, move the cursor to the blank following "PRINT" using one of the cursor
movement keys (e.g., repeatedly depress WEST). Now touching LINE INSERT at this
point results in the following change to the text line:

1000 PRINT <
 A,B,SGN(A+B)

Notice that the RETURN graphic has been inserted at the cursor position and all sub-
sequent text has been moved to the following line. This now allows new characters to be
entered without overwriting subsequent text since the second line of text is now inde-
pendent of the first line of text. Now enter the characters "USING 5000".

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-18 NPL Programmer’s Guide

NOTE: The return graphic always follows the cursor automatically. This results in the fol-
lowing:

1000 PRINTUSING 5000, <
 A,B,SGN(A+B)

To concatenate the two physical lines of text back together, simply delete the return
graphic (using DELETE), resulting in:

1000 PRINTUSING 5000,A,B,SGN(A+B)

Insert Mode
Immediate mode, LINPUT and INPUT routines, support an "Insert" mode of operation in
addition to, or in place of, "Overstrike" mode.

Byte 44 of $OPTIONS has been implemented to give developers selective control over
this new feature. Byte 44 is used to control the start-up and editing characteristics of LIN-
PUT/INPUT statements, immediate mode commands and program lines, and the charac-
teristics of the "INSERT" key. Refer to the Statements Guide, $OPTIONS for a complete
discussion on setting byte 44.

While insert mode is active, pressing keys automatically inserts a space at the current po-
sition, and the backspace key deletes the previous character (except soft-carriage re-
turn’s).

By comparison, when overstrike mode is active typing a key overstrikes the character at
the current position (except soft-carriage return’s), and the backspace key blanks the pre-
vious character.

The insert key may be configured to either perform as before (inserting a single charac-
ter) or to switch between insert and overstrike modes.

The following table defines all valid values for Byte 44 of $OPTIONS, and each bit posi-
tions start-up mode of operation.

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-19

Commands Bit Position Bit= 0 Bit= 1
Immediate Mode HEX(01) OVERSTRIKE MODE INSERT MODE
Commands and
Program Lines HEX(02) Ins key = Ins char Ins key toggles mode

LINPUT HEX(04) OVERSTRIKE MODE INSERT MODE
Statements HEX(08) Ins key = Ins char Ins key toggles mode

INPUT HEX(10) OVERSTRIKE MODE INSERT MODE
Statements HEX(20) Ins key = Ins char Ins key toggles mode
RESERVED bits HEX(40) Should always be 0

HEX(80) Should always be 0

NOTE: If the Insert key is not configured to switch between modes, the selected starting
mode (either OVERSTRIKE or INSERT) is locked in.

If the Insert key is not configured to switch between modes, there is no visible indicator
to show whether the editor is in insert or overstrike mode.

Duplication of the options allows programmers to customize the editor to their personal
preferences without affecting the way LINPUT/INPUT statements operate with existing
software.

To avoid operator confusion, it is recommended that these values only be changed at
startup time, in either the BOOT or PREBOOT programs.

Application software that does the equivalent of an extended LINPUT command should
follow the behavior specified by bits 04 and 08 when processing entered keys, the back-
space key and the insert key.

For example:

0010 DIM O$64<
 : O$=$OPTIONS<
 : STR(O$,44,1)=OR HEX(01) :;Start Commands in INSERT Mode<
 : STR(O$,44,1)=BOOL4 HEX(02) :;Insert Key is INSERT Character<
 : $OPTIONS=O$:;(Overstrike Mode not Available)

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-20 NPL Programmer’s Guide

5.4.9 Multi-Statement Program Lines

As has been discussed previously, the readability and editing of multi-statement program
lines can be significantly enhanced by the use of return graphics, which are generated by
the LINE INSERT edit mode function. In addition to these, several other options are
available to enhance and simplify the editing of multi-statement program lines. This sec-
tion discusses these options.

Suppression of Statement Separators
The display of multi-statement program lines within the RunTime may be made more leg-
ible by suppressing the statement separators (":") at the start of multi-statement lines.
When suppressed, the spacing of statements does not change, with a blank appearing in
place of the statement separators. This is controlled by $OPTIONS byte 45, which con-
tains the following bit values:

HEX(01) Suppress when recalling lines for EDIT

HEX(02) Suppress when displaying text in LIST (except LIST D).

HEX(04) Suppress when displaying text in LIST D.

HEX(08) Suppress when generating source via $SOURCE function.

HEX(10) Display space instead of return graphic when editing lines.

Regardless of the value of this option, a colon statement separator is now always optional
after a return graphic.

NOTE: Text may be entered with some statement separators, if desired.

:0010 X=1<
: IF T=Tax_code :;Special record type?<
 PRINT "Taxes"; : PRINTUSING "##",X;<
 ELSE<
: PRINT "Income"<
 END IF

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-21

When LISTed or recalled for editing, the separators are all displayed or all suppressed, de-
pending on the $OPTIONS setting:

:LIST 10

:0010 X=1<
: IF T=Tax_code :;Special record type?<
: PRINT "Taxes"; : PRINTUSING "##",X;<
: ELSE<
: PRINT "Income"<
: END IF

:DIM O$64:O$=$OPTIONS:STR(Q$,45,1)= OR HEX(02):$OPTIONS=O$
:LIST 10

:0010 X=1<
 IF T=Tax_code :;Special record type?<
 PRINT "Taxes"; : PRINTUSING "##",X;<
 ELSE<
 PRINT "Income"<
 END IF

NOTE: If the return graphic at the end of a statement is deleted, the separator must be en-
tered to maintain valid syntax.

When editing, statements are always indented at least 2 spaces from the first "editable"
character on a line.

When return graphics are suppressed (HEX(10) bit= 1), they still occupy an editable loca-
tion and can be deleted or inserted, but display as a space.

NOTE: The newest version of the NPL compiler (B2C) permits .SRC files to follow this con-
vention as well, so ASCII versions saved using LIST may use the new convention.
Older versions of the compiler require the statement separator at the start of each
statement.

Files produced in 2200 atomized format by the compiler (using LSTFORMAT -2200[S])
always have the statement separator inserted where it is implied.

5.4.10 Statement Insertion and Deletion

As discussed in Section 5.4.9, multi-statement program lines can be made more readable
and editable with the use of return graphics and the suppression of statement separators.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-22 NPL Programmer’s Guide

The LINE INSERT and LINE DELETE Edit Mode special function keys work together
with the return graphic to simplify the process of adding, inserting and deleting program
statements within a multi-statement program line (not to be confused with inserting and
deleting program lines, which is discussed in the next section).

The utility of this is illustrated by the following simple edit session.

Presume we wish to enter a multi-statement program line which contains three state-
ments. The first statement is entered in the usual manner in Immediate Mode as follows:

For example:

:1000 FOR I=1 TO 100

We have entered the first statement and the cursor resides at the end of the line (RE-
TURN has not been depressed).

Adding Statements
We now wish to add a second program statement to this. Depressing LINE INSERT at
this point inserts a return graphic followed by a statement separator (":") and a single
space to yield the following:

:1000 FOR I=1 TO 100<
 :

Automatically, our program line is now syntactically prepared to receive the next pro-
gram statement. Using the same procedure we can enter the remaining two statements to
yield:

:1000 FOR I=1 TO 100<
 : PRINT SGN(I)<
 : NEXT I

Inserting a Statement
Now presume we wish to insert a new statement after the first statement but before the
second. To do this, position the cursor to the statement separator between these two state-
ments. Now depressing LINE INSERT yields the following display:

:1000 FOR I=1 TO 100<
 : <
 : PRINT SGN(I)<
 : NEXT I

The first and second statements are separated by a return graphic, a statement separator is
displayed, and the text of the new statement can be entered to yield:

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-23

:1000 FOR I=1 TO 100<
 : PRINT I <
 : PRINT SGN(I)<
 : NEXT I

Deleting a Statement
Now presume we wish to delete the 3rd statement in the program line. To do this, posi-
tion the cursor to the statement separator preceding the third line. Now depressing LINE
DELETE deletes all text from the cursor position up to and including the statement sepa-
rator to yield:

:1000 FOR I=1 TO 100<
 : PRINT I<
 : NEXT I

The editing session may be terminated at any point by depressing the RETURN key, at
which point the program line is submitted for processing.

NOTE: The WEST 5 and EAST 5 keys operate slightly differently when used on a text line
with return-graphics. Specifically, the beginning and ending of physical lines form
"sticky spots" for these keys (and these keys only). That is, it takes several depres-
sions of the key to move the cursor past these points. This is intentional as it allows
the WEST 5 and EAST 5 keys to be used to quickly move the cursor to the begin-
ning or end of a line.

Forcing Return-Graphics
Programs which make extensive use of multi-statement program lines but do not make
use of return-graphics are somewhat more cumbersome to edit. It is still possible to edit a
program authored in this fashion with the aid of return graphics.

Return-graphics may be automatically inserted in program lines by use of the
$KEEPREMS system variable and with EDIT/RECALL as follows:

In Immediate Mode, assign $KEEPREMS the value of HEX(02) as follows:

:$KEEPREMS=HEX(02)

Now return-graphics may be automatically inserted into multi-statement program lines by
recalling the statement and pressing RETURN without making changes. This causes the
line to be compiled with return-graphics.

Now recalling the line displays it in the one statement per line fashion. Be sure to change
the value of $KEEPREMS back to the normal value (HEX(01)) when all lines that need
return graphics inserted have been modified.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-24 NPL Programmer’s Guide

5.4.11 Multi-Screen Text Lines

Due to the multi-statement program line capability of NPL, it is possible that a single text
line may exceed the size of the physical screen. Here, the text is still considered to be a
single text line, however, special multi-screen handling logic is used by the line editor to
allow for this case.

When editing multi-screen program lines, the editor scrolls the screen a single line up or
down when the cursor is moved off the bottom or top of the screen. This scrolling only
applies to small cursor movements and to typing which extends the line past the end of
the screen. Large cursor movements (prev-screen, next-screen, goto-beginning, goto-end)
will jump the display in full screen units, 23 lines at a time.

NOTE: Single line scrolling requires the use of a control code (insert line) for remote termi-
nals to scroll the screen down one line. Not all terminals support this capability (in
particular, Wang 2236 and IBMPC /R option). These terminals will do a full screen
redisplay when scrolling up off the top or down off the bottom of the screen.

When editing multi-screen text lines, the presence of "---PREV---" and/or "---NEXT---"
indicators are periodically noticed at the bottom of the screen. These indicators mean that
the text line currently displayed has more text on the next page when "---NEXT---" is dis-
played, and has more text on the previous page when "---PREV---" is displayed. The
PREV and NEXT Special Function Keys may be used to "flip" to these pages for viewing
or editing.

While entering or editing a multi-screen text line, screen scrolling is largely automatic.
That is, any cursor movement which causes the cursor to encounter a page boundary
causes the screen to scroll up or down one line at a time.

For example, touching the WEST SF key when the cursor is at the top left hand corner of
a page causes an automatic scroll of the screen down one line. After the scroll, the cursor
would be located on the top line of the screen at the end of the line.

All other SF keys are fully functional with multi-screen text lines. With the view that text
lines of this type are still considered to be a single text line, the actions of the remaining
SF keys are easily predicted.

HINT: Widespread use of multi-screen text lines is not recommended as they tend to be cumber-
some to edit and maintain.

CREATING NPL PROGRAMS AND THE NPL EDITOR The Line Editor

NPL Programmer’s Guide 5-25

5.4.12 Use of TAB/SHIFT-TAB

TAB and SHIFT-TAB functions are provided to allow the programmer to add visible
structure to the program code.

In addition to the Special Function keys described in previous sections, the TAB and
SHIFT-TAB keys may be used to move the cursor horizontally when editing text. Unlike
other cursor movement keys, TAB and SHIFT-TAB do not move a fixed number of posi-
tions. Rather, movement is based on values contained in the $TAB system variable.
$TAB is a 132-byte variable that defines tab stops. Default tab stops are defined every
fourth position but these may be changed by the programmer--refer to $TAB in the State-
ments Guide for further details on defining TAB positions.

Whenever TAB is pressed, the cursor is located at the next higher defined tab stop. If
TAB causes the cursor to be located beyond a return graphic character (refer to Section
5.4.9 above for details on return graphic characters), the cursor is moved to the return
graphic character and sufficient spaces are automatically inserted to move the cursor and
return graphic character to the next TAB position. If TAB would cause the cursor to be
moved beyond the end of the program line, the cursor is located at the end of the program
line and sufficient spaces are inserted to move the cursor and the end of the program line
to the next TAB position. Once the return graphic or end of line has been moved to the
desired TAB position, new statements can be entered normally.

Whenever SHIFT-TAB is pressed, the cursor is moved to the left to the next lowest TAB
position. SHIFT-TAB never moves the cursor beyond the start of a physical line which
follows a return graphic character.

NOTE: TAB never causes spaces to be inserted in the middle of program text. Spaces are in-
serted only at return graphics or end of program lines. However TAB can be used to
insert spaces when used in conjunction with SHIFT-INSERT.

For example, assume that for the statement:

0010 A=B: REM Set A equal to B

the programmer wishes to move the REM statement to column 40. Further assume that
$TAB defines tab positions at columns 4, 8, 12, 16, 20, 24, 28, 32, 36, and 40 (the default
values). The REM statement can be moved to column 40 as follows:

1. Recall line 0010.

The Line Editor CREATING NPL PROGRAMS AND THE NPL EDITOR

5-26 NPL Programmer’s Guide

2. Move the cursor to the colon following "A=B".

3. Press SHIFT/INSERT. This produces a line that appears as:

0010 A=B<
 : REM Set A equal to B

with the cursor located under the return graphic.

4. Press TAB 8 times. This moves the cursor and return graphic to column 40.

5. Press DELETE. This deletes the return graphic producing:

0010 A=B : REM Set A equal to B

This technique is useful when it is desirable to establish visible structure in programs that
were created before the TAB function was available.

NOTE: TAB does not generate any special characters in the p-code and no adjustment is
made to existing program text if different $TAB values are used. Therefore, consis-
tent $TAB values should be used from one editing session to the next to insure that a
consistent visible structure is maintained.

The actual TAB and SHIFT-TAB virtual key on a specific keyboard may not be located
on the same physical key. Refer to Appendix D for information about the availability of
the TAB and SHIFT-TAB keys on the terminal being used.

5.5 Editing Programs

The line editor can be used to edit program text in memory on a line by line basis. Each
program line in an NPL program is uniquely identified by its line number. All editing op-
erations use the line numbers to identify the particular line or group of lines that are the
object of the edit operation.

5.5.1 Selecting a Module to Edit

This section describes the process of selecting a module for editing as a stand-alone pro-
gram and while under program control.

CREATING NPL PROGRAMS AND THE NPL EDITOR Editing Programs

NPL Programmer’s Guide 5-27

Selecting a module for editing as a stand-alone program is easily accomplished by
LOADing the program from the appropriate diskimage. Refer to Section 5.3 for details.

Editing a module under program control is a little different since multiple modules may
be residing in memory at the same time. To edit a module in memory when other mod-
ules are present, the module must first be selected as the current LIST module. This is eas-
ily accomplished using the "MODULE" command.

For example:

:MODULE "SETCOLOR"

The above immediate mode command would set the current LIST module to the program
SETCOLOR. Existing modules in memory can be identified with the LISTDT command.
Refer to Section 5.3.5 for a discussion on the effects of modules on the current workspace.

5.5.2 Entering a New Program Line

To enter a new program line, simply enter a text line in Immediate Mode which begins
with a unique line number followed by one or more program statements. On pressing RE-
TURN, the program line is inserted into program text memory according to its line num-
ber position within the current LIST module. Care must be taken that a program line of
the same number does not already exist in memory for that module.

5.5.3 Replacing a Program Line

To replace an existing program line in memory with a new line, enter the new program
line in Immediate Mode which begins with the line number to be replaced, followed by
one or more statements which are to replace the existing program line. Upon depression
of the RETURN key, the existing program line is replaced with the new program line.

5.5.4 Changing a Program Line with RECALL

To change an existing program line in memory, enter the line number in Immediate
Mode of the program line to be changed without depressing the RETURN key. To recall
the program line, either:

• Press the EAST arrow key, or

Editing Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-28 NPL Programmer’s Guide

• Place the SF key pad in EDIT mode (if not already done) by depressing the EDIT
key and press the RECALL key.

This causes the line editor to copy the specified program line to the edit buffer, display
the program line on the screen. With the second option, the cursor is moved to the end of
the text line.

At this point all line editor functions are available to assist in changing the program line.
Once all changes have been made, depressing the RETURN key replaces the line in mem-
ory with the modified program line as shown on the text line.

NOTE: During this process, all changes are being made to a copy of the program line in the
edit buffer; the original line remains unchanged in memory until the RETURN key
is depressed. Therefore, to cancel a change operation, erase the line from the edit
buffer with LINE ERASE before touching RETURN. The original line remains in
program text memory unchanged.

5.5.5 Deleting Program Lines

A program line may be deleted from program text memory by entering the program line
number in Immediate Mode and depressing the RETURN key without entering any pro-
gram text. The absence of program text after the line number causes the line editor to in-
terpret the entry as a deletion.

After depressing RETURN, the specified program is deleted from program text memory
and the message "LINE DELETED" is displayed.

NOTE: If the line was deleted in error, immediately depressing the RECALL key without
any line number recalls the line to the edit buffer, where it may then be reinserted
by depressing RETURN.

If the specified line number does not exist in the current program text area, the message
"NO SUCH LINE" is displayed and no deletion is performed.

A range of program lines may be deleted from the program text area with just one com-
mand, the CLEAR P command.

CREATING NPL PROGRAMS AND THE NPL EDITOR Editing Programs

NPL Programmer’s Guide 5-29

For example:

:CLEAR P 1000,1999

deletes program lines 1000 through 1999, inclusive, from the program in memory. For
further details refer to the Statements Guide, CLEAR.

5.5.6 Concatenating Program Lines

Any program line in memory may be inserted into the current text line. This is done by
entering a statement separator (":") at any point in the text line, immediately followed by
the program line number to be inserted.. Then, depressing the RECALL SF key (when in
EDIT Mode) causes the line editor to replace the specified line number (on the text line)
with a copy of the program line text of that line number from program text memory.

This process may be repeated as often as desired allowing for many program lines to be
inserted to the current text line.

If the original text on the line was a program line (i.e., begins with a number), then de-
pressing RETURN causes that program line together with all newly concatenated lines to
be inserted into program text memory as a single multi-statement program line.

NOTE: Inserting a program line into a text line does not delete the program line from the
program text memory. It is merely copied from program text memory. Therefore, if
required, the inserted program lines must be deleted with the delete or CLEAR P
command.

5.5.7 Moving Program Lines

Program lines in memory may be moved one of two ways:

1. EDIT/RECALL--Once a program line has been RECALLed to the edit buffer (and
displayed) using EDIT/RECALL, the line number is editable, as is any other text on
the line. If the line number is changed, the program text is saved under the new line
number in memory once the RETURN key is depressed.

NOTE: Under this method, the original line is unaffected and must be deleted as a second
operation, if required. Further, all references, if any, to that line number by other
program lines (e.g., GOTOs) must also be edited to reflect the new line number.

Editing Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-30 NPL Programmer’s Guide

2. RENUMBER--The RENUMBER command can be used to renumber a program line
or range of program lines in memory. In addition, a line number increment may be
specified which allows for spacing between program lines.

This method of renumbering program lines has the advantage that the actual program
line numbers in memory are changed, and consequently deletion of old line numbers
is not required. Further, once the renumbering operation is complete, the command
performs an internal line number cross-reference on the entire program and automat-
ically adjusts all references to old line numbers to the new line numbers.

For example:

:RENUMBER 1000-1999 TO 4500 STEP 10

Renumbers program lines 1000 to 1999 inclusive starting with new line number
4500 and incrementing line numbers by steps of 10 from there.

For further details refer to the Statements Guide, RENUMBER.

5.5.8 Recalling Long Identifier Names

To help avoid typographical errors when typing in Long Identifier Names (LINs), the
"RECALL" key may be used at the end of a line after only partially entering an identifier,
to complete the name of the identifier.

For example:

:0010 DIM SausageName$27
:0020 PRINT Sau_

If RECALL is depressed (or right-arrow) at this point, NPL looks for a unique identifier
starting with Sau... If only one identifier exists, NPL completes the name, with the stand-
ard case. If more than one identifier starts with the partial name, the system beeps and no
change is made to the line.

Variable identifier look-ups may also look for a partial variable name as
"ident[?ifier][$][(]" before the cursor, where "ident" must match the start of some pre-
viously entered identifier, and if the "?" appears, "ifier" must also match the end of the
identifier. If "$" or "(" is specified, the variable name must be the name of a string or ar-
ray, respectively.

CREATING NPL PROGRAMS AND THE NPL EDITOR Editing Programs

NPL Programmer’s Guide 5-31

For example, if the following program is entered:

0010 DIM ThisLittlePiggyWentToMarket$10
 : DIM ThisLittlePiggyStayedHome$10
 : DIM ThisLittlePiggyHadRoastBeef$(2)10
 : DIM ThisLittlePiggyHadNone

Then:

"This?Market" (-RECALL-) would find ThisLittlePiggyWentToMarket$
"This$" (-RECALL-) is ambiguous (could be .. Market$ or ..Home$)
"This?None" (-RECALL-) would find ThisLittlePiggyHadNone
"This$(" (-RECALL-) would find ThisLittlePiggyHadRoastBeef$(
"?Home" (-RECALL-) would find ThisLittlePiggyStayedHome$

When recalled, String /Array identifiers have a "$" or "(" attached to them, even if not
specified.

In addition to the above, programmers using long identifiers may find it useful to set byte
38 of the $OPTIONS to HEX(01), which requires all identifiers to either be common
(COM) or to appear in a DIM statement before any other reference in a module. An error
occurs at resolve time for the first reference not preceded by a declaration. This can help
to avoid programming errors of the form:

10 DIM SausageCount
20 SausageCoutn=12 : REM Oops, meant SausageCount

In the above instance, an error P55--Undefined variable occurs on line 20 at resolve time,
indicating that a variable appeared before its appearance in a DIM/COM statement.

5.5.9 Syntax Errors

After a program line is entered using the line editor, it is immediately checked for correct
syntax before it is submitted for storage in program text memory. If a syntax error is de-
tected, it is immediately reported. Specifically, the program line is displayed and a charac-
ter of the program line is highlighted in the approximate position of the syntax error.
Below the line an error indicator is displayed with an error number and descriptive mes-
sage.

If the program line is a multi-statement program line, then only the first syntax on the er-
ror is reported.

Editing Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-32 NPL Programmer’s Guide

For example:

:1000 FOR I=1 Tu 1000<
 : J=A$+SGN(I)<
 : PRINT J<
 : NEXT IX
 ^
ERR S19: Missing Required Word

In this example, program line 1000 was entered but was found to contain 3 syntax errors
on the first, third and fourth statements of the multi-statement line. Only the first error is
diagnosed. Notice the highlighted character in the statement with the error ("T" in the ex-
ample) which indicates the line containing the error. The arrow also points to the approxi-
mate position of each error.

Once a program line is diagnosed as containing a syntax error, it is stored in program text
memory, but is flagged as being inoperable. To correct the program line, it must be re-
called in the usual fashion with the line editor and corrected.

NOTE: Both the Interpreter and RunTime Package do not allow execution or even partial
execution of a program which contains any program lines with syntax errors. A pro-
gram must be 100% free of syntax errors before execution proceeds.

Descriptive error messages are contained in files ERRORMSG.HLP and ER-
RORMSG.IDX. These files may be modified. Please refer to the appropriate NPL Supple-
ments and Section 2.7 for further information on these files.

5.5.10 Other Useful Editing Tools

There are other useful editing tools available using Immediate Mode commands, which,
although they do not actually change text, do aid in the process of program text develop-
ment.

Each of these commands is explained in detail in the Statements Guide, but they are sum-
marized here for reference.

LIST Lists a program line or range of lines. It is often useful to in-
clude LIST as a DEFFN’ keyboard text definition. For fur-
ther details refer to the Statements Guide, DEFFN’.

LIST FIELD Lists all program lines which contain a specified FIELD or
range of FIELDs.

CREATING NPL PROGRAMS AND THE NPL EDITOR Editing Programs

NPL Programmer’s Guide 5-33

LIST FUNCTION Produces a FUNCTION cross reference listing.

LIST PROCEDURE Produces a PROCEDURE cross reference listing.

LIST RECORD Lists all program lines which contain a specified RECORD
or range of RECORDs.

LIST T Lists all program lines which contain a specified text string.

LIST V Lists all program lines which contain a specified variable or
range of variables.

LIST = name Lists all program lines which contain a specified Statement
Label or rang of Statement Labels.

LIST ’ Produces a DEFFN’ cross-reference listing

LIST # Produces a line number cross-reference listing.

SPACE Determines the current maximum size of the edit buffer.

SPACE F Determines the remaining program text memory available.

SELECT LIST Temporarily directs output from any LIST command to the
printer for hardcopy listings.

5.6 Saving Programs

Once NPL programs have been created or modified using the editor, it is necessary to ex-
plicitly SAVE them on disk so that programs or program changes are not lost. This is ac-
complished through the use of the SAVE command. Programs may be saved to both NPL
diskimages and with limitations, to native operating system file systems.

This section discusses saving both newly created programs and already existing programs.

NOTE: This section does not discuss all syntactical variations of the SAVE command. For
further details refer to the Statements Guide, SAVE.

Saving Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-34 NPL Programmer’s Guide

5.6.1 Saving New Programs to Diskimages

A new program file is saved to a diskimage with the SAVE command.

For example:

:SAVE T/D10,(5) "PROGRAM" -Saves a program to diskimage
 D10 under the program name
 "PROGRAM" with 5 extra sectors.

SAVE Command--With the SAVE command the diskimage’s catalog area is first
checked to determine if sufficient space is available to save the program. If so, the speci-
fied program name is entered into the catalog index and the program is saved in the cata-
log area.

NOTE: The program name must not already exist in the catalog index (refer to next section,
Saving Existing Programs to Diskimages).

If insufficient space is available in the catalog area for the program an error is issued and
the program is not saved. Here, the catalog area must be expanded by the MOVE END
statement, or MOVE DISK can be used to reorganize the diskimage to recapture unused
space.

If insufficient space is available in the catalog index area for the program name, an error
is issued and the program is not saved. In this case a new diskimage with a larger catalog
index area must be created. Programs and data from the old diskimage may be copied to
the new diskimage using the 2CCOPY utility (refer to Chapter 13).

When saving new programs, it is good practice to reserve extra catalog sectors over and
above what is required for the actual program code, to allow for future growth. This is a
parameter to the SAVE statement which when specified is added to the actual size of the
program when saving. In the SAVE example above, 5 extra sectors were requested.

The LIST DC command can be used to determine the actual amount of free space avail-
able for a particular program and also in the entire diskimage catalog area.

For further details refer to the Statements Guide: SAVE, MOVE END, and MOVE DISK.

CREATING NPL PROGRAMS AND THE NPL EDITOR Saving Programs

NPL Programmer’s Guide 5-35

5.6.2 Saving Existing Programs to Diskimages

Catalog space reserved for existing program files in a diskimage may be reused for newly
edited versions of the program (or replaced with entirely new program code and program
name).

This is done by using the RESAVE command. The RESAVE command allows the user
to save an existing program to disk without having to issue a SCRATCH command on
the file first.

For example:

:RESAVE T "EXAMPLE"

The RESAVE command in this example locates the program called "EXAMPLE" in the
catalog index and saves the current contents of memory to it.

For details refer to the Statements Guide, RESAVE.

Insufficient Space in Old Program
When reusing catalog space with the RESAVE command, the condition may arise where
the new version of the program may be larger than the available space of the old program
to be overwritten in the diskimage.

Here, the RESAVE command automatically attempts to allocate new space at the end of
the free catalog area. If space is available, the program is saved at the new location (but
with 0 extra sectors). The original space occupied by the old program becomes "dead
space" and cannot be used until the diskimage is reorganized using the MOVE DISK
command.

If space is not available, a "Catalog Full" error results. In this case, it is necessary to ex-
pand the diskimage (using MOVE END) before the program can be saved.

Use of DEFFN’
Scratching and saving programs is a very common practice. As a convenience to the pro-
grammer, the DEFFN’ statement can be used to automatically scratch and save program
text, using the correct program name with just one or two keystrokes.

For example:

0000 DEFFN’30 "X$=";HEX(22);"PROGRAMX";HEX(22);":SCRATCH T X$";HEX(0D)
0001 DEFFN’31 "SAVE T () X$";HEX(0D)

Saving Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-36 NPL Programmer’s Guide

Here, program lines 0 and 1 are reserved for the DEFFN’ statements. The actual program
code would follow. While in Immediate Mode, pressing special function key 30 (SF keys
must be in DEFFN Mode--refer to Section 5.4.3 for details) issues a SCRATCH com-
mand for "PROGRAMX". Then pressing special function key 31 issues the SAVE com-
mand for the same program file.

Alternatively, a single DEFFN’ may be used:

0000 DEFFN’31 "X$=";HEX(22);"PROGRAMX";HEX(22);":SCRATCH T X$:SAVE T
() X$";HEX(0D)

One other alternative to the above SCRATCH and SAVE operations within the DEFFN’
statement would be to use the RESAVE command.

For example:

0000 DEFFN’31 "RESAVE T";HEX(22);"PROGRAMX";HEX(220D)

The appropriate DEFFN’ statements are often included as permanent lines in a program
so that this convenience is always available when editing the program.

HINT: For consistency, it is recommended that all programs use the same program line numbers
to store the DEFFN’ statements and that the same SF Keys be chosen to invoke the
DEFFN’ statements. The examples above are indicative of the typical choice for these.

For further details on the use of SF keys in DEFFN Mode, refer to Section 5.4.3. For fur-
ther details refer to the Statements Guide: SAVE, SCRATCH, RESAVE and DEFFN’.

5.6.3 Saving Portions of Programs to Diskimages

In some cases, it is desirable to save a portion of a program in memory to disk. This can
be accomplished by use of the line number range parameter in the SAVE command. The
line number range parameter is the last parameter on the command line, when used.

The following are examples which save a portion of the program in memory to a new pro-
gram file in the diskimage:

For examples:

SAVE T "PROGRAM1" 400,800

stores program lines from 400 through 800 in a new program file named "PROGRAM1".

CREATING NPL PROGRAMS AND THE NPL EDITOR Saving Programs

NPL Programmer’s Guide 5-37

SAVE T "PROGRAM1" 500,

stores program lines from 500 through the highest line number in memory in a new pro-
gram file named "PROGRAM1".

The following example saves a portion of the program in memory to an existing program
file in the diskimage:

SCRATCHT T "PROGRAM1"
SAVE T () "PROGRAM1" 400,800

SCRATCHes program file "PROGRAM1" and overwrites it with lines 400 through 800
of the program in memory.

As an alternative to the above, the RESAVE command may be used to perform the
equivalent of the SCRATCH and SAVE operation.

For example:

RESAVE T "PROGRAM1" 400,800

has the same effect as the above SCRATCH and SAVE statements.

5.6.4 Saving Programs to Native Operating System Files

NPL programs may be saved within the native file system for the limited purpose of the
BOOT or PREBOOT program. A BOOT or PREBOOT program is an NPL program
which is stored in a native operating system file system and is automatically loaded and
executed by the RunTime at startup.

A program file is saved in a native operating system directory by use of the SAVE BOOT
command. When executed the specified program is saved using a specific native operat-
ing system file specification. If the program already exists within the native file system, it
is overwritten.

When saving programs in a native file system, the $SHELL command may be useful for
locating and listing the names of BOOT programs contained in the native file system or
any other preparation required in advance of executing a SAVE BOOT command.

For further details refer to the Statements Guide, SAVE BOOT and $SHELL. Refer to
Section 2.4 of the appropriate NPL Supplement for details on the BOOT program and
considerations specific to the operating system being used.

Saving Programs CREATING NPL PROGRAMS AND THE NPL EDITOR

5-38 NPL Programmer’s Guide

5.6.5 Scramble Protecting Programs

As a means toward copy protection of application systems written in NPL, programs may
be SAVEd in a scramble protected format. Programs saved in this format are encrypted
on disk, thereby discouraging direct examination of the program. Scramble protected pro-
grams may be LOADed and executed by either the interpretive or non-interpretive Run-
Time programs, but may not be LISTed or examined using debugging commands.

Programs are scramble protected by use of the optional "!" parameter to the save com-
mand.

For example:

:SAVE T ! "PROGRAM"

SAVEs program "PROGRAM" in scramble protected format.

The compiler can also be used to generate programs in scramble protected format using
an OBJFORMAT of "SCRAMBLED".

The programmer should, of course, maintain at least one copy of scramble protected pro-
grams in unscrambled format for purposes of program maintenance.

For further details of the scramble parameter refer to the NPL Statements Guide, SAVE.

CREATING NPL PROGRAMS AND THE NPL EDITOR Saving Programs

NPL Programmer’s Guide 5-39

CHAPTER 6

DEBUGGING CODE

6.1 Overview

The process of "debugging" a program generally requires that the program’s operation be
inspected to determine the problem and then once determined, corrected by changing the
associated source code.

This chapter discusses the methods by which an NPL program may be inspected at execu-
tion time with Immediate Mode commands. This includes inspection of the program’s
logic flow, text, variables and environment. Methods of altering program logic flow (as
opposed to program text) during execution are also discussed. This includes modification
of program execution order, variable content, and the program’s environment.

The NPL debugging facilities described in this chapter are available only in the interpre-
tive RunTime (RTI), not in the non-interpretive RunTime (RTP).

DEBUGGING CODE Overview

NPL Programmer’s Guide 6-1

Prerequisites
Program Editing--Once a program bug has been isolated, it is usually corrected by edit-
ing the program text. In NPL, program editing is highly integrated with program debug-
ging to allow both to be performed concurrently. The subject of program editing is
discussed in Chapter 5, Creating NPL Programs and the NPL Editor, and is a prerequisite
to this chapter.

Immediate Mode--An essential part of program debugging is the ability to obtain control
of an executing program. Once control is established, the program may then be inspected
by the programmer in its various stages of execution. In NPL, control over an executing
program is acquired by invoking Immediate Mode in NPL. There are many methods of in-
voking Immediate Mode. This subject is discussed in Chapter 2 and is essential to an un-
derstanding of program debugging in NPL.

Section 6.2 discusses the effect of modules when debugging.

Section 6.3 discusses the inspection of program logic and the Immediate Mode com-
mands available to modify the logic flow of a program during its execution.

Section 6.4 discusses the inspection and modification of program variables.

Section 6.5 discusses the inspection of program text while in Immediate Mode.

Section 6.6 discusses the use of Immediate Mode commands and system variables for in-
spection of the environment in which the program is running.

6.2 Debugging Modules

Default operation of the RunTime assumes that debugging the Root Module is a more fre-
quent event than debugging other modules at execution time. If another module must be
selected, the following guidelines must be followed when debugging programs.

• Debugging with the STEP and TRACE commands is active for all modules.

• Program inspection with LIST commands and RENAME and RENUMBER com-
mands refers to the current List Module only.

Debugging Modules DEBUGGING CODE

6-2 NPL Programmer’s Guide

• Variable inspection and modification can be done within the scope of the current
Executing Module. Refer to Section 4.10 for more detail on the use and types of
modules.

If a program has been RUN and an error is detected, before making a change:

1. Ensure that the Run Module is selected as the current List Module by using the MOD-
ULE command (with a blank name):
:MODULE " "

2. Make the necessary program changes to the module and SAVE it.

If a program has been RUN that includes a module (i.e., a "LIBRARY"), and a change is
required to the INCLUDEd module, the correct procedure is as follows:

1. Select the currently loaded library as the LIST module by using the MODULE com-
mand.

For example:

:MODULE "LIBRARY"

2. Make the necessary program changes to the module and SAVE it. To test that the
module resolves correctly, a RUN[,STOP] command should be used (assuming that
the root module still INCLUDEs "LIBRARY").

NOTE: RUN also resets the current module to the Root (no name) Module, so if there are er-
rors, the current List Module must be reset again.

For programmers familiar with NPL versions prior to Release IV, which do not sup-
port multiple modules, the usual inclination is to do a CLEAR P, LOAD the LI-
BRARY module (without using the MODULE command), fix it (SAVE it) and then
try to RUN it to check for syntax errors. This doesn’t work properly because:

• The "LIBRARY" module is still loaded and resolved. All PUBLIC variables will
be flagged as duplicates if an attempt to RUN a second copy in the root (no
name) MODULE is performed.

• If, after making the change, do a CLEAR P, reload the normal root module and
try to RUN it then the changes made to "LIBRARY" are not detected. The old
module is still running!

DEBUGGING CODE Debugging Modules

NPL Programmer’s Guide 6-3

To select the root module as the current List Module, use:

:MODULE " "

NOTE: We strongly recommend that FUNCTIONs and PROCEDUREs intended to be used
in modules first be developed and debugged as local FUNCTIONs/PROCEDUREs.
However, interactive debugging of code residing in modules is well supported.

6.3 Inspection and Modification of Program Logic

NPL provides a series of Immediate Mode commands that allow the programmer to in-
spect the logic flow of a program as it is executing. These commands represent the most
powerful debugging capability of NPL since they allow the programmer to view the ac-
tual sequence of events that take place "live" during the execution of a program.

Besides inspection of logic flow, other Immediate Mode commands allow the program-
mer to modify the logic flow of a program during its execution, to test alternate paths of
logic (without modifying actual program text).

The following section discusses both the inspection and modification of program logic
for debugging purposes .

6.3.1 Logic Inspection Using Stepped Execution

The NPL Interpreter supports execution of programs specially intended for debugging
called "Stepped Execution." With Stepped Execution of a program, the Interpreter exe-
cutes only one statement of the program at a time, displaying each statement before it is
executed with full Immediate Mode capabilities enabled between the execution of each
statement. This allows for unlimited variable inspection, modification, program listing
and other debugging activities to take place concurrent with Stepped Execution.

Stepped Execution is controlled by using two elements that are internal to the Interpreter,
named "Step Mode" and "Step Range." Step mode is "global" meaning the status is con-
sistent, despite module status or position. A different Step Range may be specified for
each module. Both Step Mode and Step Range are modifiable by the programmer using
Immediate Mode commands described later in this section.

Inspection and Modification of Program Logic DEBUGGING CODE

6-4 NPL Programmer’s Guide

Step Mode
Step Mode is an on/off switch. Stepped Execution is eligible to take place only when
Step Mode is ON. Step Mode is on or off whatever module status or position. In other
words, a module cannot have Step Mode on while another module has Step Mode off.

Step Range
Step Range consists of a starting line number and an ending line number. Stepped Execu-
tion is eligible to take place only when the currently executing program is executing a
program line that is within the defined Step Range.

Each module is assigned its own STEP line number range. By default, the line number
range for STEP in the Root Module encompasses all line numbers while the line number
range for STEP in other modules encompasses no line numbers. The effect of this is that
it is very easy to step through root code without stepping through code in other modules.

By manipulating the Step Mode, the programmer may begin and stop Stepped Execution
of program lines within the Step Range.

By manipulating the Step Range, the programmer can concentrate Stepped Execution on
a specific area of code within a program (such as a subroutine or group of subroutines)
without stepping through other areas of the program that are already tested. That is, when
Step Mode is on, Stepped Execution is enabled automatically whenever program control
branches into the range of program line numbers specified by the Step Range for the exe-
cuting module. When program control branches out of the Step Range, execution of the
program automatically resumes (no stepping) until control again passes back into the
Step Range.

Activating Stepped Execution
There are three methods by which Stepped Execution may be enabled. These methods
may be used both before and during program execution. They are:

• The STEP instruction. The STEP instruction manipulates the Step Mode
switch. When STEP is executed, Step Mode is turned ON, by that activating
Stepped Execution when a line number in the current Step Range is executed.

STEP may be entered as an Immediate Mode command either before or during
program execution. STEP may also be included as a statement in a program.

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-5

• The STEP # instruction. The STEP # instruction manipulates both Step Mode
and Step Range. When STEP # is executed, Step Mode is turned ON, and the
Step Range for the current List Module is assigned the line numbers as specified
in the instruction. Stepped Execution is started when a line number in the speci-
fied Step Range is executed.

For example:

: STEP # 1500,2800

When executed, Step Mode is turned ON, and the Step Range for the current
List Module is assigned to start with line number 1500 of a program and end
with line number 2800 (inclusive).

STEP # may be entered as an Immediate Mode command either before or during
program execution. STEP # may also be included as a statement in a program.

• From the HELP Display--Stepped Execution may be started by selecting the
STEP menu item on the HELP display. When selected, the HELP processor im-
plicitly executes a STEP # command with a specified line number range of 0-
32117(all lines) in the currently executing module.

This, therefore, sets Step Mode ON and sets the Step Range to 0-32117 (the en-
tire program) in the currently executing module. This immediately begins
Stepped Execution.

NOTE: When STEP is selected from the HELP display during program execution, the pro-
gram may be in the process of executing a keyboard input statement (INPUT, IN-
PUT, or non-polling KEYIN). In these cases, selecting the STEP option in this
manner does not invoke Immediate Mode right away. Execution of the keyboard in-
put statement must first be completed by entering the data value in the usual man-
ner. Once completed, Immediate Mode is then activated and Stepped Execution is
started.

To start Stepped Execution by entering STEP or STEP # as an Immediate Mode com-
mand during program execution, it is necessary to first interrupt the program by invoking
Immediate Mode. This is done by a variety of methods, all of which are documented in
Chapter 2. Of these, the most common method used is the HALT key. When depressed,
program execution is halted and Immediate Mode is invoked.

Inspection and Modification of Program Logic DEBUGGING CODE

6-6 NPL Programmer’s Guide

NOTE: HALT does not disturb the "execution status" of the program, in that stepped execu-
tion is still allowed to take place.

To start Stepped Execution in a program using modules, simply HALT the program at
whatever point is most convenient, even if not in the Root Module. Then enter the STEP
command and press the EXEC key (or enter CONTINUE). If the default Step Range val-
ues have not been altered, program execution continues without stepping until the next
statement in the Root Module is encountered. If subsequent calls to other modules are en-
countered while in step mode, the subroutine will execute without stepping, but step
mode will be resumed upon return to the Root Module.

To start Stepped Execution to debug a particular module other than the Root Module, fol-
low these steps:

1. Issue the MODULE command to change the current List Module to the module
needed to debugged.

2. Issue the STEP # command specifying the range in that module to be used by STEP.

3. Use the MODULE command to change the current List Module back to the Root
Module.

4. While in the Root Module, issue the command STEP # 1,0 so that no lines in the Root
Module will be STEPped through.

5. Press the EXEC key to begin program execution. This will continue until a statement
within the specified range in the particular module is to be executed.

Refer to Section 6.2 for information on how to select a module to debug.

Operating Stepped Execution
 Once the STEP processor is started, it displays the next program statement that is exe-
cuted.

NOTE: The STEP processor always displays a statement before it is executed.

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-7

If the statement displayed is part of a multi-statement program line, then it is preceded by
one statement separator (":") for each statement that preceded it on the program line (if
any), and is followed by another statement separator and ellipsis ":..." if any other state-
ments follow on the same program line. In any case, the program line number is always
displayed at the beginning of the line.

For example:

1000 :::B$=STR(X$,2):...
 :_ (<--Immediate Mode is invoked)

This STEP processor display indicates that "B$=STR(X$,2)" is the next statement to be
executed. It was preceded by three other statements on the program line (as indicated by
the ":::") and is followed by other statements on the same program line as shown.

NOTE: Return graphics characters are ignored by the STEP processor to preserve screen
space while stepping through programs.

The STEP processor always invokes Immediate Mode immediately after each statement
is displayed. This allows for full Immediate Mode capability while stepping through pro-
gram execution. When the Immediate Mode prompt (":") is displayed, the programmer
has several options. The programmer may:

• Execute the displayed statement by depressing the EXECUTE key. At this point
the statement is executed, the next statement to be executed is displayed and con-
trol is again returned to Immediate Mode.

• Avoid execution of the displayed statement by entering certain Immediate Mode
commands (as discussed in "Logic Modification" below).

• Enter Immediate Mode commands for any other purpose including variable in-
spection, variable modification, program listing and other debugging activities.

• Resume normal execution of the program by deactivating Stepped Execution (as
documented below).

Any number of Immediate Mode commands may be entered at this point without forfeit-
ing the option to continue Stepped Execution. However, it is important to avoid com-
mands that would disturb the "execution status" of the halted program if it is intended
that further Stepped Execution is to be performed. For further details on commands of
this type, refer to Section 2.5.3.

Inspection and Modification of Program Logic DEBUGGING CODE

6-8 NPL Programmer’s Guide

If the step processor display is ever scrolled off the screen (due to repeated entry of Imme-
diate Mode commands), it may be redisplayed any time by entering STEP in Immediate
Mode. This repeats the information, by indicating the next instruction to be executed.

NOTE: If a keyboard input statement (INPUT, INPUT, non-polling KEYIN) is executed
while stepping through a program, the input request must be satisfied by entering
the data value in the usual manner before further stepping proceeds.

Programs usually execute slower when Step Mode is ON. This is noticeable when Step
Mode is ON and program lines outside the current Step Range are being executed. This is
normal and program performance is fully restored when Step Mode is turned OFF.

Temporary Exit from Stepped Execution
While stepping through a program, if executing a program statement that is displayed
leaves the Step Range, then depressing EXECUTE resumes normal execution of the pro-
gram until program control returns to a line number within the Step Range. For example,
if the next statement to be executed is: GOSUB ’Display and all the statements which are
executed during the DEFFN’ Display subroutine are outside the Step Range, pressing
EXECUTE will call the ’Display routine, and halt after returning, showing the statement
following the GOSUB’ as the new next statement.

Besides the Step Range, there are certain other methods by which the programmer may
selectively execute segments of program code normally, but then return to Stepped Exe-
cution once they are complete. These are the CONTINUE RETURN, CONTINUE
NEXT and CONTINUE LOAD instructions.

CONTINUE RETURN
This instruction resumes execution of the program until the currently executing subrou-
tine is completed (i.e., when the RETURN statement is encountered). At that point,
Stepped Execution is reactivated. This is useful in avoiding Stepped Execution of lengthy
and already tested subroutines.

NOTE: This command can only be executed when actually in a subroutine. Otherwise, a
P41 error results, but this does not prevent program continuation.

CONTINUE NEXT
This instruction resumes execution of the program until the current active FOR/NEXT
loop has been completed. At that point, Stepped Execution is reactivated. This is useful
in avoiding Stepped Execution of iterative FOR/NEXT loops that have already been
tested.

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-9

NOTE: This command can only be executed when actually in a FOR/NEXT loop. Otherwise
a P40 No Corresponding FOR for NEXT Statement error results, but this does not
prevent program continuation.

CONTINUE NEXT and CONTINUE RETURN work only with the highest level of
the return stack. For example, executing CONTINUE NEXT while in a subroutine
called from the FOR/NEXT loop does not work. This is because the subroutine call
information is on the top of the stack at this point. Here, exit the subroutine first
(with a CONTINUE RETURN) after which CONTINUE NEXT operates as ex-
pected.

CONTINUE LOAD
This command resumes normal execution of the program until the next LOAD statement
has been executed. At this point, Stepped Execution is reactivated. This is useful for rap-
idly stepping through a lengthy chain of program overlays but preserving the option to in-
spect individual overlay steps.

DEFFN’
Stepped Execution is also temporarily deactivated during execution of DEFFN’ subrou-
tines executed as a result of depressing a Special Function key in Immediate Mode. The
subroutine is executed as if an implied CONTINUE RETURN statement were executed
at the start of the subroutine. Stepped Execution is restored when the subroutine is com-
pleted (executing a RETURN instruction).

For further details refer to the Statements Guide: CONTINUE RETURN, CONTINUE
NEXT, CONTINUE LOAD and DEFFN’.

Deactivating Stepped Execution
 Stepped Execution may be deactivated any time by:

• Entering the CONTINUE command in Immediate Mode. When executed, the
CONTINUE command sets Step Mode OFF and resumes normal execution of
the program.

NOTE: CONTINUE does not modify the Step Range.

• Selecting the CONTINUE option on the HELP display. This implicitly executes
a CONTINUE command. It is used largely as a convenience to the above method.

• Entering STEP OFF in Immediate Mode.

Inspection and Modification of Program Logic DEBUGGING CODE

6-10 NPL Programmer’s Guide

6.3.2 Logic Inspection Using TRACE

The Interpreter supports the execution of programs in a special mode called TRACE
Mode. When TRACE Mode is invoked, the trace processor illustrates the logic of an exe-
cuting program by displaying information on all transfers of control and certain variable
modifications when they occur within the program. Information of this kind that is dis-
played by the TRACE processor is called TRACE output.

Various forms of the TRACE instruction allow for selective tracing of specified vari-
ables, program lines and marked subroutines to allow the programmer to concentrate on
specific areas of interest while debugging programs.

TRACE Mode can be used with Stepped Execution by starting both TRACE Mode and
Step Mode concurrently. By starting both modes, information about the execution of each
statement is automatically displayed as each statement is executed. Either mode can be
started or deactivated without affecting the other.

This section discusses the TRACE commands in general, and those forms of the trace
command which relate to inspection of program logic. This includes the TRACE,
TRACE #, TRACE ’, and TRACE OFF commands.

Activating TRACE Mode
Execution of any TRACE statement (with the exception of TRACE OFF) starts TRACE
Mode. Once started, TRACE Mode remains in effect until TRACE OFF is executed or
until CLEAR or HELP/RESET is executed. All TRACE modes are global in effect. That
is to say that TRACE is either on or off, whatever module position or status.

All TRACE statements may be used as either a program statement or as an Immediate
Mode command.

The TRACE statements and TRACE OFF may be used as program statements to logi-
cally surround areas of program code upon which tracing is required.

For example:

1000 TRACE
1010 .
1020 .
1030 (other program code here)
1040 .
1050 .
1060 TRACE OFF

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-11

When line 1000 is executed, TRACE Mode is activated and TRACE output is generated
during execution of lines 1010 through 1050. When 1060 is executed, TRACE Mode is
deactivated.

TRACE Mode may be activated by entering a TRACE command in Immediate Mode dur-
ing program execution. Here, it is necessary to first interrupt the program by invoking Im-
mediate Mode. This is done by a variety of methods, all of which are documented in
Section 2.5. Of these, the most common method used is the HALT key. When depressed,
program execution is halted and Immediate Mode is invoked. More importantly, HALT
does not disturb the "execution status" of the program, and so allows Stepped Execution
to take place. Once the TRACE command has been entered, execution may be resumed
by depressing EXECUTE or entering the CONTINUE command. The TRACE output is
then generated.

TRACE Output
TRACE Mode generates output on two occasions:

1. Whenever a transfer of control takes place within the executing program.

2. Whenever a variable value is modified in any "Trace-Sensitive" statements. State-
ments considered to be Trace-Sensitive are:

LET Assignment statement (alpha and numeric assignment)
FOR/TO
NEXT
GOSUB’ with parameters
LIMITS
READ
ON ERROR GOTO

TRACE Output on Transfer of Control
Whenever a transfer of control takes place in a traced program, the TRACE processor dis-
plays the message:

TRANSFER TO xxxx

Where xxxx is the line-number to which control is being transferred. Examples of state-
ments that cause a transfer of control are GOTO, GOSUB, GOSUB’, RETURN, and
NEXT.

Inspection and Modification of Program Logic DEBUGGING CODE

6-12 NPL Programmer’s Guide

For example:

:1000 IF A=0 THEN 1200 : REM skip next statement
 : PRINT A : REM this is never exec’d
:1200 GOSUB 1500 : REM call subroutine
:1210 GOSUB ’20 : REM call marked subroutine
:1220 STOP
:1500 REM
 : REM This is a subroutine
 : REM
 : RETURN
:1600 REM
 : REM This is a marked subroutine
 : REM
 : DEFFN’20
 : RETURN
:TRACE (<-- set TRACE Mode ON)
:RUN (<-- run the program)
TRANSFER TO 1200 (<-- TRACE output caused by line 1000)
TRANSFER TO 1500 (<-- TRACE output caused by line 1200)
TRANSFER TO 1200 (<-- TRACE output caused by line 1500)
TRANSFER TO 1600 (<-- TRACE output caused by line 1210)
TRANSFER TO 1210 (<-- TRACE output caused by line 1600)

STOP
:

NOTE: Only GOTO/GOSUB line-number, NEXT, RETURN (from GOSUB, GOSUB’, or
PROCEDURE) and GOSUB’ statements generate TRACE output for transfer of
control. GOTO/GOSUB statement-label, RETURN (value), FUNCTION or PROCE-
DURE calls, and transfers generated by structured statements (WHILE/WEND, RE-
PEAT/UNTIL, SWITCH/CASE, IF/ELSE/ENDIF) do not generate TRACE output.

Trace Output on Variable Modification
Whenever a variable is modified by a TRACE-sensitive statement, the TRACE processor
displays the name of the variable and the value being assigned.

For example:

:10 A=500
:TRACE
:RUN
A= 500
:

In the case of alpha-variables, the value is displayed both in ASCII and HEXADECI-
MAL format, 16 bytes per line up to 6 lines. A maximum of 96 bytes are displayable. If
the value being assigned exceeds 96 bytes, an ellipsis ("...") is displayed following the
value.

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-13

For example:

:10 DIM A$128
:20 A$="This will show TRACE output of a string that is being
 assigned to an alpha-variable that is longer than 96 bytes in

 length"
:TRACE
:RUN
A$= "This will show T" HEX(5468 6973 2077 696C 6C20 7368 6F77 2054)
STR(17) "RACE output of a" HEX(5241 4345 206F 7574 7075 7420 6F66 2061)
STR(33) " string which is" HEX(2073 7472 696E 6720 7768 6963 6820 6973)
STR(49) " being assigned " HEX(2062 6569 6E67 2061 7373 6967 6E65 6420)
STR(65) "to an alpha-vari" HEX(746F 2061 6E20 616C 7068 612D 7661 7269)
STR(81) "able which is lo" HEX(6162 6C65 2077 6869 6368 2069 7320 6C6F)
...
:

If the receiver is subscripted or is a STR() function, then this is shown in the TRACE out-
put. As an additional aid, the calculated values of subscripts and STR arguments are also
displayed. Also, multiple assignment statements are displayed one variable per line

For example:

:10 DIM A(7,7),A$(7,7)40
:20 X,Y=6
:30 A(X-1,Y+1)=30
:40 STR(A$(X,Y),X-4,Y+27)="a subscripted and STR assignment"
:TRACE
:RUN
Y= 6
X= 6
A(5,7)= 30
STR(A$(6,6),2,33)=
 "a subscripted an" HEX(6120 7375 6273 6372 6970 7465 6420 616E)
STR(18)"d STR assignment" HEX(6420 5354 5220 6173 7369 676E 6D65 6E74)
:

If a string value contains undisplayable characters, then each is replaced by a "." in the
ASCII portion of the display; the hex portion is unaffected. Undisplayable characters are
considered to be from HEX(00) to HEX(0F).

For example:

:10 A$=HEX(010203414243)
:TRACE
:RUN
A$= "...ABC" HEX(0102 0341 4243)
:

Inspection and Modification of Program Logic DEBUGGING CODE

6-14 NPL Programmer’s Guide

NOTE: Only simple numeric and alpha assignment statements, NEXT statements, and GO-
SUB’ (passing of parameters) generate TRACE output for modification of vari-
ables. Other statements, including numeric field assignments, parameter passing by
function or procedure call, DATA LOAD, and $PACK/$UNPACK statements do
not generate TRACE output for modification of variables.

TRACE output for numeric variables which are modified in other TRACE-sensitive state-
ments are displayed as if modified in a LET statement. However, some minor differences
exist. For example, if a NEXT statement is executed which exhausts the loop, then
"NEXT END" is displayed.

For example:

:10 FOR I=1 TO 3
:20 NEXT I
:TRACE
:RUN
I= 1
I= 2
TRANSFER TO 20
I= 3
TRANSFER TO 20
I= 3
NEXT END
:

Selective TRACE
There are other TRACE instructions which allow the programmer to refine TRACE out-
put to specific areas of interest. These are called the selective TRACE statements. Selec-
tive TRACE statements used for tracing program logic are: TRACE # and TRACE ’
(refer also to TRACE V, Section 6.4.2).

When using modules, references to specific entities by TRACE V, TRACE #, TRACE ’
are not context sensitive. Any entity meeting the specified TRACE range requirement
will be displayed. Thus, for example, if the command:

:TRACE # 1500,2000

has been executed, any module with line numbers within the range encountered during
program execution will cause TRACE to invoke immediate mode.

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-15

The TRACE # instruction suppresses all TRACE output except that associated with trans-
fer statements to program lines within the specified range of lines specified in the instruc-
tion. TRACE output is also enhanced by TRACE # in that the line number of the
statement which causes the transfer is also displayed.

For example:

TRANSFER FROM 0800 TO 5400

TRACE ’ suppresses all TRACE output except that associated with transfer of control us-
ing GOSUB’ to any of the marked subroutines specified in the instruction.

For each of the selective TRACE statements, the system performs an automatic HALT af-
ter executing the statement that produced the TRACE output. Specifying the "*" parame-
ter in the instruction shows that the system should not perform the HALT. HALTing due
to selective TRACE output is also suppressed using CONTINUE NEXT, CONTINUE
RETURN and CONTINUE LOAD, although this output is still printed.

When debugging programs, these selective TRACE statements are particularly useful to
rapidly find out when a particular section of a program is "branched into," and where the
branch initiated.

For example:

:TRACE # 1500,2000
:RUN

Assuming an appropriate program is in memory, entering these statements allows the de-
veloper to operate the program(s) normally until a statement in the range is executed.
However, when any statement in the range 1500 to 2000 of the program is transferred to,
TRACE output for the transfer is generated (e.g., TRANSFER FROM 0900 TO 1510),
the program is halted and Immediate Mode is invoked. At this point the programmer may
further inspect the circumstances of the transfer.

NOTE: TRACE # and TRACE ’ generate TRACE output for transfers of control only. If a
traced line number range or marked subroutine is encountered as a matter of nor-
mal sequential processing of program lines, TRACE output is not generated.

Trace commands are mutually exclusive. Therefore, entering a trace command of any
type cancels the effect of the previous trace command entered.

Inspection and Modification of Program Logic DEBUGGING CODE

6-16 NPL Programmer’s Guide

Redirecting TRACE Output
 TRACE output is always sent to the console output (CO) device address and as such
may be redirected by the SELECT CO instruction. TRACE output can be directed to
three types of output devices: the screen (the default), an ASCII file, or a printer. The out-
put address, if not the screen, must be a printer class address (204 or from 210 to 21F)
currently setup in the device equivalence table.

For example:

SELECT CO 215

For further details refer to the Statements Guide, SELECT.

6.3.3 Logic Inspection Using LIST

There are two LIST instructions that are useful when inspecting program logic: the LIST
STACK and LIST DT instructions. Both instructions are legal as program statements and
as Immediate Mode commands.

LIST STACK
The LIST STACK instruction produces a listing of all currently active FOR/NEXT loops,
GOSUBs, FUNCTIONs and PROCEDUREs. Information is listed in reverse stack order
(i.e., most recent stack entry is shown last).

For each stack entry, the program statement that caused the entry is displayed. If the
stack entry is a FOR/NEXT loop entry, then the current values of the loop counter, loop
limit and step value are also displayed. If the stack entry is a FUNCTION or PROCE-
DURE, the FUNCTION/PROCEDURE identifier name is displayed after the statement.

For example:

0010 DIM Total,I,X,Y
0020 X=3:Y=7
0030 FUNCTION ’AddNum(J,K)

: STOP #
: RETURN (J+K)
: END FUNCTION

0050 FOR I=X*2 TO 100 STEP 2
: GOSUB 70
: NEXT I

0060 END
0070 GOSUB’Stuff(X,Y) : REM subroutine
0080 RETURN
0090 DEFFN’Stuff(A,B) : REM subroutine ’Stuff

: Total=’AddNum(A,B)
: RETURN : REM STOP here so we can do LIST STACK

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-17

:RUN

STOP 0030
:LIST STACK
0050 FOR I=X*2 TO 100 STEP 2 (<-- output from LIST STACK)

I=6, TO 100, STEP 2
0050 : GOSUB 70
0070 GOSUB ’Stuff(X,Y)
0090 : Total=’AddNum(A,B)
’AddNum
:_

The order in which stack information is listed displays the current "nesting" of active
FOR/NEXT loops, GOSUBs, and function calls. This is useful when using the CON-
TINUE NEXT and CONTINUE RETURN instructions. It can also be used to decide
when CONTINUE NEXT and CONTINUE RETURN are legal, and if executed, to deter-
mine when control is returned to Immediate Mode.

For example, CONTINUE RETURN is only legal when the LIST STACK display shows
a GOSUB, GOSUB’ or FUNCTION entry. If CONTINUE RETURN is executed at that
point, then control is returned to Immediate Mode at the statement following the last GO-
SUB or GOSUB’ entry displayed by LIST STACK (assuming normal completion of the
subroutine).

In addition, CONTINUE NEXT is only legal when the last item in the LIST STACK dis-
play is a FOR/TO entry. If CONTINUE NEXT is executed at that point, control is re-
turned to Immediate Mode at the statement following the NEXT statement that
terminates the loop (assuming normal completion of the loop).

LIST DT
The LIST DT instruction is useful in inspecting the recent program overlay sequence.
The program load sequence message shown in the LIST DT display shows the names of
up to the last six programs overlaid to produce the current program in memory. If more
than six programs have been overlaid, then the first program and the last five programs
are displayed only. Only programs loaded by name are displayed. Programs loaded using
LOAD DA do not appear. In addition, LIST DT shows any modules that have been IN-
CLUDEd, also which module is currently the active List Module and Run Module.

6.3.4 Logic Modification

It is possible to modify the logic flow of an executing NPL program from Immediate
Mode without actually modifying the text of the program. Immediate Mode commands
which allow this are:

Inspection and Modification of Program Logic DEBUGGING CODE

6-18 NPL Programmer’s Guide

GOTO
RETURN
RETURN CLEAR
NEXT
RUN [#]

Use of these commands usually requires that the programmer be aware of the status of
the RETURN Stack. LIST STACK is useful for this purpose.

GOTO
Entering the GOTO command from Immediate Mode causes program execution to pro-
ceed at the specified line number or statement label, as opposed to the next statement in-
ternally scheduled by the Interpreter. When GOTO is entered followed by a line number
or statement label, the system displays the specified program line, or the statement follow-
ing the specified statement label. Continuing (or stepping through) the program at this
point causes execution to proceed at the indicated statement.

RETURN
Entering RETURN in Immediate Mode during the execution of a subroutine causes the
subroutine to RETURN at that point, and not when RETURN would normally be encoun-
tered in the program.

This is useful for prematurely terminating the execution of a subroutine, and to continue
execution following the subroutine call. As with GOTO, the "new" next statement to be
executed is displayed, and continuing or stepping proceeds starting at this statement.

RETURN CLEAR
Entering RETURN CLEAR in Immediate Mode deletes all RETURN Stack entries up to
and including the most recent GOSUB entry. FUNCTION and PROCEDURE entries
may not be deleted by RETURN CLEAR. That is, the most recent GOSUB call and all
subsequent FOR/NEXT loop information are cleared from the stack. The point at which
execution resumes (continued or stepped) does not change. Therefore, this is usually fol-
lowed by entering a GOTO to redirect execution.

This is useful for prematurely terminating the execution of a subroutine when such a
statement should have been included in the program, or when a logic modification trans-
fer out of a subroutine has rendered the RETURN information superfluous (i.e., GOSUB
or GOSUB’ entry in LIST STACK display) in the stack.

DEBUGGING CODE Inspection and Modification of Program Logic

NPL Programmer’s Guide 6-19

RETURN (value)
Entering RETURN (value) in Immediate Mode during execution of a FUNCTION causes
the FUNCTION to prematurely exit with the return value supplied by the expression.
Execution continues in the statement that made the function call, and halts before execut-
ing any further statements. This may be useful for prematurely terminating the execution
of a function.

RETURN ERROR (code)
Entering RETURN ERROR (code) in Immediate Mode during execution of a FUNC-
TION or PROCEDURE causes the function to prematurely exit, raising the indicated er-
ror code to the statement that made the function or procedure call. If the statement that
made the function call has error handling logic, program execution halts before executing
any further statements, otherwise the statement which contains the function call will be
displayed with the error code. This may be useful for prematurely terminating the execu-
tion of a FUNCTION or PROCEDURE when it is advisable to continue execution.

NEXT
Entering NEXT followed by the counter variable in Immediate Mode during the execu-
tion of a FOR/NEXT loop causes the counter variable to be incremented (or decre-
mented) and execution to continue at the statement following the FOR/TO statement.
This is useful for prematurely terminating execution of the current iteration of a
FOR/NEXT loop.

NOTE: If the last iteration of a loop is in progress (when NEXT is entered), the NEXT stack
entry is removed, but the point at which execution would resume is not changed (a
GOTO is usually entered here).

NEXT is also valid for terminating FOR/NEXT loops entered as a multi-statement com-
mand in Immediate Mode.

For example:

:FOR I=1 TO 10: PRINT A(I) : NEXT I

When used in this manner, NEXT does not modify the program logic (assuming the in-
dex variable is not used by the program). NEXT only modifies program logic if the corre-
sponding FOR/TO statement was executed as a program statement.

Inspection and Modification of Program Logic DEBUGGING CODE

6-20 NPL Programmer’s Guide

RUN #
Entering the RUN command followed by a line number (and an optional statement num-
ber) causes execution to proceed at the specified line number (and statement within line,
if specified). In addition, the RETURN Stack is cleared. Therefore, RUN # cannot be
used to resume execution within a subroutine or FOR/NEXT loop.

RUN
Entering the RUN command without a line number causes the RETURN Stack to be
cleared. All non-common variables are reinitialized and execution resumes at the first pro-
gram line.

6.4 Inspection/Modification of Program Variables

When a program’s execution is halted by any means, program variable values may be in-
spected or modified using Immediate Mode commands. The Interpreter also provides a
means by which variable modification may be automatically traced.

6.4.1 Variable Inspection

The following list summarizes those instructions that are used for the inspection of pro-
gram variable values (detail on each command is found in the Statements Guide). Each of
these instructions may be entered in Immediate Mode to display the contents of the vari-
ables of a halted program. All references to variables will refer to variables within scope
at the point of execution within the current executing module.

Commands useful for variable inspection include:

• PRINT --prints the contents of the specified variables in zoned format.

• PRINTUSING--prints the contents of the specified variables according to the
specified format image. If image is specified as an image statement, then the pro-
gram must be resolved.

• MAT PRINT --prints the contents of the specified alpha or numeric arrays. One
dimensional arrays are displayed with one element per line of the screen. Two di-
mensional arrays are displayed one row per line.

DEBUGGING CODE Inspection/Modification of Program Variables

NPL Programmer’s Guide 6-21

• LIST DIM --displays the contents of all or selected variables which are currently
defined (both common and non-common) in the variable stack, in alphabetical or-
der by variable name.

NOTE: Not all variables listed are necessarily referenced by the current program (e.g., com-
mon variables from previous programs, or variables defined due to Immediate
Mode commands). LIST V generates a list of only those variables that are refer-
enced by the current program.

• LIST STACK DIM --same as LIST DIM except variables are displayed in stack
order (variables most recently defined by the program appear first).

The values of variables specified in the commands are retrieved from the variable
stack of the halted program if they are currently defined by the program.

NOTE: If a scalar variable is referenced in an Immediate Mode command that was not de-
fined by the program, it is defined in the variable stack when the Immediate Mode
command is executed (with default size and value). Although this does not usually af-
fect the integrity of the program’s execution, it consumes variable segment space
and should be avoided unless intended. Byte 38 of $OPTIONS may be used to sup-
press the implicit declaration of numeric and string scalars.

The syntax of many of the above instructions supports the evaluation of numeric-expres-
sions. Therefore, since computations are allowed, the programmer can easily manipulate
data in a way that renders it more meaningful for debugging purposes.

For example, entering the following command in Immediate Mode:

:PRINT A,STR(B$,1,Q),VAL(C$,3)*2^8

prints the values of A, the first Q bytes of B$, and the numeric value of C$ times 2 to the
eighth power. If the variables A, B$, C$ and Q are already defined (by the resident and
executed NPL program), then the current values of these variables are used in the compu-
tation for the result.

Variable inspection may be further enhanced by using other statements such as those that
perform looping, conditionals, data conversion, etc.

For example:

:FOR I=1 TO Q : PRINT VAL(STR(A$(I),20,2)) : NEXT I

Inspection/Modification of Program Variables DEBUGGING CODE

6-22 NPL Programmer’s Guide

This command entered in Immediate Mode prints the numeric value of the 21st and 22nd
bytes of the first Q elements of A$(). The value of Q is taken from the current variable
stack.

NOTE: The value of I is modified by this statement and care should have been taken that
the value of I is not depended upon by the program.

When it is found that lengthy display statements are being used repeatedly to inspect vari-
ables, it is often useful to include the statement(s) as either a DEFFN’ text definition or a
DEFFN’ subroutine (if the display procedure is more lengthy) in the program, by that al-
lowing that it may be invoked with a single SF Key.

NOTE: This must be done prior to the initial execution of the program since entering pro-
gram statements during execution disturbs the "execution status" of the program
(for further details on the use of DEFFN’ text definition, refer to Section 5.4.5).

For example:

:0000 DEFFN’0<
: I=L : REM set I to top of linked list
:0001 IF I=0 THEN 2 : REM quit when link of 0 found<
: PRINT I,L1$(I) : REM print data at node I<
: I=VAL(L$(I),2) : REM link to next node<
: GOTO 1 : REM iterate
:0002 PRINT "END OF LIST"<
: RETURN

This example displays the contents of L1$() in the logical order defined by the linked list
contained in L$(). The top pointer to the linked list is assumed to be in L. This subroutine
may be invoked from Immediate Mode by depressing SF key number 0 (presuming the
SF keys are in DEFFN Mode). When the subroutine is completed (i.e., the linked list is
displayed) control returns to Immediate Mode.

It is also often useful to include display instructions in program text at strategic points to
repeatedly report on the contents of important variables during program execution.

6.4.2 Automatic Variable Inspection with TRACE

As discussed in Section 6.3.2, the TRACE V instructions activate a special mode of pro-
gram execution called TRACE Mode. When TRACE Mode is active, the TRACE proces-
sor displays information on transfer of control, and the name and value of variables
whenever a variable is modified in a Trace-Sensitive statement of an executing program.

DEBUGGING CODE Inspection/Modification of Program Variables

NPL Programmer’s Guide 6-23

This section discusses a special form of the TRACE command that allows for selective
variable modification "traps."

TRACE V
TRACE V is a derivative of the general TRACE instruction. TRACE V provides a means
by which the programmer can refine TRACE output to concentrate on a specific variable
or alphabetical range of variables.

The general form of the instruction is:

TRACE V [*] [var1][,[var2]]

TRACE V may be used in a program statement or entered as an Immediate Mode com-
mand. When executed, TRACE V starts TRACE Mode and suppresses all TRACE output
except that associated with the modification of the specified variable or alphabetic range
of variables.

When a variable in the specified range is modified by a TRACE-sensitive statement in
the executing program, the system produces TRACE output for the variable and then per-
forms an automatic HALT, at which point Immediate Mode is invoked (for further details
on TRACE output for variables, refer to Section 6.4.2).

Specifying the "*" parameter in the instruction suggests that the system should not per-
form the HALT. HALTing due to selective TRACE output is also suppressed during
CONTINUE NEXT, CONTINUE RETURN and CONTINUE LOAD, although this out-
put is still be printed.

As with other selective TRACE commands, references to specific entities are not context
sensitive. Any entity meeting the specified TRACE range requirement will be displayed.

For example:

:TRACE V A$

If this statement was executed, any TRACE-sensitive assignment to any variable named
A$ will be displayed as encountered during execution, even if different actual variables
are involved. In other words, a FUNCTION’s local A$ and a module’s static A$ would
both fulfill the range, but are completely separate variables.

When debugging programs, the TRACE V statement is particularly useful to rapidly de-
termine at which point a particular variable is being modified by a program or sequence
of programs.

Inspection/Modification of Program Variables DEBUGGING CODE

6-24 NPL Programmer’s Guide

For example:

:TRACE V Q$
:RUN

Assuming an appropriate program is in memory, entering these statements allows the pro-
grammer to operate the program normally. However, when any TRACE-sensitive assign-
ment of the program(s) modifies the Q$ variable, TRACE output on Q$ is generated, the
program is HALTed and Immediate Mode is invoked. At this point the programmer may
further inspect the circumstances of the modification using other Immediate Mode com-
mands.

NOTE: TRACE V generates TRACE output only when a variable is modified in a TRACE-
sensitive statement. There are other statements in NPL that may modify a variable
but that is not reported in TRACE output (e.g., DATALOAD, $UNPACK, INPUT,
etc.).

6.4.3 Variable Modification

Program variable values may be modified any time by halting the program and executing
an Immediate Mode command that modifies variable content. Any instruction in the NPL
language that modifies variable content is legal as an Immediate Mode command.

This includes assignment statements (LET alpha and numeric), keyboard input state-
ments (INPUT, INPUT, non-polling KEYIN...), data conversion (PACK, UNPACK,
CONVERT...), data movement (MAT COPY, MAT MOVE, MAT SORT), diskimage
I/O statements (DATALOAD DA, DC, BA), etc.

Whenever a variable is assigned a value in an Immediate Mode command, the value is as-
signed to the defined variables stack in the variable segment of the halted program. There-
fore, when execution of the program is continued, the new value of the variable is used in
any subsequently executed program logic.

If a scalar variable is referenced in an Immediate Mode command that is not defined in
the current variable stack, then the variable is added to the stack with the new value. $OP-
TIONS byte 38 may be used to suppress the implicit declaration of numeric and string
scalars. Any such default declarations, or any explicit DIM statements entered in Immedi-
ate Mode, can only be used to declare static variables in the current Executing Module.
Recursive variables may not be declared in Immediate Mode.

DEBUGGING CODE Inspection/Modification of Program Variables

NPL Programmer’s Guide 6-25

For example:

:STR(B$,,Q)=ALL("X")

Sets the first Q bytes of program variable B$ to "X"s.

:READ X,Y

Reads the next two data values (as specified by DATA statements in the program) to pro-
gram variables X and Y. The DATA pointer is also advanced by two elements.

:FOR I=1 TO 10: INPUT A(I) : NEXT I

Inputs data values from the keyboard into the elements of A().

NOTE: The value of I is also modified.

6.5 Inspection of Program Text

At any time while in Immediate Mode, program text of the HALTed program may be
listed without disturbing the execution status of the program.

6.5.1 Inspection Using the LIST Commands

Commands used for inspection of program text included:

• LIST -- Lists the program text currently in memory one screen at a time (touch-
ing return advances to next screen). Specific segments of a program may be
listed by specifying program line number ranges in the command.

• LIST D -- Same as LIST except multi-statement program lines are "decom-
pressed" to show one statement per physical screen line, irrespective of the man-
ner in which the line was originally entered. Additionally, LIST D performs an
internal cross-reference on program line numbers and displays a "-" prior to the
line number on the display if it is referenced by any statement in the program.

• LIST V -- Produces a cross-reference listing of all or specified variables refer-
enced in program text. For each variable that is referenced in a program, the
cross-reference listing may show program line numbers of the reference, or op-
tionally, the full program line.

Inspection of Program Text DEBUGGING CODE

6-26 NPL Programmer’s Guide

• LIST #-- Produces a cross-reference listing of references to all or specified pro-
gram line numbers.

• LIST ’ -- Produces a cross-reference listing of references to all or specified
DEFFN’ subroutines in the program or in external subroutine libraries.

• LIST T -- Finds all occurrences of a specified text string in a program. Either pro-
gram line numbers, or optionally, the full program line, may be displayed for
each occurrence of the text string.

• LIST (Special Identifier Type)-- Several LIST statements are available to pro-
duce cross-reference listings of special identifier types. Output is similar to LIST
V, and the cross-reference is only for the current List Module.

LIST FUNCTION lists all (or specified) FUNCTION identifier references.

LIST PROCEDURE lists all (or specified) PROCEDURE identifier references.

LIST RECORD lists all (or specified) RECORD identifier references.

LIST FIELD lists all (or specified) FIELD identifier references.

LIST lists all (or specified) statement label references.

The cross-referencing LIST statements (i.e., LIST V, LIST #, etc.) ignore all program
statements that contain syntax errors.

Refer to the Statements Guide for more detailed information on the use of LIST state-
ments.

6.5.2 Redirecting LIST Output

Output displayed from LIST commands is always directed to the device address specified
by the LIST device. The current selection for the LIST device can be determined by enter-
ing:

X$=$SELECT(LIST):PRINT X$

in Immediate Mode. The current selection for the LIST device can be modified by the SE-
LECT LIST command.

DEBUGGING CODE Inspection of Program Text

NPL Programmer’s Guide 6-27

SELECT LIST may be used to direct LIST output to the screen, a printer or an ASCII file
within the native file system.

For example:

SELECT LIST 215

After executing this command, all LIST output is directed to device address 215 (a
printer or an ASCII file). The output address, if not the screen, must be a printer type ad-
dress (204 or 210 to 21F) currently set up in the device equivalence table. The default ad-
dress at boot time is address 005 (the screen).

For further details refer to the Statements Guide, SELECT LIST and LIST DT.

6.6 Inspection of the Program Environment

There are many useful Immediate Mode commands and system variables that yield infor-
mation about the environment in which the program is executing.

These are summarized here and detailed in the NPL Statements Guide.

6.6.1 Commands

The following commands can be used to inspect or modify the NPL programming envi-
ronment.

• LIST DT --Output from this command is particularly useful in inspecting the en-
vironment, as it shows how NPL is currently mapped to the native operating sys-
tem in one display.

This also displays the status of the Device Table and Device Equivalence Table.
This is a display of all currently selected device addresses and opened data files,
and the current device address mapping to native operating system files and de-
vices. In addition, the current List Module and Run Module, as well as a list of
all INCLUDEd modules are displayed.

Inspection of the Program Environment DEBUGGING CODE

6-28 NPL Programmer’s Guide

• LIST DC --Displays the contents of the diskimage at a specified device address.
Programs, data files, scratched programs and scratched data files are all listed.
The use of wild cards and relational expressions provides for listing files accord-
ing to a certain name, type, location or date stamp, or combination of that.

• $SHELL--Native operating system shell commands may be executed directly
from Immediate Mode in NPL. This is useful in locating NPL diskimages,
BOOT programs and native environment information. For further details on
$SHELL, refer to Chapter 8, in addition to the Statements Guide.

• SPACE--The SPACE instruction and its derivatives (SPACEF, SPACEK, and
SPACEW) provide information on the available program text area and program
variable area.

6.6.2 System Variables

All System Variables may be inspected any time from Immediate Mode or under pro-
gram control. Many of these system variables may also be modified under the conditions
documented in the Statements Guide.

$BOXTABLE Indicates type of screen "boxes" currently enabled and char-
acter segments used to form character boxes.

$KEEPREMS Contains option values for the handling of REMS, spacing
and return-graphics.

$KEYBOARD Contains the current keyboard translation table.

$MACHINE Contains basic information about the type of hardware cur-
rently hosting NPL and the version of NPL.

$NETID Contains the current physical (8-byte) node address of the
workstation on Novell networks.

$OPTIONS Contains numerous options in general which control the be-
havior of the RunTime program under designated situations.

$PROGRAM Contains information on the program load sequence of all
currently loaded overlays.

DEBUGGING CODE Inspection of the Program Environment

NPL Programmer’s Guide 6-29

$PSTAT Contains general status information about each active NPL
process on the system.

$REV Contains the official 12-digit NPL Revision Code or the
RunTime.

$SCREEN Contains the current screen translation table.

#TERM, #PART, #ID Contains the unique identification numbers for each user on
multi-user systems.

Refer to Chapter 2 of the NPL Statements Guide for more details on these system vari-
ables.

6.6.3 Public Functions, Procedures and Variables

Available library functions, procedures, records, marked subroutines (DEFFN’s) and vari-
ables may be browsed using the LIST PUBLIC statements. All public entries in currently
loaded and resolved modules may be displayed by these statements.

The LIST PUBLIC statement displays the declaration and location of the PUBLIC vari-
able types in all currently loaded and resolved PUBLIC sections in the workspace. This
requires that all modules be INCLUDEd by a previous RUN of the program, or with an
Immediate Mode INCLUDE statement before this statement can be issued. The LIST
PUBLIC statement is especially useful to select new public names that would not conflict
with currently loaded declarations, as well as a reminder of public references available
when programming. Special Identifier Types available for the LIST PUBLIC statement
include:

FUNCTION
PROCEDURE
RECORD
FIELD
DEFFN
V

The output of the statement shows the name of the indicated identifiers, preceded by the
module name in which the identifier is declared, and the name of any PUBLIC section in
which it was declared, if applicable.

Inspection of the Program Environment DEBUGGING CODE

6-30 NPL Programmer’s Guide

All of the above program LIST statements apply only to the program text in the current
List Module.

NOTE: All PUBLIC identifiers displayed with LIST PUBLIC are shown no matter whether
or not the referenced module is scramble-protected.

DEBUGGING CODE Inspection of the Program Environment

NPL Programmer’s Guide 6-31

CHAPTER 7

DEVICE SUPPORT

7.1 Overview

This chapter discusses the method by which peripheral devices are accessed by NPL pro-
grams. Devices are controlled by a device emulation scheme which provides high com-
patibility with software originally written for the Wang 2200 computer system. As
important, it also provides a common device controlling scheme across varied hardware
and native operating system environments which NPL supports. As a result, porting NPL
application software from one environment to another requires minimal or no changes to
application code. This chapter deals primarily with this subject and is essential to an un-
derstanding of NPL.

NOTE: Subtle differences do exist for specific hardware and operating environments. These
differences are documented in a series of operating system and environment-specific
NPL Supplements which should be used in conjunction to this documentation.

DEVICE SUPPORT Overview

NPL Programmer’s Guide 7-1

Section 7.2 provides a general overview to the NPL device addressing scheme and to the
method of equating logical NPL device addresses with physical native operating system
files and devices.

Section 7.3 discusses storage devices.

Section 7.4 discusses screen handling.

Section 7.5 discusses keyboard support.

Section 7.6 discusses mouse support.

Section 7.7 discusses terminal/monitor support.

Section 7.8 discusses printers.

Section 7.9 discusses serial devices.

7.2 Device Emulation

As discussed in Chapter 1, NPL uses a hardware independent method of accessing periph-
eral devices. This scheme allows developers to reference external peripheral devices in a
generic fashion which in turn allows highly portable application to be developed. The fol-
lowing sections discuss NPL device addressing in detail.

• Section 7.2.1 discusses NPL device addresses.

• NPL devices are logical devices, not physical devices. Each NPL logical device
is mapped to a physical native operating system peripheral device or filename.
Section 7.2.2 discusses how NPL logical device addresses are established using
the Device Equivalence Table (DET).

• In addition to device addresses, NPL provides developers with a means of estab-
lishing default addresses for subsequent use by their NPL routines. This is accom-
plished by the Internal Device TABLE (DT) and is discussed in Section 7.2.3.

• NPL also allows developers to gain exclusive access to selected devices. This is
essential in multi-user environments. This is discussed in Section 7.2.4.

Device Emulation DEVICE SUPPORT

7-2 NPL Programmer’s Guide

7.2.1 Device Addressing

Each NPL peripheral device is accessed by a unique three character device address. Each
character of the device address must be an ASCII representation of a hexadecimal digit
(numbers 0-9 or letters A-F). Each class of peripheral has a certain range of acceptable
device addresses. These are discussed in more detail in the sections below dealing with
the classes of peripherals. In addition, for some classes of devices, notably print devices,
the actual address is specified by the second and third character of the device address.
The first character is used to control the format of output to the device. This topic is dis-
cussed in greater detail in sections below dealing with specific peripherals.

NOTE: This implementation of device addresses is fully compatible with the Wang 2200.

7.2.2 The Device Equivalency Table (DET)

For NPL I/O routines to function properly, the I/O operation must be directed to the cor-
rect native operating system file or device. The Device Equivalence Table (DET) is used
to establish an equivalence between the NPL logical device addresses and the equivalent
physical files or devices maintained within the native operating system for the particular
hardware.

For each NPL device address used by a given application, the DET contains an entry with
that particular address, and the equivalent native operating system file or device name.
For example, the following 3 character device addresses could be equated to the corre-
sponding native devices or files.

D10 PLATTER1.BS2
D20 PROGRAMS.BS2
215 LPT1
216 COM2
204 WORK.TXT

During program execution, whenever the RunTime Program encounters a logical NPL de-
vice address in program syntax, the DET is inspected to determine the equivalent physi-
cal native operating system device or file name that it references. The I/O operation is
then directed to that file or device. If it is the first access to the specified NPL device ad-
dress since the device equivalence was established, a logical open is performed for the na-
tive operating system file or device before the I/O operation is performed. This mapping
operation is entirely transparent to the NPL program.

DEVICE SUPPORT Device Emulation

NPL Programmer’s Guide 7-3

The $DEVICE Statement
The Device Equivalence Table is setup at execution time through the use of the $DE-
VICE statement. This is usually accomplished either the startup BOOT or PREBOOT
programs before any application code is executed. Refer to Section 2.4 and 5.3 for further
information on the startup BOOT and PREBOOT programs.

At any point during execution of NPL programs, the DET may be modified and in-
spected, again through the use of the $DEVICE statement.

The general format the $DEVICE statement is:

Device Emulation DEVICE SUPPORT

7-4 NPL Programmer’s Guide

General Form:

Form 1:

$DEVICE({device-address})=alpha-expression
 {file-number }
 {alpha-variable }

Form 2:

alpha-receiver= $DEVICE({device-address})
 {file-number }
 {alpha-variable}

Where:

alpha-variable =contains a valid NPL device-address or file-num-

ber (with no preceding slash).

alpha-expression =an alpha-expression which evaluates to a native

operating system file-specification or device-

specification followed by one or more optional

clauses. The total resultant value of the alpha-

expression should not exceed 50 characters in

length. One blank space separates the file or de-

vice-name and each optional clause.

clause = [1.2={N,Y}]

[1.4={N,Y}]

[2.8={N,Y]]

[360={N,Y}]

[720={N,Y}]

[ALF={N,Y}]

[ERR={N,Y}]

[EXT={N,Y}]

[LCL={N,Y}]

[PES=numeric-constant]

[SES=numeric-constant]

[TMO={N,Y}]

[XLA={N,Y}]

DEVICE SUPPORT Device Emulation

NPL Programmer’s Guide 7-5

NOTE: "File numbers" are established in the Internal Device Table. Refer to Section 7.2.3
below for details on the Internal Device Table.

The $DEVICE statement can also be used to set certain I/O options for accessing the
specified native operating system file or device. Refer to the Statements Guide, $DE-
VICE, for details.

NOTE: Native operating environment file and device naming conventions are extremely im-
plementation specific. The examples shown below and throughout this guide refer-
ence IBM MS-DOS file naming conventions. Refer to the appropriate NPL
Supplement for details on naming conventions for the machine being used.

For example:

$DEVICE(/D11)="PLATTER1.BS2"

equates the NPL disk address D11 with the native operating system file PLATTER1.BS2.
Any subsequent disk I/O directed to address D11 is directed to file PLATTER1.BS2.

$DEVICE(/215)="LPT1"

equates the NPL printer address 215 with the native operating system device LPT1. Any
subsequent printer output directed to address 215 is directed to device LPT1.

This method of device handling ensures that I/O statements in existing Wang 2200 Basic-
2 programs require no modification. It also ensures that device addressing methods used
internally by NPL applications are 100% portable to any NPL supported operating sys-
tem. The job of "software conversion" for I/O is reduced to adapting the $DEVICE state-
ments in a startup program, to the appropriate native operating system file and device
naming conventions.

Default Device Equivalence Table
When the NPL RunTime program is initially executed, the Device Equivalence Table
automatically contains a series of default entries. Device addresses D10, D11, D12, 215,
and 204 are defined. Refer to Chapter 5 of the appropriate NPL Supplement for specifics
on which native operating system files or devices are assigned to these default devices.

Device Emulation DEVICE SUPPORT

7-6 NPL Programmer’s Guide

Maximum Entries Allowed in the Device Equivalence Table
The default maximum number of entries addressable by the NPL Device Table at startup
is 16. This default value can be overridden by the RunTime’s /D startup option (refer to
Section 2.4). The /D option allows the developer to specify the maximum number of De-
vice Equivalence Table entries required by an application, in the range of 16 to 255.

The maximum number of DET entries in effect is stored in byte 16 of $MACHINE. If
this maximum number of entries is exceeded, a non-recoverable error (A02) is generated.
In addition, byte 17 of $OPTIONS contains the current number of DET entries defined
(non-blank addresses). Refer to the Statements Manual, $MACHINE, for details.

Inspecting the Device Equivalence Table
Existing entries in the DET can be examined by use of $DEVICE on the right side of a
LET statement.

For example:

X$=$DEVICE(/D11)

places the currently defined device equivalence for address D11 in the variable X$.

This allows programs to retain prior values of the DET before modifying the DET so that
the original values can be restored at a later point.

NOTE: If a specified device address is not defined in the DET, the receiver variable is set to
blank.

The DET may also be examined in physical order without knowing specific addresses de-
fined by use of the $DET(x) statement. $DET(x) returns the device-address defined for
the specified (x) physical entry in DET. Refer to the Statements Guide, $DET, for details.

Modifying the DET
The DET is "keyed" by device address. To modify an existing entry for a particular ad-
dress, simply execute a $DEVICE statement to establish the new equivalence.

For example:

10 $DEVICE (/D11)="PLATTER1.BS2"
.
.
.
8000 $DEVICE (/D11)="DATA2.BS2"

DEVICE SUPPORT Device Emulation

NPL Programmer’s Guide 7-7

NOTE: Execution of a $DEVICE statement which references an existing entry (i.e., an ad-
dress already defined) causes a logical CLOSE of the original native operating sys-
tem file or device equated with the NPL address. The new native operating system
file or device is opened when the next I/O instruction to the device address is exe-
cuted.

Clearing Entries in the Device Equivalence Table
To remove an entry from the Device Equivalence Table, or reuse a "slot" in the table with
an NPL address not currently defined, the device equivalence entry must be cleared be-
fore it can be available for new devices. The format of the statement for clearing device
entries is:

$DEVICE(/xxx)=" " or blank alpha-variable

where xxx is the address to be cleared

NOTE: The default devices which have been setup by the system must be cleared before any
of those particular "slots" would become available for use.

7.2.3 The Internal Device Table (DT)

In many cases, NPL I/O statements do not explicitly specify an NPL device address. In-
stead, reference to devices is based on the program modifiable Internal Device Table
(DT). The Internal Device Table contains a series of mnemonic device specifications, for
different default peripheral devices, which are equated to NPL addresses by use of the SE-
LECT statement. In addition to the mnemonic device specifications, the Internal Device
Table contains up to 256 file number slots for use with disk device addresses which are
also equated to NPL addresses by the SELECT statement.

Use of the DT for certain disk I/O operations is optional, but use of other I/O operations
requires that valid entries be present in the DT. That is, some disk I/O statements allow
the disk device address to be specified explicitly in the statement itself. Other disk I/O
statements and most other I/O operations use the implicit device addresses specified in
the DT. This topic is covered in more detail in the sections dealing with specific devices
below.

NOTE: The Internal Device Table contains other information which affects program opera-
tion, but is not directly related to I/O. These parameters are established by the SE-
LECT statement. For further details refer to the NPL Statements Guide, SELECT.

Device Emulation DEVICE SUPPORT

7-8 NPL Programmer’s Guide

Default Devices
The DT maintains a series of default device addresses for use in I/O operations where a
specific address is not specified. This feature enables an application to set up default de-
vice addresses in one program and access these defaults in subsequent programs. Thus,
the logic for assigning device addresses can be centralized and therefore easy to modify
should the need arise. The modifiable default devices maintained by the internal device
table are:

DISK Used for the input and output of all disk related operations
directed to the primary (default) disk device.

NOTE: Up to 255 additional disk devices can be established by use of the disk file slots (re-
fer to "File Number Slots" below in this section). The default DISK address is /D11.

CO (Console Output) Used for TRACE output when debugging. The default CO
address is /005--the terminal screen.

PRINT Used for the output of PRINT and PRINTUSING statements
executed during program operation.

NOTE: Immediate Mode PRINT statements are always directed to the terminal screen (ad-
dress /005) regardless of the default PRINT selection. The default PRINT address is
/005--the terminal screen.

LIST Used for the output of LIST commands. The default LIST
address is /005--the terminal screen.

LOG Used for output of keyboard logging. The default LOG ad-
dress is /000--the null device.

The DT also maintains default line width values for the PRINT, CO, LIST LINE, and
LIST devices. The default value for line width is 80.

NOTE: Other entries for default devices are maintained for purposes of compatibility with
the Wang 2200. These other default devices may be modified by an NPL program
but, in general, do not affect operation of the NPL program. For further details re-
fer to the Statements Guide, SELECT.

DEVICE SUPPORT Device Emulation

NPL Programmer’s Guide 7-9

File Number Slots
In addition to the default devices described above, the DT maintains between 16 and 256
file number slots. The number of file number slots is dynamic and is controlled by the SE-
LECT DISK/FILE NUMBER statement. Refer to the Statements Guide, SELECT
DISK/FILE NUMBER, for further information on establishing the number of file number
slots.

These slots are referenced by file number: #0 to #255. Each file slot can maintain one de-
vice address. Once a disk device address is assigned to a file number slot, subsequent I/O
operations directed to that file number are directed to the corresponding device address.
The same device address may be assigned to multiple file number slots.

NOTE: The default DISK parameter is file slot #0. In addition to maintaining disk device ad-
dresses, the file number slots can be used for a class of disk operations referred to as
CATALOG operations. This topic is discussed in further detail in Section 7.3.8 be-
low.

Modifying the Internal Device Table
Both default device addresses and file number slots within the DT may be modified ex-
plicitly by use of the SELECT statement or implicitly by use of the RESET function,
CLEAR instructions or LOAD RUN instruction.

Use of the SELECT Statement
Addresses (and line width for PRINT, LIST, and CO) for DT entries may be specified by
use of the SELECT statement.

For example:

10 SELECT PRINT /215(132)

Causes subsequent PRINT output (under program control) to be directed to address 215
with a line width of 132 characters.

20 PRINT "The amount due is ";A

Prints the literal string "The amount due is " followed by the contents of variable A to the
native operating system device or file equated to address 215.

10 SELECT DISK /D35

Causes subsequent disk I/O where an address or file number is not specified to be di-
rected to address D35.

Device Emulation DEVICE SUPPORT

7-10 NPL Programmer’s Guide

20 DATA LOAD BAT (100) X$()

Loads the contents of sector 100 of the native operating system device or file equated (us-
ing the DET) with address D35 into variable X$().

10 SELECT #2 /D20

Causes subsequent disk I/O directed to file #2 to be directed to address D20.
20 DATA LOAD BAT #2, (84) X$()

Loads the contents of sector 84 of the native operating system device or file equated (us-
ing the DET) with address D20 into variable X$().

Other Functions and Statements
Use of the RESET function effects the DT as follows:

• The CO entry is set to device /005. The line width for the CO entry is set to 80
columns.

• The RESET function can be accessed from the HELP processor when using the
interpretive RunTime (RTI). For further details refer to the Statements Guide,
RESET. For further details on the HELP processor, refer to Section 11.7 of the
Programmer’s Guide.

• Use of the CLEAR statement with no parameters, or a LOAD RUN statement, af-
fects the DT as follows:

1. PRINT and LIST entries are set to the current device address and line width of CO.

2. File slot #0 is cleared except for the DISK device address.

3. File slots greater than #1 - #255 are cleared entirely.

NOTE: The effects are the same whether the statements are used under program control or
in Immediate Mode.

Examining the DT
The DT may be listed to the screen or printer by use of the LIST DT statement or com-
mand. For further details refer to the Statements Guide, LIST DT.

Individual entries within the DT may be examined under program control by the $SE-
LECT function.

DEVICE SUPPORT Device Emulation

NPL Programmer’s Guide 7-11

For example:

10 X$=SELECT DISK
10 X$=SELECT #4
10 X$=SELECT LIST

For further details on $SELECT, refer to the Statements Guide, $SELECT.

Module Status
The $PROGRAM and "Program Load Sequence" information displayed in LIST DT ap-
plies to program overlays loaded in current RUN module only and does not show addi-
tional modules loaded from INCLUDE statements.

NOTE: The executing MODULE is not displayed unless the program is currently HALTed
and could be CONTINUEd or STEPped.

Following the Program Load sequence, LIST DT displays all modules (except the root
module) which are currently Included in the workspace, and the current state of the each
module. Refer to the Statements Guide, LIST DT and $PROGRAM for details.

Wang 2200 Compatibility Note
The use of the DT is almost fully compatible with the Wang 2200 Basic-2 language. For
further details on SELECT, and full details on NPL variance on the implementation of
the DT, refer to the Statements Guide, SELECT. In addition, the LIST DT command has
been enhanced under NPL. For further details refer to the Statements Guide, LIST DT.

7.2.4 Exclusive Access

NPL provides a method of obtaining exclusive access on a dynamic basis to specified de-
vices. This is an essential component of multi-user environments. Typically exclusive ac-
cess would be used to:

• Reserve a printer or other output device for the duration of a report.

• Temporarily restrict other users from accessing a certain disk device during a
critical update.

Exclusive access to specified devices is obtained by the $OPEN statement.

Device Emulation DEVICE SUPPORT

7-12 NPL Programmer’s Guide

The $OPEN Statement
Use of the $OPEN statement "hogs" a particular device for the user issuing the request,
so that all subsequent read or write operations to that device are reserved for that user.
This access to the device remains "hogged" by the user until the device is released by one
of the following events:

• A $CLOSE statement is executed for that device or for all devices.

• The HELP processor is invoked. For further details on the HELP processor, refer
to Chapter 11.

• The RunTime program is exited.

• An END, CLEAR (with no parameters), or LOAD RUN statement is executed.

• A $DEVICE statement for the OPENed device is executed.

NOTE: A disk device is always accessed exclusively for the duration of any NPL statement.
The developer must only be concerned about explicitly obtaining exclusive access
(using $OPEN) when multiple NPL statements must be executed against a specific
disk device with no intervening access by other users.

However, print class devices are not necessarily accessed exclusively for the dura-
tion of a single NPL statement. Although this is not usually a problem (most pro-
grams would use multiple PRINT statements and therefore would contain the
required $OPEN statements), this can cause a problem with stand-alone statements
such as LIST, which may generate multiple pages of output.
For further details refer to the Statements Guide: $CLOSE, $OPEN, END, CLEAR,
LOAD RUN, and $DEVICE.

Implied Exclusive Access
All of the exclusive access statements in the above discussion, explicitly "hog" a specific
device and in turn, require it to be explicitly released using the methods discussed.

DEVICE SUPPORT Device Emulation

NPL Programmer’s Guide 7-13

In addition to these explicit commands, a number of NPL disk I/O commands will per-
form implied $OPEN/$CLOSE operations. In multi-user environments these implied
"hogs" are a necessity, especially for write operations. For less critical read operations,
programmer’s may choose to suppress the implied $OPEN/$CLOSE operations in certain
environments by use of byte 39 of $OPTIONS.. Suppression of these implied operations
can provide a performance increase in disk I/O. Refer to the NPL Statements Guide, $OP-
TIONS, for details of these features.

7.3 Storage Devices

Disk I/O for NPL Applications can be implemented in three ways. The first, and most
common way provides for a high degree of compatibility between the NPL environment
and the Wang 2200/CS environment. As important is that it provides a common access
method across the various hardware/operating system platforms which are supported by
NPL. This allows the porting between NPL platforms to be done with little or no change
to the application code.

The second method is an extension to the disk I/O routines supported in NPL. This exten-
sion is the support for diskimage files larger than 16MB. Because use of this extended ca-
pability has implications that affect the entire discussion of disk I/O, it is discussed
separately in Section 7.3.10. Programmers who do not intend to use extended diskimage
files may disregard Section 7.3.10. Programmers who do intend to use extended
diskimages should study this section carefully.

NOTE: Sections 7.3.1 through 7.3.9 contain information that is common to both extended
and non-extended diskimages as well as information that is specific to use of non-ex-
tended diskimages.

Storage Devices DEVICE SUPPORT

7-14 NPL Programmer’s Guide

The third method of performing disk I/O for NPL applications is to use the Niakwa Data
Manager (NDM). NDM allows developers to create, save and access application data
files in native ISAM file formats such as Novell’s Btrieve or Informix’s C-ISAM. Data
files maintained in native ISAM formats provide the programmer with several powerful
benefits. First and foremost, file maintenance is virtually eliminated since the native
ISAM routines are self maintaining and files are expanded dynamically. Second, perform-
ance of disk I/O to data files is dramatically improved by taking advantage of the highly
optimized, modern ISAM’s. And finally, end user data files become accessible to any
third party product that can access the native ISAM files supported by NDM. Thus, allow-
ing developers to provide their end-users with additional services by introducing them to
new productivity tools that were once inaccessible to them in the NPL environment.

NOTE: The first two access methods described above are discussed in detail below. For in-
formation regarding the Niakwa Data Manager, refer to the NDM Programmer’s
Guide, or contact Niakwa.

7.3.1 NPL Diskimages

The fundamental way in which information, both programs and data, is stored on disk for
use with NPL is the diskimage.

An NPL diskimage is a logical disk device which may be equated with a physical native
operating system file or device by use of the Device Equivalence Table.

7.3.2 General Features of Diskimages

The following are features of all NPL diskimages.

Sector Size
All access to NPL diskimages uses a logical sector size of 256 bytes. This is unchanged
regardless of the physical sector size of the native operating system disk being used. NPL
internally handles any translation required.

NOTE: Some diskimage operations are multi-sector operations. That is, a number of 256
byte sectors may be read or written with a single instruction. However, it is not pos-
sible to read or write to a diskimage in less than 256 byte increments.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-15

All references to sector numbers within a diskimage are totally unrelated to the physical
sector numbers of the equivalent native operating system file or device. Thus, the NPL
program is not concerned with the absolute location of NPL diskimages within the native
operating system file structure.

Maximum Size
Unless extended diskimages are in use, the maximum size for any NPL diskimage is
65535 sectors (16MB). Smaller sizes may be specified. Refer to Section 7.3.10 for details
on extended diskimages.

Maximum Number of Diskimages
Each diskimage requires an entry in the Device Equivalences Table to establish the na-
tive operating system file to be used. The maximum number of diskimages that may be
accessed at one time is therefore limited by the defined size of the DET (refer to Section
7.2.2 for details on the DET) less the number of DET entries used for print class devices.
Additional restrictions on the number of diskimages that can be accessed at one time may
be imposed by the open file limits of the host operating system. Refer to Chapter 2 of the
appropriate NPL Supplement for details.

NOTE: The above restrictions can be avoided when necessary by dynamic assignment of
DET entries. The DET is established on a per user basis.

File Storage
A single diskimage may contain up to 4079 individual files (programs or data). Each
diskimage has an internal index which maintains file status information. By combining
large numbers of files into a single native operating system "diskimage" file, several bene-
fits are gained:

Entire applications consisting of hundreds of programs and data files can be easily
backed up as single native operating system "diskimage" file.

Excessive disk space due to native file system minimum allocation units is avoided.

Compatibility
All disk I/O operations are compatible across all machines on which NPL operates. In ad-
dition, compatibility with the Wang 2200 Basic-2 language is maintained.

NOTE: Compatibility with the Wang 2200 Basic-2 language is not maintained for state-
ments which address areas of a diskimage beyond sector 65535. Refer to Section
7.3.10 for details on extended (non-standard) diskimages.

Storage Devices DEVICE SUPPORT

7-16 NPL Programmer’s Guide

Compatibility with Native Operating System File Structures
The use of NPL diskimages on any machine does not interfere in any way with other data
stored on a shared disk. All NPL disk operations are contained within the specified native
operating system files or raw devices (using the DET).

7.3.3 Diskimage Addressing

As stated above in Section 7.2.1, every diskimage must be identified by a unique 3-char-
acter device address. This device address in turn is equated to a native operating system
file or "raw" device by use of the DET (refer to Section 7.2.2).

Valid diskimage addresses are defined as:

Dxx - where x represents the ASCII equivalent of a single hexadecimal character
(the numbers 0-9 or letters A-F), and D represents a DISK class device.

Some typical diskimage addresses are:

D10
D21
D35
D42

In addition, NPL supports use of the following addresses for compatibility with Wang
2200 applications.

Bx0
3x0

where x represents the ASCII equivalent of a single hexadecimal character (the numbers
0-9 or letters A-F).

NOTE: Use of the "B" or "3" series addresses introduces the possibility of conflict with the
"D" series addresses because address Bx0 is the equivalent of address Dx0, and ad-
dress 3x0 is the equivalent of address Dx1. Use the "D" series of addresses for new
development.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-17

7.3.4 Native Operating System Files as Diskimage Files

The following characteristics apply to the use of native operating system files as NPL
diskimages ("diskimage files"):

• To the native operating system, the diskimage is a normal file. It can be located
anywhere on any physical device within the native operating system file struc-
ture. It can be of any name that conforms to the native operating system file nam-
ing conventions. It can be accessed by any native operating system utilities,
including native backup/restore utilities.

• The internal organization of a standard diskimage file is 100% compatible with
Wang Basic-2 disk platters. Refer to Section 7.3.6 below for further details on
the internal organization of diskimage files. Refer to Section 7.3.10 for details on
compatibility when using non-standard (extended) diskimage files.

• Diskimage file size is dynamic. That is, diskimage files may be created at any
size (up to the maximum size), and then expanded or contracted under program
control.

NOTE: On some operating systems, file expansion and contraction is not a well supported
feature, or may have some limitations which apply (refer to the appropriate NPL
Supplement for details).

Creating Diskimage Files
Most disk I/O statements require that the diskimage file exist in advance of a statements
execution. A diskimage file can be created by the special NPL statement SCRATCH
DISK (for details refer to the Statements Guide, SCRATCH DISK). The SCRATCH
DISK statement allows the programmer to specify the number of index sectors and total
size for a specified diskimage.

NOTE: The device address must be established in the DET table before a SCRATCH DISK
statement is used.

For example:

10 $DEVICE (/D21) = "PLATTER3.BS2"
20 SCRATCH DISK T/D21, LS=10, END=99

Storage Devices DEVICE SUPPORT

7-18 NPL Programmer’s Guide

creates a file called PLATTER3.BS2 within the native operating system file system. The
size of the file is 100 sectors (at 256 bytes per sector: 25,600 bytes). The size is deter-
mined by the END parameter, which indicates the number of sectors to be allocated start-
ing from zero (END=99 therefore becomes 100 total sectors). The LS parameter
establishes 10 INDEX sectors (refer to Section 7.3.6 below).

When the SCRATCH DISK statement is executed, the physical space on the native oper-
ating system disk is allocated at that time. If there is insufficient physical space available
to accommodate the specified size of the diskimage file, an I98 - Illegal Sector Address
error is generated and only a portion of the diskimage file is created.

WARNING--If the diskimage file already exists, SCRATCH DISK deletes the old file and
create a new file.

Changing the Size of a Diskimage File
Standard diskimage files may be expanded, up to the maximum size, by use of the
MOVE END statement.

For example, using the diskimage file created in the example above:

10 MOVE END T/D21,=999

expands the diskimage file PLATTER3.BS2 from 100 sectors (as created by SCRATCH
DISK) to 1000 sectors (256,000 bytes).

NOTE: Any existing data on the diskimage is not affected by the MOVE END statement.

When the MOVE END statement is used to increase the size of a diskimage file, physical
space on the native operating system disk is allocated at that time. If there is insufficient
physical space available to accommodate the increased size of the diskimage file, an I98 -
Illegal Sector Address error is generated and the diskimage file may be only partially ex-
panded.

MOVE END can also be used to decrease the size of a diskimage file. However MOVE
END cannot decrease the size of a diskimage file below the number of sectors actually
used to store cataloged data (this number is the CURRENT END--the topic of cataloged
data is discussed in detail in Section 7.3.6 below).

The use of MOVE END to decrease the size of a diskimage file is not supported on all
hardware versions of NPL. Refer to the appropriate NPL Supplement for details.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-19

There are several statements which may implicitly expand the size of a diskimage file.
Any statement which writes to a sector beyond the physical end of a diskimage file
causes the diskimage file to be expanded to the size required to accommodate the write,
assuming physical space is available.

HINT: Any new space added to the diskimage file would be treated as NON-CATALOGED
space (refer to Section 7.3.6 below for details on the diskimage CATALOG). Therefore,
do not use this technique. Statements which may have this effect are:

DATA SAVE BA
DATA SAVE BM
DATA SAVE DA
COPY

Deleting Diskimage Files
Since a diskimage file is a native operating system file, it may be deleted by direct use of
the native operating system file delete function.

Diskimage files may also be deleted under NPL program control using the $FORMAT
DISK statement.

Wang 2200 Compatibility Notes
Diskimage files as described above are fully equivalent to the Wang 2200 disk platter.
Statements for creating the catalog and index, changing the size of the catalog, and re-
moving the entire catalog are fully supported. The concepts described above ensure
nearly 100% compatibility with Wang Basic-2 with the following exception:

Incompatibilities arise in the handling of "non-cataloged" space on a diskimage. Al-
though supported by NPL, the use of non-cataloged space could have negative impli-
cations for an NPL application. This is due to the dynamic size of diskimage files.
On the Wang 2200, a disk platter is always a fixed size, and a program can assume
that space for non-cataloged operations is available regardless of the stated catalog
size. This is no longer true with diskimage files. The size of a diskimage file is the
CATALOG size (unless extended by direct writes as stated above). Therefore, an at-
tempt to read data beyond the catalog end may fail. Also, attempts to write data be-
yond the catalog end may fail if there is insufficient physical space to extend the
diskimage file.

HINT: Do not use non-cataloged operations in NPL.

Storage Devices DEVICE SUPPORT

7-20 NPL Programmer’s Guide

7.3.5 Native Operating System "RAW" Devices as Diskimages

In addition to defining NPL diskimages as native operating system "diskimage files",
NPL allows direct accessing of native operating system "raw" physical devices.

NOTE: This method is extremely hardware dependent. Refer to the appropriate NPL Sup-
plement for details on the availability and support of access to "raw" devices.

Purpose of Using "Raw" Devices
The primary reason for support of "raw" devices is to allow for transfer of data and pro-
grams from one machine to another where the native operating system’s file formats are
incompatible. A special subset of the "raw" device are Wang 2200 compatible diskettes.
The Wang 2200 compatible diskettes provide a method of transferring programs and data
between a Wang 2200 (with a 5-1/4" diskette drive) and machines using NPL (where
Wang 2200 compatible diskettes are supported). Refer to the appropriate NPL Supple-
ment and Appendix G of the Programmer’s Guide for details on the support of "raw"
diskettes.

Characteristics of "Raw" Devices
A "raw" device is a physical disk which does not contain a native file system. Typically,
these are diskette devices. When a device is accessed as a "raw" device, NPL uses abso-
lute addressing on the device as opposed to addressing the device as a native operating
system file. The NPL catalog format is placed on the device starting at sector zero.

Use of "raw" devices for diskimages has the following implications:

• "Raw" devices cannot usually be accessed directly by native operating system
utilities or programs.

• The size of the diskimage is limited by the physical size of the "raw" device, usu-
ally much less than 16MB. Refer to Chapter 5 of the appropriate NPL Supple-
ment and Appendix G of the Programmer’s Guide for details on supported
diskette devices.

• The $FORMAT DISK statement actually invokes the native operating system for-
mat routines to physically format the specified device. The physical format may
vary on different machines.

NOTE: $FORMAT DISK may not be supported for all "raw" diskette types on all operat-
ing systems. Refer to the appropriate NPL Supplement for details.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-21

• The SCRATCH DISK statement does not "create" the "raw" device. Rather
SCRATCH DISK constructs the internal structure of the NPL diskimage on the
"raw" device. In addition, MOVE END does not allocate or de-allocate space. It
simply modifies the existing internal structure to the new parameters. Refer to
Section 7.3.6 below for details on the internal structure of NPL diskimages.

• All other NPL disk I/O statements directed to diskimages defined as "raw" de-
vices function identically to statements directed to a diskimage defined as a na-
tive operating system file, except where otherwise noted in the appropriate NPL
Supplement.

7.3.6 Internal Structure of Diskimage Files

Every NPL diskimage may contain up to 4079 logical files. These may be either program
or data files. Diskimages have a specialized internal format which is used to maintain in-
formation about these files within the disk. This format consists of an INDEX area, a
CATALOG area, and an optional NON-CATALOGED area.

Catalog Index and Catalog Area
The Index contains the name and sector location of every cataloged program and data file
on the diskimage. The Catalog Area is where each cataloged program file and data file is
physically stored. The size of the Catalog Index and Catalog Area is established through
the use of the SCRATCH DISK statement with the following format:

Storage Devices DEVICE SUPPORT

7-22 NPL Programmer’s Guide

The Index is always stored at the beginning of each diskimage, starting at sector zero.
Each sector of the Index contains 16 file entry slots. The first sector of the Index uses the
first file entry to store the hash method, index size, current end of the Catalog Area, and
the upper limit (END) of the Catalog Area. All other file entry slots are used to maintain
information about individual files. Files listed in the Index are referred to as CATA-
LOGED files.

The first file entry in sector 0 of the Index is structured as follows:

General Form:

SCRATCH DISK [’]T [file-number,][LS=value1,] END=value2
 [disk-address,]
 [<address-var>,]

Where:

’ = specifies the alternate hashing method is
to be used.

value1 = a numeric- expression which represents
the required size of the Catalog Index
whose value is from 1 to 255. The de-
fault value if not specified is 24.

value2 = a numeric- expression which represents
the highest sector address in the Catalog
area. The expression must be less than
or equal to highest sector address avail-
able on disk.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-23

Byte, Description
Byte 1 00 = Old hashing method.

01 = New hashing method.
Byte 2 The number of index sectors from 1 to 255. HEX(00) indicates disk is not

scratched.
Bytes 3,4 Next available sector for storing program or data files (byte 3 is high,, byte 4 is

low). This is the CURRENT END parameter and is used whenever a new
cataloged file is created on the disk. It also can be used to determine how much
of the catalog area is actually used for the storage of data files. This parameter
is established initially by SCRATCH DISK and is incremented whenever a
new file is added to the catalog.

Bytes 5,6 First sector beyond the cataloged area (byte 5 is high,, byte 6 is low). This is
the END CATALOG parameter and is used in conjunction with the CURRENT
END to determine how much space is available within the catalog area for
storing additional files (END CATALOG - CURRENT END = space
available). This parameter is established initially by SCRATCH DISK and may
be modified by MOVE END.

Bytes 7,8 Used for extended diskimages (refer to Section 7.3.10 for details on their use).
Bytes 9-16 Unused and should contain all HEX(00).

NOTE: Old hashing/new hashing refers to the method by which file entries are stored
within the Index. A hashing method is always used to determine the index sector to
use for storage of any given file entry. The same hashing method is used to locate the
file when requested. If any given Index sector is full when a file is added, the next
available sequential Index sector is used. The "old" versus "new" designation refers
to the hashing algorithm used. In cases where many files are stored within a disk,
the "new" hash may be somewhat more efficient. The hash type is specified as part
of the SCRATCH DISK statement and this byte is set at the time that the
SCRATCH DISK is executed. For more details refer to the Statements Guide,
SCRATCH DISK).

All other file entries in the catalog are structured as follows:

Storage Devices DEVICE SUPPORT

7-24 NPL Programmer’s Guide

Byte Description
Byte 1 00 = No entry.

10 = File entry.
11 = Scratched file entry.
21 = Entry no longer used.

Byte 2 File type:
00 = Data.
80 = Program.

Bytes 3,4 First file sector (byte 3 is high
Bytes 5,6 Last file sector (byte 5 is high
Bytes 7,8 Used for extended diskimages (refer to

Section 7.3.10 for details).
Bytes 9-16 Contains an eight byte file name.

Listing the Index
The Index may be examined by the LIST DCT command. This command lists the num-
ber of Index Sectors, Catalog Current End, and End Catalog parameters. LIST DCT may
also be used to list the status and location of selected cataloged files. In addition to
LISTDCT, the Index may also be examined the LIMITS INDEX and READ DCT state-
ments.

LIMITS INDEX returns the number of index sectors, current end, end catalog, and hash
type for the specified diskimage to numeric variables.

READ DCT returns filenames matching a specified a wildcard pattern to a specified al-
pha-variable one at a time.

Refer to the Statements Guide, LISTDCT, LIMITS INDEX and READ DCT for details.

Non-Cataloged Area
Any space on a diskimage beyond the End Catalog is considered non-cataloged space.
This space cannot be used to store catalog files. Only direct access to this space is sup-
ported. Non-cataloged space on a diskimage file can only be created by use of a direct ac-
cess statement to write to a sector number beyond the End Catalog (refer to Section 7.3.4
above).

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-25

HINT: This technique is supported for compatibility with Wang 2200 applications which use
this technique, but there are serious restrictions to its functionality. Therefore, do not use
this technique for new development in NPL. Refer to Section 7.3.4 for further details on
the restrictions in using non-cataloged space under NPL.

7.3.7 Cataloged Files

A cataloged file is a file that is maintained within the catalog area of a diskimage with an
associated file entry in the Catalog Index. Catalog files have the following characteristics:

• Files may be either program files or data files. Characteristics that depend on the
file type are discussed in the corresponding sections below. Characteristics de-
scribed in this section refer to all files.

• File names may consist of any NPL characters (HEX(00-FF)) up to a maximum
of eight characters. Imbedded and trailing spaces are considered part of the file
name. File names are case sensitive.

HINT: Filenames should be constructed from characters enterable from the keyboard and dis-
playable on the terminal screen. Duplicate filenames within the same diskimage are not
allowed.

• File size is restricted only by the size limits of the diskimage (16MB for standard
diskimages). Files may not span multiple diskimages.

• File size is fixed. Once a file has been created, it cannot be expanded or con-
tracted by any NPL statement.

NOTE: Some NPL utility programs (not supplied by Niakwa) which directly manipulate the
Catalog Index and Area do have the ability to expand or contract files.

• Physical space for a file is allocated at the time the file is created. If there is insuf-
ficient space for the specified file size within the catalog area, an error results and
the file is not created. Files may be flagged as no longer valid by use of the
SCRATCH statement, but this does not automatically release the space allocated
for use by other files. However, there are some methods of reusing the space allo-
cated for SCRATCHed files (refer to Creating Files, below). Space allocated for
files not reused can only be freed by use of the MOVE statement to MOVE all
catalog files to a new diskimage, or by use of a utility program.

Storage Devices DEVICE SUPPORT

7-26 NPL Programmer’s Guide

NOTE: The Niakwa General Backup and Restore utilities can be used to free space allo-
cated to scratched files. Refer to Chapter 13 for details.

• The last sector of every file is a trailer sector which contains status information
about the file. This sector is reserved for the maintenance of system information
and should not be modified directly by an NPL program. This sector contains:

Byte 1 Control Byte - HEX(A0)
Bytes 2-3 Number of sectors used,, including the trailer (byte 2 is

high,, byte 3 is low).
Bytes 4-22 Date/Time stamp - in the format yyyy/mm/dd hh:mm:ss.
Bytes 23-25 Used for extended diskimages. Refer to Section 7.3.10 for

details.
Bytes 26 File status (as contained in byte 1 of the index entry for the

file).
Bytes 27 File type (as contained in byte 2 of the index entry for the

file).
Bytes 28-35 File name (as contained in bytes 9-16 of the index entry for

the file).
Remainder All other bytes are undefined and may contain random data.

File status, type, and name information are maintained by all NPL statements which
can create files or modify this information. In addition, the compiler (B2C) creates this
information when creating programs. This information is not used by any NPL state-
ment except for LISTDCT which checks it for consistency with the Index entry and dis-
plays a "?" if it does not match. Rather, this information is maintained strictly as a
convenience for various applications or utilities which may wish to examine it.

• Current information about the status of individual files may be obtained by use of
the LIMITS statement. LIMITS returns the starting sector, ending sector, sectors
used, and file status (program or data, active or scratched) for the specified file.
For further details refer to the Statements Guide, LIMITS.

Wang 2200 Compatibility Notes
The above "standard" diskimage characteristics are completely compatible with the
Wang 2200 method of storing files with the following exceptions:

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-27

Date/Time Stamp
File Status
File Type
File Name information

These features are specific to NPL. However, since only the trailer sector is used for this,
there should be no impact on the portability of data files between a Wang 2200 and an
NPL environment.

In the event it is desired to suppress this information, Byte 40 of $OPTIONS may be used
to specify whether or not bytes 4-35 of the file trailer sector are used by NPL to store the
date/time stamp, file status, file type and filename. The default value of HEX(00) indi-
cates that NPL should store this information in the file trailer sector (as is done by pre-
vious revisions). A value of HEX(01) indicates that the NPL should not store this
information. Bytes 1-3 of the file trailer are updated by NPL regardless of the value of
byte 40 of $OPTIONS. If extended diskimages are in use and the size of a file exceeds
64K, then bytes 4-35 of the trailer sector are updated by NPL regardless of the value of
byte 40 of $OPTIONS. Refer to the Statements Guide, $OPTIONS for details. Refer to
Section 7.3.10 for details on extended diskimages.

Creating Files
Program files may be created by use of the SAVE DC statement. The SAVE DC state-
ment saves the program text currently in memory to a diskimage file of the specified
name. If a new file is to be created, the size and name of the file may be specified. If
space from an existing file is to be used, the old and new file names may be specified.
For further details refer to the Statements Guide, SAVE DC. Also Refer to Section 5.6,
Saving Programs, for additional discussion on saving program text to disk.

Data files are created by the DATA SAVE DC OPEN statement. If a new file is being
created, the name and size of the file must be specified. If a scratched file is to be reused,
the old name and new name must be specified. For further details, refer to the Statements
Guide, DATA SAVE DC OPEN.

Maintaining Files
File status (scratched or not scratched), file type (program or data), and file name are dy-
namic values which may be modified by certain NPL statements:

SCRATCH Sets the file status for specified files to "scratched".

UNSCRATCH Sets the file status for specified files to "not scratched".

Storage Devices DEVICE SUPPORT

7-28 NPL Programmer’s Guide

SET DATA Sets the file type for specified files to "data".

SET PROGRAM Sets the file type for specified files to "program".

RENAME Changes the name of a specified file.

In addition, certain forms of MOVE, SAVE, and RESAVE may change file status or file
name.

Accessing Files
Cataloged program files can be loaded into memory by use of the LOAD DC or LOAD
RUN command. For further details refer to the Statements Guide, LOAD DC and LOAD
RUN. Also refer to Section 5.3 for further information on LOADing programs.

Cataloged data files may be accessed by either the catalog method or by direct access. Re-
fer to Sections 7.3.8 and 7.3.9 for details.

Internal Format of Program Files
The internal format of program files is detailed in the discussion of the $SOURCE and
$OBJECT statements. For further details refer to the Statements Guide, $SOURCE and
$OBJECT.

NOTE: With the introduction of Long Identifier Names in NPL Release IV, some changes
may need to be made to programs using the $SOURCE and $OBJECT statements.
Niakwa has simplified this process by providing a two libraries, "SOURCEIO" and
"OBJECTIO", to assist developers in adapting existing routines to handle Long
Identifier Names. Refer to Chapter 3 of the Statements Guide for details.

Internal Format of Data Files
The internal format of data files, except for the trailer sector as discussed above, is under
control of the programmer. However, NPL does provide a method of accessing data files
in a structured fashion with the Catalog Method (discussed in Section 7.3.8). Alterna-
tively, the developer may choose to use direct access methods where the internal struc-
ture of the data file is totally under the control of the programmer. Refer to Section 7.3.9
for details.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-29

7.3.8 Catalog Access Methods

The above discussion has introduced the concept of the catalog access method. Tech-
niques for creating and maintaining logical files within a diskimage Catalog were dis-
cussed in Section 7.3.7 above. In this section, the catalog access method is further
explored.

The catalog access method provides a series of statements which can be used to access
data files in a structured fashion.

The advantages of catalog access to data files are:

• Data can be referenced by name as opposed to sector location.

• Data is stored in a logical format where each record consists of one or more
physical sectors.

• There is a capability to skip forward and backward over data records within the
file.

The disadvantages are:

• Direct access techniques should not be used on conjunction with catalog access
techniques.

• Only sequential access to logical records is supported.

• Applications which require random access must use direct access techniques and
impose their own random access method.

• Automatic blocking of logical records within a sector is not supported. If block-
ing is desired,, the application program must control it.

HINT: Use of catalog access methods is discouraged for new development. The Niakwa Data
Manager routines provide a more efficient and reliable alternative to NPL’s internal cata-
log access methods and should be considered for all new development.

Summary of Statements Used for Catalog Access to Data Files
A series of NPL statements are provided to support catalog access to data files. These
statements are discussed in greater detail in the Statements Guide.

Storage Devices DEVICE SUPPORT

7-30 NPL Programmer’s Guide

Creating Data Files

DATASAVE DC OPEN Used to reserve space within the Catalog Area for any cata-
loged files, with appropriate system information stored in
the Catalog Index.

Opening Existing Data Files

DATALOAD DC OPEN Used to open any data file which has previously been cata-
loged on the disk.

Reading and Writing Data

DATALOAD DC Used to read logical data records from a cataloged
diskimage file, and assign to variables the values read from
each read operation.

DATASAVE DC Used to write to diskimage one logical data record contain-
ing specific data.

Setting the Current Record Pointer

DSKIP Used to skip over a specific number of logical records or sec-
tors in a cataloged diskimage file.

DBACKSPACE Used to backspace over a specific number of logical records
or sectors in a cataloged diskimage file.

Setting the End-of-File Mark

DATASAVE DC END Used for writing a data trailer record within a cataloged
diskimage file, indicating the logical end of the file.

Testing for End-of-File

IF END THEN Used to test for the logical end of a cataloged data file, and
branch to a specified line number within the program.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-31

Closing a Data File

DATASAVE DC CLOSE Used to close a specific cataloged data file or all data files
on diskimage currently open.

The Logical Record
As stated above, catalog access methods allow data within a file to be accessed by logical
records. A logical record consists of a group of data values. Any number of data values
may be included in a logical record. Values may consist of both numeric and alpha items.
Values may be scalar variables, constants, literals, or arrays when written.

NOTE: Each element of an array is considered as a separate value. The value list for read-
ing data may only contain scalar or array variables. No single value may be greater
than 124 bytes in length (refer to Diskimage Utilization below).

A value list is specified for each write (DATA SAVE DC) or read (DATA LOAD DC) of
the logical record. Value lists may be different for different records within the file. When
values are read by a DATA LOAD DC statement, the value list MUST correspond to the
order of data values on the diskimage for that logical record. That is, where a numeric
variable is specified, numeric data must be present, and when an alpha-variable is speci-
fied, alpha data must be present.

Diskimage Utilization for Logical Records
For efficient use of diskimage space, some understanding of the internal organization of
logical records is required. Each logical record occupies one or more physical sectors on
the disk. Each sector contains as many data values as can be contained in the sector, plus
control information.

NOTE: Data values do not span sectors.

The control information consists of:

• Three bytes per sector of sector control information. The first two bytes of every
sector plus the byte following the last data value are reserved for system use.

• Each data value is preceded by one byte of control information. The length of
data values when stored on diskimage is (not including the value control byte):

• Alpha values: the length of the value (trailing spaces included).

• Numeric values: eight bytes.

Storage Devices DEVICE SUPPORT

7-32 NPL Programmer’s Guide

The maximum size for any data value is 124 bytes.

Careful planning of logical records is required to ensure efficient use of the disk.

For example, an array defined as:

DIM X$(8)64

requires 3 sectors when saved to disk using a DATA SAVE DC statement. However, an
array defined as:

DIM X$(8)62

requires only 2 sectors on disk, but contains only sixteen fewer bytes of data.

In many cases, where the data list consists of multiple arrays or variables with different
dimensions, simply changing the order of the value list may result in saving one or more
sectors per record.

More efficient use of the diskimage may also be obtained by packing multiple data ele-
ments into a single variable or array before saving. This is particularly true for numeric
values since a numeric value can often be packed into a much smaller alpha string. For
further details refer to the Statements Guide, $PACK and $UNPACK.

Logical End-of-File
A logical end-of-file sector can be saved by the DATA SAVE DC END statement. Use
of DATA SAVE DC END is not required, but is a good programming technique to use,
so that subsequent sequential reads of the file can test for the logical end of file after
every DATA LOAD DC, by use of the IF END statement.

NOTE: If a DATA SAVE DC statement is written to the sector containing the logical end-of-
file flag, the end-of-file flag is overwritten. However, a new end-of-file flag can be set
by a subsequent DATA SAVE DC END. The logical end-of-file flag is also useful in
applications where data may be added to existing files. If an end-of-file flag is pre-
sent, a DSKIP END statement may be used to locate the current record pointer to
the logical end of file, so that new data does not overwrite existing valid data.

The logical end-of-file sector should not be confused with the trailer sector. The
trailer sector denotes the physical end-of-file. The logical end-of-file sector must pre-
cede the trailer sector.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-33

Use of the Internal Device Table
The catalog access method uses the diskimage file slots of the Internal Device Table
(DT) to maintain information about individual data files being accessed (other aspects of
the DT are discussed in Section 7.2 above). The file slots of the DT are used to maintain
information about cataloged files currently being processed. Up to 256 cataloged files
can be processed at one time. These files can be on any defined diskimage. Multiple files
on the same diskimage may be open for processing.

Before using the DT for cataloged file processing, two steps must be performed:

1. A diskimage device address must be assigned to the diskimage file slot.

For example:

SELECT #1/D35

 assigns address D35 to file slot #1.

NOTE: Any address assigned to a file slot must be properly configured in the Device Equiva-
lence Table.

2. The specific data file must be opened by a DATASAVE DC OPEN (for a new file) or
DATALOAD DC OPEN (for an existing file) statement.

For example:

DATALOAD DC OPEN T#1,"ARMASTER"

 opens the existing file ARMASTER and establishes the diskimage file slot entry.

Assuming that the file ARMASTER occupies sectors 1034 to 2048 on diskimage D35,
the results of the above two steps would generate the following entry in the DT:

File, Address, File-name, Start, Current, End
1, T/D35, "ARMASTER", 1034, 1034, 2048

File (# 1) is the number of the file slot used.

Address (T/D35) is the device address assigned to this slot by the SELECT statement.

File name ("ARMASTER") is the name of the file specified in the DATALOAD DC
OPEN statement.

Storage Devices DEVICE SUPPORT

7-34 NPL Programmer’s Guide

Start (1034) is the first sector number of file ARMASTER.

Current (1034) is a pointer to the sector number to be accessed by the next operation.
This value is maintained automatically by the catalog statements described above. Cur-
rent is initialized to be the same as START when a file is first opened by DATA SAVE
DC OPEN or DATA LOAD DC OPEN. Subsequent operations update the CURRENT
pointer based on the results of the operation.

For example, if a DATA SAVE DC statement is executed with a value list that causes a
logical record three sectors long to be written, CURRENT is incremented by three so that
the next operation starts at the sector number following the last sector used in the DATA
SAVE DC operation.

End (2048) is the physical end of file ARMASTER. Execution of any statements which
would cause access to sector numbers equal to or greater than END results in an error.

7.3.9 Direct Access

In addition to the catalog access methods described above, NPL supports a series of in-
structions which provide direct low level access to specified diskimage sectors. Direct ac-
cess techniques are often used in applications where the catalog method is insufficient for
the requirements of the application. Applications which make use of direct access tech-
niques are likely to incorporate some form of internal mechanism for accessing logical re-
cords within an otherwise unstructured file.

Summary of Statements Used for Direct Access to Data Files
A series of NPL statements are provided to support direct access to data files. These state-
ments are discussed in greater detail in the Statements Guide.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-35

DATASAVE DA Used to save logical data records on the
diskimage at a specified sector.

DATALOAD DA Used to read one or more logical records
from a data file on disk, beginning at a
specified absolute sector address.

DATASAVE BA Used to save one sector of unformatted
data on the diskimage at a specified
sector location.

DATALOAD BA Used to load one sector of unformatted
data from the disk, from a specified
sector location.

DATASAVE BM Used to save one or more sectors of
unformatted data on the diskimage at a
specified sector location.

DATALOAD BM Used to load one or more sectors of
unformatted data from the diskimage,
from a specified sector location.

COPY Used to copy a range of sectors from
one diskimage to another.

NOTE: These statements are often used with cataloged data files. However, they are not
typically used in conjunction with the catalog access technique described in Section
7.3.8 above (except for the statement DATA SAVE DC OPEN, which is required to
establish an Index entry and Catalog space for the file).

For example:

10 LIMITS T/D32,"FILE1",A,B,C
20 FOR X=A TO B: DATA LOAD BAT/D32,(X)I$(): NEXT X

This program reads all sectors, one at a time, from the cataloged file named FILE1. The
LIMITS statement is used to access the Catalog Index and find the starting (A) and end-
ing (B) sector locations. Then, as long as access is directed to this range of sectors, the
program can be sure that it is working within the correct logical file.

Storage Devices DEVICE SUPPORT

7-36 NPL Programmer’s Guide

NOTE: This example assumes that the file FILE1 has previously been established as a cata-
loged file by a DATA SAVE DC OPEN statement.

7.3.10 Extended Diskimages

The following details the use of NPL extended diskimages.

Implementation
In a number of places, the original Wang Basic-2 language assumed that valid sector
numbers could always be stored as a 2-byte binary number. As the capacity of available
disk units increased past this limit, this limitation required that such larger units be parti-
tioned into "logical" platters whose size did not exceed the 16MB limit.

Access to diskimages greater than 16MB is accomplished by supporting the use of three-
byte sector addressing. The functional effect of many NPL disk I/O statements is affected
by this addressing scheme, and applications which are using this method for the first time
are most likely to require modifications.

Because this technique can cause difficulty for existing application software, the ability
to create and reference diskimage files greater than 16MB requires that the application
specifically request this capability on a diskimage-by-diskimage basis. This is accom-
plished by use of the "EXT=Y" clause in the $DEVICE statement. For example:

$DEVICE(/D11)="PLATTER1.BS2"

would allow one to address a maximum of 16MB, however;

$DEVICE(/D11)="PLATTER1.BS2 EXT=Y"

allows access to sectors beyond 16MB.

NOTE: As a safety measure designed to prevent use of extended diskimages by software
which may not be suitable for use with them, the RunTime does not allow access to
diskimage files larger than 16MB unless this capability is enabled by use of this spe-
cial clause in the $DEVICE statement for the particular diskimage file.

The default value for the EXT clause is N. Therefore if not specifically requested,
diskimage files are treated as non-extended.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-37

WARNING--When changing the size of a diskimage file from < 16MB to > 16MB, it is
important that all users on the system exit the RunTime and reenter. Otherwise it is possi-
ble to have one terminal accessing a file as extended while another terminal has opened
the file as non-extended. This results in difficulties because of the different access meth-
ods used.

Maximum Size
Extended diskimages allow the addressing of sectors up to 16777214 (i.e., (2^24-2) sec-
tors of 256 bytes; a total of 4096MB). This is the largest number X for which X+1 can be
stored as an unsigned binary number in 3 bytes. A smaller limitation may be imposed by
the operating system due to internal constraints or available disk storage types.

Compatibility
Use of diskimages with more than 65534 sectors is not downward compatible with revi-
sions of the RunTime prior to 2.01 (or with the Wang 2200), and may not be compatible
with software which directly manipulates the data in the index area of diskimage. Refer
to the discussion on Internal Structure of diskimages below for details.

Older disk images are upwardly compatible provided that the bytes previously unused in
the index area are zero, which should be the case unless software has been altering the in-
dex and using these bytes for some other reason.

NOTE: The new diskimages are directly upwardly compatible with the old diskimages, and
also downward compatible provided that the size does not exceed 65534 sectors.

The NPL compiler does not require the EXT= Y clause when referencing an extended
diskimage. B2C automatically determines the correct size of the diskimage and properly
accesses extended diskimages.

Implications for Application Software
The use of three-byte disk addresses has many implications for existing application soft-
ware. In this section, the most typical areas that the developer should consider before im-
plementing this feature are identified. We strongly urge that all elements of an
application be thoroughly tested with expanded diskimages prior to end-user installation.
In cases where third-party software is to be used, it is essential that the software author
verify that the product is suitable for use with extended diskimages.

Storage Devices DEVICE SUPPORT

7-38 NPL Programmer’s Guide

Three-Byte Addresses
By introducing diskimages which exceed the 16MB limitation, a problem arises since ap-
plications may assume that valid sector numbers and sizes never exceed the older 65534
value, and consequently store the value in tables or records as a 2-byte binary number.
No general solution to the problem exists, and programmers who wish to use larger disk
images must ensure that all fields which store sector numbers (or relative sector num-
bers), file sizes or record counts are expanded to accommodate the larger values.

A particular case of this problem occurs in the index area of NPL diskimages, where the
start and end sectors of each file are stored as 2-byte binary numbers. Also, the "Current
End" and "End of Catalog" values are stored in this way, as is the "used" value in the last
sector of each file on the diskimage. Developers wishing to use the larger disk images
who use routines which directly inspect or modify the index area must modify these rou-
tines. For information on how these fields have been expanded, refer to the changes to
the "Direct Access to the Index" section below.

Direct Access to the Index
Many NPL programs attempt to perform direct access to the index area of the catalog. All
such programs must be modified to accommodate the use of bytes 7 & 8 for storage of
the high-order byte of sector addresses if these programs are to be used with extended
diskimages. Programs which contain logic of this nature are typically utility programs de-
signed to perform backup or diskimage reorganization, but are not necessarily limited to
these functions.

WARNING--Attempts to use existing versions of such programs on extended diskimages
result in damage to the diskimage file!

The Niakwa utilities supplied with the Development Packages for Revisions 2.01 or
greater have been modified to address extended diskimages properly. If larger diskimages
are to be used, these versions must be used or damage to the diskimages may result.

Use of Bytes 7 & 8 for Other Purposes
Some applications use bytes 7 & 8 of the index entries for their own purposes. Attempt-
ing to use a diskimage file where bytes 7 & 8 are used for other purposes as an extended
diskimage file results in the RunTime program attempting to use these values as the high-
order byte of sector addresses. This likely results in serious damage to data contained in
the diskimage.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-39

Internal Structure of Diskimages

Sector 0 Standard Diskimages Extended Diskimages
Byte 1 Hashing method Hashing method
Byte 2 # of index sectors # of index sectors
Byte 3,, 4 # sectors used Low order # of sectors used
Byte 5,, 6 # sectors cataloged Low order # of sectors cataloged
Byte 7 Not used High order # of sectors used
Byte 8 Not used High order # of sectors cataloged
Byte 9-16 Not used Not used

Other Catalog
Elements

Standard Diskimages Extended Diskimages

Byte 1 File status File status
Byte 2 File type File type
Byte 3, 4 File start sector Low order file start sector
Byte 5, 6 File end sector Low order file end sector
Byte 7 Not used High order file start sector
Byte 8 Not used High order file end sector
Byte 9-16 file name file name

File trailer Standard Diskimages Extended Diskimages
Byte 1 End of file mark End of file mark
Byte 2,, 3 # of sectors used # of sectors used if < 65535.

Otherwise contains 0.
Byte 4-22 Date stamp Date stamp
Byte 23-25 Not used Number of used sectors if > 65535.

NOTE: bytes 2,,3 must be zero.
Bytes 26 File status File status
Bytes 27 File type File type
Bytes 28-35 File name File name
Byte 36-256 Not used Not used

Storage Devices DEVICE SUPPORT

7-40 NPL Programmer’s Guide

An additional case which may affect application programmers is the form of DATA
LOAD and DATA SAVE, which use alpha-variables as the sector number to access or as
the return-variable. In the case of the sector address, only the binary value of the first two
bytes is used to determine the address, whether or not the diskimage file accessed is ex-
tended. As for the return-variable, to avoid possible misinterpretation of this result, if
such a statement is used and the sector number exceeds 65535, an error P51 (Variable or
value too short) occurs. Developers wishing to use the larger diskimages who use this
form of DATA LOAD or DATA SAVE are advised to use numeric-expressions for sec-
tor-address and return-variable parameters instead. The numeric equivalent of a sector-ad-
dress may be obtained through use of the VAL(,3) statement, and the binary equivalent of
the return-variable can then be obtained using the BIN(,3) function. Alternatively, conver-
sion between alpha-variables containing sector addresses and numeric variables can be
accomplished by use of the extended $PACK/$UNPACK statements. Refer to the State-
ments Guide, $PACK, $UNPACK.

NPL Statements Affected
The effect of extended diskimage files on various NPL disk I/O statements follows. This
discussion is broken down into two parts: the effect on statements directed towards an ex-
tended diskimage (EXT=Y), and the effect on statements directed towards a non-ex-
tended diskimage.

For Extended Diskimages:

COPY Accepts larger values for start, end, and destination parame-
ters.

DATA LOAD BA Accepts larger values for the sector location if a numeric ex-
pression is used. Returns larger values in the specified re-
turn-variable if a numeric-variable is used.

NOTE: If an alpha-variable is used for the sector location or return-variable specification,
only the first two bytes are used. Refer to the discussion of internal diskimage struc-
ture in this section for further details on the use of alpha-variables to store sector ad-
dresses with extended diskimage files.

DATA LOAD DC Operation of this statement is transparent with extended
diskimage files. Internal operation of the statement handles
sector numbers larger than 65535 with no programming con-
siderations.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-41

DATA LOAD DC OPEN Initializes the Internal Device Table with correct sector loca-
tions for start and end of file. Bytes 7 & 8 of index entry for
specified file are used.

DATA LOAD BM Same as DATA LOAD BA.

DATA LOAD DA Same as DATA LOAD BA.

DATA SAVE BA Same as DATA LOAD BA.

DATA SAVE BM Same as DATA LOAD BA.

DATA SAVE DA Same as DATA LOAD BA.

DATA SAVE DC Same as DATA LOAD DC.

DATA SAVE DC END Same as DATA LOAD DC.

DATA SAVE DC OPEN Allows larger value for the space parameter. Otherwise, like
DATA LOAD DC OPEN.

DBACKSPACE Accepts larger values for number of records or sectors.

DSKIP Same as DBACKSPACE.

LIMITS Returns appropriate values. Bytes 7 & 8 of index entry for
specified file are used.

LISTDT Displays expanded sector number fields.

LISTDC Displays expanded sector number fields.

MOVE (form 1) Creates an extended diskimage only if the output diskimage
file is defined as extended. Generates a P48 - Illegal Device
Specification if output diskimage is not defined as extended
and input diskimage is larger than 16MB.

MOVE (form 2) Allows larger value for space parameter. Uses bytes 7 & 8
of index entry for specified file on both input and output
diskimages.

Storage Devices DEVICE SUPPORT

7-42 NPL Programmer’s Guide

MOVE END Allows larger value for END parameter. Bytes 7 & 8 of first
entry of sector zero used.

SAVE Allows larger value for space parameter. Uses bytes 7 & 8
of file entry and the first entry of sector zero.

SAVE DA Same as DATA LOAD BA.

SCRATCH DISK Creates diskimage files larger than 16MB. Allows larger
value for END parameter. Bytes 7 & 8 of first entry of sec-
tor zero used.

VERIFY Allows larger value for START and END parameters.
Larger value may be returned in specified numeric-receiver.

For Non-Extended Diskimages:
With minor exceptions, operation of all NPL disk I/O statements directed against non-ex-
tended diskimages is unchanged from prior releases. The exceptions are:

COPY No range check is performed on the destination parameter.
If the destination parameter is greater than 16MB, NPL at-
tempts to perform the write operation. This has varying re-
sults on different operating systems. This should present no
problem for applications unless they have problems which
would cause an invalid destination parameter to be used.

DATA SAVE BA No range check is performed on the specified sector address.
Results of this are as discussed in COPY above.

DATA SAVE BA Same as DATA SAVE BA.

DATA SAVE DA Same as DATA SAVE BA.

SAVE DA Same as DATA SAVE BA.

NOTE: If extended diskimages are not specified, NPL statements do not attempt to use
bytes 7 & 8 of the index entries for sector addresses. In addition, specifying an END
value above 65535 for SCRATCH DISK or MOVE END results in a P34 - Illegal
Value error as in prior versions of the RunTime.

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-43

7.3.11 Native Operating System Files

In addition to NPL’s internal catalog access methods, NPL provides developers the abil-
ity to access almost any external native operating system file. This section discusses two
potential methods of accessing native operating system files. The first method describes
the handling of ASCII text files using NPL. The second discusses the Niakwa Data Man-
ager (NDM) and it’s inherent benefits over the standard NPL catalog access methods.

ASCII File Access
The task of creating, accessing and manipulating ASCII text files is easily accomplished
under NPL. NPL has the ability to handle I/O from two type of devices: Disk Class and
Print Class devices.

Print Class Devices
The following is an example of creating a delimited text file named PRTTEXT.TXT on
an MS-DOS based system using the print class device /215.

20 PRINT HEX(03)
30 $DEVICE(/215)="PRTTEXT.DAT"
40 $GIO/215,(HEX(8700)<
 :REM**REWINDS FILE OR REM OUT TO APPEND TO FILE
50 DIM X$256,D$512
60 A$="DELIMITED"<
 :B$="ASCII"<
 :C$="RECORD"
70 D$=HEX(22) & A$ & HEX(222C22) & B$ & HEX(222C22) & C$ & HEX(22)
80 SELECT PRINT 215
90 FOR I = 1 TO 10
100 PRINT D$
110 NEXT I
120 SELECT PRINT 005
130 $SHELL "TYPE PRTTEXT.DAT"
140 STOP

This is probably the most common method of text file creation. Text files created in this
fashion contain a carriage return line feed character at the end of each record. These char-
acters represent end of record information when importing text files into other third party
database, spreadsheet or word processing products.

Storage Devices DEVICE SUPPORT

7-44 NPL Programmer’s Guide

The following example is an input routine which will read in the PRTTEXT.DAT file cre-
ated in the above routine.

10 DIM A$80,B$49
20 PRINT HEX(03)
25 LINPUT "ENTER FILE TO BE READ IN",B$
30 $DEVICE(/215)=B$
40 REM ***REWIND THE FILE***<
 :$GIO/215,HEX(8700))
50 REM ***GET SOME BYTES***<
 :$GIO/215,(HEX(C620),G$)A$
60 REM ***GET COUNT OF BYTES READ***<
 :IF G=VAL(STR(G$,9),2)
70 REM ***CHECK END OF FILE***<
 :IF G=0 THEN 100
80 REM ***PRINT BYTES TO THE SCREEN***<
 :$GIO/005,(HEX(A000))A$,G
85 KEYIN P$
90 GOTO 50
100 STOP

This routine uses the $GIO (C620) microcommand sequence to read the file in using the
print class device /215. Since $GIO does not insert and line handling characters, each re-
cord read in is output nicely to the screen with it’s HEX(0D0A) characters enforcing car-
riage return line feeds where appropriate.

Refer to the Statements Guide, $GIO, for details on the full functionality of this statement.

Disk Class Devices
The following is an example of creating a delimited text file named DISKTEXT.DAT on
an MS-DOS based system using the disk class device /D40.

20 PRINT HEX(03)
30 $DEVICE(/D40)="DISKTEXT.DAT"
40 SCRATCH DISK T/D40,LS=1,END=10<
 :REM***CREATE FILE***
50 DIM X$256,D$512
60 A$="DELIMITED"<
 :B$="ASCII"<
 :C$="RECORD"
70 D$=HEX(22) & A$ & HEX(222C22) & B$ & EX(222C22) & C$ & HEX(22)
80 SELECT DISK/D40
90 FOR I = 1 TO 5
100 DATASAVE BM T((I-1*2))D$
110 NEXT I
120 SELECT PRINT 005
130 $SHELL "TYPE PRTTEXT.DAT"
140 STOP

DEVICE SUPPORT Storage Devices

NPL Programmer’s Guide 7-45

This routine outputs each record using direct sector addressing. This is accomplished us-
ing the DATA SAVE BM statement in line 100. Each record is stored in it’s own 256
byte sector, unlike the print class example above, which omitted all trailing spaces. In ad-
dition, carriage return and line feed characters are omitted from the end of each record.

The following example is an input routine to read in the DISKTEXT.DAT file created in
the above program.

10 PRINT HEX(03)
20 DIM X$256,X1$256,A$49
30 LINPUT "ENTER NAME OF ASCII TEXT FILE",-A$
40 $DEVICE(/D30)=A$
50 X=0 : E=0
60 X$=" "
70 DATA LOAD BA T/D30,(X)X$<
 :ERROR DO<
 :E=ERR<
 :IF E<> 98 THEN STOP "error"
 :ENDDO
80 PRINT HEX(03)
 :PRINT AT(1,24);"SECTOR";X;"OF FILE";A$
 :PRINT
 :LIST DIM *X$
90 REM X$ CONTAINS NEXT 256 BYTES OF DATA - DO WITH IT AS YOU PLEASE
100 X=X+1
110 KEYIN L$
120 IF E=0 THEN GOTO 60:rem MORE DATA LEFT
180 REM DONE
190 REM *UNDER VMS DISK CLASS DEVICES CREATE 256 BYTE
 FIXED LENGTH SEQUENTIAL FILES
200 REM *FILES CREATED BY THE VMS TEXT EDITOR, OR NPL
 PRINT CLASS DEVICES ARE CONSIDERED VARIABLE
210 REM *LENGTH SEQUENTIAL FILES AND MAY ONLY BE READ
 INTO NPL VIA $GIO STATEMENTS

The DATA LOAD BA direct sector address statement on line 30 is used to read each sec-
tor of the specified file and displays a formatted sector dump of each record in the file, al-
lowing the developer to view the sectors for embedded line feed and carriage return
characters.

NOTE: The ERROR statement in line 70 traps for the native end-of-file error.
If you intend to access native files under DEC VMS, please note the comments in
lines 190 and 220.

Refer to the Statements Guide, DATA LOAD BA and DATA SAVE BA for details on
these and other direct sector addressing statements.

Storage Devices DEVICE SUPPORT

7-46 NPL Programmer’s Guide

The Niakwa Data Manager (NDM)
The Niakwa Data Manager (NDM) is library of external routines, designed to give devel-
opers an alternative to storing application data files in NPL diskimages using either
NPL’s catalog access methods or a variety of internally developed, less efficient ISAM’s
written directly in NPL.

NDM allows NPL developers to create and maintain application data files in a variety of
industry standard, highly efficient, native ISAM products, while maintaining the portabil-
ity of those data files across various NPL supported platforms.

The immediate benefits of NDM are:

• Increased performance of data access

• Decreased file maintenance (no "File Full" errors).

• Increased product offerings. Files stored in industry standard native ISAM’s are
accessible to all other third party products that support the native ISAM.

For more information regarding the features of NDM, refer to the NDM Programmer’s
Guide, or contact Niakwa.

7.4 Screen Handling

This section discusses the methods by which output to the display device screen can be
generated by NPL programs.

NOTE: The actual implementation of many of the features discussed in this section is highly
dependent upon the capabilities of the native operating environment and the dis-
play device used. Refer to the appropriate NPL Supplement for details on the dis-
play devices supported ad the specific compatibility issues involved for different
implementations of NPL.

7.4.1 General Features

As with other I/O operations, the NPL method of screen output is designed to be compat-
ible across all machines on which NPL operates, as well as to maintain compatibility
with the Wang 2200. The following characteristics apply to screen output:

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-47

• NPL can address 80 columns (numbered 0 through 79) and 24 rows (numbered 0
through 23) on the terminal screen.

NOTE: On devices which support 132 column mode, NPL allows programs to make use of
this feature. Refer to Section 7.4.12 for details.

• All output to the screen is in character format as opposed to block format. That
is, any character can be printed at any location on the screen without affecting
other characters on the screen (except for the possibility of scrolling, as described
below).

• If row and column are not explicitly specified, output is displayed at the current
cursor location. The cursor location is always set to the screen position following
the last character printed, unless explicitly set elsewhere.

• If any output would cause printing past the last available column (80 or 132), the
output "wraps" to the next line.

NOTE: Use of the 205 address, or an output width greater than last available column,
causes wrapping to the same line (refer to Section 7.4.2 below for details).

• If any output would cause printing past line 23, the screen display is scrolled up
one line (line 23 is cleared and the new output is printed on line 23).

NOTE: Printing a line feed on line 23 causes the screen to scroll one line without affecting
cursor position.

A line feed is automatically issued with a carriage return when using the /005 ad-
dress Refer to Section 7.4.2 below.

7.4.2 Addressing the Screen

As discussed in Section 7.2, all devices attached to the system are assigned a three-digit
code, the first digit of which refers to the device type and classification. This code identi-
fies which class of I/O device is being used, enabling the operating system to generate the
appropriate I/O procedures.

The following is a table which indicates the device types normally used for character
printing and display operations to the screen:

Screen Handling DEVICE SUPPORT

7-48 NPL Programmer’s Guide

Type 005 Outputs a line feed character (HEX(0A)) after each carriage return
character (HEX(0D)) is output.

Type 205 Does not generate an extra character after each carriage return char-
acter (HEX(OD)) is output.

Type 405 Outputs a line feed character (HEX(OA)) after each carriage return
character, but suppresses the automatic carriage return character
(HEX(0D)) normally issued on PRINT statements that do not end in
a semicolon.

For addressing the screen, the device address used must always be:

x05

with x being either device type 0, 2 or 4, as explained above. The address (x05) cannot be
changed by the application program.

The terminal screen is set up as the default address 005. This address can not be modified
by the application program other than to change the device type as indicated above. It is
not necessary to put this address in the device table using the $DEVICE statement.

7.4.3 The NPL Screen Character Set

NPL employs its own version of the character set for screen displays, which may be dif-
ferent from the native operating system running on the particular hardware version being
used.

The NPL Normal Character Set contains the following:

HEX(00) to HEX(0F) NPL control codes.

HEX(10) to HEX(1F) International characters.

HEX(20) to HEX(7F) ASCII codes (except for the special codes 5F, 60, 7B-
7F).

HEX(80) to HEX(8F) Special graphics characters.

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-49

HEX(90) to HEX(FF) Contains the underlined versions of the codes HEX(10)
to HEX(7F).

NPL also offers an Alternate Character Set, which differs from the Normal Character Set
in just the characters HEX(90) to HEX(FF):

HEX(90) to HEX(9F) Special graphics extensions.

HEX(A0) to HEX(AF) Character box pieces.

HEX(B0) to HEX(BF) Reserved.

HEX(C0) to HEX(FF) Pixel graphics. When these characters are displayed,
they are represented by different graphic combinations
of a character space, which is divided into sixths of a
character.

NOTE: The implementation of the NPL screen character set is highly dependent upon the
capabilities of the display devices used. Refer to Appendix D for details. Refer to Sec-
tion 1.5 for the ideal representation of the NPL Character Set.

To display the standard NPL character set actually present on any given machine, enter
and run the following program:

10 DIM X$(16)16
20 SELECT PRINT 005, LIST 005
30 PRINT HEX(0202000E): REM ENSURE STANDARD CHARACTER SET
40 FOR X=1 TO 256: STR(X$(),X,1)=BIN(X-1): NEXT X
50 LIST DIM * X$(

Now replace line 30 with the following:

PRINT HEX(0202020E)

and press RETURN. Running the program again with this change, displays the NPL Al-
ternate Character Set.

Look carefully at the characters represented by the codes HEX(90) to HEX(FF), and no-
tice the "pixel" graphic display of those characters in the Alternate Character Set. Refer
to Section 7.4.9 below for details on "pixel" graphics.

Screen Handling DEVICE SUPPORT

7-50 NPL Programmer’s Guide

Screen Output Character Translation
Except for the range of characters between HEX(20) and HEX(7F), there is little stand-
ardization of character sets across terminals. Therefore, if characters of the NPL character
set were sent directly to screens, the resulting characters displayed would be quite differ-
ent from one machine to another. NPL provides a mechanism for displaying the NPL
character set consistently on every supported terminal.

Depending on the nature of the native operating system and the display device used,
either modifiable fonts or character translation is used to resolve differences between vari-
ous devices.

Modifiable Fonts--On some systems which support downloadable fonts, NPL provides
an alternate font table which contains the NPL character set. This font table is down-
loaded to the video controller by the RunTime program at execution time. The font table
can be modified by the EDFONT utility in the NPL Compiler utilities. Refer to Chapter
13 for details.

Character Translation--On some systems, a dynamic character translation technique is
used. For machines which require this, character set compatibility is approximated by the
use of a simple look-up table which translates characters into hex codes which generate
an equivalent, or at least similar, display character.

The RunTime program contains a built-in default translation table which may be exam-
ined or modified by use of the $SCREEN statement. Refer the Statements Guide,
$SCREEN, for details.

In addition, EDSCREEN, a screen translation utility is provided which allows a table file
to be generated to disk. This table file is loaded by the RunTime program at execution
time. For further details on the Compiler utilities, refer to Chapter 13 of the Program-
mer’s Guide. For further details on the hardware specific implementation of screen char-
acter translation, refer to the appropriate NPL Supplement.

7.4.4 Internal Access

Some operating systems support two methods of accessing the display device. These are:

Direct video mapping Characters are sent directly to the screen controller.

"Generic" screen handling Standard native operating system characters are sent to the
screen by using standard native operating system calls.

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-51

Direct video mapping is much faster than generic native operating system screen han-
dling. However, to perform direct video mapping, the system software generating the
screen output must recognize the type of screen that is on the system and must know the
actual memory location to map to.

There may be minor differences in the results of screen output between direct video mode
and generic mode. These differences are highly hardware dependent and can be refer-
enced in the appropriate NPL Supplement for the particular hardware being used.

7.4.5 Screen Control Codes and Attributes

Through the use of various system reserved hexadecimal codes, the features of cursor
movement and the terminal alarm may be controlled. In addition, various attributes for
the screen display may be specified by the use of a hexadecimal sequence of codes. In
both cases, the necessary codes can be sent to the screen by use of a PRINT statement
when the default PRINT device in the Internal Device Table is set to address /005.

Use of these codes is operating environment and display device dependent.

For example:

10 SELECT PRINT 005
20 PRINT HEX(03)

sends the hexadecimal control code (03) to the screen.

The following table lists the supported control codes:

Screen Handling DEVICE SUPPORT

7-52 NPL Programmer’s Guide

HEX(01) Moves the cursor to the home position (top left of the screen).
HEX(02) Indicates the start of a multi-character control sequence. Multi-

character sequences always end in HEX(0E) or HEX(0F).
HEX(02050F) Enables cursor blinking.
HEX(03) Clears the screen and homes the cursor.
HEX(05) Turns the cursor on.
HEX(06) Turns the cursor off.
HEX(07) Emits the terminal’s audio alarm (a beep).
HEX(08) Moves the cursor to the left one space (non-destructive backspace).
HEX(09) Moves the cursor to the right one space (non-destructive space).
HEX(0A) Moves the cursor down one line (line feed).
HEX(0C) Moves the cursor up one line.
HEX(0D) Moves the cursor to the beginning of the current line (carriage return).
HEX(0E) Select enhanced video mode.
HEX(0F) Select non-enhanced video mode.
HEX(0202020E) Select alternate character font.
HEX(0202000E) Select normal character font.
HEX(020D0C030E) Terminal reset function. Clears screen

Video Attributes
For the ability to highlight different groups of information on the display device, a series
of attributes is available to be selected for any character displayable on the screen. These
attributes do not occupy a character position on the screen and do not affect the cursor lo-
cation. Therefore, fields with different attributes can be displayed with no intervening
spaces. These display attributes consist of:

Bright Characters displayed in high intensity.

Blinking Characters displayed in blinking fashion.

Reverse Video Characters displayed as dark on a white background. On
color displays, background and foreground colors are re-
versed.

Underline Characters displayed with an underline.

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-53

To select a display attribute to be used, the following command is sent to the terminal:

HEX(02040E) or HEX(02040F)

where:

0204 The control code sequence that indicates to the display device that
special character display attributes are to be selected.

The HEX codes, aabb, specifying the display attributes to be selected as follows:

aa = Description
00 For normal intensity, no blinking
02 For bright, no blinking
04 For normal intensity, blinking
0B For bright, blinking

bb = Description
00 For normal video, no underlining
02 For reverse video
04 For underlining
0B For reverse video, underlining

0E or 0F represents the termination character which causes the display attributes
selected by aa and bb to be turned on (0E) or turned off (0F).

NOTE: Once an attribute has been selected (by the 0204aabb sequence) it can be turned on
or off with the single character HEX(0E) or (0F). Once on, attributes remain on un-
til turned off with the HEX(0F) or until another attribute is turned on. If an attrib-
ute is turned on using HEX(0E) instead of the control sequence, a HEX(0D) also
turns off the attribute.

The actual effect of these control sequences is extremely hardware dependent. In all hard-
ware versions, NPL attempts to provide as close an approximation as possible to the
specifications above. Refer to the appropriate NPL Supplement for details on hardware
specific features and considerations.

Screen Handling DEVICE SUPPORT

7-54 NPL Programmer’s Guide

7.4.6 Graphics

Under certain environments, NPL has the capability of running in "Graphics Mode" as
opposed to "Text Mode". This capability allows for the support of "true box" graphics
(discussed below) through the use of downloadable screen fonts. The availability of
graphics mode is extremely hardware dependent. Refer to the appropriate NPL Supple-
ment for a complete discussion of Graphics Mode.

7.4.7 Color Support

Applications can be enhanced by use of color. NPL supports the use of color on specific
operating systems. This section discusses language requirements necessary to use color in
an application, as well as the colors available and the selection of colors using $OP-
TIONS or dynamically. Color support under NPL is operating environment and display
device dependent. The hardware/operating system requirements are outlined in Chapter 6
of the appropriate NPL Supplement, as well as details on availability of color support.

NPL supports the following colors:

Value Color
0 BLACK
1 BLUE
2 GREEN
3 CYAN
4 RED
5 MAGENTA
6 BROWN
7 WHITE

Color use can be controlled by using $OPTIONS bytes 22 and 23 with three functions
available:

1. Color support may be enabled by setting byte 22 of $OPTIONS to a non-zero value.

2. Default background, foreground, perimeter and underline colors may be set by using
specific values in bytes 22 and 23 (described below).

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-55

3. Color support may be disabled and the screen may be returned to the "non-color" de-
faults (white letters on black background with no perimeter and underline controlled
by byte 1 of $OPTIONS) by setting byte 22 of $OPTIONS to HEX(00).

NOTE: Only values 0-7 are supported in bytes 22 and 23 of $OPTIONS. All other values
should be avoided and will provide inconsistent results.

For any function, the values in bytes 22 and 23 of $OPTIONS are used only when a ter-
minal reset sequence (HEX(020D0C030E) is issued. In other words, placing values into
these bytes has no effect until the terminal reset sequence is issued.

For example:

10 DIM X$64
20 X$=$OPTIONS :REM Always preserve other values
30 STR(X$,22,1)=HEX(13) :REM Set blue background, cyan foreground
40 $OPTIONS=X$:REM Place new values in $OPTIONS
50 PRINT HEX(020D0C030E) :REM Put color selections into effect
60 PRINT "THIS IS A TEST" :REM Text is printed as cyan on blue
70 REM ** Dynamic color selection is now enabled
80 STR(X$,22,1)=HEX(00) :REM Value to turn off color
90 $OPTIONS=X$:REM Place value in $OPTIONS
100 PRINT HEX(020D0C030E):REM Screen now reverts to white on black
110 REM ** Dynamic color selection is now disabled

When used to specify specific color combinations, bytes 22 and 23 of $OPTIONS may
be set to the following values:

Byte 22 = HEX(bf) This byte provides power-on default colors for
background and foreground, where b and f are
values in the range of 0-7. Default value is HEX(00)
(old color conventions).

Byte 23 = HEX(pu) This byte provides power-on default colors for
perimeter and underlined text. Where p and u are
values in the range of 0-7. Refer to the section
below for further information on underline color
replacement.

NOTE: The values specified in the above examples take effect only when a power-on reset
sequence HEX(020D0C030E) is printed to the screen. If byte 22 is set to HEX(00),
all new color options are disabled and the RunTime continues to operate as it did in
previous releases.

Screen Handling DEVICE SUPPORT

7-56 NPL Programmer’s Guide

Dynamic Selection of Colors Using HEX Sequences
As an alternative to modifying color values in bytes 22 and 23 of $OPTIONS, colors may
be selected dynamically by using the following HEX sequence:

HEX(02000605 0b 0f 0u 0p 0i 0F)

Where:

b, f, u, p, and i are hex digits with the following meanings:

b is the color to use in the background for subsequent characters.

f is the color to use in the foreground for subsequent characters.

u is the color to use for subsequent underlined text. Refer "Underline Color Re-
placement" below for further information.

p is the required perimeter color.

i is set to 0 if the perimeter color is dim, 1 if it is bright.

For example:

10 PRINT HEX(02000605040703020F)

The above sequence would set background to red, foreground to white, perimeter to cyan,
and underline text to green.

10 PRINT HEX(020006050B030F)

The above sequence would leave the background unchanged (0B), set foreground to cyan
(03), and leave the perimeter and underline text unchanged.

NOTE: The specified values of b, f, u, p and i must be in the range of 0-7 (colors correspond-
ing to the IBM color codes) or may be "B" to indicate no change is required from a
previous sequence.

Dynamic selection of colors is activated only if byte 22 of $OPTIONS was set to a non-
zero value when the most recent reset sequence (HEX(020D0C030E)) was issued. This
can be easily done in the boot or preboot program. Refer to the sample program provided
below for an example.

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-57

WARNING--Use of a color value of 01 for any of the optional parameters in the dynamic
color control sequence causes a Wang 2x36 terminal to hang.

For example, the sequence

HEX (02000605010304020F)

causes the Wang 2x36 to hang. Programmers who wish to use Dynamic Color Control
Sequences and need the application to execute properly on a Wang 2x36 terminal either
under NPL or Wang Basic-2, must avoid using color values or include conditional logic
so that the color sequence is not sent to a Wang 2x36 terminal.

NOTE: Under NPL, as long as Byte 22 of $OPTIONS is equal to HEX(00), dynamic color se-
quences are not sent to the terminal, effectively avoiding this problem.

On some display adapters, line 25 is used for the perimeter color. This line 25 is other-
wise reserved by the RunTime for optional CAPS LOCK and NUM LOCK indicator dis-
plays. Please refer to the appropriate NPL Supplement for further details.

A HEX sequence may be terminated at any time by a HEX(0E) or HEX(0F) sequence, in
which case the remaining color options are unaffected. New colors become effective im-
mediately and remain in effect until a new sequence of this type is printed or until a
power-on reset sequence is printed.

NOTE: The HEX(02...0F) sequences have the added advantage that if they are printed using
actual 2200 terminals (on a 2200 system), or using an older RunTime version, they
are ignored (except for the problem with the HEX(01) sequence as noted above).
Thus, color can be safely added to programs without fear of encountering compati-
bility problems. However, unless color equipment is mandatory, it is the developer’s
responsibility to ensure that the programs are still usable on a display which has no
color capability.

Underline Color Replacement
Byte one of $OPTIONS (the high-order nibble) is used as the background color for under-
line. The "u" value from byte 23 of $OPTIONS or a dynamically issued HEX sequence is
used as the foreground color if specified.

Screen Handling DEVICE SUPPORT

7-58 NPL Programmer’s Guide

If the color options are disabled (byte 22 of $OPTIONS = HEX(00)), byte one of $OP-
TIONS is still used as the foreground and background underline replacement colors. Re-
fer to the Statements Guide, $OPTIONS, for more detail concerning byte 1 of
$OPTIONS.

Selecting "BRIGHT" Attribute
In addition to the eight colors that are available, foreground colors may be duplicated us-
ing the "BRIGHT" attribute, providing for a selection of 16 colors.

NOTE: This requires special hardware considerations. Refer to Chapter 6 of the appropri-
ate NPL Supplement for details. This is achieved by sending the standard hex se-
quence for selecting the "BRIGHT" attribute. Refer to Section 7.4.5 for details.

Sample Color Program
The following is a short program designed to present an example of the concepts dis-
cussed in this section.

10 DIM X$64
 : X$=$OPTIONS
 : STR(X$,3,1)=HEX(01) :REM Cut down on "noise"
 : STR(X$,22,1)=HEX(47) :REM White letters on Red
 : STR(X$,23,1)=HEX(12) :REM Blue perimeter Green underline
 : $OPTIONS=X$:REM Enable new color sequences
 : N$=HEX(02000605070004070F):REM Dynamic restore sequence
20 PRINT HEX(020D0C030E);:REM Power-on reset sequence
 : PRINT "The available background colors are:"
 : PRINT HEX(02000605000F);"0 - BLACK " :
 : PRINT HEX(02000605010F);"1 - BLUE "
 : PRINT HEX(02000605020F);"2 - GREEN "
 : PRINT HEX(02000605030F);"3 - CYAN "
 : PRINT HEX(02000605040F);"4 - RED "
 : PRINT HEX(02000605050F);"5 - MAGENTA "
 : PRINT HEX(02000605060F);"6 - BROWN "
 : PRINT HEX(02000605070F);"7 - WHITE " :REM "invisible"
 : PRINT N$:REM Back to normal
30 PRINT "The available foreground colors are:"
 : PRINT HEX(020006050B000F);"0 - BLACK ",HEX(0E);"GRAY "
 : PRINT HEX(020006050B010F);"1 - BLUE ",HEX(0E);"LIGHT BLUE "
 : PRINT HEX(020006050B020F);"2 - GREEN ",HEX(0E);"LIGHT GREEN "
 : PRINT HEX(020006050B030F);"3 - CYAN ",HEX(0E);"LIGHT CYAN "
 : PRINT HEX(020006050B040F);"4 - RED ",HEX(0E);"PINK "
 : PRINT HEX(020006050B050F);"5 - MAGENTA ",HEX(0E);"LAVENDER "
 : PRINT HEX(020006050B060F);"6 - BROWN ",HEX(0E);"YELLOW "
 : PRINT HEX(020006050B070F);"7 - WHITE ",HEX(0E);"BRIGHT WHITE "
 : PRINT N$:REM Back to white letters

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-59

7.4.8 Box Graphics

Screen displays can be enhanced by the use of boxes to enclose specified portions of the
screen. These boxes can be produced by the PRINT BOX statement. Two types of boxes
are supported: "true" boxes and "character" boxes. The primary distinction between these
two types of boxes is the horizontal attribute of the box. In true boxes, the horizontal at-
tribute is displayed between character rows. In character boxes, the horizontal attribute
occupies one character row.

True Boxes
The implementation of true box graphics requires a monitor that can support dual text
and graphics mode. If such a monitor is present and is supported by the RunTime pro-
gram, then true box graphics are displayed. In all other cases, if the monitor is supported
but does not have dual text and graphics capabilities, or the monitor is simply not sup-
ported (generic screen handling used), true box graphics are not available.

Application programs may examine byte 4 of the $MACHINE system variable to deter-
mine if true box graphics are available on the machine currently being used. A value of
"G" indicates that true box graphics are available. A value of " " indicates that they are
not. For further details refer to the Statements Guide, $MACHINE.

Character Boxes
Box graphics created from the standard character set are supported. This provides the ca-
pability of printing boxes on screens where true boxes are not available. This feature does
have some limitations. The primary limitation is that horizontal lines must occupy a full
character row. This means that applications which wish to use these character boxes must
allocate a blank row above and below the text to be boxed. Because of this limitation, the
use of character boxes is optional (controlled by the $BOXTABLE system variable).
$BOXTABLE is also used to define the characters used for the components of character
boxes.

NOTE: If character boxes are selected, they are printed in place of true boxes even on sys-
tems which have true box capability. As noted above, the availability of true boxes
can be tested by accessing the $MACHINE system variable. Thus, character boxes
can be selected conditionally.

Character boxes are generally more "portable" than true boxes. For further details refer to
the Statements Guide, $BOXTABLE. Also, refer to Appendix D of the Programmer’s
Guide for details on which terminals support true or character box graphics.

Screen Handling DEVICE SUPPORT

7-60 NPL Programmer’s Guide

7.4.9 Pixel Graphics

As explained in Section 7.4.3 above, NPL offers an Alternate Character Set, which dis-
plays the alternate characters in the range HEX(90-FF), including the characters from
HEX(C0) to HEX(FF) in a "pixel" graphic mode.

These 64 characters are represented by different graphic combinations of a character
space, which is divided into sixths of a character. Each of the character spaces is sec-
tioned off into 3 rows by 2 columns, and are filled in by the proper HEX code specifica-
tion. As adjacent graphic characters begin to touch, continuous lines of light and dark
areas are displayed, making special displays such as bar graphs and histograms possible.

Refer to the program example in Section 7.4.3 above to display the pixel graphics on the
terminal screen.

Because screen handling of graphics is extremely hardware dependent, refer to Appendix
D for details on terminals which support use of "pixel" graphics or Chapter 6 of the appro-
priate NPL Supplement.

7.4.10 Plotting Capabilities

For machines which have graphic capabilities, use of Niakwa’s Plotter Driver software al-
lows NPL programs to perform plot-like functions to screens with graphic capabilities.
Characters may be sent to the plotter driver through standard NPL PRINT or $GIO state-
ments. Refer to the Niakwa Scientific and Communications Drivers Package for further
details on plotting capabilities.

NOTE: Because plotting capabilities are extremely hardware dependent, refer to the appro-
priate NPL Supplement for details on this availability.

7.4.11 Statements Used to Print to the Screen

The following NPL statements are available for use in directing printed output to the dis-
play devices:

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-61

PRINT Used for printing the values of specified variables or
expressions to the currently selected output device.

PRINT AT Used to position the cursor to any location on the
screen for beginning printed output.

PRINT BOX Used for producing a tabulated format of printed
output.

PRINT TAB Used for producing a tabulated format of printed
output.

PRINTUSING Used to create a formatted print output of numeric
and alpha-numeric data in a user defined format.

MAT PRINT Used for printing specified array values, row by row,
to the currently selected output device.

$GIO Used for various functions difficult to achieve using
other statements.

PRINT SCREEN Used to print a specified portion of the screen from a
specified variable. Intended to be used with INPUT
SCREEN to temporarily save then redisplay a portion
of the screen.

For further details refer to the NPL Statements Guide.

7.4.12 132-Column Support

NPL permits application programs to make use of the 132-column mode on NPL sup-
ported display devices that have this capability. Refer to Appendix D for details on which
specific terminals support this feature. This feature enables application programs to pre-
sent wide reports (132 columns) to a display device for review before (or in place of)
printing them to a print device. This option allows for dynamic switching between the 80-
column mode, which is more legible and usually sufficient for most displays, and the 132-
column mode which may be useful for reports but is less legible.

Screen Handling DEVICE SUPPORT

7-62 NPL Programmer’s Guide

Byte 17 of the $OPTIONS system variable has been allocated as a flag to indicate
whether dynamic selection of the 80 column or 132 column mode is to be performed by
the RunTime program. If set to HEX(00), the RunTime does not change modes and the
screen remains with the last selected width. If set to HEX(01), each time the screen is
cleared (by use of the HEX(03) control code, or HEX(020D0C030E) sequence), the cur-
rently selected display width (from last SELECT PRINT, SELECT LIST or SELECT
CO, whichever is appropriate) is examined. If it has a value of 132, the 132-column dis-
play is used. If the value is not 132, the 80-column display is used.

Byte 8 of the $MACHINE system variable contains a one-byte binary value indicating
the current display width. This can be inspected by programs that need to know the cur-
rently selected width, to properly format the output. It may also be used by routines to
change the screen width temporarily and restore the width to the original value when fin-
ished. It should also be examined by programs which are attempting to change the screen
width after they have cleared the screen, to verify that the change has taken place.

For example:

0010 DIM X$64,X0$1
 :M$=$MACHINE
 :W0=VAL(STR(M$,8)) :REM GET CURRENT SCREEN WIDTH
 :X$=$OPTIONS
 : X0$=STR(X$,17,1) :REM SAVE DYNAMIC ENABLE STATE
 : STR(X$,17,1)=BIN(1) :REM ENABLE DYNAMIC SCREEN SIZE
 : $OPTIONS=X$
 : SELECT PRINT 005(132)
 : PRINT HEX(03);
 : M$=$MACHINE
 : W=VAL(STR(M$,8)) :REM GET ACTUAL SCREEN WIDTH
 : IF W=132 THEN PRINT "WIDE SCREEN IN USE"
 : ELSE PRINT "WIDE SCREEN NOT AVAILABLE"
 : GOSUB 2000 :REM PRINT REPORT TO SCREEN WIDTH=W
 : SELECT PRINT 005(W0):REM SET BACK TO PREVIOUS WIDTH
 : PRINT HEX(03);
 : X$=$OPTIONS
 : STR(X$,17,1)=X0$:REM RESTORE DYNAMIC ENABLE STATE
 : $OPTIONS=X$

NOTE: Changes to the $OPTIONS system variable can also be made using the NPL Edit
Options Utility (EDOPTION). Refer to Chapter 13 for details on this utility.

7.4.13 Uses and Limitations of INPUT SCREEN/PRINT SCREEN

Two extremely useful NPL screen handling commands are INPUT SCREEN and PRINT
SCREEN. These commands allow for easy implementation of "pop-up" type features to
be added to existing code or the restoration of the screen after a $SHELL command is
used.

DEVICE SUPPORT Screen Handling

NPL Programmer’s Guide 7-63

INPUT SCREEN only recognizes information which has been displayed by NPL print
class output directed to a device address x05. Use of any other function, such as external
calls which update screen or native operating system messages, may result in incorrect
data being returned by INPUT SCREEN.

Refer to the NPL Statements Guide, INPUT SCREEN or PRINT SCREEN for details on
the uses and limitations of these commands.

7.5 Keyboard Support

NPL assumes the existence of an "ideal" keyboard which contains all of the keys required
for the full use of the language. This keyboard is referred to as the NPL Virtual Keyboard
(refer to Section 1.5). Each of the keys on the Virtual Keyboard has a label, and when de-
pressed, generates a one byte value to the NPL program. For each of these keys, the label
and code generated is constant, irrespective of the hardware or native operating system
which hosts NPL. All references to keyboard keys in this guide refer to the Virtual Key
label (usually in capital letters, e.g., EXECUTE, RETURN, EDIT, etc.).

In reality, the physical keyboard of the system which hosts NPL may have very different
standards for key labels and the codes from that of the Virtual Keyboard. These differ-
ences are resolved by the $KEYBOARD system variable. This is a translation table
which maps the physical keyboard onto the NPL Virtual Keys. The RunTime include a
pre-determined $KEYBOARD table which contains suitable keyboard mapping for the
specific hardware and operating system as labeled on the package. This table may be
used as is, or may be modified by the developer to suit individual preferences.

This technique ensures application program compatibility across all hardware and operat-
ing environments without requiring program changes or special program logic to handle
varying keyboards.

7.5.1 The Keyboard Device Address

The keyboard device address is special, in that it is a constant on all NPL platforms and is
set to /001 by the RunTime at initialization. This cannot be changed by the application
program. As such, it is not necessary to put this in the Device Equivalence Table.

Keyboard Support DEVICE SUPPORT

7-64 NPL Programmer’s Guide

7.5.2 Virtual Key Names and Codes

The Virtual Keyboard contains two types of keys: "Standard Keys" and "Special Func-
tion Keys". Both types of keys generate a one-byte code when depressed. Furthermore,
some Standard Keys generate the same one-byte code as some Special Function Keys,
however, their "special" designation allows that they be processed differently by both
NPL itself and NPL programs.

Generally, Special Function Keys (SF Keys) are used by NPL for editing operations and
function calls. Application programs which use the KEYIN statement may also use Spe-
cial Function Keys for other customized purposes (discussed later in this section). The fol-
lowing table lists the Virtual Key names and codes that they generate, as required by
NPL:

NOTE: The physical key names on specific keyboards may vary from these. Consult the ap-
propriate NPL Supplement to determine the exact location of these keys on the key-
board being used.

NPL Virtual Key
Code(HEX)

NPL Virtual
 Key Label
Standard Keys are:

08 BACKSPACE
0D RETURN
82 EXEC (or EXECUTE)
84 Continue
A1 LOAD
E5 LINE ERASE

plus all standard ASCII key labels and codes.
Special Function Keys are:

00 ... ’0F SF Key number 0 to 15
’10 ... ’1F SF Key number 16 to 31
’42 PREV
’43 NEXT
’45 SOUTH
’46 NORTH
’48 ERASE
’49 DELETE

DEVICE SUPPORT Keyboard Support

NPL Programmer’s Guide 7-65

’4A INSERT
’4C EAST
’4D WEST
’4F RECALL
’50 SHIFT CANCEL
’52 SHIFT PREV
’53 SHIFT NEXT
’55 SHIFT SOUTH
’56 SHIFT NORTH
’59 SHIFT DELETE
’5A SHIFT INSERT
’5C SHIFT EAST
’5D SHIFT WEST
’5F D TAB
’7C GL
’7D SHIFT GL
’7E TAB or FN
’7F SHIFT TAB
’A0 UNDERLINE
’F0 CANCEL or EDIT

Use of Special Function Keys by NPL
The NPL line editor (Section 5.4) makes use of the Special Function Keys. Specifically,
Special Function Keys numbered 0 to 31 (codes HEX(00) to HEX(1F)) perform system
pre-defined text editing functions. These functions are documented in Section 5.4.4, Spe-
cial Function Keys.

Where possible, these keys are mapped to a corresponding physical key bank of generi-
cally numbered "function keys" available on many physical keyboards.

The balance of the Special Function Keys (codes HEX(32) and up, as shown) are mapped
to the remainder of the physical keyboard in a manner where the Virtual Key label
matches or nearly matches the Physical Key label, if possible. In many cases, the line edi-
tor additionally employs these SF Keys as an alternative to performing the same edit func-
tions as SF Keys numbered 0 to 31.

Details of this mapping are documented in the appropriate NPL Supplement.

Keyboard Support DEVICE SUPPORT

7-66 NPL Programmer’s Guide

The HALT Key
A special Virtual Key is provided which HALTs program execution if pressed when us-
ing the interpretive RunTime (RTI). Refer to Section 2.6.3 for details on the functions of
the HALT key. Refer to Appendix D and/or Chapter 6 of the appropriate NPL Supple-
ment for the keyboard sequence used to generate the HALT key.

NOTE: The HALT key may be suppressed by use of byte 13 of the $OPTIONS system vari-
able. For further details refer to the Statements Guide, $OPTIONS.

The Underline Key
If a Special Function HEX(A0) is defined in the Keyboard Translation Table, the system
allows entry of underlined characters as follows (during INPUT or LINPUT):

• The text which is to be underlined is keyed in.

• The arrow keys are used to reposition to the start of the text.

• The defined SF Key is pressed once for each character requiring underlining. Af-
ter each depression, a single character is underlined and the cursor advances one
place.

For programs using a KEYIN operation, the key defined as special function HEX(A0) is
reported as special function HEX(A0), with no other side effects.

NOTE: The default character translation tables do not define a special function HEX(A0) in
some implementations of NPL, therefore this functionality is not available unless a
replacement Keyboard Translation Table is defined.

 The standard underline key (shift of the "-" key) currently generates a HEX(5F),
which is an underline character in the standard ASCII character set, but a back-ar-
row character in the standard Wang 2200 character set. With the underline charac-
ter being used in constants and as part of Long Identifier Names (LINs), the
generation of a "true" underline character may be more familiar to many program-
mers. The functionality of this key can be easily changed to display a true underline
character by using $SCREEN (the PREBOOT program is the best place to define
this change), however, keep in mind that to be able to specify certain filenames for
some batch compile (B2C) operations requires the availability of the "back-arrow"
type of underline key. For an example of implementing this logic, refer to the pre-
boot program in Section 2.4.

DEVICE SUPPORT Keyboard Support

NPL Programmer’s Guide 7-67

Creating native operating system files with underlined names is not always permit-
ted.

7.5.3 Keyboard Translation

As stated above, the key codes generated by the native operating environment typically
do not correspond to codes expected by NPL programs. These differences are resolved by
the use of a simple lookup table which translates keys received from the keyboard to
HEX codes expected by NPL programs. The contents of this table vary from one ma-
chine to the next. However, in all cases, standard built-in defaults for keyboard remap-
ping are present. Refer to Appendix D and/or the appropriate NPL Supplement for details
on the display device being used--These should prove adequate for most applications.

Should modifications be required, they can be made to the Keyboard Translation Table
by one of two methods:

1. The preferred method is to use the NPL utility, "EDKEYBOA", which is provided
with the Development Package. This utility allows the programmer to create or mod-
ify a disk file containing keyboard equivalences which are to be loaded when the Run-
Time program is executed. NPL always looks for a keyboard file using a filename
based upon the type of terminal that is attempting to execute the RunTime program.
The assumed name and location of that keyboard file is detailed in Chapter 6 of the
appropriate NPL Supplement.

NOTE: For some terminal types, the RunTime uses a built-in default keyboard translation
values, should the keyboard file not be located. However, for many terminals, no
built-in defaults are present and keyboard access may fail entirely unless the proper
keyboard translation file is present.

2. Modification of the keyboard translation table may also be performed dynamically by
the use of the NPL $KEYBOARD statement. For additional details, refer to the State-
ments Guide, $KEYBOARD.

For further details on the EDKEYBOA utility, refer to Chapter 13 of the Programmer’s
Guide.

Keyboard Support DEVICE SUPPORT

7-68 NPL Programmer’s Guide

7.5.4 Statements Used for Keyboard Input

The following statements can be used for accepting input from the keyboard under pro-
gram control. Refer to the Statements Guide for complete details on the use of these state-
ments:

INPUT Used for accepting multi-character numeric or alpha input from the
keyboard into the specified variable.

KEYIN Used for accepting input from the keyboard one character at a time. With
the KEYIN statement, application programs can accept both Standard Keys
and Special Function Keys as input. Provisions of the KEYIN statement
allow that these keys are distinguished and therefore may be processed
differently.

LINPUT Used for accepting multi-character alpha input. With LINPUT, the NPL line
editor is active and thereby provides editing features during entry.

MAT INPUT Used for accepting multi-character input of values into alpha and numeric
arrays.

NOTE: NPL Release IV now supports and "insert mode" for operation for LINPUT and IN-
PUT, in addition to the default "overstrike mode" of operation. Refer to the State-
ments Guide, $OPTIONS, Byte 44, for details.

7.5.5 Extended Keyboard Entry

NPL supports a large part of the 2200 character set as "normal" characters during line en-
try (LINPUT, INPUT operations) and command entry. The main purpose of this is to sup-
port the use of non-English character sets which may require more than the standard
range (HEX(10) through HEX(7F)). This also provides a mechanism for migration to dif-
ferent, extended character sets (such as WISCII, IBM extended or DEC international)
which may be more suitable to the host environment.

NOTE: Use of such extensions means that data which uses characters outside the HEX(10)-
HEX(7F) range as "normal" characters requires translation when moving between
different operating systems.

DEVICE SUPPORT Keyboard Support

NPL Programmer’s Guide 7-69

The range of extended character input is controlled by two bytes of the $OPTIONS sys-
tem variable. These two bytes are:

Byte 18 Sets low value of extended range (default=HEX(00))
Byte 19 Sets high value of extended range (default=HEX(00))

NOTE: With the default values, no extension of the character set takes place. Values of
HEX(80) and HEX(FF) provide maximum extension of the character set (a total of
240 "normal" characters).

For example:

0010 DIM X$64<
 : X$=$OPTIONS<
 : STR(X$,18,2)=HEX(80FF)<
 : $OPTIONS=X$

These changes to the $OPTIONS system variable can also be made using the NPL Edit
Options utility (EDOPTION). Refer to Chapter 13 for details on the operation of the NPL
Edit Options utility.

Users are advised to beware of the following potential problems which may occur when
the range of "normal" characters is extended:

• The RUN/EXEC key, assumed to be a key with a "normal" value of HEX(82),
may become unavailable if HEX(82) is included in the supplementary range de-
fined by $OPTIONS bytes 18 and 19. To permit continued use of the EXECUTE
function (required for example when using the statement stepping mechanism un-
der the interpreter), the line entry routine now also accepts "special" key
HEX(82) as EXECUTE.

• The ERASE key, normally assumed to be a key with a "normal" value of
HEX(E5) may become unavailable if HEX(E5) is included in the supplementary
range defined by $OPTIONS bytes 18 and 19. To permit continued use of the
ERASE key mechanism under the interpretive RunTime, the line entry routine
now also accepts "special" key HEX(E5) as ERASE.

• NPL programming "atoms" which are included in the supplementary range de-
fined by $OPTIONS bytes 18 and 19 become unavailable. Refer to Appendix E
for details on use of NPL "atoms".

Keyboard Support DEVICE SUPPORT

7-70 NPL Programmer’s Guide

• The characters in the extended range replace the "alternate" font characters in the
same range. Thus, use of an extended character set may make the special graph-
ics in the range HEX(80)-HEX(9F), the character box graphics in the range
HEX(A0)-HEX(AF), or the pixel graphics characters in the range HEX(C0)-
HEX(FF) unavailable.

• While using an extended character set, the technique of setting the HEX(80) bit
in each character of a string to underline it becomes invalid when the resulting
character is in the auxiliary range defined by bytes 18 and 19. It is still possible
to display underlined characters by use of an appropriate enhanced display se-
quence (HEX(0204...0E).

• Usually, correct display of the character set requires definition of a proper screen
translation table and correct entry of characters requires definition of a proper
keyboard translation table. These tables may be different for different types of ter-
minals. Carefully document the "ideal" display of the extended character set of
choice. Refer to Chapter 13 for details on the usage of the EDSCREEN and ED-
KEYBOA utilities.

7.6 Mouse Support

This section details standard NPL support of the mouse interface within supported envi-
ronments.

Mouse events are reported to the NPL application by generation of special function key
codes as follows:

’F1 - left button pressed
’F2 - left button released
’F3 - left button pressed (within double click time)
’F4 - right button pressed
’F5 - right button released
’F6 - right button pressed (within double click time)
’F7 - dragged north (up)
’F8 - dragged south (down)
’F9 - dragged east (right)
’FA - dragged west (left)

DEVICE SUPPORT Mouse Support

NPL Programmer’s Guide 7-71

The values reported for mouse events are modifiable. The method used to modify these
values is operating system dependent.

When a key is read by the NPL KEYIN statement, bytes 23 and 24 of $MACHINE con-
tain the Y (row) and X (column) address of the current location of the mouse when the
event occurred, if it is "on screen". When the cursor is outside the screen area (or if there
is no mouse) these bytes contain high values (HEX(FF)).

The mouse cursor appearance is operating environment dependent, refer to Chapter 5 of
the appropriate NPL Supplement for more information.

Byte 29 of $MACHINE indicates whether keyboard mouse events are supported.

The values are:

HEX(00) mouse not available

HEX(01) mouse available

This value is operating environment dependent, refer to Chapter 5 of the appropriate NPL
Supplement.

Support of a mouse interface is hardware specific and not supported in all NPL environ-
ments. Refer to Chapter 5 of the appropriate NPL Supplement for operating environment
specific details regarding mouse support.

7.7 Terminal/Monitor Support

This section concerns itself with the terminals which are supported under the various sup-
ported NPL platforms. Inclusion of a terminal in this section does not guarantee that it
will operate under all supported NPL environments. Refer to the specific NPL Supple-
ment for more details on supported terminals on each operating system.

Terminal/Monitor Support DEVICE SUPPORT

7-72 NPL Programmer’s Guide

7.7.1 Determination of Type

On all versions of NPL, the terminal kind is determined by the RunTime at startup. Once
a terminal kind is established, the RunTime initializes various internal NPL system vari-
ables. Among them, the $SCREEN and $KEYBOARD variables are loaded with the
translation values stored in the KEYBOARD.xxx and SCREEN.xxx files for the corre-
sponding terminal kind.

The method NPL uses to determine what terminal kind is attached at startup varies by op-
erating environment. For example, under UNIX, NPL interrogates a user defined environ-
ment variable called BASIC2C_TERM, while under another environment such as
SuperDOS, NPL will determines terminal kind from an ASCII text file containing a table
of terminal kinds. In all cases, developers must establish these values at the native operat-
ing system level. Refer to Chapter 6 of the appropriate NPL Supplement for details on ter-
minal type determination.

7.7.2 NPL Directly Supported Terminals/Monitors

The following table lists the terminals that are currently supported by the NPL RunTime.
This table also contains the terminal ’kind’ name which should be established at the na-
tive operating system level using the methods described above. Refer to Appendix D for
a complete description of terminal characteristics for all terminals listed below, with the
exception of the IBM console.

DEVICE SUPPORT Terminal/Monitor Support

NPL Programmer’s Guide 7-73

Terminal Name Terminal "kind"
ALTOS III altos
ALTOS V al5
Bull HDS I wy50
Bull HDS III vt100
DEC VT100 vt100
DEC VT200 vt200
IBM 3151 i3151
NCR 4970 vt200
Spectrix SPX 701 spx
Wang 2110a w2110a
Wang 2x36 DE/DW w2236
Wyse 50 wy50
Wyse 60, 150, 160 wy60
Wyse 370 wy370

NOTE: The support of the IBM Console is operating-system dependent and is discussed in
Chapter 6 of the appropriate NPL Supplement.

The following terminals are supported by the various versions of NPL RunTime.

NOTE: Not all terminals are supported by all versions of the NPL RunTime. Each terminal
has a value assigned to it in byte 9 of the $MACHINE variable. This value is consis-
tent across all operating systems that support the terminal. For details on which ter-
minals are supported under a specific operating environment, refer to Chapter 6 of
the appropriate NPL Supplement.

TERMINAL $MACHINE BYTE 9 VALUE
Altos III HEX(02)
Altos V HEX(08)
Bull HDS I HEX(06)
Bull HDS III HEX(03)
DEC VT100 HEX(03)
DEC VT200 HEX(03)
IBM 3151 HEX(0D)
NCR 4970 HEX(03)

Terminal/Monitor Support DEVICE SUPPORT

7-74 NPL Programmer’s Guide

TERMINAL $MACHINE BYTE 9 VALUE
Spectrix SPX 701 HEX(0C)
Wang 2110a HEX(01)
Wang 2x36 DE/DW HEX(07)
Wyse 50 HEX(06)
Wyse 60,150, 160 HEX(05)
Wyse 370 HEX(0B)

7.7.3 Local Printer Support

Local printers may be accessed under NPL by using a special printer device designation
"LCL=Y", where supported. The device naming convention for redirecting output to a lo-
cal printer will vary from operating system to operating system.

For example, under SuperDOS:

$DEVICE(/204)=">0 LCL=Y"

While under UNIX:

$DEVICE(/204)="/dev/tty LCL=Y"

Both of the above examples will direct all print output sent to the NPL print address /204
to the a terminal’s local printer port. Refer to Chapter 6 of the appropriate NPL Supple-
ment for the proper device naming conventions to use for local printing. Both serial and
parallel local printers are supported. Refer to Appendix D for specific implementation
notes for each terminal type.

NOTE: Local printers can be accessed only by the terminal to which they are attached.

7.7.4 Support of Native Operating System and Utilities

Each operating system supported by NPL supports specific terminal(s). Not all supported
NPL terminals are supported on all operating systems. Refer to Chapter 6 of the appropri-
ate NPL Supplement for details on specific terminals supported by NPL on that operating
system and for details on which terminals are well suited for use with native operating
system functions or applications.

DEVICE SUPPORT Terminal/Monitor Support

NPL Programmer’s Guide 7-75

7.8 Printers

I/O to printer class devices is handled differently than I/O to other NPL supported de-
vices. This section discusses the methods by which output to printer class devices is ac-
complished.

7.8.1 Valid NPL Print Addresses

The following table indicates the device classes normally used for character printing and
displaying operations. They are stored in the first character of the device address.

Type 0 Outputs a line feed character (HEX(0A)) after each carriage return char-
acter (HEX(0D)) is output.

Type 2 Outputs no extra characters after each carriage return character
(HEX(0D)) is output.

Type 4 Outputs a line feed character (HEX(0A)) at the end of each line, but
suppresses the automatic carriage return character (HEX(0D)) normally
issued.

The second and third digits in the device address refer to the actual device address recog-
nized by NPL as valid print class devices. Valid printer device addresses supported by
NPL are in the range:

x00, x04, x05, and x10 through x1F

The code x05 is reserved for the terminal. Therefore, print output directed to address 005,
205 or 405 is displayed on the display device screen. The code 00 is reserved for a "null"
device. Output directed to the 000, 200, and 400 addresses is not printed.

7.8.2 Equivalent Native Operating System Devices or Files

NPL print output may be directed to native operating system physical devices (usually
printers) or to native operating system files (for spooled output). These files or devices
are equated to device addresses through the use of the $DEVICE statement as described
in Section 7.2.2 above. Refer to the appropriate NPL Supplement for specific naming con-
ventions used for printer devices or files.

Printers DEVICE SUPPORT

7-76 NPL Programmer’s Guide

7.8.3 Specifying the Output Printer Device

The device address and line width for printer output under program control is always
taken from the default PRINT entry in the Internal Device Table (DT). To assign a differ-
ent device address requires that the particular device be selected for PRINT output. This
is accomplished by using the SELECT statement.

For example:

SELECT PRINT 215(132)

assigns the address 215 to the default PRINT device in the Internal Device Table (refer to
Section 7.2.3 above). All subsequent PRINT output from program mode is then directed
to the native operating system file or device equivalent to address 215. Specifying the nu-
meric parameter inside the parentheses establishes the column width of the printed output.

NOTE: The SELECT PRINT statement affects PRINT output generated in program mode
only. As a debugging convenience, immediate mode PRINT command output is di-
rected to the terminal screen regardless of the selected print address.

At system startup, the default address 005, which is the terminal screen, is selected for all
print operations.

Refer to Section 7.2.3 for further details about the Internal Device Table. For further de-
tails refer to the Statements Guide, SELECT.

7.8.4 Available Print Statements

The following statements are available for use in directing printed output to a specified
designated output device:

PRINT Used for printing the values of specified variables or expres-
sions to the currently selected output device.

PRINTUSING Used to create a formatted print output of numeric and alpha-
numeric data in a user-defined format.

MAT PRINT Used for printing specified array values, row-by-row, to the
currently selected output device.

DEVICE SUPPORT Printers

NPL Programmer’s Guide 7-77

$GIO Used for various functions difficult to achieve using other
statements.

For further details refer to the NPL Statements Guide.

7.8.5 Control Sequences

Many printers have a variety of special capabilities such as program selectable pitch,
character fonts, etc., which can be accessed through the use of specialized control codes.
NPL allows complete control over generation of printer control codes to be performed by
the NPL program. That is, any characters (HEX(00)-(FF)) can be printed by the program,
and these characters are passed through to the native operating system device or file un-
modified by NPL.

NOTE: There may be exceptions to this on certain environments (refer to the appropriate
NPL Supplement for details).

NPL does provide an alternative to program generation of printer control codes. This is
the PRINT CONTROL function of the HELP processor. Refer to PRINT CONTROL, in
the appropriate NPL Supplement for details.

7.8.6 Use of Native Operating System Files

Print output can be directed to native operating system files instead of actual printers by
use of the DET to equate the NPL device address with a native operating system file-
name. This technique has several applications:

• Print output can be spooled to disk and physically printed at a later time, possibly
in the background if the native operating environment supports this. This makes
the generation of the report much quicker in most cases.

NOTE: Some operating environments supported by NPL support print spooling mecha-
nisms that can be addressed by the DET. In these cases, this is a preferred method
for spooling output since the NPL program does not have to be concerned with nam-
ing of the spool file. Refer to the appropriate NPL Supplement for more details on
printing to files.

Printers DEVICE SUPPORT

7-78 NPL Programmer’s Guide

• Directing print output to disk can provide a convenient method of passing data to
other non-NPL software operating on the native machine. Many such applica-
tions have provisions for accessing data stored in an ASCII format, which is the
result of spooling print output.

NOTE: For successful transfer to other applications, some minor modifications may be re-
quired to report programs. Typically, these modifications involve the removal of
headings, totals, and other extraneous information so that the actual data is spooled
in a consistent format.

7.8.7 Printer Translation

There are times when the code being generated by the RunTime is not producing the re-
quired character for the printer. This is mainly seen when trying to print non-English char-
acters. These differences are resolved by the use of the Printer Translation Table option.
The Printer Translation Table option permits the automatic translation of characters as
they are sent to a printer (or spool file) using a simple lookup table. This simplifies appli-
cation programs which deal with foreign language character sets and extended character
sets when the type of printer to be used is known.

The Printer Translation Table option is implemented by the use of the 256-byte system
variable $PRINTER.

An options clause in the $DEVICE specification has also been implemented to specify
that $PRINTER translation should take place. The syntax of the $DEVICE options clause
is:

$DEVICE(/xxx)="device-name XLA= Y"

where "xxx" is the NPL printer address
"device-name" is the specified printer device

If no "XLA= Y" clause is specified, no translation takes place.

Each byte of the $PRINTER system variable contains a native operating environment
code which represents the corresponding NPL character set entry.

For example, each time an application sends a HEX(60) to a printer with the XLA= Y op-
tion, the RunTime substitutes byte 97 (= VAL(HEX(60))+ 1) of the $PRINTER system
variable.

DEVICE SUPPORT Printers

NPL Programmer’s Guide 7-79

Only one $PRINTER translation table may be defined. If an application must support
multiple printers with different character set requirements, the $PRINTER variable must
be set under program control to a value which is correct for that printer.

For example:

1000 DIM X$256
 : X$=$PRINTER
 : STR(X$,VAL(HEX(10))+1,1)=HEX(83) :REM a circumflex on IBM PC
 : STR(X$,VAL(HEX(11))+1,1)=HEX(88) :REM e circumflex on IBM PC
 : STR(X$,VAL(HEX(12))+1,1)=HEX(8C) :REM i circumflex on IBM PC
 : STR(X$,VAL(HEX(13))+1,1)=HEX(93) :REM o circumflex on IBM PC
 : STR(X$,VAL(HEX(14))+1,1)=HEX(96) :REM u circumflex on IBM PC
 : STR(X$,VAL(HEX(15))+1,1)=HEX(84) :REM a umlaut on IBM PC
 : STR(X$,VAL(HEX(16))+1,1)=HEX(89) :REM e umlaut on IBM PC
 : STR(X$,VAL(HEX(17))+1,1)=HEX(8B) :REM i umlaut on IBM PC
 : STR(X$,VAL(HEX(18))+1,1)=HEX(94) :REM o umlaut on IBM PC
 : STR(X$,VAL(HEX(19))+1,1)=HEX(81) :REM u umlaut on IBM PC
 : STR(X$,VAL(HEX(1A))+1,1)=HEX(85) :REM a grave on IBM PC
 : STR(X$,VAL(HEX(1B))+1,1)=HEX(8A) :REM e grave on IBM PC
 : STR(X$,VAL(HEX(1C))+1,1)=HEX(97) :REM u grave on IBM PC
 : STR(X$,VAL(HEX(1D))+1,1)=HEX(8E) :REM A umlaut on IBM PC
 : STR(X$,VAL(HEX(1E))+1,1)=HEX(99) :REM O umlaut on IBM PC
 : STR(X$,VAL(HEX(1F))+1,1)=HEX(9A) :REM U umlaut on IBM PC
 : $PRINTER=X$
 : $DEVICE(/215)=">P1 XLA=Y"

NOTE: Some devices, especially serial printers, may have difficulty in receiving characters
outside the standard ASCII range (HEX(20) to HEX(7F)) unless the correct number
of bits (8) and parity (none) are set.

This type of translation does not allow for the possibility that some characters available
on a printer can only be accessed by the use of a control code sequence. Such characters
can only be accessed if provision has been make by the application software to send the
control sequence.

Programmers who wish to send binary sequences (e.g., graphics) should avoid the use of
the XLA= Y option, since the RunTime translates all bytes sent to the printer under the
assumption that they are characters (not graphic bit patterns or control sequences).

The default value for the $PRINTER system variable depends on the version of the Run-
Time used (the Wang version assumes printer understands WISCII character set, VAX
version assumes DEC character set, etc.), but is usually suitable for the production of
spool files based on the standard character set of the system.

Printers DEVICE SUPPORT

7-80 NPL Programmer’s Guide

Modifications to the $PRINTER system variable can be made using the $PRINTER state-
ment as shown above or by use of the "EDPRINTC" utility supplied with the NPL Devel-
opment Package. Refer to Chapter 13 of the Programmer’s Guide for details on using this
utility. For further details refer to the Statements Guide, $PRINTER.

7.8.8 Local Printer

Many of the terminals supported by the RunTime can support a local printer attached to
them. This is a particular advantage when using the terminal on a remote basis. Local
printers can be accessed from an NPL application by use of the LCL=Y clause in the
$DEVICE statement for the printer address to be used.

Refer to Appendix D for details on local printer support for particular terminals or 7.7.3
above.

7.8.9 Special End-of-Line Handling

The RunTime program contains special logic that attempts to make end-of-line characters
correspond to those expected by standard printers on the operating system in use.

For example, under MS-DOS, a HEX(0A) is inserted in print class output after each
HEX(0D) printed.

This special logic is enabled or disabled by use of the ALF clause on the $DEVICE state-
ment for the print address in use. Specification of ALF= Y enables special end-of-line
handling, specification of ALF= N disables special end-of-line handling. The default of
ALF= Y is assumed if no ALF clause is specified.

For example, under MS-DOS,

$DEVICE(/215)="LPT1 ALF=N"

assigns address 215 to the parallel printer with special end-of-line handling turned off.

NOTE: ALF= N would typically be required when using printers which are configured for
operation on a Wang 2200/CS.

End-of-line handling can also be dynamically enabled/disabled by the operator using the
Print Control function of the Help Processor.

DEVICE SUPPORT Printers

NPL Programmer’s Guide 7-81

The exact effect of the end-of-line handling varies among operating environments. Refer
to the appropriate NPL Supplement for details on end-of-line handling with respect to the
operating system being used.

NOTE: More than one clause may be specified on a particular device.

For example, the device equivalency for a local printer that must use printer translation
and wants to turn the automatic line feed off, would appear as follows under SuperDOS:

$DEVICE(/204)=">P0 LCL=Y XLA=Y ALF=N"

7.9 Serial Devices

NPL can be used to address other native operating system devices. However, such access
is limited to simple read or write operations unless a specialized device driver is used.
Any native operating system device can be accessed by the NPL program by using the
$DEVICE statement to establish a DET entry for that device with an associated NPL de-
vice address. The device should usually be defined as a PRINT type device (address
004,010-01F).

The RunTime contains limited ability to read and write raw data from a serial port using
the C620 $GIO microcommand. This ability is highly operating environment dependent.
For example, serial ports on the IBM and compatibles under MS-DOS can be accessed
through the special device designation "COMx" in the $DEVICE statement, where "x" is
the physical "COM" port number.

7.9.1 Directing Output to Other Devices

The simplest method of directing output to a device is to PRINT to it.

For example:

10 $DEVICE (/219) = "TTYPORT"
20 SELECT PRINT 219
30 PRINT ...

causes all the output from all subsequent PRINT statements (in program mode) to be di-
rected to the native operating system device "TTYPORT".

Serial Devices DEVICE SUPPORT

7-82 NPL Programmer’s Guide

NOTE: This method provides no mechanism for detecting that the device addressed is ready
to accept data or has been properly configured.

NPL PRINT statements may be used to direct output to the serial port. In addition, $GIO
output microcommands, both single character and multi-character, may be used.

NOTE: Output to a serial port is handled the same as output to a printer. That is, automatic
line feed insertion (unless it is overridden by the ALF option of $DEVICE) and char-
acter translation (if specified by the XLA option of $DEVICE) are in effect.

7.9.2 Accepting Input

The only method of accepting input from such devices is by use of the $GIO statement.
KEYIN cannot be directed to devices other than the keyboard.

For example:

10 DIM L$10, A$80:REM $GIO CONTROL, BUFFER<
 : $DEVICE (/01C)="TTYPORT TMO=Y":REM READ DATA FROM TTYPORT
20 $GIO /01C(HEX(C620),G$)A$():REM LOOK FOR DATA ON PORT<
 : L=VAL(STR(L$,9),2):REM GET # OF BYTES RECEIVED<
 : IF L=0 THEN $BREAK:REM CHECK NO DATA AVAILABLE<
 : IF L0 THEN GOSUB xxx:REM PROCESS DATA<
 : GOTO 20

reads bytes from the native operating system device "TTYPORT".

Use of the "TMO" clause allows operations directed to the "TTYPORT" to return to pro-
gram control without waiting for an end-of-record indicator to be present. If this clause
was not specified, then execution of the $GIO statement at line 20 causes the program to
wait for input to be received, which could "hang" the program if data is not present. Refer
to the Statements Guide, $DEVICE for further details on the TMO clause. The ability to
read data from serial devices may have several restrictions depending on the operating en-
vironment in use. Refer to Chapter 5 or the appropriate NPL Supplement for further de-
tails.

Input from the Serial Port
The following discussion refers to functionality when the TMO= Y option has been speci-
fied in the $DEVICE statement, as explained above.

DEVICE SUPPORT Serial Devices

NPL Programmer’s Guide 7-83

Some versions of the RunTime contains limited support for accepting input from a serial
port. This support for input from the serial port is intended to provide a simple mecha-
nism for utilizing serial input devices where the interface requirements are very simple
and straightforward. Applications which require the more sophisticated features of the
Wang 2227b Buffered Asynchronous Communications Controller board should refer to
the Niakwa 2227 emulation driver provided in the Niakwa Scientific and Communication
Drivers package, where available.

The $GIO microcommand C620 now accesses binary data in the buffer for the port speci-
fied and returns as many bytes of data as available; zero bytes if no data is available.

For example, under MS-DOS

10 DIM L$10,A$80 :REM GIO control, buffer<
: $DEVICE(/01C)="COM1 TMO=Y" :REM read from "COM" port 1
20 $GIO/01C(C620,L$)A$:REM look for data on port<
: L=VAL(STR(L$,9),2) :REM get # of bytes received<
: IF L=0 THEN $BREAK :REM check no data available<
: IF L>0 THEN GOSUB xxx :REM process data<
: GOTO 20

In this example, the first L bytes of A$ are the data returned from the port.

This method of accessing data as input on the serial port is very primitive and has several
restrictions that the programmer must consider:

• Communications parameters for the port must be established externally to NPL.

• If the buffer overflows, incoming characters are lost. There is no flow control for
incoming data.

• There is no error detection.

• There is no method for checking signals on the line (e.g., device not attached or
not ready).

• Communication parameters are set by the MS-DOS "MODE" command.

• None of the $GIO microcommands supported by the Niakwa 2227 emulation
driver is supported using this technique. Program modifications are required to
support input from the serial device using this method.

Serial Devices DEVICE SUPPORT

7-84 NPL Programmer’s Guide

HINT: For many applications, use of the 2227 emulation driver (where available) remains the
recommended choice for asynchronous communications on the IBM PC.

7.9.3 Telecommunications Support

Through its Scientific and Communications Drivers Package, Niakwa offers a more com-
plete software capability for handling asynchronous communications. The 2227 Emula-
tion Driver performs the physical I/O to the serial board required to support asynchronous
communications from an NPL program.

This driver performs buffering of input and output to a standard communications port
(where available). Both input and output are interrupt driven, allowing the NPL applica-
tion program to process buffered data without risk of data loss at normal speeds.

A translation table for received data may be defined, including end-of-record character
detection.

A translation table for transmitted data may be defined. Protocols with 5 or 6 data bits
may request automatic shift character insertion for transmission, and automatic shift char-
acter removal on reception.

The current status of the "controller" may be obtained, which indicates the number of
characters received at the port, the number of characters waiting for transmission, and the
status of DCD (modem ready) and DSR (terminal ready) status lines.

Refer to the NPL Scientific and Communications Drivers Package for more details on
supported devices and NPL statements used.

NOTE: The SCD package is not available for all operating environments of NPL.

DEVICE SUPPORT Serial Devices

NPL Programmer’s Guide 7-85

CHAPTER 8

ERROR HANDLING

8.1 Overview

To aid in the debugging of programs, NPL has a variety of errors that can potentially
arise during program editing or execution. When an error occurs, the line number and
statement at fault is displayed, along with an appropriate error code is displayed, fol-
lowed by a short description of the error. NPL offers the ability to handle these errors un-
der program control with several NPL statements. This avoids the possibility of
inadvertent halting of an application, and allowing the program to recover itself from the
error.

Section 8.2 discusses the different types and classes of NPL errors.

Section 8.3 describes the difference between recoverable and nonrecoverable errors.

Section 8.4 describes the difference between resolution and execution errors.

ERROR HANDLING Overview

NPL Programmer’s Guide 8-1

Section 8.5 discusses ways to handle error trapping under program control with the use of
NPL error statements.

8.2 Error Classes

There are nine different error code classes, each categorized by the first digit of the error
code. The second and third digits identify the specific error condition that occurred. Er-
rors codes of 100 or greater are available only in NPL, and consequently, are not sup-
ported on the Wang 2200. The following table outlines the nine classes of errors:

Error Code Range Error Class
A00-A09 Miscellaneous Errors
S10-S29 Syntax Errors
P30-P59 Program Errors
C60-C69 Computation Errors
X70-X79 Execution Errors
D80-D89 Disk Errors
I90-I99 I/O Errors
100-199 Reserved
200-499 Extended NPL Errors
500-799 External Errors
800-999 Reserved

8.2.1 RunTime Program Errors and Warnings

When an error occurs, the terminal beeps, the line and statement at fault are displayed,
and the letters "ERR" followed by the 3-digit error code and description, appear on the
screen. For multi-line statements, only the faulty statement is displayed, preceded by one
of more colons. Each colon indicates how many statements into the line the error oc-
curred at (i.e., ":::" is equivalent to three statements). Refer to Appendix B for a complete
listing of the individual error codes.

Error Classes ERROR HANDLING

8-2 NPL Programmer’s Guide

For example:

1000 ::: X=1/Y

ERR C62: Division by Zero.

indicates the statement X= 1/Y is in error, and this is the fourth statement on line 1000.

8.3 Recoverable Versus Non-Recoverable Errors

Some NPL errors are recoverable, while others are non-recoverable. When handling er-
rors under program control, recoverable errors can be trapped, allowing execution of the
application to continue. Non-recoverable errors are usually the result of some condition
that does not allow program execution and will immediately halt the program with the ap-
propriate system error message (these types of errors are usually detected at resolution
time). Recoverable errors can only occur once the program or module is fully resolved,
and is executing. Some errors which occur at execution time are considered serious
enough that they certainly indicate a programming error, for which it could be hazardous
to continue execution.

1. An example of a non-recoverable error which occurs at resolution time:

0010 DIM RecA$100, RecB$200<
 : DIM RecA$200

Here, a variable (RecA$) is declared twice with conflicting attributes (the string length is
different). This clearly indicates a programming error, and the program will stop at resolu-
tion time with an error P59 (Illegal Redimension).

2. An example of a recoverable error which occurs at execution time:

0010 REM Get the next record<
 : DATA LOAD DC #1,B$<

 : ERROR DO<
 : REM an error occurred on the I/O operation<
 : E=ERR :REM get the error code<
 : IF E=88 :REM check for invalid data type<
 : ’ReportInvalidDataType<
 : ELSE<
 : PRINT "Unexpected Error";E<
 : STOP #<
 : ENDIF<
 : ENDO

ERROR HANDLING Recoverable Versus Non-Recoverable Errors

NPL Programmer’s Guide 8-3

Here, the program is taking precautions against invalid or corrupted data in a data file.
Any recoverable error codes which occur when executing the DATA LOAD statement
will cause the statements in the ERROR DO:...:ENDDO block to be executed, otherwise
these are skipped. The numeric error code value can be inspected to ensure that the error
is one which the program can reliably recover from.

3. An example of an unrecoverable error which occurs at execution time:

0001 DIM LIMIT=1000
0010 FUNCTION ’Check(K)<
 : DIM T<
 : T=K<
 : WHILE T < LIMIT<
 : T+=1<
 : IF ’Check(T) > K<
 : RETURN (T)<
 : END IF<
 : WEND<
 : RETURN (-1)<
 : END FUNCTION
0100 ;Mainline<
 : PRINT ’Check (12)

Here, a condition involving excessive use of recursion can cause an unrecoverable error
to occur after the "Check function has called itself a large number of times. In this case,
the logic of the program causes the ’Check function to always call itself to a depth of
LIMIT calls before returning the value -1. Since each level of recursion uses some stack,
if the LIMIT value is large enough, the available stack will be exhausted, and this is a
condition which cannot be remedied by the programmer. An unrecoverable A01 will oc-
cur in this case.

Recoverable Versus Non-Recoverable Errors ERROR HANDLING

8-4 NPL Programmer’s Guide

The following table lists all error-code ranges and indicates which ones are recoverable:

Error Code Range Recoverable or Not recoverable
A00-P36 Not recoverable
P37 Recoverable
P38-P47 Not recoverable
P48 Recoverable
P49-P59 Not recoverable
C60-I99 Recoverable
100-199 Reserved
200-299 Not recoverable
300-499 Recoverable
500-599 Not recoverable
600-799 Recoverable
800-899 Reserved

NOTE: There are exceptions: I/O errors or other errors that may occur when loading a
module in an INCLUDE statement may not be recoverable.

Refer to Section 8.5 of this chapter for more information on the handling of recoverable
errors under program control.

8.4 Resolution Versus Execution Errors

Errors can occur in two different instances: during program resolution, or during program
execution. Resolution is the time between the loading of a program and the time at which
it can begin execution. During this time, the RunTime must resolve all variable refer-
ences, dimensions, and any line or subroutine references made as a call or branch. If the
RunTime finds any inconsistency with the program code such that it cannot execute, a
resolution error is displayed. Most resolution errors are non-recoverable. Examples of
resolution errors are miscellaneous errors A00-A09, syntax errors S10-S29, most pro-
gram errors P32-P59 (exceptions are P37 and P48,) and most extended NPL errors 200-
299 (exceptions are 200 and 233.)

ERROR HANDLING Resolution Versus Execution Errors

NPL Programmer’s Guide 8-5

For example:

0010 PRINT"Program Started..."
0020 GOTO 100

Here, a P36 error (Undefined Line-Number) occurs before the program starts (this occurs
at resolution time) since the reference to line 100 is to a line number that does not exist.

Once the resolve pass is made successfully without error, program execution begins. Dur-
ing execution, any errors that occur are considered execution errors. These errors are not
detectable at resolve time, because the error is the result of a value or external condition
that is not apparent at the start of the program. Most execution errors are recoverable. Ex-
amples of execution errors are computation errors C60-C69, execution errors X70-X79,
disk errors D80-D89, and I/O errors I90-I99.

For example:

0010 PRINT"Program Started..."
0020 A=1
 : B=0
 : C=A/B

Here, a C62 error (divide by zero) occurs in line 20 during execution. This means that
line 10 was executed, but execution halted when the error was encountered on line 20.

The concept of resolution-time versus execution-time becomes more ambiguous when us-
ing INCLUDEd modules. Errors can occur while NPL is evaluating functions that are lo-
cated in a fully resolved INCLUDEd library module.

For example:

0010 ;RUN Module<
:INCLUDE T"LIBRARY"<
:Size = ’LibFunctionToFindArraySize<
:DIM Array(Size)

--
0010 ;LIBRARY Module<

:FUNCTION ’LibFunctionToFindArraySize/PUBLIC<
:RETURN(1/0)<
:END FUNCTION

Here, an error C62 (divide by zero) occurs during the resolution of the RUN module. The
LIBRARY module is resolved, but the RUN module is not. Even though the error occurs
at resolve time for the RUN module, it occurs at execution time in the LIBRARY mod-
ule, which is fully resolved, and, therefore, is considered recoverable within the LI-
BRARY module.

Resolution Versus Execution Errors ERROR HANDLING

8-6 NPL Programmer’s Guide

To trap for this condition, several lines have been added to the LIBRARY module in the
above example:

0010 ;RUN Module<
:INCLUDE T"LIBRARY"<
:Size = ’LibFunctionToFindArraySize<
:DIM Array(Size)

--
0010 ;LIBRARY Module

:FUNCTION’LibFunctionToFindArraySize/PUBLIC<
:RETURN(1/0)<
:ERROR DO<
:RETURN (1000)<
:END DO<
:END FUNCTION

In the scope of programming good error handling routines, it is best to concentrate on
whether or not the errors are recoverable or not recoverable (refer to Section 8.3.). Al-
though most recoverable errors occur at execution time, and most non-recoverable errors
occur at resolution time, it is possible with multiple modules to have some recoverable er-
rors occur at resolution time, as demonstrated above.

8.5 Handling Under Program Control

NPL provides several statements to aid in error handling and error detection. The perfect
program has no syntactical errors, but some errors are always possible due to hardware
failure, etc. The ability to handle these errors during program execution improves the in-
tegrity of the application and provides a "cleaner" interface to the end-user.

8.5.1 ERROR DO

The ERROR DO statement provides program control of recoverable errors. Only the fol-
lowing error codes are recoverable:

P37, P48, C60-I99, 300-304, 600-799

Refer to Section 8.3 for more discussion on recoverable versus non-recoverable errors.

When a recoverable error is detected in a simple statement that is immediately followed
by an ERROR DO statement, the standard system error response is suppressed and execu-
tion continues with the statements within the ERROR DO/END DO statements.

ERROR HANDLING Handling Under Program Control

NPL Programmer’s Guide 8-7

When using the DO/END DO group format of ERROR, any statements within the
DO/END DO group are executed only if an error occurs. If an error does not occur, pro-
gram execution resumes with the first statement following the END DO statement.

For example:

0010 Q=T/W
 : ERROR DO<
 : Q=0<
 : ENDDO<
 : T=T+1

Here, the statement Q = 0 is executed only if an error has not occurred on the statement Q
= T/W, but the statement T = T + 1 is always executed.

NOTE: Although not recommended, a simpler form of the ERROR statement can be used
without the DO clause. When using the statement format of ERROR, any simple
statements on a program line following an ERROR statement are only executed if
an ERROR occurs. If a statement is followed by ERROR and the statement executes
without an error, program execution continues with the first statement on the next
line. Structured statements are permitted on the statement form of ERROR, but
their use is not encouraged since breaking such a structured statement into multiple
lines would mean that no error on the simple statement preceding ERROR could
branch into the middle of a structured statement.

Math errors that have been suppressed using the SELECT ERROR statement do not gen-
erate errors (default values are returned; refer to SELECT ERROR for details) and, there-
fore, are not detected by the ERROR statement. In these cases, programs can detect the
occurrence of suppressed errors by use of the ERR function (discussed in the following
section).

For more details on ERROR and ERROR DO, refer to the Statements Guide.

8.5.2 ERR

The ERR statement returns a unique two or three-digit error code of the most recent error
condition.

Whenever a RunTime error is detected, ERR is set to the appropriate error code. Any ref-
erence to the ERR function resets the value to zero. ERR is also reset to zero whenever a
RUN or CLEAR command is executed. Refer to Appendix B of the Programmer’s Guide
for a table of error codes.

Handling Under Program Control ERROR HANDLING

8-8 NPL Programmer’s Guide

NOTE: ERR is typically used in conjunction with the ERROR statement.

For example:

0010 DATALOAD BAT (X)X$()<
: ERROR DO<
: E=ERR<
: PRINT "ERROR";E;"OCCURRED"<
: END DO

0010 LIMITS T"FILE1",A,B,C,D<
: ERROR DO<
: GOSUB 100<
: ENDDO

0020 REM NO ERROR - NORMAL PROCESSING
.
.
.
0100 REM ERROR ROUTINE<

: X=ERR<
: IF X=48 THEN 110<
: IF X=93 THEN 120<
: RETURN

0110 REM Error P48 would run this<
: STOP

0120 REM Error I93 would run this<
: STOP

ERR may also be inspected to determine if an overflow or mathematical error has oc-
curred, and the error is currently suppressed by the SELECT ERROR setting. For exam-
ple, assuming a SELECT ERROR > 69 has been executed, errors between 60 to 69
cannot be detected by the ERROR statement.

For example:

0010 X=ERR : REM CLEAR ERROR<
:SELECT ERROR>69<
:Q=T/W<
:IF ERR>0 THEN 100

0020 PRINT "Executes only if error has not occurred"
.
.
.
0100 E=ERR
 : PRINT "WARNING - Error ";E;" has occurred!"

: STOP

Here, assuming that error 62 has been suppressed by SELECT ERROR, the statement in
line 20 executes an error has not occurred on the statement Q=T/W.

For more details on ERROR and ERR, refer to the Statements Guide.

ERROR HANDLING Handling Under Program Control

NPL Programmer’s Guide 8-9

8.5.3 ERR$

The ERR$ function returns a string of text that describes the specified error-code, nor-
mally obtained from an ERR statement. The specified error-code is either a two-digit inte-
ger representing an original Wang 2200 error code or a 3 digit integer representing an
extended NPL error code, that matches a valid error-code listed in Appendix B.

For example:

: DIM X$33
: X$=$ERR(01)
: PRINT X$
: Memory Overflow

: X$=$ERR(200)
: PRINT X$
: Handle table full / cannot expand

The text returned is identical to the literal message that appears when an untrapped error
occurs in immediate mode. Text for error messages is stored in the file ER-
RORMSG.HLP with pointers to text stored in the file ERRORMSG.IDX. These files are
included with every RunTime package and should be installed in the NPL directory. Re-
fer to the appropriate NPL Hardware Supplement for further details on installation proce-
dures.

NOTE: Text returned by ERR$ should be used for information only. Text is subject to
change in future releases or may be modified by the developer.

If, for any reason, these files cannot be accessed, or if the specified error-code is invalid,
ERR$ returns all spaces.

For example:

0010 $FORMAT DISK T/D10,<
: ERROR DO<
: E=ERR<
: E$=ERR$(E)<
: PRINT "Error ";&E;" - ";E$;" occurred"<
: END DO

For more details on ERROR and $ERR, refer to the Statements Guide.

Handling Under Program Control ERROR HANDLING

8-10 NPL Programmer’s Guide

8.5.4 $OSERR

The $OSERR function returns a string of text that contains the most recent native operat-
ing system error code and message received when an NPL error has occurred. $OSERR
cannot appear on the left side of an equivalence statement.

The text returned comprises two parts:

1. The native operating system error code.

2. A descriptive message based on this code. The descriptive message is obtained from
the file RTIxERR.HLP (where x is a single letter representing the host operating sys-
tem--i.e., "I" for MS-DOS). If the correct file for the operating environment in use is
not present or cannot be accessed (along with the associated RTIxERR.IDX file), a
descriptive message is not returned by $OSERR.

NOTE: The RTIxERR.HLP file may be modified. If modified, it is necessary to execute the
Indexed Help File Creation utility to create the associated RTIxERR.IDX file before
the modified RTIxERR.HLP file can be properly accessed. Refer to Chapter 11 of
the Programmer’s Guide, for further information on indexed help files. Refer to the
appropriate NPL Hardware Supplement for further information on the name and
required location of RTIxERR files for the operating system.

The $OSERR value is returned even if the NPL error is trapped by ERROR or ON ER-
ROR.

Typically, native operating system errors are generated only on I/O operations. If the
NPL error was for a non-I/O related operation (i.e., X75-Illegal Number), $OSERR is
typically blank.

NOTE: Each operating environment has its own set of individual operating system errors.

$OSERR is intended to be used only for informational purposes. Programmers are ad-
vised against attempting to base any logic decisions on the values returned by $OSERR.
These values vary widely among different operating environments and may even vary
widely on different revisions of the same operating system.

ERROR HANDLING Handling Under Program Control

NPL Programmer’s Guide 8-11

For example:

0010 $FORMAT DISK T/D10,<
: ERROR DO<
: E=ERR<
: E$=ERR$(E)<
: PRINT "Error ";&E;" - ";E$;" occurred"<
: N$=$OSERR<
: IF N$<>" " THEN PRINT "Native operating system error - ";N$<
: END DO

For more details on ERROR and $OSERR, refer to the Statements Guide.

8.5.5 Error Help Files

The NPL RunTime Package supplies two files which contain the literal text for the error
codes that are generated. The following is a brief description of each of those files:

The ERRORMSG.HLP file contains the literal text for NPL error codes. The text is dis-
played by the RunTime in the case of a non-recoverable error or in the case of a recover-
able error that is not trapped by the application. The associated text is also returned by
the ERR$ alpha function. This file must be present in the appropriate operating system di-
rectory where the RunTime is installed to generate the text.

The RTIxERR.HLP file contains the literal text for native operating system error codes.
The text is displayed by the RunTime in the case of a non-recoverable error or in the case
of a recoverable error that is not trapped by the application, whenever the error is based
on an error reported by the native operating system. The associated text is also returned
by the $OSERR alpha function. This file must be present in the appropriate operating sys-
tem directory where the RunTime is installed to generate the text. The file names and as-
sociated error messages are unique to each hardware version of NPL. Refer to the
appropriate NPL Hardware Supplement for the correct naming conventions used.

NOTE: The ERRORMSG.HLP and RTIxERR.HLP files can be modified by the developer
so that different error descriptions are displayed. This is particularly useful for de-
velopers of non-English applications. However, if these files are modified, they must
be processed by the Indexed Help File Processor utility to rebuild the associated
.IDX files. Refer to the Chapter 11 of the Programmer’s Guide for details on In-
dexed Help Files.

Handling Under Program Control ERROR HANDLING

8-12 NPL Programmer’s Guide

CHAPTER 9

SYSTEM VARIABLES

9.1 Overview

NPL maintains numerous internal system variables which it uses to provide a wide vari-
ety of functions. These system variables are all initialized by NPL at the startup of the
RunTime. In addition to providing information to NPL, these system variables can be in-
terrogated by developers, allowing NPL’s environmental features and options to be fine-
tuned, from one native operating system to the next.

NOTE: This chapter provides an overview of each system variable and one or more of its po-
tential uses. Each system variable discussed below is fully documented in the NPL
Statements Guide.

Section 9.2 discusses $MACHINE.

Section 9.3 discusses $OPTIONS.

SYSTEM VARIABLES Overview

NPL Programmer’s Guide 9-1

Section 9.4 discusses additional NPL system variables.

9.2 $MACHINE

$MACHINE is a 64-byte system variable containing information about the environment
in which the RunTime program is currently operating. Developers may interrogate $MA-
CHINE to determine information such as terminal types, the current operating system,
available co-processors, and much more. This information can be used to implement con-
ditional logic for selecting options based upon the current operating environment.

Unlike $OPTIONS (discussed below), NPL dynamically updates various bytes in $MA-
CHINE (i.e., user counts, mouse coordinates, etc.) Therefore, $MACHINE values may
not be modified.

NOTE: Placing $MACHINE on the left side of an assignment statement will result in a syn-
tax error.

With NPL Release IV, the first 29 bytes of $MACHINE are currently used. New bytes
will likely be added in future revisions.

NOTE: New values may be added for new hardware/operating environments supported by
NPL. Refer to the appropriate NPL Supplement for details on specific $MACHINE
values for the operating environment being used and for details of hardware-de-
pendent features.

9.3 $OPTIONS

$OPTIONS is a 64-byte system variable containing initial default values for a wide vari-
ety of NPL options upon startup of the RunTime. The values maintained in $OPTIONS
allow developers to take advantage of certain features that may not be available across all
NPL environments. In essence, $OPTIONS allows developers to fine-tune their applica-
tions to a specific operating environment without sacrificing portability of the application.

$MACHINE SYSTEM VARIABLES

9-2 NPL Programmer’s Guide

Unlike $MACHINE (discussed above), developers can modify specific $OPTIONS bytes
to take advantage of specific available features. For example, in a common boot or pre-
boot program, the developer could interrogate BYTE 3 of $MACHINE (Monitor Type).
Upon finding a value of HEX(43) ("C"olor), the programmer could conditionally set $OP-
TIONS bytes 22 and 23 with a set of predefined values to invoke background, fore-
ground, underline and perimeter colors for the application. Terminals recognized by NPL
as monochrome would branch through this logic.

The following is a small example of invoking several $OPTIONS features:

0010 DIM OPTIONS$64,MACHINE$64
0020 OPTIONS$=$OPTIONS : REM Get Current OPTIONS Values
0030 MACHINE$=$MACHINE : REM Get Current MACHINE Values
0040 IF STR(MACHINE$,3,1)=HEX(43)<
 : STR(OPTIONS$,2,1)=HEX(00) : REM Turn Off Keyboard Status<
 : STR(OPTIONS$,3,1)=HEX(01) : REM Set "NOISE" Suppression On<
 : ENDIF
0050 IF STR(MACHINE$,10,1)=HEX(01) : REM Co-Processor Available?<
 : STR(OPTIONS$,16,1)=HEX(01) : REM Use Co-Processor<
 : END IF
0060 $OPTIONS=OPTIONS$: REM Put New Options Into Effect

Programs which modify $OPTIONS should always store the current contents into a work
variable, modify the work variable, and then reset $OPTIONS. The work variable should
always be dimensioned to 64 bytes. This prevents problems, should additional bytes of
$OPTIONS be implemented (these are always being added to). In many cases, it may be
desirable to modify $OPTIONS based upon values identified in $MACHINE, as the
above example illustrates.

NOTE: With NPL Release IV, the first 45 bytes of $OPTIONS are currently used. New
bytes will likely be added in future revisions. Refer to Chapter 8 of the appropriate
NPL Supplement for operating environment-specific details of the various $OP-
TIONS bytes

9.4 Other System Variables

The following section describes the other NPL system variables that are available.

9.4.1 $BOXTABLE

$BOXTABLE is a 17-byte system variable used to enable and select the character box set
to be used for output of PRINT BOX statements.

SYSTEM VARIABLES Other System Variables

NPL Programmer’s Guide 9-3

NPL supports two forms of box graphics. "True" boxes and "Character" boxes. $BOX-
TABLE is used for the generation of character boxes only. Developers can enable charac-
ter boxes by setting byte 1 of $BOXTABLE to HEX(01). If byte 1 of $BOXTABLE has
been enabled, "Character" box generation will take precedence over "True" box genera-
tion.

NOTE: NPL will automatically generate "True" box graphics on devices capable of generat-
ing them, if byte 1 of $BOXTABLE is set to its default value of HEX(00).

Refer to the NPL Statements Guide for a complete discussion of $BOXTABLE.

9.4.2 $KEEPREMS

$KEEPREMS is a one-byte system variable which is used in the interpretive RunTime
(RTI) to control generation of p-code used to maintain REM (remark) statements, pro-
gram text indentation, and the display format of literals. Refer to the $KEEPREMS sec-
tion in the NPL Statements Guide for more detailed information.

9.4.3 $KEYBOARD

$KEYBOARD is a 576-byte system variable which contains a keyboard translation table
that is loaded from a KEYBOARD.xxx terminal support file. NPL determines which
KEYBOARD.xxx file to load based upon the terminal kind determined by the RunTime
at startup.

Since all terminals are not the same, NPL uses the $KEYBOARD translation table to
translate hex values for keys received from the terminal in use, to a common set of hex
values throughout the NPL operating environment.

Refer to Section 13.14 of this manual and the NPL Statements Guide, $KEYBOARD for
a detailed discussion of keyboard support under NPL.

9.4.4 $NETID

The $NETID function returns the full network physical station number on those operat-
ing environments that support this option. This is a displayable 12-hex digit number and
may be used wherever string literals are legal.

Other System Variables SYSTEM VARIABLES

9-4 NPL Programmer’s Guide

9.4.5 $PRINTER

$PRINTER is a 256-byte system variable which contains a printer translation table that is
loaded using the default character set of the current native operating system.

The values in $PRINTER are character equivalents to be sent to a print device, in place
of a character received from the NPL program. Byte 1 contains the replacement character
for HEX(00), byte 256 contains the replacement character for HEX(FF).

NOTE Printer translation is only performed if the XLA=Y clause has been specified in the
$DEVICE statement of the print class device being used.

Refer to Section 7.8.7 of this manual and the NPL Statements Guide, $PRINTER, for a
detailed discussion of keyboard support under NPL.

9.4.6 $PROGRAM

$PROGRAM is a 64-byte system variable containing the same text string that is returned
by the Program Load Sequence section of LIST DT. This text string contains the names
of up to six program overlays, residing in the current "RUN" module in memory. The
first program name is the first program loaded since the most recent CLEAR or LOAD
RUN statement. The next five program names are the last five programs loaded since the
most recent CLEAR or LOAD RUN statement. Refer to the $PROGRAM section in the
NPL Statements Guide for more detailed information.

9.4.7 $REV

$REV is a 12-byte system variable containing the full revision of the NPL RunTime pro-
gram currently executing. $REV may be assigned to any 12-byte alpha-numeric value
and displayed. Refer to the $REV section in the NPL Statements Guide for more detailed
information.

9.4.8 $SCREEN

$SCREEN is a 256-byte system variable which contains a screen translation table that is
loaded from a SCREEN.xxx terminal support file. NPL determines which SCREEN.xxx
file to load, based upon the terminal kind determined by the RunTime at startup.

SYSTEM VARIABLES Other System Variables

NPL Programmer’s Guide 9-5

Since all terminals are not the same, NPL uses the $SCREEN translation table to trans-
late character equivalents for characters received from the terminal in use, to a common
set of character equivalents throughout the NPL operating environment.

Refer to Section 13.15 of this manual and the NPL Statements Guide, $SCREEN for a de-
tailed discussion of screen character translation under NPL.

9.4.9 $SER

$SER is a 6-byte system variable containing the serial number of the NPL RunTime pro-
gram currently in use. $SER may be assigned to any 6-byte alpha-numeric value and dis-
played. Refer to the NPL Statements Guide, $SER, for more detailed information.

Other System Variables SYSTEM VARIABLES

9-6 NPL Programmer’s Guide

CHAPTER 10

$SHELL

10.1 Overview

The $SHELL statement effects a temporary exit from the NPL environment, and allows
for interfacing with native operating system functions and programs.

Section 10.2 explains how the $SHELL statement may be used to execute specific native
operating system commands, or to invoke the native operating system shell (command
processor) for an interactive session.

Section 10.3 details how the $SHELL statement can be executed from Immediate Mode
or under program control.

Section 10.4 explains how the $SHELL statement requires more memory than is used by
the RunTime program itself.

$SHELL Overview

NPL Programmer’s Guide 10-1

Section 10.5 discusses how the $SHELL statement may be used for many useful applica-
tions and situations.

NOTE: The $SHELL statement is extremely dependent upon the native operating system in
use. In this chapter, all discussions and examples of the usage of $SHELL relate spe-
cifically to the MS-DOS operating system. Refer to Chapter 8 of the appropriate
NPL Supplement.

10.2 Uses of $SHELL

Following are several practical examples suggesting possible uses for $SHELL:

• When working within an application system, all native operating system com-
mands and utilities are conveniently available to perform functions such as back-
ups, restores, copying, deleting, renaming, etc., of native operating system files
(of which diskimages, HELP files, demo scripts, and boot programs are a part).

• When entering native operating system shell commands, typographic errors or
other necessary corrections may be easily corrected by entering shell commands
from the NPL line editor (using the ! form of the command). This is especially
convenient when the native operating system shell does not have a mechanism
for recalling a command and correcting errors.

• Running a second copy of the Interpreter (if memory permits) may be useful in
debugging program logic, where the exact position in an active partition should
be preserved. In this manner, another NPL process can be executed like any other
native program to track down a problem (e.g., to inspect the disk, load another
program, etc.).

• Running a second copy of the non-interpretive RunTime, to perform the same
function as point 3 above, however, with much smaller memory requirements.

• Running the Compiler in combination with the Interpreter. In some cases, the
compiler has capabilities which the Interpreter does not, such as compiling
batches of programs or creating Wang 2200 atomized code. These capabilities
can be conveniently used by invoking the compiler from Immediate Mode.

Uses of $SHELL $SHELL

10-2 NPL Programmer’s Guide

• When developing an NPL application system, it may be useful to invoke a native
operating system word processor to document features, bugs, notes, etc., and then
return to NPL for further development or review, where the partition is undis-
turbed.

10.3 General Versus Specific Program Use

The $SHELL statement can be used to execute specific native operating system com-
mands, or to invoke the native operating system shell for an interactive session from
within NPL.

In either event, the status of the NPL program in memory at the time $SHELL is issued
remains unchanged when $SHELL is completed. The contents of all variables is un-
changed. Program execution will continue with the statement immediately following the
$SHELL statement.

Operating system commands can be executed from a sub-shell (or task) created by the
$SHELL command or as a parameter within the statement.

10.3.1 General Form

The general form of the $SHELL statement is:

$SHELL General Versus Specific Program Use

NPL Programmer’s Guide 10-3

Form 1 is recommended for use in programs. Form 2 can be used in programs, but not in
Immediate Mode. Form 3 can be used only in Immediate Mode, and is specified without
quotes surrounding the command argument. This statement, especially Forms 2 and 3,
may also be referred to as the INVOKE command.

If no literal or alpha-variable is specified, or the specified literal or alpha-variable is
blank, then the native operating system shell is loaded for an interactive session, at which
point the user can then use any native operating system programs or functions available.

Form 1:

 $SHELL [literal-string] [,return-variable]
 [alpha-variable]

Form 2:

! [literal-string]
 [alpha-variable]

Form 3:

 ! [command]

Where:

literal-string = string containing native operating system command to be exe-
cuted.

alpha-variable = variable containing native operating system command to be exe-
cuted.

return-variable = alpha-variable which will contain a return code generated (in bi-
nary) by the native operating system shell upon completion of the
command. The size of this variable is operating environment spe-
cific (refer to the appropriate NPL Supplement)

command = any sequence of characters up to the end of the line (or a return
graphic). A colon is not treated as a statement separator if it ap-
pears in the command.

General Versus Specific Program Use $SHELL

10-4 NPL Programmer’s Guide

For example, entering the following in Immediate Mode invokes the native operating sys-
tem shell.

:$SHELL

Upon completion of the interactive session with the native operating system shell, control
is passed to the NPL environment, to the exact point of the initial exit. The current screen
retains all information printed to it during the session, unless the shell was entered from
the HELP display.

NOTE: Instructions for exiting the native operating system shell may vary. The RunTime
always displays appropriate instructions before starting an interactive session.

The system performs an implicit $CLOSE on all files before $SHELL.

If it is desirable to retain the NPL screen, then the native operating system function
of the HELP processor must be used.

10.3.2 Executing Specific Commands

Specific native operating system commands may be executed by specifying the command
name explicitly in a literal or in a variable.

For example:

:$SHELL"DIR A:" Would execute the command named DIR with parameter A:
(i.e., list the files in the directory of drive A)

(or)

:RUNWP$="WP"
:$SHELL RUNWP$ Would execute the command named WP (i.e.,

since WP is not a built-in command the system
attempts to locate a file called WP.BAT,
WP.COM or WP.EXE in the current directory)
Failing this, the system looks in other
directories in the current "path"
specification. If the file is found, it is
executed--as a program for .COM or .EXE files,
or as a batch file if a .BAT file.

When a command is specified, control returns automatically to NPL upon completion.

$SHELL General Versus Specific Program Use

NPL Programmer’s Guide 10-5

10.3.3 Native Operating System File System

The ability to change native operating system default values relating to file location (such
as "current directory" under MS-DOS) using the $SHELL statement is operating system-
dependent. Refer to Section 8.2.4 of the appropriate NPL Supplement for details.

10.3.4 Return Code

The value of the return code, if specified, is operating system and command-specific. Re-
fer to Section 8.2 of the appropriate NPL Supplement for details.

10.4 Command Usage

The Niakwa Programming Language provides three means of invoking the $SHELL com-
mand. One can execute it either from Immediate Mode, from the HELP processor or
from program control. This section details each of these forms below.

10.4.1 From Immediate Mode

From Immediate Mode (the colon prompt), entry of the $SHELL statement begins the
temporary exit from the NPL environment. The syntax for using this command is as de-
scribed in Section 10.3 above.

An alternative syntax is supported for convenient use in Immediate Mode:

![command]

NOTE: The native operating system command must be specified with no quotes. In addi-
tion, no return-variable is supported with this form of the command.

From Immediate Mode the following commands are equivalent:

B$="DIR B:": $SHELL B$
$SHELL"DIR B:"
!DIR B:

Command Usage $SHELL

10-6 NPL Programmer’s Guide

10.4.2 From The HELP Processor

The HELP processor contains a new menu item which performs the same function as the
$SHELL statement. Execution of the NATIVE OS option in HELP causes a temporary
exit from the NPL environment, for an interactive session with the particular native oper-
ating system shell.

Upon completion of the interactive session with the native operating system shell, return
is passed to the HELP screen.

NOTE: Instructions for exiting the native operating system shell may vary. The RunTime
always displays appropriate instructions before starting an interactive session. For
further details on the HELP Processor, refer to Chapter 11 of this guide.

10.4.3 From Program Control

Interfacing with the native operating system can also be accomplished from within an ap-
plication or utility program. The $SHELL statement may be executed just like any other
statement in the program, with the literal or alpha-variable containing the command to be
executed. Some useful examples of this feature include:

• Support of an external tape backup utility. Temporarily exit the RunTime pro-
gram environment, invoke a tape backup routine necessary for continuation of
the application software. After completion of the backup, return to the next state-
ment in the application program and continue processing.

• Print spooling from within a Novell NetWare environment. Instead of exiting the
RunTime program to issue the CAPTURE command necessary to begin the local
port spooling to a network printer, simply invoke the command from within the
application program, using $SHELL, returning immediately to continue process-
ing.

For example:

10 $SHELL "CAPTURE S=COMM Q=CAP NB NT NFF TI=5"

• An NPL program can act as a shell for the user, allowing the user to specify
which native operating system programs to run under program control. Further-
more, menu programs can be developed in NPL which can then be customized to
the end-user’s environment so that NPL applications and native operating system
applications can appear on the same menu.

$SHELL Command Usage

NPL Programmer’s Guide 10-7

For example:

10 REM THIS PROGRAM WILL EXECUTE A USER SPECIFIED COMMAND
20 LINPUT "Enter command to execute " -X$
30 $SHELL X$
40 REM DONE

10 REM THIS PROGRAM WILL LIST A USER SPECIFIED DIRECTORY
20 DIM X$40,Y$50
30 LINPUT "Enter name of the directory to display "-X$
40 Y$="DIR "&X$
50 $SHELL Y$
60 REM DONE

NOTE: Directory commands vary depending upon operating systems and hardware ver-
sions.

10.5 Memory Requirements

Both the Interpretive and Non-interpretive versions of the RunTime program require a
certain amount of memory in which to operate. Any memory required for $SHELL opera-
tion programs typically is added to the standard RunTime requirements. Refer to Section
8.2 of the appropriate NPL Supplement, for details on memory requirements for $SHELL
on the operating system in use.

Depending upon the nature of the interactive session planned using the Invoke command,
memory requirements may prohibit access to the proposed program or function in certain
environments. Should this condition arise, an insufficient memory message would appear
(ERR A01 - Memory Overflow), effectively canceling the planned process.

For further details on memory use, refer to Chapter 3.

Memory Requirements $SHELL

10-8 NPL Programmer’s Guide

CHAPTER 11

THE HELP PROCESSOR

11.1 Overview

The HELP processor is a feature of the RunTime program which provides the user with
access to a series of informative screens and options relative to the operation of a particu-
lar application program or the RunTime program itself. The operation of the HELP proc-
essor is discussed in detail in Chapter 2. This chapter discusses the preparation of HELP
files which may be displayed by the HELP processor and use of the $HELP and
$HELPINDEX statements to access specific HELP entries.

Section 11.2 discusses the creation of user-definable HELP screens for use with a particu-
lar application program.

Section 11.3 discusses the special sequences which may be included in HELP text.

Section 11.4 discusses the "nesting" of HELP screens to allow one HELP file to reference
another, providing the operator with more detailed information.

THE HELP PROCESSOR Overview

NPL Programmer’s Guide 11-1

Section 11.5 discusses the feature of indexing HELP files and combining several smaller
HELP files into one larger one.

Section 11.6 provides a general discussion on HELP files.

11.2 User-Definable Help Screens

The incorporation of a HELP system into any application is beneficial in many ways. Em-
bedding a detailed HELP system within an application lends additional credibility to it. If
familiarized properly with the HELP system, end-user’s can in many instances find an-
swers to their questions without the use of a manual or placing a support call.

In addition, the HELP system can be demonstrated and used as an affective sales tool for
prospective customers. HELP screens can be easily customized to individual customer re-
quests, providing an additional level of flexibility to an application.

This section describes entry of HELP text, stand-alone HELP files, indexed HELP files
and the $HELP statement.

11.2.1 The HELP ENTRY

The middle 19 lines of the standard HELP display are reserved for user-definable HELP
text. This text area may be used to provide operator instructions for the various screen dis-
plays, prompts, and activities encountered during the execution of an application system.

If the HELP ENTRY occupies more than 19 lines of text, the first 19 lines of text will be
displayed along with 2 additional HELP options; "Page Up" and "Page Down". These op-
tions as with all HELP screen options may be highlighted and executed from the key-
board or a mouse. Both the "Page Up" and "Page Down" options are displayed only when
there is additional text to be displayed.

NOTE: In addition to the "Page Up" and "Page Down" options, the operator may choose to
page forward or backward through the HELP text using the "PREV" and "NEXT"
keys. On previous releases of NPL, the "PREV" and "NEXT" keys were used to
move to the first or last HELP screen option.

User-Definable Help Screens THE HELP PROCESSOR

11-2 NPL Programmer’s Guide

The HELP text displayed may be automatically varied depending on which program of
the application system is executing. Further, the text may be automatically varied depend-
ing on which portion of a program is executing. This capability allows for very specific
instructions to the operator, depending on the exact circumstances.

There are two components to implementing HELP screens for an application system.
First, a HELP ENTRY is created for each desired area of an application. Second, $HELP
statements are strategically placed throughout the application to invoke the appropriate
HELP ENTRY.

HELP ENTRIES are created and stored in NPL HELP files. An NPL HELP file is a na-
tive operating system file with an extension of .HLP (if permitted by the native operating
system). A NPL HELP file may contain a single stand-alone HELP ENTRY or multiple
HELP ENTRIES.

11.2.2 Stand-alone HELP Files

A stand-alone NPL HELP file contains a single HELP ENTRY. The name of this file is
user defined. However, HELP filenames must be compatible with file naming conven-
tions on the native operating system.

HINT: To be safe, restrict filename characters to the uppercase letters A-Z and numerals 0-9.

These files may be created using standard text editors. In the file, enter the instructional
text to be displayed for a given program of an application should the HELP key be
pressed. For example, presume a file "ARINFO.HLP" has been created and contains gen-
eral AR informational text.

:$HELP = "ARINFO"

Adding the above program text to the beginning of AR entry in an existing application
will cause the RunTime to reference the HELP ENTRY text contained in
"ARINFO.HLP". There is no need to include the extension .HLP within the program.

11.2.3 Indexed HELP Files

Multiple HELP ENTRIES combined into a single file are referred to as INDEXED HELP
FILES. Indexed help files can simplify the maintenance of a HELP system by reducing a
large number of stand-alone HELP files into a single HELP file with an associated index.
Indexed help files are discussed in detail in Section 11.5.

THE HELP PROCESSOR User-Definable Help Screens

NPL Programmer’s Guide 11-3

11.2.4 The $HELP Statement

To inform the RunTime program that a HELP ENTRY is available during execution of a
given program, an NPL statement called $HELP is used. By assigning the name of the
HELP ENTRY to the $HELP system variable in the program, the user is effectively form-
ing a link from the program to its corresponding HELP ENTRY. The general form of the
statement is:

$HELP = alpha-expression

Where alpha-expression may be up to an 8 character help filename or the name of an en-
try within an INDEXED HELP FILE.

For example:

$HELP="ARINFO"
$HELP="OEENTRY1"

Alternatively, the current status of $HELP can be examined using the form:

Alpha-variable = $HELP

For further details refer to the Statements Guide, $HELP.

When the HELP key is pressed during program execution, the RunTime program per-
forms the following steps (assuming Indexed HELP Files are not used):

1. The current contents of the screen are saved (the application screen).

2. The RunTime program searches for the specified HELP file. If located, the HELP EN-
TRY text is displayed, beginning with the first 19 lines. If the file cannot be found or
$HELP is blank, the message "No Help Information Available" is displayed.

3. If a HELP ENTRY is found, the operator may review the HELP text provided and re-
sume execution of the application when ready.

NOTE: The method used by the RunTime program to search for specified HELP files is op-
erating system-dependent. For example, under MS-DOS, the "current directory" is
searched. Refer to the appropriate NPL Supplement for details. When supported by
the native operating system, an extension of .HLP is assumed for the HELP filename.

User-Definable Help Screens THE HELP PROCESSOR

11-4 NPL Programmer’s Guide

11.3 Special Sequences

The HELP processor supports several special sequences which, when encountered in
HELP ENTRIES, invoke special features of the HELP processor. These special se-
quences should be located in the actual HELP ENTRY text. The delimiter used for all
special sequences are braces, "{}"

These special sequences are:

Tab Sequence - {T decimal Tab value }

This sequence causes text following the sequence to be displayed starting at the
column specified by the tab value.

For example:

{T40} causes text following to be displayed starting at column 40.

HEX Sequence - {H hex string }

This sequence allows characters which are not normally enterable through the
standard keyboard to be entered into HELP text. All such characters must be in-
cluded in the hex string. This feature is particularly useful for creating HELP
text which contain characters from the international character set.

NOTE: When the contents of the HELP file are displayed by the RunTime program, screen
character translation, as described in Section 7.4 does take place. Therefore, to dis-
play the international character set, the NPL hex codes must be entered in the hex
string. Refer to Appendix D for details on the NPL character set and the appropri-
ate NPL Supplement for details on the implementation of the NPL character set for
the machine being used.

For example:

{H98} causes the brace character, "{", to be displayed.

Cursor Location Sequence - {@ row value,column value}

THE HELP PROCESSOR Special Sequences

NPL Programmer’s Guide 11-5

This sequence locates the cursor to a specified row and column of the display.
Rows and columns are numbered from 0.

For example:

{@10,15} causes the cursor to be displayed in row 10 starting at column
15.

NOTE: The braces should not be used for anything other than these special sequences. If it
is necessary to display braces on the HELP display, the hex string special sequence
must be used as described above.

The following sections discuss several other special sequences related to the specific sec-
tion topic being discussed.

11.4 Nested Help Entries

Many times it is useful to have one HELP ENTRY reference another HELP ENTRY to
provide the operator with more detailed information, but only if requested. This can be
done using nested HELP ENTRIES.

A given HELP ENTRY can reference another HELP ENTRY by inclusion of the follow-
ing special sequence in the HELP text.

{=HELPname,Reference Name}

where:

HELPname The name of the next HELP ENTRY to display (sub-
HELP). This may be the name of a stand-alone HELP file or
the name of a HELP ENTRY in an INDEXED HELP FILE.
The filename must be native operating system compatible,
up to 8 characters maximum.

Reference Name The text intended to appear on the screen to signify that
more HELP is available. This text is highlighted, if possible,
and is treated as a user-selectable HELP option.

Nested Help Entries THE HELP PROCESSOR

11-6 NPL Programmer’s Guide

This special sequence is termed the "HELP EXTERNAL REFERENCE".

To view the sub-HELP display, the operator moves the input block to the highlighted Ref-
erence Name and presses EXECUTE or selects the entry with the mouse (where mouse
support is available). The sub-HELP display is then located (using the provided HELP-
name) and displayed.

Upon selecting a sub-HELP entry, an additional HELP option, "Previous Help", is dis-
played in the upper left corner of the HELP screen, along with the "Leave Help" option.
The "Previous Help" option allows the operator to move backward through one or more
sub-HELP entries, while "Leave Help" is used to exit from the help processor back to the
application.

Any HELP display may contain up to 64 sub-HELP special sequences. Sub-HELP dis-
plays themselves may also contain up to 64 references and so on. At any time the opera-
tor may press the CANCEL key to return to the original HELP display.

When using nested sub-HELP entries, NPL will maintain the last 5 sub-HELP screens ref-
erenced plus the originating HELP screen, for purposes of traversing backwards through
the sub-HELP entries using "Previous Help". In the event a sub-Help entry is referenced
recursively, all intermediate values are removed from the sub-HELP stack.

Nested HELP ENTRIES may be stand-alone HELP files or individual entries within an
INDEXED HELP FILE (refer to Section 11.5 below). If they are stand-alone files, the
rules stated in Section 11.2.4 above apply to location and display of the entry.

11.5 Indexed Help Files

While access to stand-alone HELP FILES is the simplest form of incorporating HELP en-
tries into an application, it is not the most efficient method to use when considering a
larger more complex, context sensitive help system. Here, developers may choose to inte-
grate a number of HELP ENTRIES into one larger file. HELP ENTRIES combined in
this manner are called "INDEXED" HELP files.

11.5.1 Advantages and Disadvantages of Indexed HELP Files

The advantages of Indexed HELP screen files are:

THE HELP PROCESSOR Indexed Help Files

NPL Programmer’s Guide 11-7

• Disk space occupied by a set of HELP files may be reduced.

• The number of files created is reduced. Access to files may degrade on some op-
erating systems if the number of files is large.

• The number of indexed entries is unlimited.

The disadvantages of an indexed HELP file are:

• Each time the indexed HELP file is changed, it must be submitted to an indexing
procedure. This indexing procedure is required to obtain rapid retrieval of individ-
ual HELP Entries (more on this below).

• The number of index entries is 3270 (unlimited on 32-bit operating environ-
ments), however, only 4K bytes of index entries (256 entries) are loaded and
searched at time. Subsequently, access to later index keys may become progres-
sively slower.

11.5.2 Creating an Indexed HELP File

To create an indexed HELP file, use a text editor appropriate for the particular hardware
and operating system being used to create an indexed HELP file or to combine individual
HELP files. The file should be saved with a name in any directory (if directory structures
are supported by the native operating system), but the extension (if extensions are permit-
ted) of the indexed HELP file must be .HLP.

11.5.3 Defining HELP Entries Within an Indexed File

Individual HELP ENTRIES within the INDEXED HELP FILE are defined by adding a
label to the start of each entry. This label is termed the HELP Entry Definition. This must
be added at the start of each individual HELP entry in the following format:

{=^HELPname,Reference Name}

where "HELPname" is up to an 8 character code used to retrieve the entry (by setting
$HELP="HELPname" from a program).

Indexed Help Files THE HELP PROCESSOR

11-8 NPL Programmer’s Guide

If the Indexed file has been created by combining individual HELP files, set the HELP-
name to be the name of the old HELP text file. Thus, any $HELP statements already ref-
erencing that name would not have to be modified. The Reference Name is used to
resolve internal references to the entry (refer to next section). It should be a brief descrip-
tion (like a title) of the entry. The Reference name does not appear as part of the HELP
display. If no other text appears on the HELP Entry Definition line, the display starts on
the next line (otherwise, text on the remainder of the line is included in the display).

There must also be a way of determining the end of each individual HELP ENTRY. The
method used is to place a pair of empty braces {} at the end of each HELP ENTRY.

11.5.4 Creating the Index for the File

To make an Indexed HELP file accessible by the HELP processor, the file must be proc-
essed by a special NPL utility. This utility reads the Indexed HELP file, resolves all
HELP Entry Definitions (does not allow duplicates) and creates a secondary file which
contains an actual index to the Indexed HELP file. This index file has the same name as
the Indexed HELP file but an ".IDX" extension (on operating systems which permit ex-
tensions--on other operating systems, conventions for the Indexed HELP files are docu-
mented in the appropriate NPL Supplement.. Each time an Indexed HELP file is
modified, this utility must be run to ensure that the index file is up-to-date. For further de-
tails on the HLPINDEX utility, refer to Section 13.18.

11.5.5 To Use an Indexed HELP File

Access to HELP ENTRIES in an INDEXED HELP FILE is similar to accessing a series
of smaller HELP files. The name of the appropriate HELP ENTRY must be assigned to
the $HELP system variable before the operator presses the HELP key and the name of
the INDEXED HELP File containing the entry must be assigned to the $HELPINDEX
system variable.

The general form of this statement is:

$HELP = alpha-expression

where alpha-expression is the native operating system file specification of a file contain-
ing the HELP ENTRIES.

To inform the system that the entry is contained in an INDEXED HELP FILE, the name
of the INDEXED HELP FILE must be assigned to the system variable "$HELPINDEX".

THE HELP PROCESSOR Indexed Help Files

NPL Programmer’s Guide 11-9

For example:

$HELPINDEX="TUTORIAL"

This instructs the HELP processor to look for HELP ENTRIES in the INDEXED HELP
FILE "TUTORIAL.HLP" (if extensions are permitted), with its companion index file
"TUTORIAL.IDX".

Both the INDEXED HELP FILE and its INDEX file should reside in the same directory
(if directory structures are supported under the native operating system).

It is also possible to examine the current value of the $HELPINDEX system variable by
assigning it to a string variable (defined length is 50 bytes).

For example:

A$=$HELPINDEX

This places the current value of $HELPINDEX in the variable A$.

NOTE: Utility subroutines which wish to use a specific index file for HELP screens without
affecting the current value, normally store the $HELPINDEX value and replace it
before returning to the calling program.

Since a single Indexed HELP file can contain many individual HELP ENTRIES, very
few $HELPINDEX statements are required. Typically, the $HELPINDEX statement can
be placed in the startup program for a specific module, or even in the BOOT program for
a small application.

For further details refer to the Statements Guide, $HELPINDEX.

11.5.6 Alternative Search

If a specified HELPname is not located in the INDEXED HELP FILE, or if $HELPIN-
DEX is blank, or the index is missing or contains no matching entry for that name, the
HELP processor looks in the current directory for "HELPname.HLP". If that file is not
available, "No Help is Available" is displayed.

This search procedure is followed for all HELP files used by the RunTime program, in-
cluding the following special names. For this reason, these special "HELPnames" should
be reserved for their intended purpose:

Indexed Help Files THE HELP PROCESSOR

11-10 NPL Programmer’s Guide

RUNERROR Displayed in the event of a non-recoverable error.

CTRLSEQ Displayed if HELP is pressed in the Control Sequence field
of the Printer Control display.

DUMPFILE Displayed if HELP is pressed in the Dump File Name field
of the Diagnostic Dump display.

11.5.7 External References within Indexed HELP Files

References to other HELP files may be included in indexed HELP files in the usual way
(with a HELP External Reference):

{=HELPname,Reference name}.

11.5.8 Internal References within an Indexed File

If a reference to another HELP entry within the same indexed file is required, a more effi-
cient method can be achieved by replacing the "HELPname" with a "pointer value". This
is a special HELPname consisting of a decimal point and a number of digits (at least 5 are
recommended, 6 may be required if the indexed HELP file is large).

This special sequence is termed a HELP INTERNAL POINTER and has the following
syntax:

{=.pointer value,Internal Label}

The Internal Label is used both for displaying highlighted text on the screen as an indica-
tion that sub-HELP is available (like nested HELP screens) and as the reference to the
HELP Entry Definition for the HELP Entry to be displayed. When the index file is cre-
ated (by the Indexed HELP File Processor Utility, HLPINDEX), the Internal Labels with
HELP Internal Pointers are resolved and all of the pointer values are corrected to point to
the HELP Entry Definition based on the Reference Name of the HELP Entry Definition.

For example:

{=.00000,Format Floppy Disks}

The above example is taken from the UTILHELP.HLP Indexed HELP file which is pro-
vided as part of the NPL Development Package. This is the entry as it was originally en-
tered into the file. It refers to the HELP Entry Definition:

THE HELP PROCESSOR Indexed Help Files

NPL Programmer’s Guide 11-11

{=^ATFORMAT,Format Floppy Disks}

After processing by the HLPINDEX utility, the HELP Internal Pointer appears as:

{=.00820,Format Floppy Disks}

Here, 820 is the calculated location of the HELP Entry Definition for ATFORMAT.

The result of this example is that when the HELP option Format Floppy Disks is selected
during HELP processing of the UTILHELP Indexed HELP file, the HELP ENTRY for
HELPname ATFORMAT is displayed.

NOTE: The spelling of the Internal Label must precisely match the Reference Name from
the HELP Entry Definition. If it does not match, the HLPINDEX utility flags it as
an error.

Internal references which use pointers are preferred over those using names, because the
HELP entries they refer to can be displayed without referring to the HELP index.

The NPL Development Package contains an example of an indexed HELP file, UTIL-
HELP, which defines HELP information for the NPL utility programs.

11.6 General Notes on Help Files

The contents of the $HELP and $HELPINDEX pseudo variables remain intact even
when a new NPL program is loaded. Therefore, if a given program does not contain a
$HELP statement, but the previous program executed did, the HELP file from the pre-
vious program is displayed if HELP is pressed during the current program. This could
cause confusion for the operator. This can be avoided by the inclusion of a $HELP=" " or
$HELPINDEX=" " statement in any program which uses defined HELP screens. This
statement should be placed immediately before the exit point of the program.

$HELP may be assigned as many values as desired throughout the execution of a pro-
gram or programs. Whatever HELPname is in the $HELP pseudo variable at the time of
HELP key depression, is the HELPname used for HELP entry look-up and display.

For further details refer to the Statements Guide, $HELP and $HELPINDEX. For further
details on the operation of the HLPINDEX indexed HELP file processor utility, refer to
Section 13.18 of the Programmer’s Guide.

General Notes on Help Files THE HELP PROCESSOR

11-12 NPL Programmer’s Guide

11.7 Additional HELP Processor Features

11.7.1 Mouse Support

The HELP processor automatically supports the use of a mouse and all mouse functions
where supported by NPL. Refer to Section 7.6 for a discussion on NPL Mouse support.

11.7.2 Keyboard Functionality

As an alternative to using the standard NPL "EXEC" key to execute HELP options within
the HELP processor, a new $OPTIONS byte has been implemented to enable the HELP
Processor to treat the "RETURN" key as if it were the "EXEC" key. Developers can en-
able this feature by setting Byte 46 of $OPTIONS to HEX(01).

The BACKTAB key (SHIFT+ TAB) now performs the same function as the LEFT arrow
key. Within the HELP Processor, this key performed no function in previous releases of
NPL

As discussed in Section 11.2.1, the "PREV" and "NEXT" keys are now used to page for-
ward and backward through HELP ENTRIES with greater than 19 lines of text.

THE HELP PROCESSOR Additional HELP Processor Features

NPL Programmer’s Guide 11-13

CHAPTER 12

$DEMO

12.1 Overview

$DEMO provides a mechanism which allows the application software to receive informa-
tion from a special ASCII file as opposed to receiving it from the keyboard. Not only can
this file provide keystrokes, it can also display information in the form of text boxes. This
feature allows developers to create demonstration versions of their software, self-running
tutorials, testing scripts, etc. In addition, $DEMO has a built-in macro recording feature
for storing $DEMO scripts.

The following describes these capabilities can be used.

• Automatic Software Demonstration. Application software can be demonstrated
using a prepared "script" to automatically fill all operator entered fields. The op-
erator is provided with informational text along the way, and is only periodically
required to press the space bar to continue with the demonstration.

$DEMO Overview

NPL Programmer’s Guide 12-1

• Automatic Tutorials . An automated training session can be prepared which al-
lows for self-training at end-user sites on application software.

• Built-in Macro Facility . Developers can easily record keystrokes for their own
$DEMO script files by using the SELECT LOG statement. These files can be
used later with a "quick-key" macro.

Section 12.2 provides details on the $DEMO statement.

Section 12.3 provides details on the format of the script file.

Section 12.4 discusses keystrokes contained in the script file.

Section 12.5 discusses the display of informational text.

Section 12.6 discusses the adding of comments to the script file.

Section 12.7 discusses limitations of $DEMO.

Section 12.8 discusses the keyboard-logging option of $DEMO.

12.2 $DEMO Statement

The following section provides a discussion of the syntax of $DEMO, its effects, and
how it can be analyzed.

12.2.1 Syntax

To enable the DEMO script function, the name of the script file to be accessed is as-
signed to the $DEMO system variable. The correct syntax for using this command is:

$DEMO=alpha-expression

The alpha-expression contains the native operating system file specification for the script
data file. When the statement is executed, the DEMO processor is invoked and sub-
sequent keystrokes and informational text are retrieved from the script file, until the end
of the DEMO script is reached.

$DEMO Statement $DEMO

12-2 NPL Programmer’s Guide

At any point in the program, the contents of the $DEMO variable may be inspected
through the following syntax:

alpha-variable=$DEMO

12.2.2 Effect of Execution

When the $DEMO statement is executed, all keyboard input is redirected to the specified
file. No keyboard keys function, except the following NPL keys:

Space Bar This is used to continue with the DEMO script when it has
been halted by a special screen display. Refer to Section
12.5 below for details on generating special screen displays
using the BOX statement from within the DEMO script file.

CANCEL Pressing CANCEL when the DEMO script has been halted
by a special screen display exits from DEMO mode and re-
turns the keyboard to its normal status.

Keypad Arrow Keys These may be used to interactively reposition and resize spe-
cial screen displays at execution time. Refer to Section 12.5
for details.

PLUS and MINUS keys These may be used to speed-up or slow-down the rate of
keystroke entry from the DEMO script file. Refer to Section
12.4.4 below for details.

NOTE: Refer to Appendix D for the actual keys to use on the terminal.

When the end of the DEMO script file is reached, the value of the $DEMO variable is not
removed, but keystrokes and text are no longer read from the file. Keystrokes are then ac-
cepted normally from the keyboard. If the DEMO script file specified by the $DEMO sys-
tem variable does not exist or is invalid, the $DEMO statement causes keystrokes to be
accepted from the keyboard.

$DEMO $DEMO Statement

NPL Programmer’s Guide 12-3

12.2.3 Determining $DEMO Status

The current status of keyboard redirection from a $DEMO script is maintained in byte 19
of $MACHINE. The HEX(01) bit is set to a value of 1 whenever keyboard redirection
from a $DEMO file is in effect and is set to 0 on all conditions which terminate the
$DEMO script. For details refer to the NPL Statements Guide, $MACHINE.

12.3 DEMO Script File

The DEMO script file, as specified by the $DEMO statement, can contain:

• Keystrokes to be passed to an NPL program in response to requests for keyboard
input.

• Special text to be displayed in a box on the screen at different points within the
DEMO.

• Comments.

Keystrokes for the script file may be created by use of the keyboard logging feature of
NPL. However, typical use of a script file would include use of additional $DEMO fea-
tures such as BOX and REM. Text for these items would have to be added to the key-
stroke file by use of a standard text editor (refer to Section 12.8 below for further details).
Alternatively, the script file may be created by any standard text editor which can gener-
ate ASCII files (with no special control codes).

Any valid native operating system name may be used for the script file and it may be
stored anywhere within the native operating system file system.

12.4 Keystrokes

Portions of the DEMO script file which are not part of a BOX display (refer to Section
12.5) or other special text (refer to Section 12.6) are treated as keystrokes to be passed to
the NPL program in response to requests for keyboard input.

DEMO Script File $DEMO

12-4 NPL Programmer’s Guide

12.4.1 Keystroke Processing

Keystrokes are stored in the DEMO script file in the same order as an operator would
have entered them (except special keys--refer below) while running the actual application
software.

For example, a DEMO script file might contain the sequence:

This is a test(-RETURN-)
128.50(-RETURN-)

These keystrokes would be passed to the NPL program in response to subsequent key-
board input requests. All sequences surrounded by parentheses "()" are always treated
specially in the DEMO script. To enter just a left parenthesis as a keystroke, use the spe-
cial sequence (().

NOTE: The special sequence (-RETURN-) passes the keycode equivalent to the RETURN
key (HEX(0D)). Refer to Section 12.4.2 for further details on special keys.

The following NPL keyboard input statements accept keystroke entry from a DEMO
script file:

INPUT
LINPUT
KEYIN (non-polling form only)

For further details, refer to the Statements Guide for INPUT, LINPUT, and KEYIN.

The number of keystrokes passed depends on the program. A KEYIN statement accesses
one keystroke at a time. However, a LINPUT or INPUT statement accesses keystrokes
until the special keystroke (-RETURN-) is encountered.

For example, using the above stated DEMO script entry, the statements below would
work as follows:

10 KEYIN A$ The first byte of the script sequence ("T") would be placed
in A$. The next keyboard input statement would receive key-
strokes starting with the second character ("h").

10 LINPUT X$ Would access keystrokes until the special (-RETURN-) key-
stroke is encountered ("This is a test"). Subsequent keyboard
input statements would access keystrokes starting with the
key after the (-RETURN-).

$DEMO Keystrokes

NPL Programmer’s Guide 12-5

12.4.2 Special Keys

As the demonstration progresses, it becomes necessary to automatically insert special
keystrokes which the operator would normally enter but may not be possible to store in a
script file. Consequently, special keys have to be defined in a certain manner. Special
keys are defined by the following special syntax:

(-special-key-)

For example:

12/31/92(-RETURN-)

This entry in the DEMO script file would cause insertion of the date 12/31/92, followed
by emulation of the RETURN key being pressed.

The format of the "special key" is surrounded by parentheses and hyphens for many keys.
Following is a list of the supported special keys:

(-RETURN-) (-EXECUTE-) (-SOUTH-) (-INSERT-)
(-CANCEL-) (-TAB-) (-EAST-) (-DELETE-)
(-BACKSPACE-) (-NORTH-) (-WEST-) (-CLEAR-)
(-CONTINUE-) (-LOAD-) (-SHIFT-ERASE-)
(-PRINT-) (-UNDERSCORE-) (-EDIT-) (-HELP-)
(-RECALL-) (-DEC-TAB-) (-PREV-SCREEN-)
(-NEXT-SCREEN-) (-TAB-) (-FN-) (-GL-)
(-SHIFT-CANCEL-) (-SHIFT-EDIT-) (-SHIFT-NORTH-)
(-SHIFT-SOUTH-) (-SHIFT-EAST-) (-SHIFT-WEST-)
(-SHIFT-INSERT-) (-SHIFT-GL-) (-SHIFT-NEXT-

SCREEN-)
(-SHIFT-TAB-) (-SHIFT-FN-) (-SHIFT-PREV-

SCREEN-)
(-SHIFT-DELETE-)

(() = LEFT PARENTHESIS

NOTE: (-HELP-) is disabled during the use of $DEMO.

Also supported are the special function keys, entered as (0) through (255).

Keystrokes $DEMO

12-6 NPL Programmer’s Guide

12.4.3 Repeat Keys

Automatic repetition of keystrokes from a script file may be specified by entering a num-
ber followed by an "*" (asterisk), enclosed in parentheses, immediately followed by the
character to be repeated.

For example:

(20*)-

produces 20 dashes (hyphens) as keyboard input data.

12.4.4 Timing

The rate at which keystrokes are processed (retrieved) from the DEMO script file is ap-
proximately .25 seconds per keystroke at the start of the demonstration. This rate may be
increased any time during the demonstration by pressing the "+" key, or decreased by the
"-" key. Each incidence of pressing a "timing" key changes the speed of retrieval by .01
second. Therefore, pressing the "+" key 25 times reduces the delay to zero.

Another method for automatically setting the retrieval speed of keystrokes from the
DEMO script file is a special sequence with the following syntax:

(xx+)

This sets the retrieval speed to .xx (xx hundredths of a second) per keystroke.

NOTE: If no number is specified, the default value for "x" is the last value specified in a pre-
vious timing sequence. This rate continues until the (-) special sequence is reached in
the DEMO script, which returns the rate to the original .25 seconds per key default
(or to another value as modified by the operator by use of the + or - keys).

$DEMO Keystrokes

NPL Programmer’s Guide 12-7

WARNING--Be aware that during the period in which the timing statement is in effect in
the DEMO script, use of the "+" or "-" keys has no effect on the demonstration speed.
They are disabled.

12.5 Display of Informational Text

When running a program using $DEMO scripts, it may be desirable to display comment
boxes during execution to let users know what the program is doing. These comment
boxes can be defined by use of a special sequence in the DEMO script file. The following
is a detailed discussion on how to implement comment boxes.

12.5.1 The BOX Statement

Within the DEMO script file, use of the BOX statement causes the demonstration screen
to display an informational box containing commentary about what is happening on the
screen. Proper syntax for this command is:

(BOX)atrow,atcol,boxrows,boxcols

The starting row and column for the screen display of the box is indicated (atrow,atcol),
followed by the size of the box (boxrows, boxcols). No other information should appear
on the remainder of the line following the BOX special sequence. The information which
is displayed in the box should appear in the script on the line following the BOX state-
ment, and may consist of several lines of text.

For example:

(BOX)15,05,05,50
This is a test display of informational text
which appears on the screen.{}

This example would display a box on the screen starting at row 15, column 5, with a size
of 5 rows by 50 columns as the dimensions of the box. As everywhere in NPL, screen
lines and columns are numbered starting at 0, the first line inside the box is always blank
(reserved for the top row of the actual box--refer to Section 12.5.2 below). Left-justified
inside the box, the statement "This is a test ..." would appear on the second line, with the
remainder of the script appearing on the third line.

Display of Informational Text $DEMO

12-8 NPL Programmer’s Guide

NOTE: The {} at the end of the last line is the special sequence used to indicate the end of in-
formational text. Refer to Section 12.5.3 below.

The last line within every box contains the centered message "Press SPACE BAR to con-
tinue." as its final instruction. Because the first and last lines of the box are "reserved" for
the box itself, and the last line within the box is reserved for the "Press SPACE BAR ..."
message, be sure to add 3 rows to the calculation for the depth of the box.

When the space bar is pressed, the box and its contents are erased and replaced with the
correct previous contents of the screen, and the demonstration proceeds.

12.5.2 Special Sequences

The DEMO processor supports several special sequences which, when encountered in
DEMO text, invoke special features of the DEMO processor. These special sequences
should be located in the special text section of the DEMO script file. The delimiters for
all special sequences are braces, "{}" (HEX(7B7D)). Refer to Appendix D for the spe-
cific keystrokes used by the terminal to generate braces.

These special sequences are:

Tab Sequence - {T(decimal Tab value)}

This sequence causes text following the sequence to be displayed starting at the
column specified by the tab value.

For example:

{T40} causes text following to be displayed starting at column 40.

HEX Sequence - {H(hex string)}

This sequence allows characters which are not normally enterable through the
standard keyboard to be entered into DEMO text. All such characters must be in-
cluded in the hex string. This feature is particularly useful for creating DEMO
text which contains characters from the international character set.

NOTE: When the contents of the script file are displayed by the RunTime program, screen
character translation as described in Section 7.4.3 does take place. Therefore, to dis-
play the international character set, the NPL codes must be entered in the hex string.

$DEMO Display of Informational Text

NPL Programmer’s Guide 12-9

For example:

{H0202020E} enables use of the NPL alternate character set.

{H98} causes the brace character, "{", to be displayed from the NPL
 alternate character set.

Cursor Control Sequence - {@(row value,column value)}

This sequence positions the cursor at the screen location specified by the row
and column values. This allows for printing pointers (e.g., "^" or "<--") to high-
light important screen information which is outside the box. Such sequences
should appear after all text which should remain inside the box display.

For example:

25 = {@5, 8} locates the cursor at row 5, column 8 on the screen.

NOTE: The brace characters should not be used for anything other than these special se-
quences. If it is necessary to display braces on the BOX text, use the HEX string spe-
cial sequence as described above.

For example:

(BOX)15, 05, 05, 50
{T20}This is a test display of informational text
{H98}which appears on the screen.{}

The {T20} causes the text on the first line to be indented (TAB) 20 posi-
tions.

The {H98} displays a left brace ({) at the start of line 2.

12.5.3 End-of-Text Delimiter

Termination of informational text for the DEMO script is completed by entering the char-
acters "{}" (open and closed braces) at the end of the informational text. Refer to Sec-
tions 12.5.1 and 12.5.2 for examples of the use of end-of-text delimiters.

Display of Informational Text $DEMO

12-10 NPL Programmer’s Guide

12.5.4 Modifying Box Parameters

As a programming convenience, the parameters to the BOX statement may be interac-
tively changed during execution of the DEMO script by use of the arrow keys.

When the informational box appears on the screen, the box may be repositioned to the
left, right, up or down, simply by pressing the appropriate directional arrow on the key-
pad.

By pressing the shifted arrow keys, the size of the box may be changed through move-
ment of the right border of the box to the left or right, or the lower border of the box up
or down.

NOTE: If the size or position of the box is changed during the program, the parameters of
the BOX statement in the DEMO script file are also dynamically changed to reflect
the new position. Due to this dynamic changing of the DEMO script file, it is impor-
tant that all parameters within the BOX statement should be expressed as 2-digit
numbers (e.g., 05 for the fifth row, 09 for the ninth row). Otherwise, there may not
be sufficient space in the DEMO script file for the updated box parameters to be re-
written.

12.5.5 BOX Graphics Display

The implementation of "true" box graphics requires a monitor that can support dual text
and graphics mode. If such a monitor is present and is supported by the RunTime pro-
gram, then "true" box graphics are displayed.

In all other cases, whether the monitor is supported but does not have dual text and graph-
ics capabilities, or the monitor is simply not supported (generic screen handling used),
"true" box graphics are not available.

Application programs may examine byte 4 of the $MACHINE system variable to deter-
mine if "true" box graphics are available on the machine currently being used. A value of
"G" indicates that "true" box graphics are available. A value of " " indicates that they are
not. For further details, refer to the Statements Guide, $MACHINE and $BOXTABLE.

If "true" box graphics are not available, use of the $BOXTABLE function can substitute
"character" graphics instead. For further details, refer to the Statements Guide, $MA-
CHINE and $BOXTABLE.

$DEMO Display of Informational Text

NPL Programmer’s Guide 12-11

HINT: It is strongly recommended that software authors design their DEMO script files for use
with character boxes and explicitly set byte one of $BOXTABLE during testing so that
character boxes are always used, regardless of the "true" box capabilities. This ensures
that the DEMO displays properly on all machines supported by NPL. However, note that
the value of $BOXTABLE affects BOXes displayed by the application program as well
as BOXes displayed by the script file. For applications which are dependent upon the fea-
tures of "true" box graphics, this fact has to be considered.

12.5.6 Redefining the Prompt

Automatically appearing on the last line within every box is the message "Press SPACE
BAR to continue." The message "prompt" may be changed by:

(MEMO)new prompt specification

This will allow for redefining the prompt to another message, or one that is printed in an-
other language. Whatever message or prompt appears, the space bar is still required to
continue the demonstration.

NOTE: This change is permanent for the duration of the RunTime session. Restarting a
demonstration script does not reset the prompt to the startup value. No other infor-
mation should appear on the line after a MEMO special sequence.

12.6 Adding Comments

As a part of the DEMO script, but not a displayable part of the demonstration, it is possi-
ble to insert comments or other informational text into the body of the script. Use the fol-
lowing syntax:

(REM)any commented information

This allows for the insertion of "documentation" within the actual script. This is never to
be displayed on the screen during the live demonstration.

NOTE: All information to the end of the line is treated as a comment.

Adding Comments $DEMO

12-12 NPL Programmer’s Guide

12.7 Restrictions

Several restrictions must be considered while using $DEMO. Among the restrictions con-
sidered are: the availability of a HELP key, the reliability of a polling KEYIN statement
and the return value of the $IF ON statement. The following sections describe each of
these issues.

12.7.1 The HELP Key

During the processing of the DEMO script ($DEMO), the HELP key is disabled. The
demonstration may be terminated by pressing the CANCEL key any time an informa-
tional box is displayed on the screen. Exiting from the demonstration in this manner re-
verts to the normal operations of the program.

12.7.2 Polling KEYIN

Use of the polling form of the KEYIN statement may not operate with DEMO script
files. If a polling form of KEYIN is encountered while a DEMO script is active, it ap-
pears to the program that no key is available, and execution continues to the next state-
ment. If a program uses the polling form to accept keyboard information required by the
demonstration, any such statements must be modified to use the non-polling form of
KEYIN. For further details, refer to the Statements Guide, KEYIN.

12.7.3 $IF ON

$IF ON /001 (keyboard status check) always returns a value of OFF (no keystrokes avail-
able) during $DEMO.

12.8 Keyboard Logging

As of Release III, $DEMO script files may be created automatically by the NPL applica-
tion by use of the keyboard logging feature. Keyboard logging allows the application to
specify the name of a log file (using the $DEVICE statement) and then to start keyboard
logging use of the SELECT LOG statement.

$DEMO Restrictions

NPL Programmer’s Guide 12-13

For example:

0010 $DEVICE(/219)="LOG.DAT"
0020 SELECT LOG /219

This causes automatic logging of keystrokes to the file LOG.DAT.

Files produced by keyboard logging may be used as input to $DEMO with no modifica-
tions. Special keys generate the special keywords expected by $DEMO as defined in Sec-
tion 12.4.2.

NOTE: For actual demonstration purposes, it may be desirable to edit the log file and add
various special sequences including BOX statements.

For further details refer to the NPL Statements Guide, SELECT LOG.

Keyboard Logging $DEMO

12-14 NPL Programmer’s Guide

CHAPTER 13

NPL UTILITIES

13.1 Overview

Niakwa has supplied the following utility programs for use with NPL. They are provided
at no charge as a convenience to the application developer.

NOTE: MS-DOS delimiters, device names and file-naming conventions are used for all ex-
amples throughout this chapter. Refer to the Chapter 5 of the appropriate NPL Sup-
plement for delimiter, device names and file-naming conventions for the operating
system being used.

Section 13.2 explains how to start NPL utilities.

Section 13.3 discusses the NPL utilities menu.

Section 13.4 discusses the Menu utility.

NPL UTILITIES Overview

NPL Programmer’s Guide 13-1

Section 13.5 explains how to format floppy disks.

Section 13.6 discusses the General Backup utility.

Section 13.7 discusses the General Recovery utility.

Section 13.8 discusses the General File Copy utility.

Section 13.9 discusses listing diskimages.

Section 13.10 discusses new diskimage creation.

Section 13.11 explains how to change diskimage size.

Section 13.12 explains how to scratch single files.

Section 13.13 explains how to change the Utilities Device Equivalence Table.

Section 13.14 discusses the Keyboard Translation Table editor.

Section 13.15 discusses the Screen Translation Tables editor.

Section 13.16 discusses the Font Table editor.

Section 13.17 discusses the Printer Control Table editor.

Section 13.18 discusses the Indexed HELP File Processor.

Section 13.19 discusses the Diagnostic Dump Variables list.

Section 13.20 discusses the Printer Translation Table.

Section 13.21 discusses the Edit Options utility.

Section 13.22 discusses the OTHER Program utility.

Section 13.23 explains how to generate 2200 source.

Overview NPL UTILITIES

13-2 NPL Programmer’s Guide

13.2 Starting the NPL Utilities

These utility programs are located in the \BASIC2C\UTILITY.BS2 diskimage (/D35). To
run the utilities, enter the following at the MS-DOS prompt:

cd \BASIC2C

RTP UTILITY

(or)

RTI UTILITY

The first program loaded is the ATDEVICE utility, which allows users to set-up device
equivalences for those diskimages they wish to manipulate during a session with the util-
ity programs. Refer to Section 13.13 for details on the ATDEVICE program.

When the ATDEVICE program exits, the full utilities menu is displayed. This menu has
been created using the Niakwa 2CMENU program. Refer to Section 13.4 below for de-
tails.

NOTE: In all utilities, the TAB key exits the utility and returns to the "START" program.

NPL UTILITIES Starting the NPL Utilities

NPL Programmer’s Guide 13-3

13.3 The NPL Utilities Menu

13.4 Menu Utility

This Main Menu allows access to all NPL Utility programs.

The following is a brief description of the utility program options listed on the Utilities
Main Menu.

Format Floppy Disks
Formats diskettes for use as "raw" diskettes on the system.

General Backup Utility
Backs up full disks or selected files to multiple diskettes. It is intended to be suitable for
porting programs and data from a 2200 to approved systems running under NPL.

The NPL Utilities Menu NPL UTILITIES

13-4 NPL Programmer’s Guide

General Recovery Utility
Recovers from backup diskettes created by General Backup utility.

General File Copy Utility
Copies selected files from one disk platter to another. Files are copied in standard catalog
format.

Diskimage Listing
Lists the catalog of a specified disk address on the screen or printer.

New Diskimage Creation
SCRATCHes a disk to a size specified by the operator.

Change Diskimage Size
Increases or decreases the physical size of a diskimage file.

Scratch Single File
SCRATCHes a single file specified by the operator.

Change Utilities Device Equivalences Table
Allows the operator to modify, add, or delete entries in the device equivalence table.

Keyboard Translation Tables Editor
Allows keyboard translation files to be modified or created.

Screen Translation Tables Editor
Allows screen translation files to be modified or created.

Font Table Editor
Allows downloadable fonts files to be modified or created.

Printer Control Table Editor
Allows modifications and creation of a data file which contains printer control codes for
the various printer control options.

Indexed Help Table Editor
Creates the index for indexed HELP files. Prior to executing this utility, the combined
HELP files must have been set up. The program resolves all internal references within a
HELP file, updates pointer values within the HELP file, and creates an index file which
contains one entry for each reference name with its associated offset in bytes from the
start of the HELP file.

NPL UTILITIES Menu Utility

NPL Programmer’s Guide 13-5

Diagnostic Dump File Processor
Used to analyze the dump file, produced by the DIAG option in the HELP processor, and
produce a variable listing, with values, of all NPL variables in memory at the time of the
dump

Printer Translation Table
Allows translation table files to be modified and created.

Edit Options
Allows contents of the $OPTIONS variable to be examined and modified.

Other Program
Loads and executes an operator-specified program.

13.4.1 Operation

The keys defined in the table below are active for the Menu Program screen. Instructions
are generally provided at the top of the screen. Once a utility is selected, the main view
screen for that utility appears.

Key Function
Space Bar Moves acceptance block down
Backspace Moves acceptance block up
Return Moves acceptance block down
Up Arrow Moves acceptance block up
Down Arrow Moves acceptance block down
Letter Keys Moves acceptance block to next option with

matching letter
EXECUTE Key Selects options

Menu Utility NPL UTILITIES

13-6 NPL Programmer’s Guide

In environments where mouse support is available, the mouse functions as:

Mouse Function Function
Left Button, Single Click Move Acceptance block to item on same row as mouse cursor.
Left Button, Double Click Execute item on same row as mouse cursor.

13.4.2 Menu Options Setup

Menu options are contained in NPL program(s). These programs must contain data state-
ments starting at line 9500. No line number may be greater than 9800. Up to 18 data state-
ments may be contained in a single program. Each data statement must have three fields:

Description Up to 60 characters.

Disk address Of the program to be loaded (up to three characters).
Blank defaults to currently selected disk.

Program name Up to 8 characters.

A source version of the default menu options program is provided. This program is
2CMNDATA.SRC in \BASIC2C on the NPL Development Package Utilities diskette.
The compiled version of 2CMNDATA is in diskimage UTILITY.BS2.

13.4.3 Accessing the Menu Options Program

The 2CMENU program checks the contents of variable N$ for the name of the menu op-
tions program file to load. If N$ is blank then the default menu options file is used. This
default is 2CMNDATA. Different menu options files can be used by setting up a short
START program which defines N$ as a common variable, assigns the name of the menu
options file to N$, and then LOADs 2CMENU.

For example:

10 REM START
20 COM N$8
30 N$="GLMENU"
40 LOAD T "2CMENU"

NPL UTILITIES Menu Utility

NPL Programmer’s Guide 13-7

This program causes 2CMENU to execute with the menu options contained in program
GLMENU.

NOTE: 2CMENU executes a COM CLEAR before LOADing the selected program.

No end of options indicator is required. Options are displayed until the first blank PRO-
GRAM NAME is encountered or until the end of DATA statements. If there are fewer
than 18 data statements in the specified program options file, no error results.

Linking of menus can be easily accomplished by specifying a program such as the
START example above as the program to load in one of the data statements. This would
cause 2CMENU to be reloaded but with a different menu options program file.

13.4.4 Error Handling

The NPL utilities perform standard error trapping. The following error conditions are de-
tected and reported by the utility programs:

• Invalid disk address from which to load program.

• Disk platter specified not found.

• Program specified not found.

• File name specified is not a program (data file).

If one of these errors occur the utility program prompts for a valid entry. The utility pro-
grams will not execute until a valid entry is entered.

13.5 Format Floppy Disks

This utility formats diskettes for use as "raw" diskettes on the system. For information re-
garding supported devices refer to Chapter 5 of the appropriate NPL Supplement.

Format Floppy Disks NPL UTILITIES

13-8 NPL Programmer’s Guide

13.5.1 Features

• FORMATs the disk.

• SCRATCHes the disk.

13.5.2 Operation

When first executed, the format utility asks for the NPL disk address to use. Next, the op-
erator is prompted to mount the diskette to be formatted and reminded to remove the
Gold Key diskette. The next step requires "Y" to continue. Then a $FORMAT DISK
statement is executed for the selected disk address. After the format is complete, the op-
erator is asked for the number of index sectors desired. A SCRATCH DISK statement
with LS= the number of sectors supplied from the entered variable and END set to the ap-
propriate value for the type of diskette being accessed is executed.

The prompt for the disk address to use accommodates the possibility of multiple diskette
types used on the system. Device equivalence statements must be correctly set up for any
NPL address used. Upon entry of the NPL address, the corresponding device is displayed
for verification.

NPL UTILITIES Format Floppy Disks

NPL Programmer’s Guide 13-9

 The FORMAT utility scratches the diskette after formatting. However, the catalogue end
specification is determined by the program, based upon the device specification used.
Catalogue end is set for the following "raw" diskette types as follows:

5 1/4" 320 K 1279 sectors
5 1/4" 360 K 1439 sectors
5 1/4" 720 K 2879 sectors
5 1/4" 1.2 MB 4799 sectors

3 1/2" 720 K 2879 sectors
3 1/2" 1.4 MB 5759 sectors
3 1/2" 2.88MB 11519 sectors

If the size of the diskette cannot be determined by the device specification used, the
end catalog is set to 1279. The number of index sectors to use is still requested by the
program.

NOTE: Supported "raw" diskette formats are extremely operating system dependent (not
all formats are supported on all environments). For information regarding sup-
ported "raw" diskettes and their device equivalences, refer to the Chapter "Sup-
ported Devices" of the appropriate NPL Supplement.

13.6 General Backup Utility

This utility is a general backup utility for diskimages. It backs up full diskimages or se-
lected files to multiple diskettes. It is intended to be suitable for porting programs and
data from a 2200 to approved systems running under MS-DOS, and for use by end-users
as a backup utility. The companion program, 2CRCVR, is required to recover files cre-
ated by this utility.

NOTE: All of the utilities supplied support any diskette type supported by NPL on the oper-
ating system in use. For porting from a Wang 2200, only the 360K and 320K format
may be used. Note that the 360K format is supported on the Wang 2200 by use of
the "PC INTERCHANGE" format. Refer to Chapter 15 of the Programmer’s
Guide for devices supported in porting to and from the Wang 2200.

General Backup Utility NPL UTILITIES

13-10 NPL Programmer’s Guide

This utility (as well as 2CRCVR and 2CCOPY) has been modified to support ex-
tended (larger than 16MB) diskimage files. If extended diskimage files are being
used, do not use any version of these utilities prior to Revision 2.01.

This version of the utility attempts to accommodate diskimages that are not larger
than 16MB, but that have non-HEX(00) values in bytes 7 or 8 of sector zero. If bytes
7 or 8 are non HEX(00), but the actual sector number referred to cannot be read,
the utility treats the disk as though bytes 7 and 8 were HEX(00). Please refer to
Chapter 7 of the NPL Programmer’s Guide for further details on extended
diskimages and the use of bytes 7 and 8 of sector zero.

13.6.1 Features

• Full disk or selected file backup options are supported.

• Output may be stored on any diskette format supported by NPL on the operating
system in use.

• Backup identification is requested from the operator and is stored on each output
diskette.

• Diskettes need not be pre-formatted. The utility formats diskettes if required.

NOTE: The above feature may not be available for all diskette types on all systems.

• If errors are encountered on any output diskette, the program restarts at the begin-
ning of that diskette. The entire backup does not have to be rerun from the start.

NOTE: Errors on the hard drive are fatal--the program must be rerun with bad area
skipped (by using the selected file option).

• Data is verified on the input disk before copying, and on the output diskette after
copying.

NPL UTILITIES General Backup Utility

NPL Programmer’s Guide 13-11

13.6.2 Operation

The first screen of 2CBCKP requests the type of backup (full disk or selected file), input
and output disk addresses, the size of the output diskette, and backup identification infor-
mation. Before proceeding, the operator may review the information entered.

All entries which require specific responses are checked by the program. If a response is
invalid, the bell sounds and the program does not continue until an acceptable response is
given. Yes/No responses must be entered as upper case "Y" or "N". Disk addresses en-
tered are checked for validity. No edit checking is performed on the backup identification
information.

If the "Full Disk" option is selected, copying commences after the first screen. This is
done using the COPY statements. Refer to Section 13.6.4 below.

The program can be terminated by pressing TAB/FN at any time until the actual copy
process begins. After copying begins, the TAB/FN key is disabled.

General Backup Utility NPL UTILITIES

13-12 NPL Programmer’s Guide

13.6.3 Selecting Files

The option to back up selected files invokes a two-part file selection routine. The first
part of the routine requests lower and upper range limits for file selection, and whether to
copy program files, data files, or both. If range limits are left blank, all active files are se-
lected in this first step.

NOTE: Scratched files are never selected for copying using the selected file option.

Following the file limit entries, the program scans the catalog of the input disk and se-
lects all files falling within the selection criteria. These selected files are then displayed
on the screen in alphabetical order, in groups of 60 files. For each screen displayed, the
operator may select the specific files to be backed up by entering a numeric range (i.e., 1-
20, 3-4, etc.).

NOTE: The hyphen, "-", is required except for single file selections. Files selected for copy-
ing are highlighted. The operator may change this selection by entering a range to
change. This works like an on/off switch--the first time any file is included in a
range, it is highlighted as selected for backup, the next time this file is included in a
range, it is deselecte, the next time it is again selected, and so on.

When the range is left blank, the program continues on to the next screen. After the last
screen has been displayed, the prompt "OK to Proceed" appears. If answered "N", the pro-
gram loops back to the first screen of the secondary file selection process with files pre-
viously selected still highlighted. If "Y", then the backup process begins.

13.6.4 The Copying Process

Once all required information has been entered and the operator has given the OK to pro-
ceed, the actual copying takes place. The number of diskettes required is displayed on the
screen along with status information throughout the process. The only prompts which
should occur once the copying process has begun are related to mounting diskettes and re-
porting any error conditions.

The copy itself is an actual COPY statement. The program does not attempt to break up
the range of sectors to be copied into multiple statements. Thus, when the actual copying
is taking place, the program does not indicate how far along the copy is. In addition, dur-
ing actual copying or verifying, the program cannot be interrupted by HELP.

NPL UTILITIES General Backup Utility

NPL Programmer’s Guide 13-13

When a new diskette is required, the program issues an appropriate prompt. When a new
diskette is inserted, the program checks to see if it is formatted. If not, the program asks if
the diskette is to be formatted. The program also checks that the diskette mounted is not
part of the current set. If the diskette mounted is formatted and is not part of the current
set, the program reports that the diskette appears to contain valid data and asks the opera-
tor to verify that it should be used.

If errors on the diskette are detected, the program so advises the operator and requests
that a new diskette be mounted. Copying is restarted at the start of the diskette. If errors
on the hard drive are detected, the operator is so advised and the program is terminated.
To work-around hard drive errors, it is necessary to use the selected file backup option
and to bypass the file(s) which are located in the sections of the hard drive with errors.

13.6.5 Limitations

The output diskettes are always scratched and created in an intermediate format. Each
output diskette contains a file called INFO which contains the backup identification, and
a file called DATAxx (where xx is the number of the diskette within the series) which
contains backup data. The first diskette of a backup set contains a file called INDEX,
which contains a listing of files backed up. In the case of a full disk backup, INDEX con-
tains an exact replica of the index of the input disk.

NOTE: This means that this utility is not suitable for simply copying files from one
diskimage to another. A formal general file copy program, 2CCOPY, has been in-
cluded for this purpose. Refer to Section 13.8 below.

The SELECT FILE option assumes displayable file names.

If modified and recompiled, the REM $ compiler option must be set to "ON". If recompil-
ing is done without the REM $ option ON, a message to that effect is given when an at-
tempt is made to execute the program.

Both input and output platters are hogged for the duration of the backup. If a disk cannot
be $OPENED, a message to that effect is displayed.

The SELECT FILE option can support a maximum of 500 files meeting the first level of
selection criterion. Should there be more than 500 files, they may either be backed up in
multiple runs of the programs using the first level of selection to limit the number of files
backed up on any one run or, if the user has more than 28K, the program can be modified
to allow more than 500 files.

General Backup Utility NPL UTILITIES

13-14 NPL Programmer’s Guide

To modify the program:

Change the DIM statements on line 11 for F$(), to the number of files needed.

NOTE: Each additional file requires 20 bytes of memory. Thus, in a 56K partition, over
1800 files can be backed up.

The utility reports that a diskette is not formatted if an attempt is made to access a disk-
ette that is not in the drive. If this occurs, respond that the diskette is not to be formatted.
The operator is then prompted to mount a new diskette.

13.7 General Recovery Utility

This utility is the companion to 2CBCKP. It restores data from backup diskettes created
by 2CBCKP. It always expects to access diskettes which have been created in the inter-
mediate format used by 2CBCKP. It always expects to recover to a fixed diskimage file
(or 2200 platter). It also determines the size of the input diskette from information stored
on the diskette during the original backup procedure.

NOTE: This utility (as well as 2CRCVR and 2CCOPY) has been modified to support ex-
tended (larger than 16MB) diskimage files. If using extended diskimage files, do not
use any version of these utilities prior to Revision 2.01.

This version of the utility attempts to accommodate diskimages that are not larger
than 16MB, but that have non HEX(00) values in bytes 7 or 8 of sector zero. If bytes
7 or 8 are non-HEX(00), but the actual sector number referred to cannot be read,
the utility treats the disk as though bytes 7 and 8 were HEX (00). Please refer to
Chapter 7 of the Programmer’s Guide for further details on extended diskimages
and the use of bytes 7 and 8 of sector zero.

13.7.1 Features

• Selected files or full disks can be recovered.

• Output disk is automatically scratched if full disk recover is selected.

• Option to overwrite existing files.

NPL UTILITIES General Recovery Utility

NPL Programmer’s Guide 13-15

• The operator is informed of files that already exists if the option to overwrite in
not selected.

13.7.2 Operation

The operation of the utility is very similar to 2CBCKP as described above. There are a
few differences:

The option to recover the entire disk is present only if the option to back up the en-
tire disk was used to create the backup diskettes. The option to recover specific files
is always present.

The recover SELECTED FILES option contains a provision for recovering all active
files. If this option is used, the file selection routines are skipped and all active (non-
scratched) files are recovered on a file-by-file basis. In addition, if this option is
used, the operator is able to specify to scratch the output disk before proceeding.

NOTE: The output disk is always scratched on a FULL DISK recover, but is never
scratched on a selected file recovery unless the recover all active files option is se-
lected.

General Recovery Utility NPL UTILITIES

13-16 NPL Programmer’s Guide

If recovering selected files, an option to specify whether or not to overwrite existing files
is also present. If set to "N", files which already exist are not overwritten and the operator
is advised of this on a file-by-file basis. If the overwrite option is set to "Y", the follow-
ing errors may occur:

Wrong type. The file to be overwritten is a different type (program versus data) from
the file being recovered. This file is skipped.

File to recover is smaller than file to be overwritten. The operator is advised of this
situation and has the option of continuing or skipping this file. If continued, the file
is overwritten and the trailer sector is also overwritten with the trailer sector of the re-
covered file.

File to recover is larger than file to overwrite. If sufficient space is available, the old
file is renamed to JUNKXXXX and scratched. The recovered file is added as a new
file. No operator prompt is displayed in this situation.

13.7.3 Error Handling

If a hard drive error is encountered, the program is aborted with an appropriate message
to the operator.

If an error on a diskette is encountered during full-disk recovery, the program is aborted.

If an error on a diskette is encountered during selected file recovery, the operator is given
the option of skipping that particular file or ending the program.

13.7.4 Limitations

The SELECT FILE option can support a maximum of 500 files meeting the first level of
selection criterion. Should there be more than 500 files, they may either be backed up in
multiple runs of the programs using the first level of selection to limit the number of files
back up on any one run or, if the user has more than 28K, the program can be modified to
allow more than 500 files.

To modify the program:

Change the DIM statements on line 10 for F$(), L$(), and W$() to the number of
files needed.

NPL UTILITIES General Recovery Utility

NPL Programmer’s Guide 13-17

NOTE: Each additional file requires 20 bytes of memory. Thus, in a 56K partition, over
1800 files can be recovered.

13.8 General File Copy Utility

This utility copies selected files from one disk platter to another. Files are copied in stand-
ard catalog format. Although the program supports copying to multiple diskettes as an op-
tion, no single file may be larger than the output diskette. That is, no "spanning" of
diskettes is supported. If "spanning" is needed, use the general backup program
2CBCKP, with the select specific files option. The operator may specify whether existing
files on the output disk are to be overwritten or not.

This utility is intended primarily for use by trained technical staff for porting and develop-
ment. It does not provide the level of control required for use as a backup program in an
end-user installation. End users should be advised to use the 2CBCKP general backup
utility for backup purposes.

NOTE: This utility (as well as 2CBCKP and 2CRCVR) has been modified to support ex-
tended (larger than 16MB) diskimage files. If using extended diskimage files, do not
use any version of these utilities prior to Revision 2.01.

This version of the utility attempts to accommodate diskimages that are not larger
than 16MB, but that have non HEX(00) values in bytes 7 or 8 of sector zero. If bytes
7 or 8 are non HEX(00), but the actual sector number referred to cannot be read,
the utility treats the disk as though bytes 7 and 8 were HEX(00). Please refer to
Chapter 7 of the Programmer’s Guide for further details on extended diskimages
and use of the bytes 7 and 8 of sector zero.

13.8.1 Features

• Two levels of file selection.

• Ability to optionally overwrite existing files.

• Ability to copy onto multiple diskettes (but does not "span" any given file).

• Ability to optionally scratch output diskettes.

General File Copy Utility NPL UTILITIES

13-18 NPL Programmer’s Guide

13.8.2 Operation

NPL UTILITIES General File Copy Utility

NPL Programmer’s Guide 13-19

The first screen of 2CCOPY requests the disk addresses to copy from and to. The pro-
gram then allows the user to specify whether or not the output address is a diskette.

This option allows the program to copy files to multiple diskettes (although no single file
may span diskettes). If set to "Y", the program gives the operator an opportunity to spec-
ify the size of the output diskette (default=1279). It then allows the operator to mount a
new diskette if there is not sufficient room on the output disk for a file being copied, pro-
viding the size of the file to be copied is less than the specified diskette size.

The second screen requests the following information:

Copy All Active Files? Specifying "Y" causes the program to bypass the file se-
lection routines and copy all active (non-scratched) files.

"Do You Want to Scratch the Output Disk" Answering "Y" causes the program
to:

Request the number of INDEX sectors and CATALOG sectors at which to
scratch the output diskette(s).

SCRATCH the output disk. If copying to diskettes, all output diskettes are
scratched before copying to them.

If the output disk is not to be SCRATCHed, the program asks whether or not to
OVERWRITE existing files. This option tells the program whether or not to re-
place files of the same name on the output platter with files to be copied or to
skip (not copy) those files. Refer to Section 13.8.4 below for details on this fea-
ture.

Following this, if the option to "Copy All Active Files" has been set to "N", the file selec-
tion routines begins. Otherwise, the program proceeds directly to the copy phase (refer to
Section 13.8.4 below).

13.8.3 Selecting Files

The actual file selection is a two-part routine. The first part of the routine requests lower
and upper range limits for file selection, and whether to copy program files, data files, or
both. If range limits are left blank, all active files are selected in this first step.

NOTE: Scratched files are never selected for copying.

General File Copy Utility NPL UTILITIES

13-20 NPL Programmer’s Guide

Following the file limits entries, the program scans the catalog of the input disk and se-
lects all files falling within the selection criteria. These selected files are then displayed
on the screen in alphabetical order, in groups of 60 files. For each screen displayed, the
operator may select the specific files to be backed up by entering a numeric range (1-20
or 3-4 or 2; etc.).

NOTE: The hyphen, "-", is required (unless single files are specified). Files selected for copy-
ing are highlighted. The operator may change this selection by entering a range to
change. This works like an on/off switch--the first time any file is included in a
range, it is highlighted as selected for backup, the next time this file is included in a
range, it is deselecte, the next time it is again selected, and so on.

When the range is left blank, the program continues on to the next screen. After the last
screen has been displayed, the prompt "OK to Proceed" appears. If answered "N", the pro-
gram loops back to the start of the second level file selection routines with files pre-
viously selected still highlighted. If "Y", then the copy process begins.

13.8.4 The Copying Process

Copying is done on a file-by-file basis for all files selected. For each file, the input platter
is verified, the file is copied, and the output platter is verified.

NOTE: Verification is only done for the specific sectors copied from and to. Status informa-
tion is maintained on the screen throughout the process.

The output disk is always maintained in standard cataloged disk format. No intermediate
format (such as used by 2CBCKP) is used. Each file copied to the output disk is cata-
loged normally. The input disk is never modified by this program.

Exceptions and errors are noted as they occur. Most exceptions have to do with insuffi-
cient space to create a new file, or various overwrite exceptions (refer below for details).
Other errors, such as disk hardware errors, are reported as they occur. In these cases, the
operator is given the option of quitting the program or skipping the file currently being
copied and continuing the program.

Exceptions
Insufficient space for output file. This error is handled differently based upon whether the
Copy to Diskettes option has been specified as "Y" or "N".

NPL UTILITIES General File Copy Utility

NPL Programmer’s Guide 13-21

If not copying to diskettes, the operator simply has the choice of skipping this file or quit-
ting the program.

If copying to diskettes, and the file being copied does not exceed the maximum size for
copying to a diskette, the operator has the choice of skipping this file, quitting the pro-
gram, or mounting a new diskette. If the size of the file exceeds the maximum, then the
mount option is not given.

Overwrite Exceptions
If OVERWRITE has been specified as "N", the program notifies the operator of all files
which are not copied due to the existence of a file of the same name on the output disk.
The operator has to acknowledge this message.

If OVERWRITE has been specified as "Y", the following exceptions may occur:

Wrong type; the file to be overwritten is a different type (program versus data) from
the file being recovered. This file is skipped.

File to copy is smaller than file to be overwritten. The operator is advised of this situ-
ation and has the option of continuing or of skipping this file. If continued, the file is
overwritten and the trailer sector is also overwritten with the trailer sector of the re-
covered file.

File to copy is larger than file to overwrite. If sufficient space is available, old file is
renamed to JUNKXXXX and scratched. Recovered file is added as a new file. No
operator prompt is displayed in this situation.

13.9 Diskimage Listing

This utility lists the catalog of a specified disk address on the screen or printer. It is the
equivalent of typing in a LISTDCT statement.

Diskimage Listing NPL UTILITIES

13-22 NPL Programmer’s Guide

13.9.1 Features

• The program allows the user to specify whether the listing is to be in Index (I) or-
der; Name (N) order; or Disk Location (S) order.

• Wildcard name selection is supported. The program lists only files matching a
wildcard entry. An asterisk, "*", as the last character in the wildcard string indi-
cates that all characters from the position of the "*" to the end of the filename are
accepted. A question mark, "?" in any position of the wildcard string indicates
that any character in that position in the filename is accepted.

For example:

* lists all files

GL* lists all files with the first two characters of the filename equal to "GL".

?L* lists all files with the second character of the filename equal to "L".

NPL UTILITIES Diskimage Listing

NPL Programmer’s Guide 13-23

13.9.2 Operation

When the utility executes, the operator is asked for the address of the disk to be listed. If
an invalid address is supplied, the program prints "Disk Error #xx" and asks for the ad-
dress again. The operator is then asked for the desired printer address (e.g., /005, /215,
etc.). The diskimage listing utility then performs the appropriate $OPEN and $CLOSE
statements on all devices accessed. A listing of the disk catalog on the specified output
device (output to the screen stops at the end of each page and request a keystroke to con-
tinue) is produced. When complete, the program loops back to the first step and requests
another disk address.

13.10 New Diskimage Creation

Under NPL, new diskimage files are created by the SCRATCH DISK command. The
physical size of the file, as well as the logical catalog end, is determined by the END pa-
rameter.

New Diskimage Creation NPL UTILITIES

13-24 NPL Programmer’s Guide

This program SCRATCHes a disk specified by the operator to a size specified by the op-
erator.

13.10.1 Features

• SCRATCHes a disk.

• Inserts number of index sectors and end of catalog.

• Informs of successful/unsuccessful SCRATCH.

13.10.2 Operation

NPL UTILITIES New Diskimage Creation

NPL Programmer’s Guide 13-25

When the program is executed the operator is asked for the address of the disk to be
scratched. If an invalid address is supplied, the program prints "Disk Error #xx" and asks
for the address again. Next, the number of index sectors desired and the required end of
catalog need to be entered. Then the program executes a SCRATCH DISK statement
with LS= the number supplied above and END= the number supplied. A "Disk
Scratched" message prints if no errors were encountered or "Scratch Error xx" is dis-
played and asks for the index sectors and end catalog parameter again. The most frequent
error is that there is insufficient room on the hard drive for the size specified. When com-
pleted, the program loops back to the first step and requests the address of the disk to be
scratched.

NOTE: On some operating systems, the SCRATCH DISK statement actually writes to every
sector. This makes operation of this utility somewhat slow on these operating sys-
tems. Refer to Chapter 5 of the appropriate NPL Supplement for further details on
issues relating to creation of diskimage files.

13.11 Change Diskimage Size

Under NPL, the physical size of diskimage files can be altered dynamically. One state-
ment which does this is the MOVE END statement, which is executed against a disk ad-
dress specified by the operator.

13.11.1 Features

• Increase/decrease physical size of a diskimage.

• Informs if operation was successful/unsuccessful.

Change Diskimage Size NPL UTILITIES

13-26 NPL Programmer’s Guide

13.11.2 Operation

When the program is executed, the operator is asked for the address of the diskimage to
be changed. If an invalid address is supplied, the program prints "Disk Error #xx" and
asks for the address to be reentered. The current INDEX SECTORS, CURRENT END,
and END CATALOG of the specified disk prints. Next, the program prompts for the new
END CATALOG value. A MOVE END statement using the specified disk address and
new END CATALOG AREA is executed. If no errors were encountered, "done" is dis-
played or "Move End Error xx" is displayed. After completion, the program loops back to
the first step and requests another disk address.

NOTE: Operation of the MOVE END statement is operating system dependent. Refer to
Chapter 5 of the appropriate NPL Supplement for further details on issues relating
to this command.

NPL UTILITIES Change Diskimage Size

NPL Programmer’s Guide 13-27

13.12 Scratch Single Files

This program SCRATCHes a single file specified by the operator.

13.12.1 Features

• SCRATCHes a file.

• Informs if operation was successful/unsuccessful.

13.12.2 Operation

Scratch Single Files NPL UTILITIES

13-28 NPL Programmer’s Guide

When this program is run, it asks for the name of the file to be scratched and the address
of the disk on which the file is located. If an invalid address is supplied, the program
prints "Disk Error #xx" and asks for the address again. A SCRATCH T/(specified ad-
dress)(specified filename) is executed. A "File Scratched" message is displayed if no er-
rors were encountered or a "Scratch Error xx" message is displayed and asks for the name
and disk address again. When completed the program loops back to the first step and re-
quests the name of the file to be scratched.

13.13 Change Utilities Device Equivalences Table

This program allows the operator to modify the Device Equivalences Table maintained
by the RunTime program.

NOTE: Device equivalences are established each time the RunTime program is executed.
The equivalences set up in this program are not automatically used if the RunTime
is executed with any [progname] other than UTILITY. Therefore, setting up device
equivalences here does not substitute for setting up device equivalences in the exist-
ing version of the BOOT.OBJ program.

13.13.1 Features

• Displays device equivalences stored in a data file (ATDEVICES).

• Displays default device equivalences set up by the RunTime program.

• Allow the user to specify the device address to be changed.

• Change device equivalences.

NOTE: Device equivalences set up by the $DEVICE statements in a modified startup pro-
gram are not automatically displayed. Only device equivalences stored in the AT-
DEVICES data file and the default device equivalences are displayed.

NPL UTILITIES Change Utilities Device Equivalences Table

NPL Programmer’s Guide 13-29

13.13.2 Operation

Specifying an address already listed allows the user to modify the device equivalence for
that address or delete that address from the table by specifying an equivalence of spaces.
Specifying an address not currently in the table allows the user to add that address to the
table.

The above step is repeated until the device address is left blank. At this point, the modi-
fied device table is set using the $DEVICE statements and the table is saved on disk in
the data file ATDEVICES.

NOTE: If the program is exited using FN/TAB, the device table and the ATDEVICES data
file is not updated.

Change Utilities Device Equivalences Table NPL UTILITIES

13-30 NPL Programmer’s Guide

Disk address /D35 has been set up as the diskimage UTILITY.BS2 on the NPL Utilities
diskette provided by Niakwa. Be sure not to change this. If it is changed, the RunTime
program generates a P48 error when this program is exited.

Please refer to Chapter 7 of the NPL Programmer’s Guide for details on device equiva-
lences, and the NPL Statements Guide for further details on the $DEVICE statement.

13.14 Keyboard Translation Tables Editor

Keyboard translation is accomplished from disk-based keyboard translation files. If, for
any reason, the default values are not acceptable for the application being used, there is
the option of modifying these files. Refer to Chapter 7 of the Programmer’s Guide for an
overview of keyboard handling under NPL.

Modification of the default keyboard translation table can be done dynamically through
the use of the $KEYBOARD statement (refer to the Statements Guide, $KEYBOARD)
or by setting up a disk file containing the modified table. The EDKEYBOA utility can be
used to set up this disk file.

The RunTime program looks for a disk file whose name is based on the terminal type cur-
rently set up as being used. For example, when using a Wyse 60 terminal under Super-
DOS, the RunTime looks for a file named KEYBOARD.WY6 when executed.

If the proper keyboard translation table file is found, the keyboard translation table is
loaded from this file. If the file is not found, the RunTime uses built-in defaults. How-
ever, the built-in defaults may not be suitable for the terminal in use. Refer to Appendix
D of the Programmer’s Guide for information on default keyboard translation table as-
signments for specific terminals. Refer to the Chapter 6 of the appropriate NPL Supple-
ment for keyboard translation table naming conventions.

13.14.1 Features

• Displays the contents of keyboard translation files.

• Allows modification of keyboard translation files.

NPL UTILITIES Keyboard Translation Tables Editor

NPL Programmer’s Guide 13-31

13.14.2 Operation

When the EDKEYBOA program is being run, the user is prompted for the name of the
file containing the translation table. The default name determined by EDKEYBOA is
based on the terminal type and operating system in use. If the name is blanked, the cur-
rently loaded table (whether from the internal default table or a disk based table) is used
instead.

The program first requests that the FN/TAB key be pressed (this information is necessary
to ensure that the user can exit from the program using the keyboard). The program then
asks whether the actual keyboard for which the table is being designed is being used. If
"Y" is answered, it is not necessary to know what codes the keyboard is generating to set
up the table. The program then asks the user to press the key to be redefined, and report
the codes generated by it (if it does not report anything when the key is pressed, either the
key does not generate a code or it generates special function HEX (E1) = (HELP) which
cannot be redefined using this option).

Keyboard Translation Tables Editor NPL UTILITIES

13-32 NPL Programmer’s Guide

If "N" is answered, the user must supply the hex code designation of each key to be rede-
fined. "N" must also be answered if the user wishes to redefine the key that generates spe-
cial key HEX(E1), since this key cannot be redefined by the first method. The program
asks whether code generated by the key is "special" or not, and for the hex code designa-
tion of the key.

Once the user has defined the key by either of the above methods, the program reports
the hex code that is currently assigned to that key (a code is reported as 2 hex digits, pre-
ceded by an apostrophe "’" if it is a special function key). The program then asks whether
that key should be returned as a special function key to NPL applications or not. It then
displays a table of NPL keyboard codes and asks for the key value to return to the NPL
application. Keys which are defined as non-special and returning a value of HEX(00) are
suppressed entirely. That is, no code is generated.

Repeat this operation for all keys which must be reassigned.

When all corrections are made, press the FN/TAB key. The program first checks that the
following critical NPL keys have been defined:

EXECUTE
CANCEL
RETURN
HELP

If any of these keys has been left undefined, the user is informed of this by the program
and given a chance to correct the problem before saving the file.

The system then presents a screen with the following options:

0 End Editing This ends the keyboard editing session without saving any
modifications.

1 Load table This prompts for the name of another file containing a key-
board translation table with which to begin a different edit-
ing session.

2 Edit table This begins the editing session of the keyboard translation ta-
ble again.

NPL UTILITIES Keyboard Translation Tables Editor

NPL Programmer’s Guide 13-33

3 Save table This either saves a new keyboard translation table or over-
writes an already existing table.

4 Print table This prompts for a printer address and then prints the current
keyboard table to the appropriate output address.

5 Use table This automatically begins using the new keyboard transla-
tion table including any new modifications from the present
editing session.

If, during a "Save table" operation, the table cannot be saved, a diagnostic message ap-
pears and the user may enter a different name.

NOTE: The RunTime program looks for the keyboard translation file in the current direc-
tory or in the NPL default directory. If it is desirable to have separate tables for dif-
ferent applications, the user may either have different copies of the keyboard
translation file in different directories, or must rename or copy the file that is to be
used when switching from one application to another.

Keyboard reassignment is not done in the normal course of running the program. To test
the effect of the modified keyboard table, the table must be copied to the Keyboard Trans-
lation file name used by the RunTime and then the RunTime program must be rerun, or
the "Use table" option can be selected.

13.15 Screen Translation Tables Editor

The RunTime program contains built-in defaults for mapping NPL characters to the ap-
propriate display device. These default values are set up differently based upon the spe-
cific hardware version of the RunTime program being used. If, for any reason, the default
values are not acceptable for the application being used, there is the option of modifying
these default values.

Modification of the default screen translation table can be done dynamically through the
use of the $SCREEN statement (refer to the Statements Guide, $SCREEN) or by setting
up a disk file containing the modified table. The EDSCREEN utility can be used to set up
this disk file.

Screen Translation Tables Editor NPL UTILITIES

13-34 NPL Programmer’s Guide

The RunTime program looks for a disk file whose name is based on the terminal type that
is currently set up as being used.

For example:

When using a Wyse 60 monitor under SuperDOS, the RunTime looks for a file
named SCREEN.WY60 when executed. If the file is not found, the RunTime uses
built-in defaults. However, the built-in defaults may not be suitable for the terminal
in use. Refer to Appendix D of the Programmer’s Guide for information on default
screen translation table assignments for specific terminals. Refer to Chapter 6 of the
NPL Supplement for screen translation table naming conventions.

13.15.1 Features

• Displays the contents of screen translation files.

• Allows modification of screen translation files.

13.15.2 Operation

When EDSCREEN is run, the user is prompted for the name of the file which contains
the translation table. The default name determined by EDSCREEN is based on the termi-
nal type and operating system in use. If the name is blanked, the currently loaded table
(which may be the standard built-in default), is used instead. If the editor is being used
for first time, this file has not been created yet, so blank out the default.

The program then displays two character set tables. The one on the left hand side of the
screen is the characters as they appear using the table as it is currently defined. The posi-
tion in the table indicates which 2200 hex code generates the character. The one on the
right hand side shows the characters which may be used for replacement.

NPL UTILITIES Screen Translation Tables Editor

NPL Programmer’s Guide 13-35

To make a correction, position the cursor to the character which appears incorrectly on
the left hand side, and press EXEC. The cursor moves to the character in the right hand
side which is currently displayed for the selected NPL code. To change the character’s
display value, move the cursor to the table entry (on the right side) which shows the cor-
rect character, and press EXEC. The cursor moves back to the left hand side, and the dis-
play is updated to show the new status of the table. Repeat this operation for all
characters whose appearance is incorrect.

When all corrections are made, press the FN/TAB key. The system asks whether or not to
save the table as it is currently defined. If "N" is answered, any changes made to the table
are not saved. If "Y" is answered, the system requests the name of the file which is to re-
ceive the table. The default is the same name that the table was loaded from, or, if this is
a new table, the default name is determined by EDSCREEN based on the terminal type
and operating system in use. Correct the displayed name if this is necessary and press RE-
TURN. The selected file is overwritten with the new table value. If the table cannot be
saved, a diagnostic message appears and the user may enter a different name.

Screen Translation Tables Editor NPL UTILITIES

13-36 NPL Programmer’s Guide

NOTE: Upon initial start up, the RunTime program looks for the screen translation file in
the current directory or in the NPL default directory. If it is desirable to have sepa-
rate tables for different applications, the user may either have different copies of the
screen translation file in different directories, or can rename or copy the file to be
used when switching from one application to another.

Screen translation file reassignment is not done in the normal course of running the pro-
gram. To see the effect of the modified screen table, the table must be copied to the
screen translation filename used by the RunTime and then the RunTime must be rerun.

13.16 Font Table Editor

Mapping of the NPL character set to terminals which are capable of handling download-
able fonts is handled by a series of downloadable character font files. These download-
able fonts can be modified using the NPL Font Table Editor (EDFONT).

13.16.1 Features

• Make changes to the individual font table files (e.g., FONTAL5.TBL for Altos V
terminals).

• Create actual downloadable font files (e.g., VTFONT.AL5 for the Altos V termi-
nal).

Refer to Appendix D for information on terminals which support downloadable fonts,
and Chapter 6 of the appropriate NPL Supplement for controllers that support download-
able fonts.

13.16.2 Operation

When EDFONT is run, the user is prompted for the type of fonts being modified. A
prompt is displayed requesting the name of the file which contains that particular font ta-
ble. The default name depends on the type of terminal or controller being used. If the
name is blanked, the currently loaded table is used instead.

NPL UTILITIES Font Table Editor

NPL Programmer’s Guide 13-37

Next, a prompt is displayed for the name of a reference font file. A reference font file can
be useful if it is desirable to copy previously defined font entries. Enter blanks if there is
no need to use a reference font file.

The program then requests the NPL value of the character whose font design is to be
changed. If the character is enterable from the keyboard, key it in and make the second
character blank. If the character is not enterable from the keyboard, enter instead the hex
values of the character.

An enlarged version of the character is displayed for verification. The program then al-
lows the user to select how the font entry is to be corrected. If the display format of the
character (or one that is close) is available from any of the entries in the reference font
file (FONT.TBL), a character from this font file may be selected by choosing option 1.

NOTE: Available font codes are dependent upon terminal type (e.g., the Altos V terminal
only allows for editing font codes A1-FE).

Font Table Editor NPL UTILITIES

13-38 NPL Programmer’s Guide

If detailed editing of the entry is required, option 0 allows for moving the cursor around
on the enlarged character, and turning characters on (using the "X" key) or off (using the
"." key). When all necessary detailed editing corrections have been made to the font en-
try, pressing FN/TAB asks for a new edit option. When the displayed font entry is cor-
rect, enter blank as an edit option and a prompt is displayed for the next character which
requires correction.

Repeat this operation for all characters whose appearance is incorrect.

When all corrections are made, press the FN/TAB key. The system asks whether or not to
save the table as it is currently defined. If "N" is answered, any changes made to the table
are not saved. If "Y" is answered, the system requests the name of the file which is to re-
ceive the table. The default is the same name that the table was originally loaded from.

The user is then asked if a downloadable file for this table should be created. If "N" is an-
swered, then no downloadable file is created. If "Y" is answered, the system requests the
name of the file which is to receive the downloadable fonts.

Different versions of the font tables and downloadable font files may be saved in differ-
ent directories if it is desired to vary the fonts for different applications. When saving
font tables or preparing downloadable font files, correct the displayable name if this is
necessary and key RETURN. The selected file is overwritten with the new table value. If
the table cannot be saved (or the downloadable font file cannot be created), a diagnostic
message appears and the user may enter a different name.

NOTE: The RunTime automatically searches for the specific names, first in the current di-
rectory, and then in the BASIC2C directory.

Downloading of fonts is automatically performed by the RunTime for PC class monitors
when downloadable fonts are supported. However, serial terminals require fonts to be
downloaded manually. For information on which terminals and controllers support down-
loadable fonts, refer to Appendix D of the Programmer’s Guide. Refer to Chapter 6 of the
appropriate NPL Supplement for operating system specific information on downloading
fonts.

NPL UTILITIES Font Table Editor

NPL Programmer’s Guide 13-39

13.17 Printer Control Table Editor

The RunTime program has the capability of sending printer control sequences to the
printer using the Printer Control function of the HELP processor. Refer to Chapter 5 of
the NPL Supplement(s) for details on this feature. The RunTime program has built-in de-
faults (different defaults depending on which hardware version of the RunTime program
is being used) which should be adequate in most cases. For situations where the built-in
defaults are not adequate, this utility allows the user to establish, or modify, a data file
(PRINTCTL.TBL) which contains the printer control codes to be sent for the various
printer control options.

Like all tables loadable by the RunTime program, RTP (or RTI) looks first in the current
directory for PRINTCTL.TBL and then in the default NPL directory (e.g., /BASIC2C un-
der MS-DOS). If the file is not found, then the built-in defaults are used.

13.17.1 Features

• Allows the operator to establish, or modify, a data file (PRINTCTL.TBL) which
contains the printer control codes to be sent for the various printer control options.

13.17.2 Operation

The program first asks for the name of PRINTCTL.TBL file to modify. If executing this
utility for the first time, this must be left blank.

The program then allows the user to define up to four values of characters for characters
per inch, and four values for lines per inch. Both the literal numbers which appear on the
printer control screen and the actual corresponding control sequences may be defined. In
addition, the control sequences for form feed and line feed may be defined.

Following definition of the control sequences, the newly created, or modified, file may be
saved. In this case, there is probably no need to have different PRINTCTL.TBL files for
different NPL applications, so it is best to save the file in the NPL default directory so
that all applications may access it.

Printer Control Table Editor NPL UTILITIES

13-40 NPL Programmer’s Guide

13.18 Indexed HELP File Processor

This utility creates the index for indexed HELP files. Prior to executing this utility, the
combined HELP files must have been set up. The program resolves all internal references
within a HELP file, updates pointer values within the HELP file, and creates an Index file
which contains one entry for each "Reference Name" with its associated offset in bytes
from the start of the HELP file.

Please refer to the Chapter 11 of the Programmer’s Guide for details on setting up in-
dexed HELP files and for definitions of the terms used here. Please refer to files UTIL-
HELP.HLP and UTILHELP.IDX in the Development Package for an example of an
indexed help file with its associated index.

NOTE: This utility must be run whenever any change is made to an indexed HELP file. Oth-
erwise, attempts to reference the file may result in incorrect portions of the file be-
ing displayed.

13.18.1 Features

• Creates the INDEX for indexed HELP files.

• Upon completion, the program allows the user to review the results by executing
appropriate $HELP and $HELPINDEX statements.

13.18.2 Operation

When executed, this utility requests the name of the indexed HELP file to index. The pro-
gram then searches through the specified HELP file, locates all ENTRY DEFINITIONS,
calculates the relative byte number of the ENTRY DEFINITION, stores these calculated
byte locations in the POINTER VALUES of the HELP file, and creates an index file
(HELP file name.IDX) with a list of the HELPNAMES and locations.

Upon completion, the program allows the user to review the results by executing appro-
priate $HELP and $HELPINDEX statements. This is optional.

NPL UTILITIES Indexed HELP File Processor

NPL Programmer’s Guide 13-41

13.18.3 Error Handling

The following errors may be reported by the Indexed Help File Processor:

• FATAL: Missing "}" near xxxxxxxxxxxxx

Help sequences begin and end with Brace characters. Be sure all braces are matched in
the file. The "xxxx" shows the part of the file where the problem was encountered.

• FATAL: Too many forward references

There is a limit to the number of Internal Pointers which may be outstanding at any time.
The current limit is 3270 or limited only by physical memory on 32-bit operating envi-
ronments.

• FATAL: Too many reference points

There is a limit to the number of Help Entry Definitions which may appear in a single in-
dex file. The current limit is 3270 or limited only by physical memory on 32-bit operat-
ing environments.

• ERROR: Insufficient space for reference to xxxxxxxxxxx at byte nnnn

The number of digits allocated for a pointer value is not enough to store the value. The
file must be edited (e.g., change {=.000,xxx} to {.000000,xxx}) so that a larger pointer
can be stored.

• FATAL: Missing comma near xxxxxxxxxxxxx

A comma must separate the "helpname" and Reference name on Help Entry Definitions.
This is also the case for Pointer Values and Internal Labels in Help Internal Pointers.

• Outstanding references:
At byte nnnnnn to xxxxxxxxxxxxx

This indicates that an Internal Label with a pointer variable does not refer to any Help En-
try Definition in the same file. Check spelling and spacing of the Entry Definition for dis-
crepancies.

Indexed HELP File Processor NPL UTILITIES

13-42 NPL Programmer’s Guide

• Duplicate definition of helpname xxxxxxxx

• Duplicate definition of reference xxxxxxxxxxxxxxxxxx

This indicates that a Help entry definition appears more than once in the same file. Both
the "helpname" and the Reference Names must be unique. Reference names are not case-
sensitive and only the first 20 characters are inspected. A trailing "s" on reference name
is dropped to allow the use of references to be both singular and plural where the topic is
a noun such as toaster(s).

13.19 Diagnostic Dump Variables List

This utility is no longer supported under NPL Release IV.

13.20 Printer Translation Table

The Printer Translation Table option permits the automatic translation of characters as
they are sent to a printer (or spool file) using a simple lookup table. This simplifies appli-
cation programs which deal with non-English character sets and extended character sets
when the type of printer to be used is not known.

The Printer Translation Table option is implemented by the use of the 256-byte system
variable $PRINTER. An optional clause in the $DEVICE specification has also been im-
plemented to specify that printer translation should take place. For exact details on the im-
plementation of the $PRINTER system variable refer to Chapter 7 of the Programmer’s
Guide for details.

NOTE: Some devices, especially serial printers, may have difficulty in receiving characters
outside the standard ASCII range (HEX(20) to HEX(7F)) unless the correct number
of bits (8) and parity (none) are set.

• This type of translation does not allow for the possibility that some characters
available on a printer can only be accessed by the use of a control code sequence.
Such characters can only be accessed if provision has been made by the applica-
tion software to send the control sequence.

NPL UTILITIES Diagnostic Dump Variables List

NPL Programmer’s Guide 13-43

The $PRINTER system variable can be loaded from a disk file when executing the Run-
Time program. The RunTime looks for a file named PRINTER.TBL in the current direc-
tory. If the file is not found in the current directory, the RunTime looks in the default
NPL directory. If this file is found, the printer translation table is loaded from the file.

13.20.1 Features

• Create a printer translation table.

• View contents of existing printer translation tables.

• Modify existing printer translation tables.

13.20.2 Operation

When EDPRINTE is run, the user is prompted for the name of the file which contains the
translation table. The default name is "PRINTER.TBL". If the name is blanked, the cur-
rently loaded table (which may be the standard built-in default) is used instead. If using
the editor for the first time, this file has not been created yet, so blank out the default.

The next prompt to appear inquires whether or not to print the untranslated character set
for reference purposes. This printed report indicates the characters available on the
printer being used. The program then displays the NPL character set (or as close to it as
the terminal can display). The position in the table indicates which NPL hex code gener-
ates the character.

To make a change, position the cursor to the particular character which requires correc-
tion, and press the EXECUTE key. A prompt then appears asking which native operating
system hexcode to use for the character when printer translation is in use. Refer to the
printed report for the code which is appropriate for this printer. After entering the re-
quired Hexcode and pressing RETURN, a new hex value for the character is updated
within the table.

NOTE: The table display does not reflect the particular change made, however. Repeat this
operation for all characters whose print appearance is incorrect.

Printer Translation Table NPL UTILITIES

13-44 NPL Programmer’s Guide

When all corrections are made, press the FN/TAB key. The system asks whether or not to
save the table as it is currently defined. If "N" is answered, any changes made to the table
are not saved. If "Y" is answered, the system requests the name of the file loaded. Correct
the displayed name if this is necessary and press RETURN. The selected file is overwrit-
ten with the new table value. If the table cannot be saved, a diagnostic message appears
and the user may enter a different name. The "P" option shows how close the printer is to
the NPL character set.

NOTE: Upon initial start-up, the RunTime program looks for the printer translation table
file in the current directory. If the file is not found in the current directory, it looks
in the default NPL directory. If found, the printer translation table is loaded from
this file. If separate tables for different applications are desired, there may be differ-
ent copies of the printer translation file in different directories. Also remember that
printer translation is performed only for print devices defined with the XLA=Y
clause in the $DEVICE statement for that device.

13.21 Edit Options

Using an NPL program, the contents of the $OPTIONS variable may be examined and
modified, to allow for particular manipulation of the various features available. Refer to
the Statements Guide, $OPTIONS, for a detailed explanation of the $OPTIONS system
variable and for a description of available options and default values. On-line help also
has a short explanation of each option.

13.21.1 Features

• View contents of $OPTIONS variable.

• Modify the $OPTIONS variable.

NPL UTILITIES Edit Options

NPL Programmer’s Guide 13-45

13.21.2 Operation

Selection of this utility program first displays each of the current default values for the
$OPTIONS system variable, as set by the RunTime program. By selecting the item num-
ber for a particular option, and then entering an appropriate new value, the contents of
$OPTIONS are modified.

NOTE: Any new values entered through this utility program are in effect only until the Run-
Time program is exited. Upon reentry to the RunTime, the original default values
are back in place.

Edit Options NPL UTILITIES

13-46 NPL Programmer’s Guide

13.22 OTHER Program

This program loads and executes an operator-specified program from a specified disk ad-
dress.

13.22.1 Features

• Programs may be executed without leaving the utilities program.

13.22.2 Operation

This utility asks for the name of the desired program to execute and the address of the
disk on which the program is located. If the program is not found, or other error condi-
tions are present, the message "program not found" is printed and the program prompts
for the name and location of the program again. Else, the specified program is executed.

NOTE: The program executes a SELECT DISK statement to the disk specified before load-
ing the program specified.

NPL UTILITIES OTHER Program

NPL Programmer’s Guide 13-47

13.23 Generating 2200 Source

2200 source format versions of the general backup (2CBCKP), general recovery
(2CRCVR), and general file copy (2CCOPY) utilities can be generated through the NPL
Compiler for ease in porting from a Wang 2200 to an IBM PC. These compiled programs
are contained in diskimage file UTILITY.BS2 on the NPL Development Utilities disk-
ette. This diskimage file is defaulted to address D35 in the NPL utilities menu. To move
the utility programs from the IBM PC to the 2200 requires that the programs first be com-
piled into 2200 atomized format (specifying the output as A:, a raw 320k format disk-
ette), after which the diskette may be used directly on the 2200 for the copying
procedure. Please refer to Chapter 15 of the Programmer’s Guide for exact defaults on
the specifications to compile these programs, and porting in general.

NOTE: Program 2CCOPY contains a SCRATCH DISK ’ statement at line 3075. If this pro-
gram is operated on a 2200 with an operating system previous to 2.5, this statement
must be commented out using the REM statement. Of course, when operating the
program, do not scratch the output disk with the ALTERNATE hashing method.
This is a feature of operating system 2.5 and greater.

Also, if programs 2CCOPY and 2CRCVR are modified and recompiled, the compiler
generates warnings about SAVE statements. These warnings can be ignored since the
SAVE statements are used only to create catalog entries for files being copied.

Generating 2200 Source NPL UTILITIES

13-48 NPL Programmer’s Guide

CHAPTER 14

COMPILER OPERATION

14.1 Overview

The NPL Compiler is a multi-purpose program whose purpose is to provide a mechanism
for converting NPL program code from one form to another. Three forms of program
code are supported:

1. Niakwa NPL executable format (p-code)

2. ASCII format

3. Wang 2200 format (atomized)

COMPILER OPERATION Overview

NPL Programmer’s Guide 14-1

The conversion between any of these three forms is possible by the correct selection of
the available compiler options.

The compiler is intended as a utility to perform convenient conversion of NPL programs
between the above-supported formats on a "batch basis". It is not intended for use in the
development or debugging of programs, for which use of the Niakwa Interpreter (RTI) is
intended. Some practical uses of the Compiler are:

• Initial porting of programs from a Wang 2200 to a supported NPL environment.

• Compression of programs for distribution to end users.

• Creating Wang 2200 atomized code from p-code for porting back to a Wang
2200.

• Creating ASCII format program files from internal p-code format files for ma-
nipulation by MS-DOS operating system utilities.

This chapter discusses all facets of the compiler, and provides several examples of typical
compilations using different combinations of the compiler options. In addition, refer to
Chapter 9 of the appropriate NPL Supplement for operational features of the compiler
that are operating system specific.

Section 14.2 discusses the compiler command line, the "shorthand" method of invoking
the compiler.

Section 14.3 discusses the actual selection of input programs which are to be submitted to
the compiler for compilation.

Section 14.4 discusses the general form and uses of the various compiler options which
are available.

Sections 14.5 through 14.18 discuss in detail each compiler option and its default setting.

Section 14.19 discusses the user-friendly compiler display screen, an alternative to the
compiler command line.

Section 14.20 discusses the use of batch files, including those supplied by Niakwa for
quick compilation of programs using some common compiler options.

Overview COMPILER OPERATION

14-2 NPL Programmer’s Guide

Section 14.21 discusses the issue of Wang 2200 compatibility when generating Wang
2200 format (atomized) code through the compiler.

Section 14.22 discusses the compatibility issue relating to programs compiled under ear-
lier revisions of the RunTime.

Section 14.23 provides several examples indicating typical compilations using different
combinations of compiler options.

14.2 The Compiler Command Line

Generally, the compiler is operated under the native operating system’s command proces-
sor. When using the command processor, the general form of the compiler command line
is as follows:

COMPILER OPERATION The Compiler Command Line

NPL Programmer’s Guide 14-3

14.2.1 Format

B2C [option [option]...] srcprogs [[option poption]...] srcprogs..

where:

option ={ /SRCLOC [drive:][\pathname][\diskimage] }

 { /OBJLOC [drive:][\pathname][\diskimage] }

 { /OBJFORMAT {SCRAMBLED, UNSCRAMBLED} }

 { /OBJEXTRA sectors }

 { /LSTLOC [drive:][\pathname][\filename]. }

 {/LSTFORMAT {.SRC, .LST, 2200, 2200S} }

 { /ERRLOC [drive:][\pathname][\filename]. }

 { /ERRLOC [drive:][\pathname][\filename]. }

 { /WARNINGS {ON, OFF} }

 { /NUMBERS {ON, OFF} }

 { /DISPLAY {ON, OFF} }

 { /REM$ {ON, OFF} }

 { /KEEPREMS {ON, OFF, DEC} }

 { /TRANSLATE hexquad{{.]hexquad]... }

 { /LCASE {ON, OFF} }

The Compiler Command Line COMPILER OPERATION

14-4 NPL Programmer’s Guide

where:

drive = a native operating system drive des-
ignation.

pathname = a native operating system path name.

diskimage = a native operating system filename
containing a diskimage file.

filename = a native operating system filename
and optional extension.

hexquad = 4 hexdigits for from/to filename
translation.

sectors = an unsigned integer where 0<= sec-
tors<=65535.

srcprogs = a list of input program names to be
compiled, each separated by at
least one space. An input program
name may be either a literal prog-
name or a wildcard.

where:

Progname = an up to 8 character string program
name. May not contain the ’?’ and
’*’ characters.

Wildcard = an up to 8 character string contain-
ing the special wild card charac-
ters ’*’ and/or ’?’.

where:

’?’ matches any one character of a program name
’*’ matches any characters up to the end of a program name.
The ’*’ should only appear at the end of a wildcard.

COMPILER OPERATION The Compiler Command Line

NPL Programmer’s Guide 14-5

NOTE: The options specified on the compiler command line may be entered as either upper
or lower case. For consistency, in the discussion in this chapter, options are always
displayed as upper case.

14.2.2 Discussion

The designation "B2C" at the beginning of the native operating system command line, re-
fers to the name of the NPL Compiler, and causes the operating system to invoke it.
Upon execution, the compiler inspects the balance of the command line to determine the
desired compiler options and the list of input programs to compile.

Compiler options are a list of parameters supplied by the programmer to control the be-
havior of the compiler. With these options, the programmer specifies such things as
where the input programs are stored, where the resultant object (or other form) programs
are to be stored, whether a listing is desired, and so on. If no options are specified in the
command line, the compiler assumes that:

1. The input programs to be compiled are in the current directory as ASCII
files with an extension of ".SRC".

2. The resultant object programs are to be stored in the same directory with an
extension of ".OBJ" in UNSCRAMBLED format.

3. No source listing is to be produced.

4. Errors are to be printed to the screen.

5. Compiler warnings are to be provided.

6. All other miscellaneous options are OFF.

These are the default compiler options, any one of which may be changed by explicitly
specifying the desired option on the command line. A detailed discussion of each com-
piler option is discussed following Section 14.4.

Following the compiler options, the programmer specifies the input programs to be com-
piled. The NPL Compiler may compile one or more programs in a single compiler run. In
addition to specifying literal program names to compile, the programmer may also spec-
ify wildcard patterns which select a group of programs to be compiled based upon a wild-
card search of the specified diskimage or directory.

The Compiler Command Line COMPILER OPERATION

14-6 NPL Programmer’s Guide

14.3 Selecting Input Programs for Compilation

After the options area on the command line, list the name of each input program to be
compiled, each separated by at least one space. As many programs as required may be
listed, up to the maximum length of the native operating system command line.

For example, the maximum command line length under MS-DOS is 127 characters.

14.3.1 Literal Program Selection

A literal program name may be up to eight characters in length (more on program names
below) and must not contain the "*" or "?" characters (these are wildcard characters).
When specifying the input programs for compilation, one need only be concerned with
the actual 8-character names of the program. All other considerations such as program lo-
cation, format, required filename extensions, etc., are all handled by the SRCLOC option.

Example 1:

B2C PROG1 PROG2

In this example, the two programs "PROG1" and "PROG2" are compiled, in the given or-
der. Since no options were specified, the compiler assumes default options. That is, the
compiler searches the currently selected directory for two ASCII files with the names
"PROG1.SRC" and "PROG2.SRC". The ".SRC" extensions are added by the compiler
automatically. The resultant object files "PROG1.OBJ" and "PROG2.OBJ", created by
the compilation, are stored in the same directory.

Example 2:

B2C /SRCLOC \source\2200disk.bs2 PROG1 PROG2

where:

"disk.bs2" is a diskimage

COMPILER OPERATION Selecting Input Programs for Compilation

NPL Programmer’s Guide 14-7

In this example, the programmer specified that the input programs are in a diskimage file
called "disk.bs2" in the \source directory. The compiler scans the index of the diskimage
for the programs "PROG1" and "PROG2". Since the programs are in a diskimage, no ex-
tensions are added to the program names. Since no OBJLOC option was specified, the re-
sultant object programs are stored in the currently selected directory as ".OBJ" files.

14.3.2 Wildcard Program Selection

A second and more general method of selecting input programs for compilation exists. In
addition to single program names, the compiler accepts "wildcard" names. The presence
of a wildcard name in the input program list causes the compiler to compile all programs
in the specified directory or diskimage (as specified with SRCLOC) that "match" the
wildcard pattern. A wildcard name is any program name which contains at least one of
the "?" or "*" wildcard characters.

A "?" in a wildcard matches any single character in the same position of the input pro-
gram name.

A "*" in a wildcard matches any characters and no characters to the end of the program
name.

For example:

"AR?UPD" matches "AR1UPD", "ARXUPD", "AR@UPD", but not "AR1UPD2".

"AR*" matches all file names beginning with "AR".

B2C /SRCLOC A: /OBJLOC platter1.bs2 *

compiles all programs on the 320K format diskette in drive A, placing compiled output in
diskimage file PLATTER1.BS2 in the current directory.

B2C /SRCLOC A: /OBJLOC platter1.bs2 AR??001

compiles all programs with the first two characters "AR" and characters 5-7 as "001"
from the 320k format diskette in drive A to diskimage file PLATTER1.BS2.

When wildcard scanning a directory, the scanner automatically adds the .SRC extension.
When wildcard scanning a diskimage, the scanner ignores data files even if they match
the wildcard pattern.

Selecting Input Programs for Compilation COMPILER OPERATION

14-8 NPL Programmer’s Guide

14.4 Compiler Options

The compiler accepts program input in three different formats--Wang 2200 Basic-2 atom-
ized format, ASCII format, and compiled NPL p-code. Refer to Section 14.5 below for
more details on input formats. The 2200 format recognition allows for the direct compila-
tion of programs transferred from the Wang 2200. Once compiled, the compiler can op-
tionally produce 2200 atomized source files which may then be ported directly back to
the 2200 for use.

To facilitate software conversion and full system implementation, the compiler is de-
signed to operate on multiple input programs in a single run. This capability allows the
programmer to compile an entire application system library in a single compiler run.

During the compilation process, the compiler produces various formats of source listing
reports and error reports. Through the use of compiler options, these reports may be
printed directly to the system printer or spooled to disk for later review.

The compiler does allow for application software security from the implementation of op-
tional object code encryption.

Since the compiler can read "source" (input) programs in a number of different formats,
and can produce output of various kinds, the "options" entries are used to specify the ex-
act options desired in a given compiler run.

Each option to the compiler starts with the switch character / ("/" is used in the examples
throughout this chapter--refer to Section 4.2.1 of the appropriate NPL Supplement for the
appropriate switch character to use on the system). The switch character is then followed
immediately by a keyword which specifies the option, followed by a space and then a sin-
gle word which gives the information required by that option.

For example:

/OBJFORMAT SCRAMBLED

OBJFORMAT indicates the "object format" option, "SCRAMBLED" is the parameter
for that option. Wang 2200 programmers, in particular, must take care to place spaces be-
tween options and the keywords that follow them.

The options then specified on the command line are in effect for ALL input programs
listed in the immediately following "srcprogs" list.

COMPILER OPERATION Compiler Options

NPL Programmer’s Guide 14-9

14.4.1 Default Options

If a compiler option is not explicitly specified in a command line, the compiler assumes a
default value. The option defaults are explained in the documentation of each compiler
option following this section.

14.4.2 Changing Options During a Compiler Run

It is possible to change a given option or options during a single compiler run. This is
done by simply specifying another set of options followed by another srcprogs list.

For example:

B2C /OBJFORMAT SCRAMBLED PROG1 PROG2 /OBJFORMAT UNSCRAMBLED PROG3

This command line causes input programs "PROG1" and "PROG2" to be compiled and
saved with SCRAMBLE protect, however, "PROG3" is compiled and saved UNSCRAM-
BLED.

NOTE: A compiler option retains its setting throughout the entire command line until it is
explicitly modified in a subsequent options specification.

14.4.3 Specifying Path Names and Device Names

Many of the compiler options require specification of a native operating system path-
name, "raw" diskette name or print-device name. Valid pathnames and device names
vary widely from one operating system to another. Refer to Chapter 5 of the appropriate
NPL Supplements for pathname and device-name usage on the operating system being
used.

14.5 The SRCLOC Option

The SRCLOC option specifies the location of the input programs to be compiled. The
general form for this option is as follows:

The SRCLOC Option COMPILER OPERATION

14-10 NPL Programmer’s Guide

14.5.1 Format

14.5.2 Discussion

The /SRCLOC option is used to specify the location of the input programs to be com-
piled. Currently, NPL input programs may be located in one of three "containers" on the
system. The "container" implicitly indicates the format of the input program. These "con-
tainers" are discussed in the following sections.

14.5.3 Diskimage Files

1. In a diskimage file containing either 2200 atomized format programs, or already
 compiled programs.

Diskimages are files which contain an internal structure identical to that of a Wang
2200 catalog (refer to Section 7.3 for details). If the SRCLOC is specified as a
diskimage, the compiler scans the index area of the diskimage for the specified input
programs or wildcards to compile.

It is also possible to specify the input location as a diskimage file containing already
compiled NPL programs. This is useful for creating 2200 atomized programs as de-
scribed in Section 14.9 below.

/SRCLOC [pathname][diskimage]

where:

pathname = the native operating system path-
name containing .SRC format input
programs or a diskimage.

diskimage = the filename containing a diskimage.

default:

/SRCLOC current-directory (refer to 14.5.4 below)

COMPILER OPERATION The SRCLOC Option

NPL Programmer’s Guide 14-11

Programs which were previously compiled from source code directly into a
diskimage file can now be recompiled directly from that diskimage file, without the
need for the original source code.

Simply enter the name of the diskimage containing the compiled programs as the
SRCLOC.

The compiler determines whether it is accessing 2200 atomized programs or com-
piled NPL programs by examining the header sector of each program.

Programs which are SCRAMBLE protected cannot be compiled.

2. Native Disk Environment

If the SRCLOC is specified as a directory within the native operating system, the
compiler expects the input programs to be regular files of the native operating sys-
tem in that directory. Each file contains one input program only, in ASCII format,
and must have an extension of ".SRC".

This is the default SRCLOC if none is specified, in which case, the pathname is as-
sumed to be the current directory.

3. "RAW" Diskettes

Diskettes with a standard 2200 catalog structure are directly readable by the com-
piler on some hardware versions of NPL. This type of diskette is called a "raw" disk-
ette as it contains no native operating system file stricture whatsoever. Refer to the
chapter "Supported Devices:" of the NPL Supplement(s) for information on "raw"
diskette support on the operating system being used.

For example, under MS-DOS, SRCLOC can be specified as:

/SRCLOC A:

The "A:" drive designation is treated by the compiler (and RunTime program) as a
special case meaning "the floppy drive" in 320K format. As in the case of
diskimages, the compiler scans the index of the diskette for all input programs (or
wildcard patterns) to be compiled.

The SRCLOC Option COMPILER OPERATION

14-12 NPL Programmer’s Guide

This is the normal input format for programs being converted to a PC under MS-DOS
when a 2275 diskette drive is available on the 2200 system and has been used to produce
a 320K "raw" format diskette.

14.6 The OBJLOC Option

The OBJLOC option is used to specify the storage location of the resultant programs of
the compile. the general form of this option is as follows.

14.6.1 Format

14.6.2 Discussion

The OBJLOC option is used to specify the desired storage location of the resultant object
programs of a compile. Only NPL compiled code is produced as the output stored in the
OBJLOC location. The compiler may store the object programs in one of two types of lo-
cations. These locations are discussed in the following sections.

/OBJLOC [pathname][diskimage]

where:

pathname = the native operating system path-
name to contain the resultant ob-
ject programs directly or that
contains a diskimage file.

diskimage = the name of the diskimage to con-
tain the resultant object pro-
grams.

default:

/OBJLOC current-directory (refer to 14.6.4 below)

COMPILER OPERATION The OBJLOC Option

NPL Programmer’s Guide 14-13

14.6.3 Diskimage Files

This is the most common OBJLOC. In this case, the compiler stores the object programs
directly into the specified diskimage. The compiler catalogs the name of each program
(uses the input program name where possible, refer to Section 14.17--The TRANSLATE
Option) in the index area of the diskimage and stores the object code in the catalog area
as a program file, much like a Wang 2200 except that the compiler is saving object code.

If a program file already exists in the diskimage with the same name, the compiler over-
writes the old program file with the new program. If the new program exceeds the avail-
able space allotted the old program, the compiler allocates space from the free space area
of the diskimage, if available. The START and END pointers of the old program are ad-
justed by the compiler to point to the newly allocated space. The programmer is notified
by the message:

"Object program was moved to end of object diskimage."

NOTE: In this event, the catalog space occupied by the old program is not represented in
the catalog index and is therefore inaccessible. The only way to recover this space is
to reorganize the disk (e.g., MOVE DISK).

If, during this relocation operation, the compiler determines that there is insufficient free
space in the diskimage to store the new program, the compile terminates with the mes-
sage:

"Out of space in object diskimage"

and the content of the old program file is unpredictable.

NOTE: The compiler fully recognizes and maintains the structure of a diskimage during its
compilation activities. This includes the newly supported extended diskimage files
(16MB). Refer to Section 7.3.10 for details on extended diskimages. It is therefore
quite acceptable to have data files in an OBJLOC diskimage.

The compiler does not create a diskimage if it does not already exist. The programmer
may create a diskimage file in a number of ways. Refer to Section 13.10 of this guide for
details on creating a diskimage file.

The OBJLOC Option COMPILER OPERATION

14-14 NPL Programmer’s Guide

WARNING--It is possible to specify a single diskimage as both the SRCLOC and OB-
JLOC. If this is done, the compiler attempts to compile each input program, reading the
source code from the catalog and writing the object to the same location. Although this
works correctly in some limited cases, it is unreliable and should be avoided.

14.6.4 Native Disk Environment

If the OBJLOC is specified as a directory within the native operating system, the com-
piler stores all resultant object programs as files of the native operating system on that di-
rectory, one file per program. The filename is derived from the input program name
(where possible, refer to Section 14.17--the TRANSLATE Option) with an extension of
".OBJ". Object files of this type can be executed directly by the RunTime program as
stand-alone or bootstrap programs.

NOTE: This form of OBJLOC is the default if none is specified. The directory is the current
directory.

14.6.5 No Object Programs Produced

The OBJLOC can be specified as the null device to suppress generation of compiled ob-
ject programs (refer to Chapter 5 of the appropriate NPL Supplement for the device name
to use as the null device on the operating system being used). This may be desirable if the
compiler is being used to convert between types of files (.SRC from 2200 atomized, 2200
atomized from compiled, etc.) using the LSTLOC option, or to perform a preliminary syn-
tax check without creating object programs. Refer to the discussion on the LSTLOC op-
tion in Section 14.9 for more details.

14.6.6 Scrambled Program Considerations

To provide a level of application program security, NPL object code may be stored in
SCRAMBLED format. If this option is selected, the compiler encrypts the resultant ob-
ject code of a compile before saving to the specified OBJLOC. For details on the option,
refer to Section 14.7.3.

COMPILER OPERATION The OBJLOC Option

NPL Programmer’s Guide 14-15

14.7 The OBJFORMAT Option

The OBJFORMAT option is used to encrypt the resultant program of a compile. The gen-
eral form of this option is as follows:

14.7.1 Format

14.7.2 Discussion

To provide a level of application program security, NPL object code may be stored in
SCRAMBLED format. If this option is selected, the compiler encrypts the resultant ob-
ject code of a compile before saving to the specified OBJLOC.

14.7.3 Scrambled Program Considerations

When a SCRAMBLED program is loaded for execution, the RunTime program disables
the program DUMP option of the HELP display (refer to Section 2.7.2 for a discussion
on HELP Options). When executing under the Interpreter, program LIST and SAVE func-
tions are disabled when a SCRAMBLED program is loaded. This option remains dis-
abled until the SCRAMBLED program is fully overlaid.

NOTE: Although the method of encryption used discourages unauthorized tampering of ap-
plication object code, Niakwa does not guarantee 100% security from determined ef-
forts.

/OBJFORMAT {SCRAMBLED, UNSCRAMBLED}

default:

/OBJFORMAT UNSCRAMBLED

The OBJFORMAT Option COMPILER OPERATION

14-16 NPL Programmer’s Guide

14.8 The OBJEXTRA Option

The OBJEXTRA option causes the compiler to allocate extra free sectors to an object pro-
gram when creating a new program file in a diskimage. The general form of this option is
as follows:

14.8.1 Format

14.8.2 Discussion

The OBJEXTRA option causes the compiler to allocate extra free sectors to an object pro-
gram when creating a new program file in a diskimage.

This feature increases the chances that the same catalog space already allocated to a
given application program can be reused on subsequent modifications and recompiles.

This option is ignored if the OBJLOC is not a diskimage.

14.9 The LSTLOC Option

The LSTLOC option is used to indicate the desired location to receive the listing. This op-
tion is used in conjunction with LSTFORMAT. The general form is as follows:

/OBJEXTRA sectors

where:

sectors = an unsigned integer where 0<= sec-
tors <=65535

default:

/OBJEXTRA 0

COMPILER OPERATION The OBJEXTRA Option

NPL Programmer’s Guide 14-17

14.9.1 Format

14.9.2 Discussion

The NPL compiler optionally produces "source" program listings from the input pro-
grams in several formats, based on the specification of the LSTFORMAT options. The
LSTLOC option is used to indicate the desired location to receive the listing. There are
five possible LSTLOCs. These are described in the following sections.

14.9.3 Diskimage Files

If LSTFORMAT is 2200 or 2200S, LSTLOC can be specified as the name of a
diskimage file. This is used for specifying the location of the output 2200 atomized pro-
grams. This output diskimage file can then be copied to "raw" 320K or 360K (PC Inter-
change) format diskettes using Niakwa-supplied utilities for operation on a Wang 2200.

The diskimage file specified must exist. The compiler does not create it. If programs of
the same name as those being compiled already exist on the specified LSTLOC
diskimage file, they are overwritten. If there is not enough space, files are located to the
end of the diskimage, space permitting. Else, an appropriate error message is generated.

/LSTLOC {[pathname][filename]}
 {print device}

where:

pathname = the native operating system path-
name to contain the resultant pro-
gram listing(s) directly.

filename = the name of the file to contain the
resultant program listing(s).

default:

/LSTLOC nul device

The LSTLOC Option COMPILER OPERATION

14-18 NPL Programmer’s Guide

NOTE: The OBJLOC cannot be used to specify the output for anything other than compiled
NPL programs.

The LSTLOC should be a diskimage file which is different from the SRCLOC. Other-
wise, input compiled programs are overwritten.

The OBJLOC can be specified as the null device when creating 2200 atomized programs.
This suppresses generation of a second set of compiled NPL programs.

14.9.4 Native Directory

If the LSTLOC is specified as a native operating system directory, all source listings are
stored in that directory, one file for each source listing. The filename is derived from the
input program name, with an extension of .LST or .SRC, depending on the selected
LSTFORMAT (refer to Section 14.10). If the derived filename already exists in the direc-
tory, it is overwritten.

14.9.5 Native Files

If the LSTLOC is specified as a native operating system file, and LSTFORMAT is either
.SRC or .LST, the compiler writes all source listings (concatenated) to that one file. The
format of the listing is determined by the LSTFORMAT option.

14.9.6 "RAW" Diskettes

Diskettes with a standard 2200 catalog structure are directly readable by the compiler.
This type of diskette is called a "raw" diskette as it contains no native operating system
file structure whatsoever. Refer to the chapter "Supported Devices" of the NPL Supple-
ment(s) for information on "raw" diskette support on the operating system being used.

For example, under MS-DOS, LSTLOC is specified as:

/LSTLOC A:

The "A:" drive designation is treated by the compiler (and RunTime program) as a spe-
cial case meaning "the floppy drive" in 320K format. This allows for the creation of 2200
format programs when using 2200 or 2200S options of LSTFORMAT or wildcard pat-
terns to be compiled.

COMPILER OPERATION The LSTLOC Option

NPL Programmer’s Guide 14-19

This is the normal output format for programs being converted to a Wang 2200 with a
2275 diskette drive.s available on the 2200 system and has been used to produce a 320K
"raw" format diskette.

14.9.7 Print Device

Hardcopy listings may be produced by specifying LSTLOC as the name of a native oper-
ating system print device. Refer to the chapter "Supported Devices" of the NPL Supple-
ment(s) for a description of valid print-device names for the operating system being used.

14.10 The LSTFORMAT Option

The LSTFORMAT option selects one of four forms for program listings.

14.10.1 Format

14.10.2 Discussion

The LSTFORMAT option of the NPL compiler produces four formats of program list-
ings. The following sections discuss each list format in detail.

14.10.3 .LST Format

This format of source listing includes supplementary information which may be of value
to programmers. The standard extension for listing files is ".LST". The source of each
statement appears, as well as the offsets (in hexadecimal) of the start of each statement.
Should a non-recoverable error occur while a program is executing under the non-inter-
pretive RunTime (RTP), these offsets may be used to locate which statement of a multi-
statement line was in program when the error occurred (refer to Section 14.13).

/LSTFORMAT {.SRC, .LST, 2200, 2200S}

 default:

/LSTFORMAT .LST

The LSTFORMAT Option COMPILER OPERATION

14-20 NPL Programmer’s Guide

14.10.4 .SRC Format

Specification of the .SRC format instructs the compiler to create ASCII text files which
may be re submitted to the compiler. This is used primarily to obtain an editable format
of the input file from a non-editable one (in particular, from Wang 2200 atomized for-
mat). The standard extension of these files is ".SRC".

WARNING--If compiling from a .SRC file, do not use the LSTFORMAT .SRC option--if
the listing location (LSTLOC) is the same as the input location (SRCLOC) the input file
is overwritten

14.10.5 2200 Format

Use of the LSTFORMAT option, "2200", creates programs in 2200 atomized format.
These programs are fully compatible with the Wang 2200 and can then be ported directly
to the 2200 without any other intermediate processes.

Refer to Section 14.21 below for details regarding compatibility when generating 2200 at-
omized code.

14.10.6 2200 "Compressed" Format

Use of the LSTFORMAT option, "2200S", creates programs in 2200 atomized format,
(just as the "2200" option does), however, in addition, this option REMOVES spaces in
program code which are not syntactically significant. This option is useful when regener-
ating a 2200 version of "compressed" programs, especially when spaces have been added
to the code during development for readability.

NOTE: All spaces in REM statements are still preserved.

These programs are fully compatible with the Wang 2200 and can then be ported directly
to the 2200 without any other intermediate processes.

14.11 The ERRLOC Option

The ERRLOC allows the summary of activity to be redirected to either the printer or a
file. The general form is as follows:

COMPILER OPERATION The ERRLOC Option

NPL Programmer’s Guide 14-21

14.11.1 Format

14.11.2 Discussion

The compiler normally prints an abbreviated summary of activity to the screen as it com-
piles. The ERRLOC option allows for placing this output on disk for review later, or for
redirecting the output to the system printer.

14.11.3 Native Files

If the ERRLOC is specified as a native operating system file, all error information is di-
rected to the file as it appears on the display. Any legal native filename and extension is
acceptable. If the file already exists in the directory it is overwritten.

14.11.4 Print Device

Hardcopy listings may be produced by specifying ERRLOC as the name of a native oper-
ating system print device. Refer to the Chapter 5 of the appropriate NPL Supplement for
a description of valid print-device names for the operating system being used.

NOTE: Even if the error report is redirected to a file or to the printer, it also appears on the
terminal (standard output).

/ERRLOC {[pathname][filename]}
 {print-device }

where:

pathname = the native operating system path-
name to contain the resultant pro-
gram error report file.

filename = the name of the file to contain the
resultant program error report.

default:

/ERRLOC nul device

The ERRLOC Option COMPILER OPERATION

14-22 NPL Programmer’s Guide

14.12 The WARNINGS Option

The WARNINGS option will suppress the generation of warning messages. The general
form is as follows:

14.12.1 Format

14.12.2 Discussion

In addition to syntax errors, the compiler may produce a number of messages that warn
of certain conditions which, though not necessarily errors, are likely to cause RunTime er-
rors. The warnings do not affect the correct generation of compiled code, and a program
which receives only compiler warnings is still executable. Such messages always com-
mence with "Warning - " to distinguish them from fatal errors.

If, for any reason, it is desired that this level of error checking be suppressed by the com-
piler, the WARNINGS option is used to do this.

For example:

/WARNINGS OFF

tells the compiler to suppress generation of warning messages.

14.13 The NUMBERS Option

The NUMBERS option instructs the compiler to generate additional object code to keep
track of which statement number within a line is being executed. This option is used for
tracing an error in multi-statement line programs. The general form is as follows:

/WARNINGS {ON, OFF}

default:

/WARNINGS ON

COMPILER OPERATION The WARNINGS Option

NPL Programmer’s Guide 14-23

14.13.1 Format

14.13.2 Discussion

In the event that the non-interpretive RunTime program encounters a non-recoverable er-
ror, it displays information concerning the line number on which the error occurred, the
NPL error code, and the offset within the line (in terms of bytes of generated code).
When the source code does not make extensive use of multiple statement lines, this infor-
mation should be sufficient to locate the cause of the problem.

If the code makes extensive use of multiple statement lines, the .LST file generated by
the compiler can be used to determine which of the statements is at fault (the offset is fre-
quently that of the END of the statement on which the error occurred).

Should this prove inadequate, the NUMBERS option instructs the compiler to generate
additional object code to keep track of which statement number within a line is being exe-
cuted. Please be aware that this option incurs a small overhead penalty both in size of
code (2 bytes per statement) and in execution time.

For example:

/NUMBERS ON

instructs the compiler to generate object code to keep track of sub-statements.

14.14 The REM$ Option

When the REM option is turned ON, the compiler assumes that ALL statements which
start with "REM $ PC" have been added with 2200 compatibility in mind, and compiles
the program code contained in these statements. The general form is as follows:

/NUMBERS {ON, OFF}

default:

/NUMBERS OFF

The REM$ Option COMPILER OPERATION

14-24 NPL Programmer’s Guide

14.14.1 Format

14.14.2 Discussion

Programs written for the Wang 2200 can be upgraded to make use of extensions added
for the NPL version, while maintaining compatibility with the 2200 system. This is done
by coding statements whose syntax is not 2200-compatible within special types of REM
(remark) statements. Since all REM statements are ignored on the 2200, the program
code in these REM statements causes no difficulties on the 2200.

When the REM option is turned ON, the compiler assumes that ALL statements which
start with "REM $ PC" have been added with 2200 compatibility in mind, and compiles
the program code contained in these statements. Otherwise, REM statements are ignored
by the compiler. (Refer to the Statements Guide for further details on the use of REM $
PC.)

The default value of the REM$ option is OFF (no compilation of any REM statements is
performed).

NOTE: If REM$ is ON, REM statements that begin with "$" but not with "$PC" are
flagged with warnings. This is because some earlier versions of the compiler did not
always require the "PC" keyword.

14.15 The KEEPREMS Option

The KEEPREMS compiler option may be set to ON to retain all REMs and program spac-
ing when compiling programs. This option is used for downward compatibility to rev.
1.03. The general form is as follows.

/REM$ {ON, OFF}

default:

/REM$ OFF

COMPILER OPERATION The KEEPREMS Option

NPL Programmer’s Guide 14-25

14.15.1 Format

14.15.2 Discussion

The KEEPREMS option is used to either eliminate remarks and extra spacing from pro-
grams or to reformat statements, placing each statement on a separate physical line.

The KEEPREMS option affects only the OBJLOC, not the LSTLOC.

14.15.3 The KEEPREMS Compiler Option

The KEEPREMS compiler option may be set to ON to retain all REMs and program spac-
ing when compiling programs, or to OFF to suppress generation of code related to REMs
and program spacing. The DEC option causes multiple statements on a line always to be
broken up into separate lines when LISTed or recalled for edit, much the same as the de-
compressed LIST function of the Interpreter. The DEC option is basically the same as the
ON option, except that program spacing is not retained. The option may be entered as
part of the command line or on the compiler display.

NOTE: The REM$ option is indirectly affected by the KEEPREMS option such that:

If REM$= ON and KEEPREMS= ON then REM$ statements are compiled and the
REM$ PC designation is retained in the object program.

If REM$= ON and KEEPREMS= OFF then the statement following the REM $ PC
is compiled, but the REM $ PC designation is removed from the object program.

If REM$= OFF and KEEPREMS= OFF then the entire REM $ PC and the associ-
ated statement are removed from the object program.

/KEEPREMS {ON, OFF, DEC}

default:

/KEEPREMS OFF

The KEEPREMS Option COMPILER OPERATION

14-26 NPL Programmer’s Guide

If REM$= OFF and KEEPREMS= ON then the REM $ PC and the associated state-
ment are retained but the comma is inserted between REM and $ which makes the
statement a true REM in the object program. That is, the statement is not executed
by the RunTime unless the comma is removed.

Note that the above comments refer only to the generation of object code. Output to
the LSTLOC is never affected by the KEEPREMS or REM $ PC options. The REM
$ PC designation is always retained.

To retain the original form of literals when compiling programs, specify the
KEEPREMS option as ON or DEC.

If KEEPREMS is OFF, then any literals which contain any character which is out-
side of the range HEX(20) to HEX(7F) or contain the character HEX(22) (double
quote) are displayed as HEX. Otherwise, the literal is displayed as ASCII.

The KEEPREMS option can also be used to generate "compressed" code for instal-
lation at end-user sites, if desired, by specifying KEEPREMS=OFF.

14.16 The DISPLAY Option

The DISPLAY option is used to invoke the compiler menu. The general form is as fol-
lows:

14.16.1 Format

/DISPLAY {ON, OFF}

default:

/DISPLAY OFF

COMPILER OPERATION The DISPLAY Option

NPL Programmer’s Guide 14-27

14.16.2 Discussion

The NPL compiler features an alternate method of specifying compiler parameters (i.e.,
options and program names on a native operating system command line). Compiler pa-
rameters may be entered using a more "user-friendly" compiler options display (refer to
Section 14.19). The following sections discuss the two ways to access this display.

14.16.3 Explicitly Invoking the Compiler Display

Presence of the DISPLAY ON option in any compiler command line invokes the com-
piler options display. Any other options or parameters on the command line, entered in
addition to the DISPLAY option, appear on the compiler options display in the appropri-
ate fields. The display then allows for easy review and editing of the displayed parame-
ters.

This method is most useful when using native operating system batch files with the com-
piler (refer to Section 14.20). It allows the programmer to review and edit the options
specified in the batch file before committing to the compile.

14.16.4 Implicitly Invoking the Compiler Display

The compiler display is implicitly invoked by entering the compiler name ("B2C") on the
command line with options (if desired) but no prognames. Here, the display appears with
the Source Prognames field blank. For those options specified they appear in the appropri-
ate fields; for those options not explicitly entered, defaults appear.

14.17 The TRANSLATE Option

The TRANSLATE option is used to inform the compiler of the assumed character equiva-
lences between native file names and file names within a diskimage file. The general
form is as follows:

The TRANSLATE Option COMPILER OPERATION

14-28 NPL Programmer’s Guide

14.17.1 Format

14.17.2 Discussion

The file naming conventions of the various NPL supported operating systems are not en-
tirely compatible with the names of files within NPL diskimages. Specifically, within
diskimages, file names may be any 8 characters, with no restrictions. However, MS-DOS
for example, allows 8 character file names, but the permitted character set is restricted.
Only the letters A-Z, digits 0-9, and a few additional graphic characters are allowed. Ex-
actly which ones depends on the release of the operating system.

/TRANSLATE {hexquad }[[.][hexquad }] ...

where:

hexquad = {hh}{gg}[[.]{hh}{gg}]...
{=x}{=y} {=x}{=y}

where:

hh = two hexdigits specifying a charac-
ter (hex(hh)) which may appear in
the native file name.

=x = specification of a character ("x")
which may appear in the native file
name.

gg = two hexdigits specifying a charac-
ter (hex(gg)) which may appear in a
diskimage file name.

=y = specification of a character ("y")
which may appear in a diskimage
file name.

COMPILER OPERATION The TRANSLATE Option

NPL Programmer’s Guide 14-29

Consequently, problems may arise when the compiler attempts to take the name of a pro-
gram within a diskimage (example: GL G/L >") and create a .SRC file with "the same
name" under the MS-DOS operating system, since "/" and "> " have special meanings in
MS-DOS file names. The problem has no general solution, but, if a system does not use
too "strange" a subset of ASCII on filenames in the diskimage, it can be circumvented
with the TRANSLATE option.

The TRANSLATE option is used to inform the compiler of the assumed character equiva-
lences between native file names and file names within a diskimage file. The TRANS-
LATE verb is followed by a series of groups of four hex digits. Each group specifies a
FROM/TO pair of hexcodes, the first two hexdigits representing the native character, the
second two representing the equivalent character to be used for file names within
diskimage files.

For example:

./TRANSLATE 5F20

informs the compiler that underline characters (HEX(5F)) in native file names are equiva-
lent to space characters (HEX(20)) in names of files within NPL diskimage files. Conse-
quently, whenever the compiler needs to place names of files from within NPL diskimage
files directly into an native directory, it replaces the embedded blanks in the filenames
from within the diskimage file with underlines. Conversely, when the compiler needs to
place a native filename into a diskimage, it replaces underlines with spaces.

For legibility, groups of codes may be separated by a decimal point (".").

For example:

/TRANSLATE 5F20.7B3C.7D3E.=%=/

Defines the following equivalences (where D.I. stands for Diskimages):

NATIVE (HEX) 5F 7B 7D 25
NATIVE (display) - { } %
Filenames in D.I.
(display)

- < > /

Filenames in D.I.
(HEX)

20 3C 3E 2F

The TRANSLATE Option COMPILER OPERATION

14-30 NPL Programmer’s Guide

Trailing spaces in a file name are not considered to be part of the name. For obvious rea-
sons, use of file names which use only upper case A-Z, 0-9 and space is preferred in most
environments and is strongly encouraged.

14.17.3 Translation Is Performed Only When Required

Translation of file names takes place only when it is required. Consequently, compiles
where the SRCLOC and OBJLOC are both diskimages need the TRANSLATE option
only for listing files.

Similarly, compiles where the SRCLOC and OBJLOC are both native operating system
directories require the TRANSLATE option only if LSTFORMAT is 2200 or 2200S, and
LSTLOC is a diskimage.

14.18 The LCASE Option

With the LCASE option, 2200 filenames which contain lower case characters are sup-
ported to a limited extent. The general form is as follows:

14.18.1 Format

14.18.2 Discussion

NOTE: This section discusses upper and lower case sensitivity as it applies to the MS-DOS
operating system. For information on case sensitivity within specific NPL supported
operating systems, refer to Chapter 5 of the appropriate NPL Supplement.

/LCASE {ON, OFF}

default:

/LCASE OFF

COMPILER OPERATION The LCASE Option

NPL Programmer’s Guide 14-31

Much like the TRANSLATE option, the LCASE option is used to circumvent file nam-
ing convention problems between the 2200 and the various NPL supported operating sys-
tems. On the 2200, file names which include lower case characters are legal, whereas on
the PC, MS-DOS converts all lower case characters in filenames to upper case before
storing.

With the LCASE option, 2200 filenames which contain lower case characters are sup-
ported to a limited extent. When the LCASE ON option is selected, the case of each char-
acter of the source program names specified for compilation on the command line are
preserved when translating from MS-DOS filenames to 2200 file names.

For example:

B2C /OBJLOC platter1.bs2 /LCASE ON HIGHlow

compiles the MS-DOS file "HIGHLOW.SRC" from the current directory into the
diskimage "platter1.bs2", but the file name used in the diskimage is "HIGHlow" (by pre-
serving the case as specified in the command line). If the LCASE option had not been
specified, the filename used in the diskimage would have been "HIGHLOW".

14.19 The User-Friendly Compiler Display

The NPL compiler features an alternate method of specifying compiler parameters (i.e.,
options and program names on a native operating system command line). Compiler pa-
rameters may be entered using a more "user-friendly" compiler options display. There are
two ways to access this display: both involve entering a form of the normal compiler com-
mand line in the native operating system command processor but with special options.

14.19.1 Invoking the Display

1. Explicitly invoking the compiler display.

The presence of the DISPLAY ON option in any compiler command line entered in
the native operating system command processor invokes the compiler options display.
Any other options or parameters on the command line, entered in addition to the DIS-
PLAY option, appear on the compiler options display in the appropriate fields. The
display then allows for easy review and editing of the displayed parameters.

The User-Friendly Compiler Display COMPILER OPERATION

14-32 NPL Programmer’s Guide

This method is most useful when using native operating system batch files with the
compiler. It allows the programmer to review and edit the options specified in the
batch file before committing to the compile.

2. Implicitly invoking the compiler display.

The compiler display is implicitly invoked by entering the compiler name ("B2C") on
the command line with options (if desired) but no prognames. In this case, the com-
piler display appears with the Source Prognames field blank. For those options speci-
fied they appear in the appropriate fields; for those options not explicitly entered,
standard defaults appear.

NOTE: The following examples use MS-DOS naming conventions, delimiter characters and
keyboard characteristics. For delimiter equivalences and naming conventions
within specific NPL supported operating systems, refer to Chapter 5 of the appropri-
ate NPL Supplement. For keyboard characteristics of specific terminals, refer to Ap-
pendix D of the Programmer’s Guide.

14.19.2 The Display Screen

When the display option is requested by either of the methods discussed above, the fol-
lowing display appears.

COMPILER OPERATION The User-Friendly Compiler Display

NPL Programmer’s Guide 14-33

As shown, each possible compiler option is represented as a field on the display. If a field
has specified required input, the acceptable responses are shown after the field. The nor-
mal conventions for {}, [], symbols, etc., are employed (refer to the Preface of this guide).

The RETURN and TAB keys move the input block from field to field in a left to right
path through the display. When the end of a line is encountered the input block moves to
the next line.

The BACK-TAB key moves the input block from field to field in a right to left path
through the display. When the beginning of a line is encountered, the input block moves
up to the previous line.

The EAST, WEST and BACKSPACE keys move the cursor in the usual direction one
character at a time within a field. The DELETE and INSERT keys are active and also per-
form the usual functions.

Depression of the EXEC key at any time, causes the compiler to proceed with the options
as displayed. Before compilation takes place, the compiler performs input field valida-
tion. If any discrepancies are found, a message appears at the bottom of the display de-
scribing the problem. The input block is then placed at the field in error to allow for
editing. To proceed after editing, simply press EXEC.

Depression of the END key at any time cancels the compiler run and returns to the MS-
DOS operating system.

14.19.3 Limitations of the Compiler Display

Using the compiler display does introduce some limitations not found when using the na-
tive operating system command line method. These are:

• Field lengths are fixed in length on the display, as opposed to native operating
system command lines where field lengths are variable.

• Only one set of options may be specified for all programs to be compiled,
whereas in the command line method the compiler options may be varied
throughout a compile.

The User-Friendly Compiler Display COMPILER OPERATION

14-34 NPL Programmer’s Guide

14.19.4 Compiler Display Example

Entering the following compiler command line when in MS-DOS:

B2C /DISPLAY ON PROG1 PROG2 PROG3

produces the following compiler options display:

All three programs are displayed in the Source Programs field as specified. Since no op-
tions were specified on the command line, the compiler displays default options.

NOTE: The "." in the SOURCE Location and OBJECT Location fields is the symbol MS-
DOS uses to indicate "the current directory". The compiler uses the same notation

14.20 Batch Files

Batch files are functions which allow the user to set up and execute files containing na-
tive operating system commands and parameters.

COMPILER OPERATION Batch Files

NPL Programmer’s Guide 14-35

14.20.1 Discussion

Batch files can be used to invoke the NPL Compiler. For example, under MS-DOS, the
following example compiler command line:

B2C /SRCLOC platter1.bs2 /OBJLOC platter2.bs2 /LSTLOC .
/LSTFORMAT .src AR*

can be set up as a batch file called COMPAR.BAT (the .BAT extension is required), and
then be executed from the command processor by simply typing in the name of the batch
file:

COMPAR

In this case, the batch file would perform exactly the same as the example command line
it was taken from.

It is possible to generalize batch files so that some options may be entered during execu-
tion of the batch file. This is handy for specifying the list of input program names to com-
pile. This can be done by a simple modification to the example above. The modification
would be to replace the literal program name designation with a replaceable parameter
value ("%N") where N is a number from 1 to 9:

B2C /SRCLOC platter1.bs2 /OBJLOC platter2.bs2 /LSTLOC .
/LSTFORMAT .src %1 %2 %3 %4 %5 %6 %7 %8 %9

This batch file would now be able to accept up to nine source program names.

For example:

COMPAR AR* GL101 OE*

compiles the following sets of programs:

• All programs with the prefix "AR"

• Program GL101

• All programs with the prefix "OE"

The same compiler options are used for all programs.

Batch Files COMPILER OPERATION

14-36 NPL Programmer’s Guide

14.20.2 Example Batch Files

Niakwa has provided some convenient batch files. Of course, users may want to set up
their own in addition to these. Please refer to Section 4.3 of the appropriate NPL Supple-
ment for information pertaining to batch files within the operating system being used.

14.21 2200 Compatibility Issues

Section 14.10.5 above explained the use of the LSTFORMAT option, "2200", to generate
2200 atomized code. There are several points to consider related to compatibility in the
generation of 2200 atomized code:

1. NPL extensions.

NPL contains many extensions over Wang 2200 Basic-2. These statements, of
course, are not executable on the 2200. The compiler does not report the presence of
any Wang 2200 incompatible statements.

2. REM $ PC.

Any Wang 2200 incompatible statements can be encoded into NPL programs by use
of the REM$ PC statement. Both the Revision 2.00 compiler and RunTime retain the
REM $ PC designation but execute statements prefaced with REM $ PC. Use of the
REM $ PC statement for all NPL statements not supported on the 2200 ensures com-
patibility with the 2200.

However, programs containing REM $ PC compiled with the Revision 1.03 com-
piler do NOT have the REM$ retained. If these programs are then transferred back to
the 2200, they may fail at execution time if the REM $ PC statements are in fact spe-
cific to NPL. In addition, if these statements were intended for execution only under
NPL, this may cause further difficulties.

 The only solution to this is to either check programs for use of REM $ PC or to re-
compile original 2200 versions with KEEPREMS ON and REM$ ON under the Re-
vision 2.00 compiler.

COMPILER OPERATION 2200 Compatibility Issues

NPL Programmer’s Guide 14-37

3. NPL supports a much longer program line length than Wang Basic-2. The Revision
2.00 compiler detects program lines which are longer than those supported on the
2200 and automatically breaks up such lines into two or more program lines. A mes-
sage to that effect is displayed during compilation.

NOTE: In this situation the compiler attempts to use the next sequential line number for the
second program line. However, if the next sequential line number is already used,
compilation of the program is aborted, and the error is reported. A change must be
made to the program before it can be reatomized for use on a 2200 system.

If lengthy program lines are used, the LSTFORMAT 2200S option may be benefi-
cial. This results in shorter program lines being generated and thus reduces the possi-
bility of lines having to be split.

4. The compiler cannot generate SCRAMBLE protected 2200 code. If this is a require-
ment, a Wang 2200 is required.

5. The compiler does not access NPL programs saved in a SCRAMBLE protected for-
mat, whether generated by the SAVE! or by the SCRAMBLE option of the compiler
when initially compiled.

6. The procedure for de-compiling object code into 2200 atomized code is not without
certain anomalies, however. Reconstruction of some specific statements and syntactic
elements of a program produces code that is functionally equivalent, but somewhat
different in structure. This is an important consideration.

NOTE: These same anomalies apply to the use of the Interpreter as well.

Refer to Appendix F for specific examples of source code de-compilation differences.

14.22 Compatibility with Earlier Revisions

In addition to the compatibility issues related to generation of 2200 atomized code, there
are issues related to downward compatibility to earlier RunTime revisions.

Compatibility with Earlier Revisions COMPILER OPERATION

14-38 NPL Programmer’s Guide

14.22.1 New Statements

All new NPL statements introduced in the current revision of NPL that is being run, are
not compatible with previous revisions of the RunTime. If unsure of a statement’s com-
patibility with a previous release of NPL, refer to the Language Compatibility chart in
contained in Appendix B of the NPL Statements Guide.

14.22.2 Program Stamp

In all cases where a program is not executable under an earlier release of NPL, the header
sector of the program is stamped to indicate the RunTime revision or greater required to
run the program. Attempting to execute a program with an incompatible revision of the
RunTime results in a D88 - Wrong Record Type error.

14.22.3 Using the Compiler

If it is not certain whether or not program structure has been modified using the Inter-
preter, the best way to ensure compatibility with an earlier RunTime revision is to run
them through the compiler with the KEEPREMS option OFF. The compiler generates ap-
propriate warning messages on statements requiring a specific RunTime revision or
greater.

14.23 Commonly Used Compiler Options

A series of examples showing some typical uses of the compiler are presented in the chap-
ter "Compiler Operation" of the NPL Supplements. The examples in each Supplement
are functionally identical to the examples in any other Supplement but illustrate the oper-
ating system specific features of the compiler.

COMPILER OPERATION Commonly Used Compiler Options

NPL Programmer’s Guide 14-39

CHAPTER 15

PORTING PROGRAMS AND DATA

15.1 Overview

This chapter discusses the various methods of transferring programs and data between
NPL-supported environments or from a Wang 2200 to an NPL-supported operating envi-
ronment.

Section 15.2 describes porting options by serial communication or diskette transfer.

Section 15.3 describes the Niakwa general backup and recovery utilities and explains the
steps involved in a sample port.

Section 15.4 describes the Niakwa general file copy utility and outlines the steps in-
volved in a typical port.

Section 15.5 discusses the use of user-written transfer utilities for the purpose of porting
programs and data.

PORTING PROGRAMS AND DATA Overview

NPL Programmer’s Guide 15-1

Section 15.6 discusses the methods of transferring programs and data between a Wang
2200 and NPL-supported systems.

Section 15.7 discusses the various file types available for porting and the methods of
transferring them.

15.2 Porting Options

There are two possible options for transferring NPL applications and data. These are:

• Serial Communications

• "RAW" Diskette Transfer

These options are discussed in the following sections.

15.2.1 "RAW" Diskette Transfer

The ability of NPL to access "raw" diskettes provides a means of copying NPL
diskimages from one machine to another where the native operating system’s file formats
are incompatible. A "raw" device is a physical disk which does not contain a native file
system.

NOTE: Support of these "raw" devices is extremely hardware-dependent. A hardware-spe-
cific compatibility table detailing which "raw" devices are supported on systems
running NPL is provided in Appendix G of the Programmer’s Guide. Further infor-
mation about accessing "raw" diskettes across the various operating environments
supported by NPL is discussed in Chapter 5 of the appropriate NPL Supplement.

Although, in most cases, any of the supported "raw" diskettes can be used for porting, the
remainder of this chapter assumes that a 360K "raw" diskette is being used.

NPL provides support for 5-1/4" 320K, 360K, 1.2MB, and 3-1/2" 720K, 1.44MB,
2.88MB "raw" formatted diskettes. Most NPL-supported platforms handle one or more of
the above formats (refer to Appendix G for a list of all NPL-supported media). Provided
that diskette compatibility exists between two supported platforms, the following steps
are required to port between one NPL-supported platform and another.

Porting Options PORTING PROGRAMS AND DATA

15-2 NPL Programmer’s Guide

1. Select a compatible "raw" format for the destination systems (being transferred to),

2. Use either the Niakwa Backup and Recovery utilities or a user’s custom transfer utili-
ties to transfer programs and data between systems.

NOTE: Although the "raw" formatted diskettes used are identical from one system to the
next, the naming conventions of these diskettes may change from one machine’s na-
tive operating system to the next.

For example:

Under Novell $DEVICE(/D10)="A: 360=Y" Instructs NPL to treat A: as a "raw"
360k device.

Under
SuperDOS

$DEVICE(/D10)="1: 360=Y" Instructs NPL to treat 1: as a "raw"
360k device

Refer to Chapter 5 of the appropriate NPL Supplement for supported diskette naming con-
ventions. Refer to Appendix G of the Programmer’s Guide for a listing of currently sup-
ported "raw" disk formats on supported platforms.

HINT: When possible, pre-format "raw" diskettes on the destination system. Although this is not
required, it can alleviate some diskette integrity problems that may result from a diskette
formatted on a system with a dirty or misaligned floppy drive.

15.2.2 Serial Communications

As an alternative to file transfer on magnetic media, developers may choose to upload
and download their program and data files using serial communications.

Direct transfer from a Wang 2200 to supported NPL environments using serial communi-
cations is possible. The methods used for file transfer from the 2200 to a supported NPL
environment vary from one operating environment to the next. Generally, file transfer
considerations fall into two categories:

1. Porting to an MS-DOS based environment.

PORTING PROGRAMS AND DATA Porting Options

NPL Programmer’s Guide 15-3

When porting between an MS-DOS based system, a number of communication pack-
ages on the market may be used to communicate with and transfer files to and from a
Wang 2200. Among these packages, the most commonly used is a Wang 2236 termi-
nal emulation product called PC2200. PC2200’s file transfer capabilities provide a
convenient alternative to "raw" diskette transfer.

2. Porting to systems other than MS-DOS.

When porting from a Wang 2200 to an NPL-supported native operating system other
than MS-DOS, we are unaware of any communication product that allows direct
transfer of files from the 2200.

If serial transfer is required, the suggested method of porting from a 2200 to a non-
MS-DOS system, is to perform the port to an MS-DOS system as an intermediate
step.

First, use a package such as PC2200 to transfer programs and data to the MS-DOS
system. Once programs and data are on the MS-DOS system, they can be easily
ported to any NPL-supported operating systems, using a variety of terminal emula-
tion or communication products.

The above information is provided as a guideline to use when considering serial com-
munications. Please refer to the appropriate NPL Supplement for specific Hardware
operating environment porting considerations.

NOTE: It is not necessary to have NPL installed on the MS-DOS system being used as the in-
termediate system. PC2200 is capable of creating NPL diskimages on the fly.

Any file transfer product used must be capable of transferring 8-bit binary data.

15.2.3 Native Operating System Utility Options

In addition to the methods described above, other methods of transferring application pro-
gram and data files between NPL-supported environments do exist. For example, a devel-
oper may choose to use the UNIX "tar" command to transfer a diskimage from a
development system to a user’s site. The UNIX DOS copy utility is also a commonly
used vehicle for transferring files between UNIX and DOS.

Porting Options PORTING PROGRAMS AND DATA

15-4 NPL Programmer’s Guide

NOTE: The naming conventions and use of native operating system transfer utilities can
vary from one system to the next. For example, the UNIX DOS copy utility may be
"doscp" under one flavor of UNIX while it may be "doscopy" on another. Develop-
ers should consult operating system-specific documentation for specific details.

15.3 NPL General Backup/Recovery Utilities

The Niakwa 2CBCKP (Backup) and 2CRCVR (Recover) utilities may be used to per-
form backups or file transfers of NPL diskimage or Wang 2200 disk platters which would
require multiple diskettes. For instance, 2CBCKP may be used to backup an entire 2200
disk of programs or data onto a series of "raw" diskettes. 2CRCVR could then be used to
recover these diskettes to a diskimage on any NPL-supported operating environment.

These utilities have been included with the NPL Development Package on the Utilities
Diskette (in compiled form). To use the 2CBCKP Utility on a Wang 2200, it has to be de-
compiled and transferred to the 2200. Once this is done, it can be used to back up the
2200 disk platter to a series of "raw" format diskettes. Then use the compiled 2CRCVR
utility to recover the 2200 disk platter to a diskimage file. Refer to Chapter 13 for instruc-
tions on the operation of the 2CBCKP and 2CRCVR utilities.

The NPL utility ATDEVICE can be used to create the diskimage to receive these disk-
ettes. If using a diskimage address other than D10 or D12, set the diskimage up using the
ATDEVICE utility.

NOTE: In some instances, 2CBCKP and 2CRCVR may not be the best method of transfer-
ring software from the 2200 (specifically, if there is limited room on the hard drive).
That is, this method requires that there be enough room on the drive to hold both
source programs and the soon-to-be-created object programs. This is because the
compiler cannot compile directly from diskettes created by the General Backup Util-
ity. Diskettes created by the General Backup Utility do not have a traditional cata-
log. Therefore, one is forced to copy the diskettes to a diskimage on the hard disk.
The programs can then be compiled from this diskimage.

15.3.1 Steps Required for Transfer

To move the utility programs from a system to the 2200 requires that the programs first
be decompiled into 2200 format on diskette, after which the diskette may be used directly
on the 2200 for the copying procedure. Following are the steps involved in this process:

PORTING PROGRAMS AND DATA NPL General Backup/Recovery Utilities

NPL Programmer’s Guide 15-5

1. Install the Niakwa NPL Development Package and RunTime Package software on the
host system. Refer to Chapter 2 of the appropriate NPL Supplements for details on in-
stalling the software.

2. De-compile to transfer the necessary NPL utility programs onto diskette by executing
the following compiler command line (and optional display) from the system prompt
(MS-DOS assumed):

B2C /DISPLAY ON /SRCLOC \BASIC2C\UTILITY.BS2
/OBJLOC \DEV\NUL /LSTLOC A: /LSTFORMAT 2200
2CBCKP 2CRCVR

NOTE: Switch characters and directory designations vary from one operating system to an-
other. Refer to Chapter 3 of the appropriate NPL Supplement for details.

This creates a 320K format diskette containing the transfer utility programs 2CBCKP, and
2CRCVR in 2200 atomized code, which may be used directly on the 2200.

NOTE: The diskette must be preformatted in 320K format before beginning the de-compila-
tion procedure. The formatting procedure to use may vary from system-to-system.
Please refer to Chapter 5 of the appropriate NPL Supplement for information on
the environment being used.

3. Place all programs and data to be transferred onto a single platter on the 2200.

4. On the 2200 system, use the 2CBCKP utility program from the diskette (created in
step 2) to transfer this platter to a series of "raw" diskettes.

A. The user may LOAD/RUN program "2CBCKP" directly from the diskette.
The diskette may be removed once the program begins execution. There are
no sub-modules overlaid.

B. Specify full disk backup (if desired, selected files may be transferred using
this utility).

C. Specify the input address as the address of the 2200 platter to be transferred.

D. Specify the output address as the 2200 address of the diskette drive.

NPL General Backup/Recovery Utilities PORTING PROGRAMS AND DATA

15-6 NPL Programmer’s Guide

E. Specify the size of the output diskette:

1279 = 320K
1439 = 360K

NOTE: Please refer to Chapter 13 for details on the operation of the 2CBCKP utility.

It is not necessary to preformat diskettes for use by this utility. The 2CBCKP pro-
gram formats diskettes, if desired. However, it uses 320K format. This is because the
Wang 2200 $FORMAT DISK statement only formats in 320K format. If 360K for-
mat is desired, the diskettes must be preformatted using the technique described in
Section 15.6.

The 2200 disk platter to be transferred has now been backed up to a series of 5-1/4" disk-
ettes.

5. Use the NPL utility "New Diskimage Creation" to create the diskimage to contain the
transferred platter on the PC:

A. Execute the RunTime program specifying UTILITY.OBJ as the boot pro-
gram at the MS-DOS prompt:

CD \BASIC2C Select \BASIC2C as the current directory.

RTP UTILITY

This executes the RunTime program specifying UTILITY.OBJ as the boot
program.

Refer to Chapter 4 of the appropriate NPL Supplement for details on execut-
ing the RunTime program.

B. This first loads the ATDEVICE utility, which allows the user to specify any
new disk addresses/diskimages required. Refer to Chapter 13 for details.

C. The utilities menu is then loaded.

D. Select the New Diskimage Creation utility. This allows the user to create
the diskimage in the size required. Refer to Chapter 13 for details.

6. Recover the platter from the diskettes created in step 4.

PORTING PROGRAMS AND DATA NPL General Backup/Recovery Utilities

NPL Programmer’s Guide 15-7

A. From the utilities menu, select the General Recovery Utility (2CRCVR).

B. Specify D10 as the input disk address. D10 is set up as a default by the Run-
Time program as a 320K "raw" diskette.

For example:

DEVICE(/D10)="A:"

C. Specify the output address of the diskimage.

NOTE: At this point, the user has a diskimage containing 2200 source files. To execute these
programs, it is necessary to compile them. Refer to Chapter 14 for details on compil-
ing.

Refer to Chapter 13 for details on the use of the NPL General Recovery Utility.

15.4 NPL General File Copy Utility Use

The Niakwa NPL general file copy utility (2CCOPY) provides a method of selectively
copying selected groups of files between NPL systems or from the Wang 2200 to an NPL
system. The benefit of this utility is that diskettes are created in a standard catalog format.
Thus, programs can be compiled directly from diskettes created by 2CCOPY. This utility
can also be used to transfer data files.

NOTE: 2CCOPY does not have the capability to span multiple diskettes. As a result, no one
file or group of files may be larger than a diskette. If the total size of the file or files
to be copied is larger than a diskette, the General Backup Utility (2CBCKP) must be
used.

The steps to use the General File Copy Utility to transfer programs and data files are:

1. Install the Niakwa NPL Development Package and RunTime Package software on the
host system. Refer to Chapter 2 of the appropriate NPL Supplement for details on in-
stalling the software.

2. Decompile the General file copy utility to a "raw" 2200 format 5-1/4 " diskette, as de-
scribed in section 15.3.1 above, using the name 2CCOPY as the source program
name.

NPL General File Copy Utility Use PORTING PROGRAMS AND DATA

15-8 NPL Programmer’s Guide

3. Copy from the 2200 the data files to be copied and the programs to be compiled (they
may be placed on the same diskette(s)) using the 2CCOPY program on the diskette
created in step 2 above. Refer to Chapter 13 for details on the operation of the
2CCOPY utility.

4. Use the compiled new diskimage creation utility to create the diskimage to contain
the transferred platter:

A. Follow the steps described in step 5 of Section 15.3.1 above to bring up the
utilities menu on the system.

B. Select the New Diskimage Creation utility. This allows for creation of the
diskimage in the size required.

5. Copy files to the platter from the diskettes created in step 3 above.

A. From the utilities menu, select the General File Copy Utility (2CCOPY).

B. Specify D10 as the input disk address. D10 is set up as a default by the Run-
Time program as "raw" diskette.

For example:

DEVICE(/D10)="A:"

C. Specify the output address of the diskimage.

D. Copy only data files to the diskimage file. Programs may be compiled di-
rectly from the "raw" diskette(s). Refer to Chapter 14 for details on compil-
ing programs from "raw" diskettes.

NOTE: Refer to Chapter 13 for details on the 2CCOPY utility.

15.5 User Programs

The two methods stated above work well for transferring application and user data files
to most supported NPL systems. However, if there are other special requirements, the
above two methods may be awkward or inefficient.

PORTING PROGRAMS AND DATA User Programs

NPL Programmer’s Guide 15-9

Any other custom third-party NPL utility program can be used to put the files necessary
for transferring on "raw" diskettes. If using a custom third party utility or some other
method to put source files onto "raw" 320K diskettes, there is no need to go any further.
The NPL Compiler can handle the files in that format. Developers wishing to use their
own utilities and integrate them with the utilities provided by Niakwa, should follow the
steps in the following section.

15.5.1 Transferring Over Your Own Utility Programs

1. Put the utility program(s) on a 320K "raw" diskette.

2. Install the NPL Development Package software on the system.

3. It will be necessary to expand diskimage file UTILITY.BS2 to make room for the
compiled program(s). Use the MOVE END statement or the CHANGE DISKIMAGE
SIZE utility to do this.

4. Compile the program(s) from the diskette onto disk D35 (diskimage file C:\BA-
SIC2C\UTILITY.BS2). From the MS-DOS prompt:

CD \BASIC2C (SET THE CURRENT DIRECTORY TO \BASIC2C)
B2C /SRCLOC A: /OBJLOC \BASIC2C\UTILITY.BS2 [program name wildcards]

This executes the compiler and instruct it to access the source programs on a "raw"
diskette, and place object programs in diskimage UTILITY.BS2. Refer to Chapter 14
for details on compiling a program.

5. Add the custom program to the utilities menu on D35 by modifying ASCII text file
2CMNDAT1.SRC in \BASIC2C (using a standard text editing program such as
EDLIN) and recompiling it onto D35.

NOTE: 2CMNDATA is a simple program containing data statements accessed by the
Niakwa NPL 2CMENU program. To compile 2CMNDATA, from the MS-DOS
prompt:

CD \BASIC2C (Set the current directory to \BASIC2C)
B2C /OBJLOC UTILITY.BS2 2CMNDATA

This executes the compiler and instruct it to access source program 2CMNDATA in
directory \BASIC2C, and place the object program in diskimage UTILITY.BS2.

User Programs PORTING PROGRAMS AND DATA

15-10 NPL Programmer’s Guide

Refer to Chapter 14 for details on compiling a program. Refer to Chapter 13 for de-
tails on the 2CMENU utility and the organization of the 2CMNDATA menu options
file.

6. The custom program is now available for execution on the system.

15.5.2 Executing Your Own Utility Programs

To run a custom utility program from the utilities menu (MS-DOS assumed):

1. Execute the RunTime program specifying UTILITY.OBJ as the boot program. From
the MS-DOS prompt:

CD \BASIC2C Select \BASIC2C as the current directory.

RTP UTILITY

This executes the RunTime program with UTILITY.OBJ as the boot program (RTI
may also be used).

Refer to Chapter 4 of the NPL Supplements for details on executing the RunTime
program.

2. This first loads the ATDEVICE utility, which allows the user to specify any new disk
addresses/diskimages required. Refer to Chapter 13 for details.

3. The utilities menu is then loaded.

4. Select the NEW DISKIMAGE CREATION utility. This allows the user to create the
diskimage in the size required. Refer to Chapter 13 for details.

5. Select the custom program from the utilities menu.

15.6 Transfer to and from the Wang 2200

This section discusses the process of transferring application program and data files from
a Wang 2200 using "raw" diskettes, to an NPL system which may be unable to recognize
the default Wang 2200 320K "raw" diskette format. In addition, the types of files avail-
able for porting are also discussed.

PORTING PROGRAMS AND DATA Transfer to and from the Wang 2200

NPL Programmer’s Guide 15-11

15.6.1 Formatting a PC Interchange Disk on the 2200

Due to certain incompatibilities, access to 320K "raw" format diskettes is not supported
on all systems. Refer to Appendix G of the Programmer’s Guide for information on sup-
port of this format for specific NPL hardware operating environments.

There is, however, a feature that allows direct diskette transfer from a Wang 2275 or a
Wang DS diskette drive using 360K "raw" diskettes which are supported by the Wang op-
erating system. This feature allows a diskette to be formatted in a 360K disk drive as a
360K "raw" format diskette using 512-byte sectors, as opposed to the 320K format using
256 byte sectors. Diskettes formatted in this manner can be accessed under MS-DOS as
"raw" 360K diskettes ($DEVICE(/D10)="A: 360= Y"). This 360K "raw" diskette can
also be used as an alternative for porting to systems that do not support the standard
Wang 2200 320k format. Refer to Chapter 5 of the appropriate NPL Supplement for
more details on "raw" diskettes and associated naming conventions.

To create a "raw" 360K diskette, it must be formatted on either the Wang 2275 or Wang
DS diskette drive using a special $GIO statement:

$GIO/xxx (0600 0700 70A0 4002 88D0 7040 0130 6A10 6802 4001 8B67,X$)

where:

xxx is the appropriate disk address, and
X$ is an alpha-variable dimensioned to be 15 bytes long.

NOTE: This special $GIO statement is for use with Wang 2200s only. It is not compatible
with any release of NPL.

Diskettes can be scratched with an end sector value of up to 1439 sectors for 360K
diskettes.

Transfer to and from the Wang 2200 PORTING PROGRAMS AND DATA

15-12 NPL Programmer’s Guide

Upon execution of the $GIO statement, bytes 1-5 and 9-15 of the alpha-variable are used
by the system, while bytes 6-8 are set to the error return. Below is a list of the error return
values.

HEX(000000) if no errors
HEX(000004) echo error. retry the command.
HEX(010000) if ERR I98
HEX(020000) if ERR I91
HEX(040000) if ERR I94
HEX(000100) if ERR I95
HEX(000200) if ERR I93
HEX(000400) if ERR I96

The following is an example of a Basic-2 program used to format a PC Interchange disk-
ette on the Wang 2200 system:

10 DIM X$15
20 REM FORMAT THE DISKETTE
30 $GIO/D10 (0600 0700 70A0 4002 88D0 7040 0130 6A10 6802 4001 8B67,X$)
40 IF STR(X$,6,3)=HEX(000000) THEN 60
45 IF STR(X$,6,3)=HEX(000004) THEN 20
50 STOP "Disk Error"
60 REM SCRATCH THE DISKETTE
70 SCRATCH DISK T/D10,LS=10,END=1439<
 : ERROR GOTO 50
80 STOP "DISKETTE FORMATTED AND SCRATCHED"

Once the diskettes have been pre-formatted, utility programs, such as Niakwa’s General
Backup (2CBCKP) and General Recovery (2CRCVR), can be used on the Wang 2200
and supported systems to port software between machines. Access to the diskette is some-
what slow on both systems.

The following is an example of a port to an MS-DOS system using this technique:

1. On the Wang 2200, preformat the diskettes using the special $GIO statement on the
Wang 2275 or Wang DS diskette drive.

2. Back up all information needed to diskette. Remember the end sector value can be set
to 1439, but does not have to be entirely used.

3. On the system in use, establish the proper device equivalence as required for 360K
"raw" diskettes.

For example:

$DEVICE(/D10)="A: 360=Y"

PORTING PROGRAMS AND DATA Transfer to and from the Wang 2200

NPL Programmer’s Guide 15-13

4. Recover the information into an NPL diskimage on the system, making sure the pro-
gram accesses the entire contents of the floppy (i.e., the program should not be hard-
coded to read just 1280 sectors, if the full 1440 sectors are used).

Refer to the Wang 2275 Disk Drive User Guide for details on creating 360K diskettes
on a 2275 disk drive. Refer to the Wang DS User Guide for details on creating 360K
diskettes on the Wang DS.

NOTE: Restrictions that apply when attempting to read diskettes in a 360K disk drive
which have been written to in a 1.2MB disk drive still apply.

The Niakwa backup and file copy utilities request entry of the number of sectors for
the diskette being accessed. Set this to 1439 for 360K diskettes.

The general recovery utility program (2CRCVR) automatically determines the size
of the diskette.

On some hardware versions of NPL, the compiler (B2C) does not have the ability to
access 360K "raw" diskettes while the RunTime does. In these cases, the user must
copy the files to a diskimage on the hard drive first before compiling. Refer to the
diskette compatibility chart in Appendix G of the Programmer’s Guide for details
on which operating systems are affected.

According to Wang DS documentation, use of the "PC Interchange" format should
be supported on a DS equipped with a 1.2MB diskette drive. However, to date, test
results on this are inconclusive and 1.2MB compatibility between NPL and the DS
1.2MB drive has not been established.

15.7 File Types for Porting

Three types of files may be transferred from the Wang 2200 to NPL.

• Programs. Even if it is not necessary to permanently store source programs on
the system, it is necessary to transfer the programs to "raw" diskette(s) so that
they can be compiled.

File Types for Porting PORTING PROGRAMS AND DATA

15-14 NPL Programmer’s Guide

• Application software data files. These are files which do not contain user data,
but rather contain information required by application software (such as data file
parameters). If planning to compile source programs directly from a "raw" disk-
ette and not transfer them to the system’s hard disk, it is easier in the future to
place all application software data files on separate diskettes from the source
files. This is because the source program diskettes are accessed from the com-
piler, and the application software data files are accessed from utilities. If plan-
ning on maintaining source files in a diskimage, it is easier to keep the
application data files on the same diskimage.

• User data files. These are files which contain actual data, whether test data or
live data. Typically, these are the only files which may be larger than a 2275 or a
DS diskette. This means that an NPL utility would have to be used, such as the
Niakwa General Backup Utility, which allows a file to span diskettes when copy-
ing. Refer to Section 13.6 for details on the General Backup Utility.

15.7.1 Methods of Transferring

There are three different methods of transferring files from a 2200 to a system running
NPL. In most cases, a combination of these methods is used for transferring the different
types of files, as described in Section 15.2. The three methods are:

1. The Niakwa general backup and recovery utilities, 2CBCKP and 2CRCVR. Refer to
Section 15.3 for details.

2. The Niakwa general file copy utility, 2CCOPY. Refer to Section 15.4 for details.

3. A user-written program. Refer to Section 15.5 for details.

The only compatible media which may be used between the Wang 2200 and NPL is the
320K or 360K diskettes in raw format (refer to the chart in Appendix G of the Program-
mer’s Guide). These methods require that the NPL utilities be available on the system.
The Niakwa 2CBCKP, 2CRCVR, and 2CCOPY utilities are available on disk D35
(diskimage file C:\BASIC2C\UTILITY.BS2) after installing the Development Package
Utilities Diskette. These have been provided by Niakwa as part of the NPL Development
Package.

If using one’s own utility or program to transfer program or data files, it may be neces-
sary to transfer that program individually, compile it, and either place it on the Utilities
Menu provided on platter D35 or execute it directly.

PORTING PROGRAMS AND DATA File Types for Porting

NPL Programmer’s Guide 15-15

Refer to Chapter 13 for details on the use of the NPL Utilities.

File Types for Porting PORTING PROGRAMS AND DATA

15-16 NPL Programmer’s Guide

CHAPTER 16

MIXED LANGUAGE
PROGRAMMING

16.1 Overview

While NPL provides a programming environment with a high degree of portability and
reasonable performance capabilities, a number of users have expressed interest in having
the ability to perform functions written in other compiled languages. The NPL (formerly
Basic-2C) External Subroutine Development Kit (BESDK) provides an interface to exter-
nal subroutines in response to this requirement.

There are both benefits and drawbacks as a result of using external calls for NPL. The
benefits include a potential increase in execution speed for selected processor-intensive
functions, and the capacity to access resources and features of a specific environment.
The drawbacks include increased memory requirements, limited portability to other NPL
environments and a potentially less friendly environment for testing and error diagnosis.

MIXED LANGUAGE PROGRAMMING Overview

NPL Programmer’s Guide 16-1

This chapter concerns itself with the general operation of the NPL External (formally Ba-
sic-2C) Subroutine Development Kit (BESDK). For a complete discussion of operating
system/environment-specific considerations and supported languages, refer to Chapter 11
of the appropriate NPL Supplement and their appropriate NPL Addenda.

Section 16.2 discusses the interface between the NPL application and external subrou-
tines.

Section 16.3 describes the specifications required for the external call interface to
DEFFN’ type subroutines.

Section 16.4 describes the specifications required for the external call interface to exter-
nal FUNCTION and PROCEDURE type functions.

Section 16.5 describes the specifications required for the callback interface to native NPL
FUNCTIONs and PROCEDUREs.

Section 16.6 discusses the necessity of a user-written mainline routine for linking exter-
nal subroutines to NPL.

Section 16.7 discusses the RTPEXT subroutine and how to create it.

Section 16.8 discusses the process of creating a test program to verify that the subroutines
work and link properly.

Section 16.9 addresses the process of creating and linking the external library.

Section 16.10 provides some cautions and restrictions that should be considered prior to
implementing external calls into applications.

16.2 Interface to External Subroutines

The following section discusses the interface between the NPL application and external
subroutines.

Interface to External Subroutines MIXED LANGUAGE PROGRAMMING

16-2 NPL Programmer’s Guide

16.2.1 GOSUB/DEFFN Versus FUNCTION/PROCEDURE Interface

NPL supports three kinds of external interfaces:

• Calls to external subroutines, equivalent to DEFFN’ subroutines (with exten-
sions).

• Calls to external functions, equivalent to FUNCTIONs and PROCEDUREs.

• Callbacks from external libraries to FUNCTIONs and PROCEDUREs written in
NPL.

The DEFFN’ subroutine interface was implemented in earlier releases, and is supported
primarily for compatibility reasons, to allow continued use of existing external libraries.

FUNCTIONs and PROCEDUREs were first introduced in Release IV, and the external
FUNCTION interface is implemented in order to allow use of the new capabilities.

An external library may allow access to functions using either interface (or both), as
shown in the examples in the following sections. For simplicity, the discussions and ex-
amples normally deal with these interfaces separately.

Before discussing the details of how external subroutines are implemented, the effect the
availability of a set of external subroutines has on the NPL environment must be consid-
ered.

16.2.2 Using the GOSUB’/DEFFN’ Interface

External subroutines are accessed using the same mechanism as the marked subroutines
(GOSUB’x statements). When a GOSUB’ statement is executed for which no DEFFN’
statement is found in the NPL environment, NPL would normally halt with an error mes-
sage. If external subroutines are available, however, such calls are directed to the appro-
priate function instead.

NOTE: Calls are directed to external subroutines ONLY when there is no corresponding
DEFFN’ statement in NPL. NPL DEFFN’ subroutines always take precedence over
any external subroutines which may be defined.

Under Release IV or later, a convention for calling external subroutines using names as
aliases for numbers is also available. Refer to Section 16.7.5 for details.

MIXED LANGUAGE PROGRAMMING Interface to External Subroutines

NPL Programmer’s Guide 16-3

The parameter types permitted when calling the external DEFFN’ subroutines are the
same as those allowed when calling NPL DEFFN’ subroutines, but with an important dif-
ference. Calls to NPL DEFFN’ subroutines always pass the value of the parameters speci-
fied in the GOSUB’ statement to the receiving variables in the DEFFN’ statement one at
a time (as if a series of LET statements were executed). When the program RETURNs
from the subroutine, the only way to return values to the calling routine is by placing the
results in variables whose names have been agreed upon as part of the calling convention.

For example:

0000 DIM S$124,R$124 :REM dimension to maximum source, result lengths
 : DIM X$100
0100 GOSUB ’100("The quick brown fox jumps over the lazy dog.")
 : X$=R$:REM assume result comes back in R$
 : X=R :REM contains count of characters that changed
 : END
 0200 DEFFN ’100(S$)
 : R=0
 : L=LEN(STR(S$))
 : FOR I=1 TO MIN(L,LEN(STR(R$)))
 : IF STR(S$,I,1)="a" AND STR(S$,I,1)<="z" THEN DO
 : STR(R$,I,1)=STR(S$,I,1) SUB HEX(20)
 : R=R+1
 : ENDDO
 : ELSE STR(R$,I,1)=STR(S$,I,1)
 : NEXT T
 : IF L<LEN(STR(R$)) THEN STR(R$,L+1)=" "
 : RETURN

By comparison, external DEFFN’ subroutines may change the values of any of the pa-
rameters specified in the GOSUB’ statement. The usual convention is to specify parame-
ters whose value is required by the external routine ("input" parameters) first, followed
by the names of variables which are set by the external subroutine as the result of the op-
eration ("output" parameters). In some cases, a variable may be specified which is both
used and returned.

For example:

0000 DIM X$100
0100 GOSUB ’100("I Want this in upper case",X$,X)
 : REM external subroutine places result into X$ and X
 : END

Using the interpretive RTI, it is also possible to display the available external subrou-
tines, using the LIST ’ statement.

Where the display would normally show the line number of a DEFFN’ statement, the
LIST ’ statement displays "/EXT" to indicate an external subroutine is available. In addi-
tion, a string describing the subroutine is displayed.

Interface to External Subroutines MIXED LANGUAGE PROGRAMMING

16-4 NPL Programmer’s Guide

For example:

:LIST ’

/EXT DEFFN’100 (In$, Out$, N) - In$ (upper case)-> Out$, N=#changes
- 0100

As with calls to DEFFN’ subroutines written in NPL, the number of parameters must be
fixed and the types (numeric or string) must match the subroutine being called, or an er-
ror occurs at execution time.

The above interface has both advantages and disadvantages. The advantages are that the
subroutine calls are simple to use and require no new syntax, and that the effect of a sub-
routine on an NPL program is relatively straightforward to monitor when testing (exter-
nal subroutines are not permitted to examine or modify any variables in the NPL
environment except those specified as parameters to the routine).

The disadvantages are that:

• Variable numbers and types of parameters are not permitted.

• The class of parameters (input or output, or both) is not enforced by NPL.

• Although passing of alpha-arrays, of elements of alpha-arrays, and of substrings
(STR()) is supported, the external routine is not able to infer anything about the
number or size of elements in an alpha-array. If this information is required by
the external routine, it must be determined by the NPL program and passed as a
separate value.

Errors which are detected in an external subroutine may be reported and trapped (if they
are in the appropriate range) with the :ERROR clause or the ON ERROR statement. How-
ever, the specific location and reason for the error is not available to the NPL program.

16.2.3 Using the FUNCTION/PROCEDURE Interface

Under Release IV or later, external functions can also be accessed using the same mecha-
nism as FUNCTIONs or PROCEDUREs. The FUNCTION/PROCEDURE interface al-
lows the use of new capabilities not available in the DEFFN’ interface, such as new
parameter types, increased error checking and return values.

NOTE: Whenever the term "function" is used in this chapter, either a FUNCTION or a
PROCEDURE is allowed.

MIXED LANGUAGE PROGRAMMING Interface to External Subroutines

NPL Programmer’s Guide 16-5

The stricter declaration requirements and restrictions enforced when using FUNC-
TION/PROCEDURE interface should make writing modularized, error-free programs
easier.

For example, an NPL program containing a statement "GOSUB’250" when there is no de-
fined "DEFFN’ 250" or for which the parameter types were wrong is only flagged as an
error when, and if, it is executed. By contrast, an NPL program containing a statement
"’Initialize" does not start execution unless a declared "PROCEDURE ’Initialize" pre-
cedes it, and all parameter types are correct.

If a program contains a declaration of a function with the /EXTERNAL keyword, this in-
dicates that the named function is not written in NPL, but should be located in an external
library. Like a /FORWARD declaration, an /EXTERNAL declaration identifies the pa-
rameter names and type used to access the function, and indicates that the body of the
function does not follow immediately.

When a program containing any /EXTERNAL function declaration is run, NPL verifies
that the named function is present and checks that the number of parameters and parame-
ter types match before execution starts. When a function is called, the call is directed to
the external library.

NOTE: Calls are directed to the external functions only if the function declaration is
marked as /EXTERNAL. Normally, external libraries which use the FUNC-
TION/PROCEDURE interface provide a set of compatible declarations as a module
which should be INCLUDEd by applications that need them.

For example:

Interface module (provided with external library):

0000;Module MYMODULE
 : PUBLIC :;external functions are public
0100 PROCEDURE ’UpperCase(/POINTER _Instring$,
 /POINTER Output$,
 /POINTER Count)/EXTERNAL
 : END PUBLIC

Interface to External Subroutines MIXED LANGUAGE PROGRAMMING

16-6 NPL Programmer’s Guide

An NPL program that uses the externals:

0000 ;Program MYSTART
 : INCLUDE T"MYMODULE" :;external procedure declarations
 : DIM X$100 :;variable receives the result
 : DIM X :;variable receives count of characters that changed
 : ’UpperCase(The quick brown fox jumps over the lazy dog.",X$,X)
 : END

A local (non-PUBLIC) function declaration in a module can take precedence over a
/PUBLIC declaration of an /EXTERNAL function, following the same rules as for other
/PUBLIC function declarations. This allows new functions to be added to a library with-
out worrying about conflicts with similarly named non-PUBLIC functions that may al-
ready exist in programs that already INCLUDE an older version of the library. To avoid
possible conflicts with other functions, identifiers in a library which are not for internal
use only, should be prefixed with a unique identifier (e.g., short form of company name).

Parameters of the same type permitted when calling FUNCTIONs or PROCEDUREs
written in NPL are allowed when calling the external functions. As with functions written
in NPL, non-/POINTER parameters are passed by value, and /POINTER parameters are
passed by reference. The same restrictions on arguments passed to functions written in
NPL apply to /EXTERNAL functions. In particular:

• The number of parameters must be fixed.

• The types of each parameter must be specified in the declaration.

• Constants and expressions may not be passed to /POINTER parameters, unless
the parameters are constant identifiers.

An error occurs before execution starts if a directly-called function’s parameters do not
match. An error occurs at execution time if an indirectly-called function’s parameters do
not match.

External functions are not permitted to examine or modify any variables in the NPL envi-
ronment except those passed as /POINTER parameters with non-constant identifiers.

16.2.4 Callbacks to /PUBLIC FUNCTIONs from the External Library

The external library is permitted to call NPL functions using a similar mechanism to the
indirect function call. As is the case with the indirect function call executed by a function
written in NPL, only functions which are designated as /PUBLIC may be called in this
way, to ensure that the named function is not ambiguous.

MIXED LANGUAGE PROGRAMMING Interface to External Subroutines

NPL Programmer’s Guide 16-7

Methods are provided to the external functions which permit them to check the parameter
types of the named function, and this should always be done in order to ensure that pa-
rameters are passed correctly.

16.3 External Subroutine Interface Specifications

NPL external subroutines can be written in a number of languages. Each of these lan-
guages may have variations depending on the source vendor, operating system and envi-
ronment used. For simplicity, the discussion here concerns the use of Microsoft C in an
MS-DOS environment. Other languages and environments are discussed in Chapter 11 of
the appropriate NPL Supplements and their supporting Addenda.

NOTE: All Release IV enhancements (i.e., callbacks, etc.) are only supported under C. Pre-
vious release features supported by other external languages are fully upwardly
compatible with Release IV, but new Release IV features are not downwardly com-
patible.

A number of "include" files containing C structure and type definitions are provided with
the BESDK. The listings of these files are shown later in this section.

First, consideration will be given to the basic building block of the external subroutine li-
brary--a single routine which is called from NPL. The specifications for this subroutine
can be divided into four topics: the calling convention, the parameter format, execution
of the subroutine and return value.

16.3.1 Calling Conventions

The following section discusses the calling conventions used with NPL mixed language
programming.

Near Versus Far Pointers
The segmented architecture of Intel 80x86 class processors requires that a distinction be
made between two types of addresses--near and far. Near addresses are normally used
only for small programs, whose total program area or data area (including all library in-
formation) is less than 64K. Far addresses are used in general systems programming and
do not have this restriction.

NPL calls to external subroutines always use far addresses for both code and data.

External Subroutine Interface Specifications MIXED LANGUAGE PROGRAMMING

16-8 NPL Programmer’s Guide

The easiest way to ensure that far addresses are used in Microsoft C is to specify use of
"large model" ("/AL" option) to the compiler.

NOTE: It may also be possible for experienced programmers to use other models, provided
all pointers used in connection with NPL are specifically designated as "far". How-
ever, use of other models has not been tested and is not recommended.

C Versus Pascal Calling Convention
All Microsoft languages pass parameters on the system stack. Whenever parameters are
passed using a stack, a convention must be adopted as to the order in which the parame-
ters are pushed onto the stack.

C programs usually push parameters in the reverse order from the order that they appear
in a program because this allows the same interface to be used by subroutines with either
a variable or a fixed number of parameters, without requiring information about the num-
ber of parameters to be passed with each call. Parameters on the stack are popped by the
calling program after the call. Microsoft languages refer to this as the "C calling conven-
tion".

Most other languages push parameters in the order that they appear in a program because
this simplifies compiler design (parameters can be compiled one at a time as they are
parsed, while C convention requires parsing all parameters before producing any code).
However, it also means that the interface to a subroutine with a variable number of pa-
rameters must be different from that used to access subroutines with a fixed number of pa-
rameters, or else all calls must include information about the number of parameters to be
passed with each call. (Normally, languages that use this calling convention do not sup-
port a variable number of parameters.) Parameters on the stack are popped by the subrou-
tine when it returns from the call. Microsoft languages refer to this as the "Pascal calling
convention".

NPL calls to external subroutines use the Pascal calling convention. That is, parameters
are pushed on the stack in the order they are specified in the GOSUB’ statement. How-
ever, the called subroutine is allowed the option of not popping parameters from the stack.

The simplest way to ensure that the Pascal calling convention is used by a subroutine is
to use the "Pascal" keyword on subroutine declarations and all external references. This
ensures that the correct calling convention (and the recommended procedure for Mi-
crosoft C) is adopted.

MIXED LANGUAGE PROGRAMMING External Subroutine Interface Specifications

NPL Programmer’s Guide 16-9

An alternative is to use the C calling conventions on the subroutine declaration, but to list
the parameters in the reverse order from the way in which they would normally be listed
(if Pascal calling conventions were used).

NOTE: Be sure to use the same subroutine declaration in all modules. If a subroutine is
called using the wrong calling conventions, a program crash is the likely result, un-
less there are no parameters.

Since not all C compilers support the Microsoft extension keywords "far", "pascal" and
"cdecl", the include files provided with the BESDK avoid use of these keywords where
possible. The "rtpdeffn.h" include file is normally reserved to provide macro-equiva-
lences for these keywords (using #define directives) and type combinations which de-
pend on these keywords. For Microsoft C, the following equivalences are set:

#define rtpdeffn_ext far pascal
#define rtpdeffn_ptr far pascal

Ensure that the appropriate "rtpdeffn.h" include file for the C compiler is available in the
current directory or on one of the alternate search paths before doing compiles which ref-
erence other BESDK include files.

16.3.2 Parameter Format

The following section discusses the parameter formats.

Numeric Parameters
Numeric parameters are passed as a (far) pointer to a structure in the following format:

typedef unsigned short int word;
typedef short int sword; /* (signed) */

struct rtpnum{
 sword rtpnum_exponent; /* power of 10 */
 word rtpnum_low; /* LS part of mantissa */
 word rtpnum_mid; /* mid part of mantissa */
 sword rtpnum_high; /* MS part of mantissa */
};
typedef struct rtpnum * rtpnum_pointer;

The low, mid and high fields of the rtpnum structure form a 6-byte (48-bit) signed (two’s
complement) binary integer, which contains the mantissa (M) of the number. The expo-
nent field is an exponent (E) in base 10. The number represented is simply M*(10^E).

External Subroutine Interface Specifications MIXED LANGUAGE PROGRAMMING

16-10 NPL Programmer’s Guide

This is the hybrid internal format used by NPL, which has the advantage that rounding er-
rors can be handled in the same way as a BCD representation, while the most common
arithmetic operations can be quickly performed (provided numbers have the same expo-
nent).

For example:

GOSUB’100(A)

expects a subroutine header in the format:

int rtpdeffn_ext mysub(ptr)
rtpnum_pointer ptr;

The disadvantage of this format is that it is not the same as either float or double forms
used by C and is not easily manipulated as an integer or long integer unless the exponent
is 0 and the precision is less than 32 bits.

NOTE: An exponent of zero cannot be assumed whenever the numeric variable is the result
of a calculation or conversion statement. Even use of the INT function does not guar-
antee an exponent of 0. Only use of non-exponential format numeric-constants or
numeric-variables directly assigned from a non-exponential numeric-constant safely
assures a zero exponent.

Because of these issues, it is recommended that:

• Use of numeric-parameters be restricted to positive values in the range 0-65535
where the value is a non-exponential constant or is a variable directly assigned as
a non-exponential constant. In this case, the rtpnum low value can be directly ac-
cessed by the external routine as an unsigned integer.

• The external routine should still check the exponent of numeric values passed to
it to prevent possible errors.

• For numeric values that do not conform to this format, conversion to floating
point formats is required. This can be performed by the NPL floating point for-
mats for $PACK/$UNPACK.

MIXED LANGUAGE PROGRAMMING External Subroutine Interface Specifications

NPL Programmer’s Guide 16-11

NOTE: The $PACK/$UNPACK conversion to and from floating point formats is a rela-
tively slow operation. For calculation-intensive routines where performance is an is-
sue, the NPL program and the external routines should be structured to minimize
the number of floating point conversions required. Refer to $PACK/$UNPACK for
details.

For example:

10 FOR X=1 TO 100
20 GOSUB ’100(X)

X can safely be treated as an unsigned integer in external routine ’100.

10 A=X*2
20 GOSUB ’100(A)

In this case, A may have a non-zero exponent and should not be assumed to conform
to integer format by the external routine. This same logic using floating point
$PACK would look like:

10 A=X*2
20 $PACK(F=HEX(F308)) A$ FROM A: REM Intel double precision floating point
30 GOSUB ’100(A$)
40 $UNPACK (F=HEX(F308) A$ TO A

String Parameters
String parameters are passed as two C parameters, a (far) pointer to the first byte of the
string and a length in bytes (maximum value 64K-1, unsigned).

For example:

GOSUB’100(A$)

expects a subroutine header in the format:

typedef byte unsigned char;
typedef byte * rtpstr_pointer;
typedef unsigned short int rtpstr_length;

int rtpdeffn_ext mysub(ptr,len)
rtpstr_pointer ptr;
rtpstr_length len;

NOTE: NPL strings are not in standard C format (C strings normally contain a number of
non-HEX(00) bytes terminated by a single HEX(00)), so operations which expect C
format may need to make a copy of the string.

External Subroutine Interface Specifications MIXED LANGUAGE PROGRAMMING

16-12 NPL Programmer’s Guide

16.3.3 Execution of the Subroutine

This area can contain whatever is required, including calls to other subroutines, etc. How-
ever, some cautionary notes apply.

It is always a good idea to do some parameter checking in the subroutines. Unlike NPL,
most compiled languages stress speed over safety, and features such as subscript check-
ing (especially as applied to strings) are either unavailable or must be specifically en-
abled. When inserting code to validate parameters, it is faster and more reliable to place
this in the subroutine rather than in the calling NPL program.

Checking for potentially fatal errors, such as integer divide by zero, is vital to ensure a
safe operating environment for NPL. The subroutines should always return to NPL if pos-
sible, even if a fatal condition is detected, since in some environments NPL may have re-
directed hardware interrupts and must be given a chance to clean up before terminating
the process.

Under no circumstances should the subroutine attempt to save addresses of parameters
and use them in future calls to the same or other subroutines. All NPL variable and pro-
gram addresses are dynamic and may only be assumed to be valid for the duration of the
subroutine call.

16.3.4 Return Value of the Subroutine

All external subroutines should be declared as a function returning an integer. The value
of this integer should be 0 for a successful call (no NPL error required) or else the value
of an error to be reported to the NPL environment. The value of the error code should be
chosen from the list of standard errors to reflect as closely as possible the cause of the
problem.

NOTE: Errors 1-9 are normally fatal and may not be caught even by the general purpose
ON ERROR statement. Errors 10 to 59 (excluding 37 & 48) are normally fatal and
may not be caught by an :ERROR clause, but may be caught by an ON ERROR
statement.

MIXED LANGUAGE PROGRAMMING External Subroutine Interface Specifications

NPL Programmer’s Guide 16-13

Extended error values in the range 500-999 are reserved for use by external subroutines
when no NPL error message is appropriate. The system error message files (ER-
RORMSG.HLP and ERRORMSG.IDX) may be extended to include descriptions of these
errors. Error codes 500-599 are fatal and may not be caught even by an ON ERROR,
while those in the 600-799 range may be caught by an :ERROR clause or ON ERROR
statement.

16.3.5 Example of External Subroutine

The following C program might be used to implement the example routine, which con-
verts a string to upper case and counts the number of lower case characters changed.

/* module name = mysub.c */

#include "rtpall.h"

int rtpdeffn_ext mysub(pIn,szIn,pOut,szOut,pNum)
rtpstr_pointer pIn;
rtpstr_length szIn;
rtpstr_pointer pOut;
rtpstr_length szOut;
rtpnum_pointer pNum;
{
 register rtpstr_length i;
 rtpstr_pointer p;
 rtpstr_pointer q;
 word r;
 byte c;
 p=pIn;

 q=pOut;

 r=0;
 for(i=0;i<szIn && i <szOut;i++){ /* copy and translate to min length */

 c= *p++;
 if(c>=’a’ && c<=’z’){
 c -= (’a’-’A’);
 ++r;
 };
 *q++ = c;

 };
 for(i=szIn;i<szOut;i++){ /* if in string smaller, pad output */

 q++ = ’ ’; / with spaces */
 };
 pNum->rtpnum_exponent=0; /* return number of changes made */
 pNum->rtpnum_low=r;
 pNum->rtpnum_mid=0;
 pNum->rtpnum_high=0;
 return(0); /* no errors */
};

External Subroutine Interface Specifications MIXED LANGUAGE PROGRAMMING

16-14 NPL Programmer’s Guide

16.4 External Function Interface Specifications

The interface routines from the NPL Function Interface to external functions can only be
written in the C language. The C language may have variations depending on the source
vendor, operating system and environment used. The discussion here concerns the use of
Microsoft C, in an MS-DOS environment. Other environments are discussed in Chapter
11 of the appropriate NPL Supplement and in their NPL Addenda.

NOTE: The restriction to C language is a requirement when using Release IV Function In-
terface. Refer to Section 16.3 for use of the DEFFN’ interface found in previous ver-
sions of NPL.

A number of "include" files containing C structure and type definitions are provided with
the BESDK. The listings of these files are shown later in this Section.

First, consideration must be given to the basic building block of the external function li-
brary--a single function to be called from NPL. The specifications for this function can be
divided into four topics: the calling convention, the parameter format, execution of the
function and return value.

16.4.1 Calling Conventions

The following section discusses calling conventions used in NPL mixed language pro-
gramming.

Near Versus Far Pointers
The segmented architecture of Intel 80X86 class processors requires that a distinction be
made between two types of addresses--near and far. Near addresses are normally used
only for small programs, whose total program area or data area (including all library in-
formation) is less than 64K. Far addresses are used in general systems programming and
do not have this restriction.

NPL calls to external functions always use far addresses for both code and data.

The easiest way to ensure that far addresses are used in Microsoft C is to specify use of
"large model" ("/AL" option) to the compiler.

MIXED LANGUAGE PROGRAMMING External Function Interface Specifications

NPL Programmer’s Guide 16-15

NOTE: It may also be possible for experienced programmers to use other models, provided
all pointers used in connection with NPL are specifically designated as "far". How-
ever, use of other models has not been tested and is not recommended.

C Versus Pascal Calling Convention
All Microsoft languages pass parameters on the system stack. Whenever parameters are
passed using a stack, a convention must be adopted as to the order in which the parame-
ters are pushed on to the stack. NPL calls to external functions are all designed so that
only one parameter is used. The called subroutine is allowed the option of not popping
this parameter from the stack. Thus, either of the Microsoft calling conventions (cdecl or
pascal) may be used by called procedures.

16.4.2 Parameter Format

The following section discusses parameter formats used in NPL mixed language program-
ming.

Base Data Types
The basic data types passed to external functions are either numeric or string.

Numeric Data Type
Numeric scalar parameters passed by value are represented as a structure in the following
format:

typedef unsigned short int word;
typedef short int sword; /* signed */

struct rtpnum{
 swrd rtpnum_exponent; /* power of 10 */
 word rtpnum_low; /* LS part of mantissa */
 word rtpnum_mid; /* mid part of mantissa */
 sword rtpnum_high; /* MS part of mantissa */
};
typedef struct rtpnum * rtpnum_pointer;

The low, mid and high fields of the rtpnum structure form a six-byte (48-bit) signed
(two’s complement) binary integer, which contains the mantissa (M) of the number. The
exponent field is an exponent (E) in base 10. The number represented is simply
M*(10^E).

This is the hybrid internal format used by NPL, which has the advantage that rounding er-
rors can be handled in the same way as a BCD representation, while the most common
arithmetic operations can be quickly performed (provided numbers have the same expo-
nent).

External Function Interface Specifications MIXED LANGUAGE PROGRAMMING

16-16 NPL Programmer’s Guide

The disadvantage of this format is that it is not the same as either float or double forms
used by C and is not easily manipulated as an integer or long integer unless the exponent
is 0 and the precision is less than 32 bits.

NOTE: An exponent of zero cannot be assumed whenever the numeric variable is the result
of a calculation or conversion statement. Even use of the INT function does not guar-
antee an exponent of 0. Only use of non-exponential format numeric-constants or
numeric-variables directly assigned from a non-exponential numeric-constant safely
assures a zero exponent.

Because of these issues, it is recommended that:

• Use of numeric-parameters should be restricted to positive values in the range 0-
65535 where the value is a non-exponential constant or is a variable directly as-
signed as a non-exponential constant. In this case, the rtpnum_low value can be
directly accessed by the external routine as an unsigned integer.

• The external routine should still check the exponent of numeric values passed to
it to prevent possible errors.

• For numeric values that do not conform to this format, conversion to floating
point formats is required. This can be performed by the NPL floating point for-
mats for $PACK/$UNPACK.

NOTE: The $PACK/$UNPACK conversion to and from floating point formats is a rela-
tively slow operation. For calculation-intensive routines where performance is an is-
sue, the NPL program and the external routines should be structured to minimize
the number of floating point conversions required. Refer to $PACK/$UNPACK for
details.

For example:

10 FOR X=1 TO 100
20 ’MyProcedure(A)

X can safely be treated as an unsigned integer in external routine ’MyProcedure.

10 A=X*2
20 ’MyProcedure(A)

In this case, A may have a non-zero exponent and should not be assumed to conform to
integer format by the external routine. This same logic using floating point $PACK
would look like:

MIXED LANGUAGE PROGRAMMING External Function Interface Specifications

NPL Programmer’s Guide 16-17

10 A=X*2
20 $PACK(F=HEX(F308)) A$ FROM A: REM Intel double precision floating point
30 ’MyProcedure(A$)
40 $UNPACK (F=HEX(F308) A$ TO A

String Data Type
String values are represented as an array of unsigned characters.

NOTE: NPL strings are not in standard C format. C strings normally contain a number of
non-HEX(00) bytes terminated by a single HEX(00), so operations which expect C
format may need to make a copy of the string.

Arrays of Base Data Types
Arrays of numerics and strings are represented as repeated copies of the base data type,
stored in consecutive locations in memory.

Parameters Passed by Reference
A /POINTER parameter is represented by a pointer to a descriptor, whose format de-
pends on the base data type. The descriptor will always contain the address of the refer-
enced parameter, but may also include string length (if a string type) and array size (if an
array).

16.4.3 Declaring the Parameter Block

All external functions called from NPL receive a single C parameter. This parameter is
the address of a structure which contains:

• An interface area, which is passed containing NULL(0) values and should return
with the address and length of the result value of FUNCTIONs.

• A parameter area for each parameter passed to the function.

External Function Interface Specifications MIXED LANGUAGE PROGRAMMING

16-18 NPL Programmer’s Guide

Part of the C function interface definition should be a parameter block structure declara-
tion, in the form:

typedef tag[FUNCTION_NAME]_PARMS{
 RTPFN_RETURN_VALUE(return_value);

 RTP{NUM}[_POINTER][_CONSTANT][_ARRAY](name1[,size][,length]);
 {STR}

 RTP{NUM}[_POINTER][_CONSTANT][_ARRAY](name2[,size][,length]);
 {STR}
 ...
}[FUNCTION_NAME]_PARMS;

Where:

"FUNCTION_NAME" is normally derived from the name of the called function.

RTPFN_RETURN_VALUE(x) is a macro which declares a structure member of the
appropriate type for the return value/interface area. This member is defined for both
FUNCTIONs and PROCEDUREs.

"return_value" is the member name of the return value/interface member.

 RTP{NUM/STR}[_POINTER][_CONSTANT][_ARRAY](name,[,size],[length]) is
a macro which declares a structure member of the appropriate type for a parameter,
giving it the member name "name".

The exact type of the parameter dictates which of the optional bracketed sections should
be used for that parameter, and they must appear in the order shown (with no spaces be-
tween parts). All numeric parameters use "NUM", and all strings use "STR". All values
which are passed by reference (/POINTER) must use "_POINTER". Parameters which
are not changed (and are indicated as such in the NPL function prototype by a "_" preced-
ing the identifier) use "_CONSTANT". Arrays use "_ARRAY". An array which is passed
by value must specify the "size" parameter’. A string or string array which is passed by
value must specify the "length" parameter.

For example, a function with the NPL function declaration:

FUNCTION ’UpperCaseCounter (/POINTER _Instr$,Options,/POINTER Outstr$)

MIXED LANGUAGE PROGRAMMING External Function Interface Specifications

NPL Programmer’s Guide 16-19

would require a parameter block declaration such as:

typedef tagUPPERCASECOUNT_PARMS{
 RTPFN_RETURN_VALUE(return_value);
 RTPSTR_POINTER_CONSTANT(instr);
 RTPNUM(options);
 RTPSTR_POINTER(outstr);
}UPPERCASECOUNT_PARMS;

The macros for defining parameters are located in the rtpall.h include file.

In order to avoid alignment discrepancies between NPL and the C compiler programs,
Niakwa recommends that string parameters passed by value be allocated in multiples of
four bytes. The total size of string array parameters passed by value should also be allo-
cated so that the total size is a multiple of four bytes.

For example:

 RTPSTR(oddlength,13); /* an odd length is not recommended! */
/* padding may be added after oddlength by NPL, C compiler or both*/
 RTPNUM(nextparm); /* to ensure proper alignment of nextparm*/
 /* not recommended*/

16.4.4 Declaring the Function

A function header for an NPL-callable external function should be declared using the
RTPFN_DECLARE_EXTERNAL(function-name,parameter-name) macro.

This declares the function with the appropriate interface, having one parameter with the
given name.

16.4.5 Accessing the Parameter Block

The parameter passed to the NPL-callable external functions is not directly usable as a
pointer to the parameter block structure.

The macro RTPFN_PARAM_BASE(pparam,parameter-structure-name) must be used to
evaluate the base address of the parameter block structure. The macro must be given the
name of the parameter passed to the function (pparam), and the type of the parameter
block structure; it returns a pointer to the appropriate type.

External Function Interface Specifications MIXED LANGUAGE PROGRAMMING

16-20 NPL Programmer’s Guide

For example:

RTPFN_DECLARE_EXTERNAL(UpperCaseCount,pparam) /* declare the function */
{
 UPPERCASECOUNT_PARMS *z; /* declare a pointer to param block */
 /* get the base address of the parameter block */
 z=RTPFN_PARAM_BASE(pparam,UPPERCASECOUNT_PARMS);

Accessing Parameters Passed by Value
Parameters passed by value may be referenced as structure members, once the base
pointer of the parameter block is known.

This base address can then be combined with the member name representing a structure
to refer to the parameter.

For example:

RTPFN_DECLARE_EXTERNAL(UpperCaseCount,pparam) /* declare the function */
{
 UPPERCASECOUNT_PARMS *z; /* declare a pointer to param block */
 /* get the base address of the parameter block */
 z=RTPFN_PARAM_BASE(pparam,UPPERCASECOUNT_PARMS);

 struct rtpnum copy_of_opts;
 copy_of_opts= z->Options; /* make copy of parameter */

Accessing Parameters Passed by Reference (/POINTER)
The pointer, length and/or size information from a parameter passed by reference can be
obtained using a macro of the form:

 RTP{NUM}_POINTER[_ARRAY]{_ADDRESS}(z->param)
 {STR} {_LENGTH }
 {_SIZE }

Where:

• "NUM" is used if the base parameter type is numeric, "STR" is used if the base
parameter is string.

• "_ARRAY" must be used if the parameter is any kind of array.

• "_ADDRESS" is used to obtain the address of the parameter.

• "_LENGTH" is used to obtain the length of the string scalar parameter, or the ele-
ment length of a string array.

MIXED LANGUAGE PROGRAMMING External Function Interface Specifications

NPL Programmer’s Guide 16-21

• "_SIZE" is used to obtain the size (number of elements) of an array.

• z->param specifies the value of the pointer to the parameter descriptor.

For example:

 rtpstr_pointer p;
 rtpstr_len len;

 p=RTPSTR_POINTER_ADDRESS(z->instr); /* get Instr$ address */
 len=RTPSTR_POINTER_LENGTH(z->instr); /* get Instr$ length */

16.4.6 Execution of the Function

This area can contain whatever is required, including calls to other functions, etc. How-
ever, some cautionary rules apply.

It is always a good idea to do some parameter checking in the functions. Unlike NPL,
most compiled languages stress speed over safety, and features such as subscript check-
ing (especially as applied to strings) are either unavailable or must be specifically en-
abled. Time and code space expended to ensure validity of parameters will be much
faster and more reliable if placed in the function than if placed in the calling NPL pro-
gram.

Checking for potentially fatal errors (such as integer divide by zero) is vital to ensure a
safe operating environment for NPL. The functions should always return to NPL if possi-
ble, even if a fatal condition is detected, since in some environments NPL may have redi-
rected hardware interrupts and must be given a chance to clean up before terminating the
process.

Under no circumstances should the function attempt to save addresses of parameters and
use them in future calls to the same or other functions. All NPL variable and program ad-
dresses are dynamic and may only be assumed to be valid for the duration of the function
call.

External Function Interface Specifications MIXED LANGUAGE PROGRAMMING

16-22 NPL Programmer’s Guide

16.4.7 Return Value of the Subroutine

All external functions should be declared as a function returning an integer (the
RTPFN_DECLARE_EXTERNAL macro always does this.). The value of this integer
should be 0 for a successful call (no NPL error required) or else the value of an error to
be reported to the NPL environment. The value of the error code should be chosen from
the list of standard errors to reflect as closely as possible the cause of the problem.

NOTE: Errors 1-9 are normally fatal and may not be caught even by the general purpose
ON ERROR statement. Errors 10 to 59 (excluding 37 and 48) are normally fatal
and may not be caught by an :ERROR clause, but may be caught by an ON ER-
ROR statement.

Extended error values in the range 500-999 are reserved for use by external functions
when no NPL error message is appropriate. The system error message files (ER-
RORMSG.HLP and ERRORMSG.IDX), may be extended to include descriptions of
these errors. Error codes 500-599 are fatal and may not be caught even by an ON ER-
ROR, while those in the 600-999 range may be caught by an :ERROR clause or ON ER-
ROR statement.

16.4.8 Example of an External Function

The following C program might be used to implement the example routine, which con-
verts a string to uppercase and returns the number of lowercase characters changed.

/* file mymodule.src */

0010 PUBLIC
 : PROCEDURE ’MyProcedure (
 /POINTER _In$,
 /POINTER Out$,
 /POINTER Count)/EXTERNAL
 : END PUBLIC

/* file myproc.h */

RTPFN_DECLARE_EXTERNAL(myprocedure,pparam);

typedef struct tagMYPROCEDURE_PARMS{ /* parameter structure for
myprocedure */
 RTPFN_RETURN_VALUE(myret); /* return value always first */
 RTPSTR_POINTER_CONSTANT(in); /* /POINTER _In$ */
 RTPSTR_POINTER(out); /* /POINTER Out$ */
 RTPNUM_POINTER(count); /* /POINTER Count */
}MYPROCEDURE_PARMS;

/* file myproc.c */

MIXED LANGUAGE PROGRAMMING External Function Interface Specifications

NPL Programmer’s Guide 16-23

#include "rtpall.h"
#include "myproc.h"

RTPFN_DECLARE_EXTERNAL(myprocedure,pparam)
{
/* PROCEDURE ’MyProcedure (/POINTER _In$,/POINTER Out$,/POINTER Count)
 : ;uppercase and convert, like mysub
 : DIM Index,Char$1
 : Count=0
 : FOR Index=1 TO MIN(LEN(STR(_In$)),LEN(STR(Out$))) BEGIN
 : Char$=STR(_In$.Index,1)
 : IF Char$>="a" AND Char$<="z"
 : Char$=SUB "a" ADD "A"
 : Count=Count+1
 : END IF
 : STR(Out$,Index,1)=Char$
 : NEXT Index
 : STR(Out$,Index+1)=" " ;pad with spaces
 : END PROCEDURE
*/
 MYPROCEDURE_PARMS *z;
 register rtpstr_length i;
 rtpstr_pointer p;
 rtpstr_pointer q;
 rtpstr_length szIn;
 rtpstr_length szOut;
 rtpnum_pointer pNum;
 word r;
 byte c;

 /* get pointer to pparams */
 z=RTPFN_PARAM_BASE(pparam,MYPROCEDURE_PARMS);
 p=RTPSTR_POINTER_ADDRESS(z->in);
 szIn=RTPSTR_POINTER_LENGTH(z->in);
 q=RTPSTR_POINTER_ADDRESS(z->out);
 szOut=RTPSTR_POINTER_LENGTH(z->out);

 r=0;
 for(i=0;i<szIn && i <szOut;i++){ /* copy and translate to min
length */
 c= *p++;
 if(c>=’a’ && c<=’z’){
 c -= (’a’-’A’);
 ++r;
 };
 *q++ = c;
 };
 for(i=szIn;i<szOut;i++){

 /* if in string smaller, pad output with spaces
*/
 *q++ = ’ ’;
 };

External Function Interface Specifications MIXED LANGUAGE PROGRAMMING

16-24 NPL Programmer’s Guide

 pNum=RTPNUM_POINTER_ADDRESS(z->count);
 pNum->rtpnum_exponent=0; /* return number of changes made */
 pNum->rtpnum_low=r;
 pNum->rtpnum_mid=0;
 pNum->rtpnum_high=0;
/* no return value from procedure */
 return(0); /* no error in function */
}

16.5 NPL Function Callback Interface Specifications

Versions of NPL after Release IV allow external libraries to callback to NPL functions
and procedures which have been declared as PUBLIC.

Because the NPL environment can be very dynamic (overlays can cause entire functions
to appear or disappear, and program modifications can change the interface to functions).
Each call to an NPL function must perform using the following steps.

1. Validate that the function which is to be called exists and determine the parameters.

2. Validate the number and types of parameters.

3. Create a parameter block structure and call the NPL function callback routine.

4. Check for execution errors and extract the result value if any.

HINT: The way the external library calls back to NPL, in many was mirrors the way NPL calls
the external library, except that the roles of calling program and called function are
switched. If you are learning about the external interface for the first time, it is recom-
mended that this section be skipped until you have thoroughly reviewed Section 16.7.6,
"Information Requests about the External functions. This section describes the steps used
to call from NPL to externals in detail.

16.5.1 Locating the Function

NPL always locates callback functions using a displayable (ASCII) string and return
type. The string must contain the name of an NPL PUBLIC function or procedure of the
specified type, and must match exactly (except for case).

MIXED LANGUAGE PROGRAMMING NPL Function Callback Interface Specifications

NPL Programmer’s Guide 16-25

The same structure used by NPL to query the external library about external functions
(i.e., rtpfn) is used by the externals to query NPL about NPL functions. The external func-
tion must supply the name and type information in the rtpfn_name_pointer and
rtpfn_name_length and rtpfn_return_type fields of this structure, and pass it to the call-
back information function (rtpfn_getfunctioninfo()). Refer to Section 16.7.6 for a descrip-
tion of valid values that may be placed in these fields.

The rtpfn_getfunctioninfo routine returns an error code if no such function exists in the
workspace, or 0 if the function was successfully located. If the function is found, the func-
tion’s (pseudo) address is contained in the rtpfn_pointer field, and the parameter types in-
formation in the rtpfn_number_params and rtpfn_template fields.

16.5.2 Validating the Function

Provided the rtpfn_getfunctioninfo did not return an error, the next step is to check that
the parameters of the NPL function declaration are the same as those expected by the ex-
ternal.

In the same way that the RTPEXT function validates parameters of functions declared
/EXTERNAL in NPL, before calling the NPL function the externals should check that
the located callback routines’ parameters agree with what is required. The same parame-
ter information function (rtpfn_getparminfo()) that is used by RTPEXT is used to vali-
date the parameters of the callback function. Refer to Section 16.7.7 for a discription of
valid values that may be placed in these fields.

16.5.3 Calling the Function

The same macros used to define parameter blocks for other functions must be used to de-
fine a parameter block structure appropriate for called NPL functions. Parameters passed
to the NPL function must be placed in the parameter block structure.

Passing Parameters by Value
If a parameter is passed by value, the value is placed directly in the appropriately named
structure member.

Passing Parameters by Reference (/POINTER)
If a parameter is passed by reference (declared as /POINTER), a complete descriptor of
the parameter must be allocated (separate from the parameter block structure). The appro-
priate predefined types defined for the /POINTER descriptors are:

NPL Function Callback Interface Specifications MIXED LANGUAGE PROGRAMMING

16-26 NPL Programmer’s Guide

RTPNUM_FRAME for numeric scalars

RTPSTR_FRAME for string scalars

RTPNUM_FRAME_ARRAY for numeric arrays

RTPSTR_FRAME_ARRAY for string arrays

Values are assigned to the descriptor using the appropriate predefined macro for the type,
which is of the form:

RTPNUM_SET_FRAME(id,address) for numeric scalars

RTPSTR_SET_FRAME(id,address,length) for string scalars

RTPNUM_SET_FRAME_ARRAY(id,address,size) for numeric arrays

RTPSTR_SET_FRAME_ARRAY(id,address,size,length) for string arrays

where in each case:

• "id" is the name of the descriptor frame to be set.

• "address" is the address of the referenced value.

• ",size" must be specified if an array, and is the count of elements.

• ",length" must be specified if the parameter is a string or string array, and speci-
fies the string length or array element length.

It is the address of this descriptor that is then placed in the appropriately named parame-
ter block structure member.

Passing the Address of the Function to be Called
The external routines should place the (pseudo) address of the NPL function (that was re-
turned by the rtpfn_get functioninfo() call in the parameter block, using the macro:

RTPFN_SET_CALLBACK_ADDRESS(id,rtpfn)

where:

MIXED LANGUAGE PROGRAMMING NPL Function Callback Interface Specifications

NPL Programmer’s Guide 16-27

• "id" is the name of the first parameter block structure member (RTPFN_RE-
TURN_VALUE type).

• "rtpfn" is the name of the rtpfn structure passed to rtpfn_getfunctioninfo().

Making the Callback
Call rtpfn_callfunction(x), where x is the address of the first member (return value/inter-
face member) of the parameter block structure. This causes NPL to execute the function
and return to the external library.

16.5.4 Checking for Errors and Getting the Return Value

The return code of the NPL callback routine (rtpfn_callfunction()) is 0 if a normal return
occurred, or is an NPL error code if a RETURN ERROR exit was taken.

Provided no error occurred, the return value/interface field of the parameter block struc-
ture contains the address (and length, if a string) of the result of a FUNCTION (PROCE-
DUREs have no result). The address and length may be obtained using the macro
functions:

RTPNUM_RETURN_VALUE_ADDRESS(x) address of a numeric result

RTPSTR_RETURN_VALUE_ADDRESS(x) address of a string result

RTPSTR_RETURN_VALUE_LENGTH(x) length of a string result

where "x" is the name of the first member (return value/interface member) of the parame-
ter block structure.

NOTE: In general, the return value of NPL functions should always be treated as non-modi-
fiable by the external library, and should never be stored for any duration. Exiting
to NPL may cause this address to become invalid.

If the NPL function uses a RETURN value which is not a /STATIC variable, calling
any other callback routine may cause the address to become invalid.

NPL Function Callback Interface Specifications MIXED LANGUAGE PROGRAMMING

16-28 NPL Programmer’s Guide

16.5.5 Restrictions on Callbacks

In general, NPL permits access to callback routines only while executing in an /EXTER-
NAL function. Consequently, attempts to call NPL at interrupt time (either to query func-
tion availability or to execute a function), return an error code indicating an illegal
operation was attempted.

NOTE: Event driven environments such as Windows may also allow callbacks while execut-
ing certain NPL statements, such as KEYIN. Refer to Chapter 11 of the appropriate
NPL Supplements for details.

16.5.6 Error Handling in Callbacks

External routines that use NPL callbacks should always consider the possibility that the
call may return an error, even if the called routine does not contain any RETURN ER-
ROR statements.

Any attempt to perform operations that would invalidate the execution return stack (such
as CLEAR V, CLEAR N, CLEAR P, program LOAD or RUN operations, or Immediate
Mode program modifications) that occurs while a callback to NPL is in progress is
trapped and automatically generates the equivalent of a RETURN ERROR(251) to the ex-
ternal routine.

Where possible, this particular error code should be reflected back to the previous NPL
call-out to the externals after any appropriate cleanup operations have been performed, in
order to avoid unpredictable behavior.

16.5.7 Example of External Callback to NPL Function

/* file mycallbk.h */

/* NPL callback function CallBackKeyin used by mykeyin() */

/* parameter structure for CallBackKeyin */
typedef struct tagCALLBACKKEYIN_PARMS{
 RTPFN_RETURN_VALUE(myret); /* return value always first */
 RTPSTR_POINTER(key);
}CALLBACKKEYIN_PARMS;

/* file mycallbk.c */

#include "rtpall.h"
#include "mycallbk.h"
/* mykeyin - get keyboard input using NPL callback procedure */

MIXED LANGUAGE PROGRAMMING NPL Function Callback Interface Specifications

NPL Programmer’s Guide 16-29

word keyin_error;
int mykeyin()
{

/* requires callback procedure
 PROCEDURE ’CallBackKeyin (/POINTER Key$)/PUBLIC
 : STR(Key$,2,1)=HEX(01) :;’special’ key
 : KEYIN Key$,,30
 : STR(Key$,2,1)=HEX(00) :;’normal’ key
30 END PROCEDURE
*/
 byte key_buf[2];
 CALLBACKKEYIN_PARMS cb; /* parameter block structure */
 char *callbackname="CallBackKeyin";/* callback function name */
 RTPFN rtpfn; /* used to get NPL function info */
 RTPSTR_FRAME key_frame;/* descriptor for /POINTER Key$ parameter */
 word lookup_error,call_error;
 RTPFN_TEMPLATE tptr; /* for checking parameter types */
 RTP_PARM_INFO parm; /* for checking parameter types */

/* make sure CallBackKeyin exists and get its callback address */
 rtpfn.rtpfn_name_pointer=(rtpstr_pointer)callbackname;
 rtpfn.rtpfn_name_length=strlen(callbackname);
 rtpfn.rtpfn_return_type = RTPFN_RETURN_TYPE_VOID; /* PROCEDURE */
 lookup_error=rtpfn_getfunctioninfo(&rtpfn);
 if(lookup_error)return(0); /* keyin failed? */

/* check interface to CallBackKeyin is correct */
 if (rtpfn.rtpfn_number_params !=1)return(0); /* 1 parameter */
 /* check paramter types */
 tptr=rtpfn.rtpfn_template;
 rtpfn_getparminfo(&tptr,&parm);

if(parm.parmtype!=(RTPFN_PARAM_RTPSTR|RTPFN_PARAM_POINTER))return(0);
/* looks good! - set up parameters */
 RTPFN_SET_CALLBACK_ADDRESS(cb.myret,rtpfn);
 /* pass key_buf[] as pointer to RTPSTR_FRAME */
 RTPSTR_SET_FRAME(key_frame,key_buf,sizeof(key_buf));
 cb.key= &key_frame;
 call_error=rtpfn_callfunction(&cb.myret);
 if(call_error)return(0); /* returned with error ? */

 return((key_buf[1]<<8)+key_buf[0]);
}

NPL Function Callback Interface Specifications MIXED LANGUAGE PROGRAMMING

16-30 NPL Programmer’s Guide

16.6 Writing a Mainline for External Subroutines

Each library of external routines must provide a mainline.

16.6.1 Why a Mainline is Needed

One of the difficulties which arises when an application is written using high-level lan-
guages is that each high-level language typically has its own requirements for startup and
shutdown procedures.

For example, in Microsoft C the startup procedure saves several values (such as parame-
ters on the command line, and the system’s environment), in locations where they can be
located by the system library procedures. It also makes determinations about how mem-
ory is to be configured for stack, heap and dynamic allocation areas, and otherwise pre-
pares the basic environment which is a prerequisite for operation of the C language
routines. It may also determine how floating point operations are to be performed, and
what kind of processor is available, in order that routines which take advantage of op-
tional hardware need not make these decisions each time they are called.

It is beyond the scope of this document to discuss these issues in detail, and they are men-
tioned mainly to explain why linking external subroutines to NPL requires that the devel-
oper provide a mainline. If NPL tried to simply call the subroutines without a
developer-written mainline and appropriate startup routines, NPL would require detailed
knowledge of the startup requirements of each variant of C, Pascal, etc., which is sup-
ported. Even for subroutines which do not explicitly call the C library routines, the C
compiler may generate implicit calls to library routines to perform operations such as
stack allocation checks, shift operations on long integers, floating point operations, etc.
By requiring that the user must provide a mainline, NPL allows the user to ensure that the
startup and shutdown requirements for the language in use are met.

In addition, the mainline approach allows applications to perform once-only initialization
before NPL runs, and to perform cleanup work after NPL exits.

MIXED LANGUAGE PROGRAMMING Writing a Mainline for External Subroutines

NPL Programmer’s Guide 16-31

16.6.2 Calling NPL from the Mainline - The RunTime Subroutine

The mainline of the external routines calls NPL (once only) as a subroutine called RTP().
The RTP() subroutine performs a normal session of NPL operations, starting from load-
ing the specified boot program. The RTP() subroutine returns to the mainline only when
NPL would normally exit back to the operating system (either because $END is exe-
cuted, or NPL was "killed" from the HELP subsystem). The RTP() subroutine may not be
called twice because the subroutine is not reusable.

The RTP() Subroutine Calling Conventions
The RTP() subroutine uses the same calling conventions as a C mainline.

For Microsoft C, this means C calling conventions.

The RTP() Subroutine Parameters
The RTP() subroutine uses the same parameter conventions as a C mainline.

For Microsoft C, this means with three parameters adopted from the UNIX/Xenix conven-
tions:

argc - the number of "words" in the command line which caused the mainline to run.

argv - a pointer to an array of pointers to C strings, each of which is a "word" from the
command line.

envp - a pointer to an array of pointers to C strings, each of which describes the value of
a current environment variable using the form "ENVNAME=ENVVALUE".

The parameters passed to the RTP() subroutine are ignored in currently supported (MS-
DOS, SuperDOS) environments. However, if the mainline is written in C the recom-
mended procedure is to pass the same arguments given to main() to the RTP() subroutine
(without modification), since this is a requirement of other implementations. In this case,
the parameters passed to the RTP() subroutine must be EXACTLY the same as those pro-
vided to the mainline.

The RTP() Subroutine Return Value
The function value returned by the RTP() subroutine is the exit code normally returned to
the operating system.

Writing a Mainline for External Subroutines MIXED LANGUAGE PROGRAMMING

16-32 NPL Programmer’s Guide

Example of Mainline
For Microsoft C, a mainline routine must be called "main" and would resemble the fol-
lowing:

/* module name = mymain.c */

extern int RTP();

int main(argc,argv,envp)
int argc;
char **argv;
char **envp;
{
 int returncode;
 my_initialization();
 returncode=RTP(argc,argv,envp);
 my_cleanup();
 return(returncode);
};
my_initialization()
{
};
my_cleanup()
{
};

The my_initialization() and my_cleanup() routines are optional, and would be used to per-
form once-only setup work for the external subroutine library, and any cleanup work
which might be required before exiting to the operating system.

NOTE: The return code produced by the RTP() is passed back to the operating system in
this case (as the result of the main() procedure). This is the normal practice since it
allows the exit condition of the RunTime with externals to be tested in batch files in
the same way that the exit condition of the RunTime without externals would be
used.

16.7 Writing the RTPEXT Subroutine

The following section discusses writing the RTEXT subroutine.

16.7.1 What Is the RTPEXT Subroutine?

The RTPEXT subroutine is called whenever NPL requires information about the external
routines. This information includes information on a particular GOSUB’ statement pa-
rameter count and type checking for external routines and descriptions for LIST’ displays.

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-33

The RunTime calls RTPEXT under the following conditions:

1. A GOSUB’ is executed for a subroutine that is not defined within NPL.

2. A LIST’ is executed.

3. When scanning for named aliases of external DEFFN’s at startup time.

4. A FUNCTION or PROCEDURE declaration with a /EXTERNAL indicator is re-
solved (program containing it is RUN or module containing it is INCLUDEd.)

In the case of the GOSUB’, the RunTime expects RTPEXT to provide necessary informa-
tion about the external routine to be used for the ’ number specified. Upon return from
RTPEXT, the RunTime then uses the information provided to call the correct external
routine, perform parameter checking, and determine whether or not to allow for possible
memory allocation by the external routine.

In the case of LIST’, the RunTime expects RTPEXT to provide information about every
defined external routine. This information consists of the existence of the routine, the de-
scription to be displayed by LIST’, and (optionally) the number of the next external rou-
tine to search for.

In the case of the named alias scan, NPL creates a list of aliases and numeric equivalents
that are referred to in the event that a named GOSUB’ is executed for which a named
DEFFN’ is not found.

In the case of the FUNCTION or PROCEDURE declaration, the RunTime expects
RTPEXT to validate specified information about the single function whose name and re-
turn type are provided, including parameter types, and to provide the external function en-
try point address.

The sections below provide further details on each of these parameters:

Whenever the RunTime calls RTPEXT, the RunTime always passes a request type that
indicates whether information is required for FUNCTION type declarations or for exter-
nal DEFFN’ subroutines.

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-34 NPL Programmer’s Guide

If the request is for external DEFFN’ information, the RunTime also passes to RTPEXT
the DEFFN’ number for which it requires information (as part of the rtpdef version of the
rtpreq request structure as described below). RTPEXT must contain logic to check this
value and branch to the correct location in RTPEXT where the information about the spe-
cific subroutine is contained. In C, for example, this is usually accomplished by use of
the "switch" and "case" statements.

If the request is for external FUNCTION or PROCEDURE information, the RunTime
also passes to RTPEXT the name of the function for which it requires information (as
part of the rtpfn version of the rtpreq request structure as described below). RTPEXT
must contain logic to check this value and branch to the correct location in RTPEXT
where the information about the specific function is contained. In C, for example, this is
usually accomplished by use of "switch" and "case" statements based on return type, each
of which does string comparisons looking for exact name matches.

Sections 16.7.9 and 16.7.10 below contain examples of typical RTPEXT routines. Pro-
grammers should find these examples particularly useful in understanding what RTPEXT
is required to do.

16.7.2 The RTPEXT Calling Conventions

The RTPEXT subroutine may use either the C or Pascal calling conventions.

Since the routine has only one parameter, the calling convention is not important. Also,
NPL makes no assumptions about whether parameters were popped by the called subrou-
tine.

The C naming convention is assumed. On some C compilers (e.g., Microsoft) this means
the name has an implied "_" prefix. Other languages in the same environment may not
follow the same convention (MASM, Pascal). Depending on the environment and lan-
guage preference, it may be necessary to name the routine "_RTPEXT" instead.

16.7.3 The RTPEXT Parameters

There is only one parameter passed to the RTPEXT subroutine. This is a (far) pointer to a
request structure which contains several fields. Refer to the listing of "rtpall.h" which de-
scribes this structure for Microsoft C.

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-35

The initial fields of the request structure form a "request header" area (for the rtpreq struc-
ture, refer to "rtpall.h" include file). These fields are used to distinguish requests for exter-
nal subroutine (DEFFN’) information and requests for external function
(FUNCTION/PROCEDURE) validation, as well as for upward compatibility with future
implementations of external calls. They specify the type of request structure which is be-
ing passed by the RunTime to RTPEXT on this call. This is done to allow for future ex-
pansion, should the need arise to add information to the structure or to request other
information not currently required on future releases of NPL.

The final field of the request structure contains the specifications for the information be-
ing requested and locations for results to be placed. The contents may vary depending on
the values in the request header.

In detail, the contents of the "rtpreq" request structure are:

rtpreq_type:

• An indicator of the type of the request structure. This value should be checked be-
fore using any fields in the rtpreq_var part of the request structure.

• If it contains a value of RTPREQ_TYPE_RTPDEF (=0), a request for informa-
tion about external DEFFN’ subroutines is being made using an rtpdef structure
in the rtpreq_var area.

• If it contains a value of RTPREQ_TYPE_RTPFN (=1), a request for validation
of an external FUNCTION or PROCEDURE is being made using an rtpfn struc-
ture in the rtpreq_var area.

• If any other value is in this field, the RTPEXT routine should set the
"RTPREQ_FLAGS_UNKNOWN_TYPE" bit in the rtpreq_flags field to 1 and re-
turn immediately.

rtpreq_length:

• An indicator of the length of the request structure. This is for future expansion
purposes, should the need arise to extend a particular request structure type. Fu-
ture implementations may need to check this field before providing values in the
rtpreq_var part of the structure if they wish to remain compatible with older ver-
sions of NPL.

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-36 NPL Programmer’s Guide

rtpreq_flags: RTPREQ_FLAGS_UNKNOWN_TYPE bit.

• This field contains a number of bit flags, which may be set to 1 by RTPEXT to in-
dicate an error condition. In particular the RTPREQ_FLAGS_UN-
KNOWN_TYPE bit should be turned on if a request structure of unknown type is
received. The meaning of other bits in this field depends on the request structure
type and what are are reserved for future use. All bits are cleared to 0 by the Run-
Time prior to any call to RTPEXT.

rtpreq_var:

• This field may contain a different structure depending on the value contained in
rtpreq_type. On the current implementation, only two type of structure (named
"rtpdef" and "rtpfn" in C) is defined.

16.7.4 Information Requests about External DEFFN’s

If the field rtpreq_type contains a value of RTPREQ_TYPE_RTPDEF (=0), a request for
information about external DEFFN’ subroutines is being made using an "rtpdef" structure
in the rtpreq_var area. Refer to the listing of "rtpall.h" which describes this structure for
Microsoft C. The "rtpdef" structure contains the specifications for the DEFFN’ subrou-
tine for which information is being requested and the locations at which the results
should be placed.

Specification fields whose values are defined by NPL are:

rtpdef_number:

• The subroutine number for which information is required.

All information fields (whose values are to be provided by RTPEXT), are cleared to a de-
fault value of 0 prior to any call to RTPEXT. They are:

rtpdef_flags: RTPDEF_FLAGS_NO_SUCH bit.

• This bit should be set to 1 as an error indicator, if no subroutine in the library cor-
responds to the requested number. If this bit is set to 1, values in other fields are
ignored, except rtpdef_next_number.

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-37

rtpdef_number_params:

• The number of NPL parameters which should appear in the GOSUB’ statement.

rtpdef_param_types:

• A field used to ensure that parameters are of the appropriate type in the GOSUB’
statement. Each bit of this 16-bit field specifies the type of one parameter. The
low-order bit specifies the type of the first parameter, and the high-order bit speci-
fies the type of the 16th parameter. A 0 bit means the parameter is numeric. A 1
bit means the parameter is a string. Unused bits should be set to 0’s. The include
file ’rtpall.h’ contains equated values for the most commonly used bits of this
field. If there are more than 16 parameters, the types information exceeds 16 bits
and must be stored in an alternate format in the rtpdef_param_extended_types
field.

rtpdef_flags: RTPDEF_FLAGS_EXTENDED_TYPES bit.

• This bit should be set to 1 if types information exceeds 16 bits. If this flag is set
by the RTPEXT routine, the information in rtpdef_param types should be left as
0, and type information stored in the rtpdef_param_extended_types field instead.

rtpdef_pointer:

• A (far) pointer to the external subroutine’s entry point.

rtpdef_desc_pointer:

• A (far) pointer to a string which describes the function (for LIST ’).

rtpdef_desc_length:

• The length of the above string.

For compatibility with older releases of NPL, the external routines should check the
value of rtpreq_var before setting any of the remaining values, which may not be part of
the supplied structure on the older releases.

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-38 NPL Programmer’s Guide

rtpdef_param_extended_types:

• A field used to ensure that parameters are of the appropriate type in the GOSUB’
statement. Normally, this field is used only when types information exceeds the
capacity of the rtpdef_param_types field, such as when more than 16 parameters
exist. The rtpdef_flags bit RTPDEF_FLAGS_EXTENDED_TYPES must be set
to 1 or this field is ignored.

• Each element of this array is an 8-bit field. Each bit of this 8-bit field specifies
the type of one parameter. The low-order bit of the first element specifies the
type of the first parameter, and the high-order bit specifies the type of the 8th pa-
rameter. A 0 bit means the parameter is numeric. A 1 bit means the parameter is
a string. Unused bits should be set to 0’s. Types for parameters 9-16 are stored in
the second element, and so on. A maximum of 255 parameters may be specified.
Unused elements should be left as 0’s. The include file "rtpall.h" contains
equated values for the eight bits of the first element. These equated values may
also be used for other elements, keeping in mind that FIRST, SECOND, etc., re-
fer to the parameter number in the set of 8.

rtpdef_flags: RTPDEF_FLAGS_NO_MALLOC bit.

This bit applies only to MS-DOS implementations. It should be set to 1 if it is known
that the subroutine (and any routines it calls) DOES NOT require new dynamic mem-
ory allocation from MS-DOS. Setting the bit somewhat speeds up calls to the routine
in this case. However, if the bit is set to 1, requests to MS-DOS for new memory
may return indicating that no memory is available.

rtpdef_next_number:

• RTPEXT should set this field to the next higher subroutine number defined in the
external library. If this information is not provided by RTPEXT, NPL must call
RTPEXT for each ’ subroutine number in the specified range when executing the
LIST ’ statement. This can require up to 65536 calls, which can cause a consider-
able delay. If RTPEXT sets this number, it indicates that no ’ subroutines are de-
fined between rtpdef_number and rtpdef_next_number, and so NPL can avoid
doing many of these calls. This number may also be set for subroutines which are
not in the library, especially for function 0. The number set need not actually be a
defined subroutine number--in particular, the highest subroutine should set the
value to the highest possible number, or 65535.

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-39

• If this field is not defined, the only effect is that LIST’ may take a few seconds
the first time it is executed as the RunTime searches for external subroutines in
the range specified (possibly from ’0 through ’65535). This field is not used in
calls to RTPEXT generated by GOSUB’.

• In the following example, rtpdef next number is set to 100 in case 0. This tells the
RunTime to skip looking for DEFFN’ 1 through 99 in the external routine when
processing a LIST’. In addition, rtpdef next number is set to 65535 in Case 100
(for DEFFN’100). This tells the RunTime to skip looking for DEFFN’s above
100 in the external routine when processing a LIST’.

For compatibility with older NPL versions, the following values should only be set if the
macro RTPDEF_CAN_SET_POINTER(rtpreq) returns a TRUE value.

rtpdef_name_pointer:

• If the function has a named alias, the RunTime should set this field to point to the
name of the alias. Refer to Section 16.7.5 for details.

rtpdef_name_length:

• The length of the string pointer to rtpdef_name_pointer.

16.7.5 Named Aliases of External DEFFN’ Routines

As of Release IV, marked DEFFN’ subroutines in NPL can be identified by either a num-
ber or an identifying name. This capability is extended to external functions in a limited
way by means of aliases. The alias extension allows numbered external DEFFN’s to also
be referenced by an identifying name. This name (or alias) must be a legal NPL identifier
(i.e., it must start with a letter and may contain a maximum of 255 characters), selected
from letters, digits and underscore ("_") only. To avoid possible conflicts with other func-
tions, identifiers in a library which is not for internal use only should be prefixed with a
unique identifier (e.g., short form of company name).

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-40 NPL Programmer’s Guide

The alias is returned by the RTPEXT in response to a query about a numbered DEFFN’
in the rtpdef_name_pointer and rtpdef_name_length fields (see previous section). If no
value is placed in these fields, or a NULL pointer or length is set, the external DEFFN’ is
not assigned a named alias. NPL scans for named DEFFN’ aliases once only, at startup
time, by querying RTPEXT about external function ’0 an following the rtpdef_next_num-
ber chain values for as long as this value is an ascending series of numbers. Conse-
quently, to make effective use of this field, rtpdef_next_number must be correct.

Once external aliases are registered in this way, the functions associated with them be-
come permanently available to all programs, exactly as numbered functions are available.

Because of the way this extension is implemented, a named external DEFFN’ subroutine
always has a numbered external DEFFN’ equivalent. Access to numbered functions using
aliased external DEFFN’ names only occurs if a named DEFFN’ is called which cannot
be found in the workspace, as either a local or (for revision 4) INCLUDEd PUBLIC
named DEFFN’. At this point, if the name is an alias for an external DEFFN’ subroutine,
the equivalent numbered external DEFFN’ is called.

This may mean that, in rare instances where a named DEFFN’ written in NPL prevents
access to an external DEFFN’ with the same name, an external can be called only using
its number. Similarly, in rare instances where a numbered DEFFN’ written in NPL pre-
vents access to an external DEFFN’ with the same number, an external can be called only
using its named alias. Except in these cases, calling the external by name and by number
are equivalent.

Implementing named external DEFFN’s in this way allows new external libraries to be
upgraded to provide named access to functions in existing libraries with a minimum of ef-
fort, since only the RTPEXT function needs to be updated, while still allowing access to
the functions by older application software and versions of NPL.

16.7.6 RTPEXT Requests for Information about External FUNCTIONs

If the field rtpreq_type contains a value of RTPREQ_TYPE_RTPFN (=1), a request for
validation of an external FUNCTION or PROCEDURE is being made using an "rtpfn"
structure in the rtpreq_var area. Refer to the listing of "rtpall.h" which describes this struc-
ture for Microsoft C. The "rtpfn" structure contains the specifications for the FUNCTION
or PROCEDURE for which validation is being requested and the locations at which the
results should be placed. Specification fields, whose values are defined by NPL include:

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-41

rtpfn_name_pointer:

• A pointer to a string containing the identifying name of the subroutine. For the
convenience of C, this name is terminated with a null character. The return type
of the function is not indicated in this name (no "$" at the end of string-valued
functions).

rtpfn_name_length:

• The length of the identifier rtpfn_name_pointer, not including the terminating
null.

rtpfn_return_type:

• The type of the return value supplied by the external. This is one of the following
predefined values:

RTPFN_RETURN_TYPE_RTPNUM for numeric FUNCTIONs

RTP_RETURN_TYPE_RTPSTR for string FUNCTIONs

RTP_RETURN_TYPE_VOID for PROCEDUREs

rtpfn_template:

This field contains a pointer to a structure which contains information about all parame-
ters of the function as it appears in the NPL declaration. Information about each parame-
ter, in the order specified, can be obtained using this value.

rtpfn_number_params:

This field contains a count of the number of parameters in the function declaration.

All information fields whose values are to be provided by RTPEXT, are cleared to a de-
fault value of 0 prior to any call to RTPEXT. They are:

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-42 NPL Programmer’s Guide

rtpfn_flags: RTPFN_FLAGS_NO_SUCH bit.

• This bit should be set to 1 as an error indicator, if no function or procedure in the
library corresponds to the requested name. If this bit is set to 1, values in other
fields are ignored.

rtpfn_flags: RTPFN_FLAGS_NO_MALLOC bit.

• This bit applies only to MS-DOS implementations. It should be set to 1 if it is
known that the subroutine and any routines it calls will not require new dynamic
memory allocation from MS-DOS. Setting the bit somewhat speeds up calls to
the routine in this case. However, if the bit is set to 1, requests to DOS for new
memory may return indicating that no memory is available.

rtpfn_pointer:

A (far) pointer to the entry point of the external FUNCTION or PROCEDURE.

16.7.7 Validating a FUNCTION/PROCEDURE

The RTPEXT should only return an entry point to the external FUNCTION or PROCE-
DURE if the name, return type, parameter and parameter types match.

In order to conform to other NPL routines, comparisons of the supplied name and the
names known to the RTPEXT routine should ignore case differences. C library functions
such as stricmp() are usually available to do this type of comparison. Validation should
normally be classified first by return type, using C switch and case statements. Within
each class, the name and parameter count of each function should be checked for each
function. If the parameter count and name match, each parameter should also be checked
for type and dimensions, if passed by value and a string or array.

Information about one parameter at a time can be obtained using the rtpfn_get-
parminfo(&tptr,&parm) function, where:

• tptr is an RTPFN_TEMPLATE type variable, initially set to the value of the
rtpfn_template field to return the first parameter information.

• parm is a RTP_PARM_INFO type variable, which receives information about
the parameter.

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-43

Each call to rtp_getparminfo returns information about one parameter in the "parm" struc-
ture, and updates the value of tptr to point to the next parameter in the template. The in-
formation in the RTP_PARM_INFO structure contains the following items:

parmtype:

• The parameter type, constructed as a sum of the following attributes:

RTPFN_PARAM_RTPNUM numeric base data type

RTPFN_PARAM_RTPSTR string base data type

RTPFN_PARAM_ARRAY array parameter

RTPFN_PARAM_CONSTANT constant type parameter

RTPFN_PARAM_POINTER /POINTER type parameter

• Any combination may be returned, except that only one of _RTPNUM and
RTPSTR is allowed.

parmsize:

• For array parameters passed by value (i.e., not /POINTER types), this value is the
number of elements.

parmlength:

• For string parameters passed by value (i.e., not /POINTER types), this value is
the length of a string scalar or string array element.

It is important to validate all parameters before indicating that a function exists. Failure
to do so could result in the function being called with different parameter types and, con-
sequently, a disagreement between the parameter block structure expected by the external
and that passed to it by NPL. Particularly when /POINTER parameters are used, this can
be fatal to the program or to the operating system.

Since the RTPEXT routine is usually only called once (when the declaration is RUN or
INCLUDEd, not each time the function is referenced), speed is not essential in this rou-
tine, but accuracy is.

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-44 NPL Programmer’s Guide

16.7.8 The RTPEXT Return Code

RTPEXT should return a value of 0 to indicate it has successfully provided the informa-
tion requested.

Indicating that the subroutine does not exist in the provided field is considered to be a
successful operation. Non-zero return codes are reserved for future implementations.

16.7.9 Example RTPEXT Subroutine

The following example is the RTPEXT routine from the MS-DOS "C" examples pro-
vided with the BESDK. It performs the following tasks:

1. Defines the name of the external module "mysub" as an external function.

2. Defines external routine ’100 and provides the following information about it:

A. Module "mysub" is the module that contains the actual routine that the Run-
Time should call.

B. "Mysub" expects three parameters: parameter 1 and 2 are alpha, and parame-
ter 3 is numeric. This is equivalent to:

 DEFFN’100(A$,B$,A)

C. "Mysub" performs no memory allocation.

3. Defines information for use by LIST’:

A. For "mysub", defines the information line to be displayed by LIST’ as "(In$,
Out$, N) - In$ (upper case)-> Out$, N=#changes"

B. Advises the RunTime that no external routines between 0 and 100 exist (in
the case 0 section).

C. Advises the RunTime that no external routines above 100 exist (in the defi-
nition of rtpdef next number in case 100).

4. Defines the following alias for named DEFFN’s:

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-45

External DEFFN’100 can also be accessed by name using the alias
DEFFN’UpperCase.

NOTE: This information is only supplied if the flag returned by the
RTPDEF_CAN_SET_NAME_POINTER macro is true.

5. Validates an external PROCEDURE called "MyProcedure" with three parameters,
which are, in order:

a /POINTER to a constant string scalar (for input)
a /POINTER to a string scalar (for output)
a /POINTER to a numeric scalar (for output)

No external numeric or string-valued FUNCTIONs are valid with this library.

/* module name = myrtpext.c */

#include "rtpall.h"

/* declaration of DEFFN’ function, so C knows it is a function */
extern rtpdeffn_ptr mysub();

/* declaration of external PROCEDURE/FUNCTIONs, so C knows */
RTPFN_DECLARE_EXTERNAL(myprocedure,pparam);

int RTPEXT(req_base)
struct rtpreq * req_base;
{
 register struct rtpdef *p;
 register struct rtpfn *pf;
 int setname;
 char *fname;
 int pcount;
 RTPFN_TEMPLATE tptr;
 RTP_PARM_INFO parm;

 switch(req_base->rtpreq_type){

/**/

/* DEFFN’ lookups */

 case RTPREQ_TYPE_RTPDEF:
 p= &req_base->rtpreq_var.rtpreq_var_rtpdef;
/* this is a rtpdef structure */
 setname=RTPDEF_CAN_SET_NAME_POINTER(req_base);
 switch(p->rtpdef_number){
 case 100:p->rtpdef_pointer=mysub;

 p->rtpdef_number_params=3;
 p->rtpdef_param_types=RTPDEF_PARAM_FIRST_IS_STRING+

 RTPDEF_PARAM_SECOND_IS_STRING+
 RTPDEF_PARAM_THIRD_IS_NUMERIC;

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-46 NPL Programmer’s Guide

 p->rtpdef_desc_pointer=(rtpstr_pointer)
 "(In$, Out$, N) - In$ (upper case)-> Out$, N=#changes";
 p->rtpdef_desc_length=strlen(p-rtpdef_desc_pointer);
 p->rtpdef_flags |= RTPDEF_FLAGS_NO_MALLOC;
 p->rtpdef_next_number=65535; /* for LIST ’ scanning */

 if(setname){ /* aliases supported by NPL version ? */
 p->rtpdef_name_pointer="UpperCase";
 p->rtpdef_name_length=strlen(p->rtpdef_name_pointer);
 };

break;
/*
 other defined subroutines would follow a similar pattern to the
above case
 */
 case 0:

 p->rtpdef_next_number=100; /* for LIST ’ scanning */
 default:
/*
 for all unknown subroutine numbers, set the flag to tell NPL this.
 */

 p->rtpdef_flags |= RTPDEF_FLAGS_NO_SUCH;
 };
 return(0);
/**/

/* FUNCTION declaration certification */

 case RTPREQ_TYPE_RTPFN:
 /* this is a rtpfn structure */
 pf= &req base->rtpreq_var.rtpreq_var_rtpfn;
 fname= pf->rtpfn_name_pointer;
 pcount=pf->rtpfn_number_params;
 switch(pf->rtpfn_return_type){

 case RTPFN_RETURN_TYPE_RTPNUM:
 /* numeric FUNCTIONS */
 /* none! */
 break;
 case RTPFN_RETURN_TYPE_RTPSTR:
 /* string FUNCTIONS */
 /* none! */
 break;
 case RTPFN_RETURN_TYPE_VOID:
 /* PROCEDUREs */
 if((stricmp(fname,"MyProcedure")==0)
 && (pcount==3)
){
 tptr= pf->rtpfn_template;
 rtpfn_getparminfo(&tptr,&parm);
 if(parm.parmtype!=
 (RTPFN_PARAM_RTPSTR
 |RTPFN_PARAM_CONSTANT
 |RTPFN_PARAM_POINTER
)
)break;
 rtpfn_getparminfo(&tptr,&parm);
 if(parm.parmtype!=
 (RTPFN_PARAM_RTPSTR

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-47

 |RTPFN_PARAM_POINTER
)
)break;
 rtpfn_getparminfo(&tptr,&parm);
 if(parm.parmtype!=
 (RTPFN_PARAM_RTPNUM
 |RTPFN_PARAM_POINTER
)
)break;
 pf->rtpfn_pointer=myprocedure;
 return(0);
 };
 break;
default:
 /*
 for all unknown return types, set the flag to tell NPL
 function is unknown
 */
 break;
};
/*
 for all unknown name types, set the flag to tell NPL function is
 unknown
 */
 pf->rtpfn_flags |= RTPFN_FLAGS_NO_SUCH;
 return(0);

/* for all unknown request types, set the flag to tell NPL request
type is unknown*/

 default:
 req_base->rtpreq_flags |= RTPREQ_FLAGS_UNKNOWN_TYPE;
 return(0);
 };
};

16.7.10 Another Example RTPEXT Subroutine

The following example shows an extension to the one above, adding a definition for a
second external DEFFN’ subroutine. The new DEFFN’ routine is defined as ’101, with
the alias "WindowTitle".

For clarity, only the logic related to DEFFN’s is repeated in this example. In addition, for
brevity, all references to the external PROCEDURE are removed.

The name "mysub101" is defined as an external subroutine.

In the logic associated with case 101, ’101 is assigned to the module named "mysub101"
and has two parameters, the first numeric and the second alpha.

Writing the RTPEXT Subroutine MIXED LANGUAGE PROGRAMMING

16-48 NPL Programmer’s Guide

In addition to adding case 101 to define "mysub101", one change was made to the defini-
tion for case 100. This is that the rtpdef_next_number value was changed from 65535 to
101. Without this change LIST’ and the named alias registration pass would not find ’101
since the rtpdef_next_number of 65535 in ’100 would tell the RunTime that no external
routines above 100 existed.

Even if rtpdef_next_number were not changed, GOSUB’ would still properly locate the
external ’101, but would be unable to access it using the named alias "WindowTitle". The
field rtpdef_next_number is used only by LIST’ and by the named alias registration pass.

/* module name = myrtpext.c */

#include "rtpall.h"

/* declaration of function, so C knows it is a function */

extern rtpdeffn_ptr mysub();

extern rtpdeffn_ptr mysub101();

int RTPEXT(req_base)
struct rtpreq * req_base;
{

 register struct rtpdef *p;
 int setname;
 switch(req_base->rtpreq_type{

/**/

/* DEFFN’ lookups */

 case RTPREQ_TYPE_RTPDEF:
p= &req_base->rtpreq_var.rtpreq_var_rtpdef; /* this is a rtpdef struc-
ture */
 setname=RTPDEF_CAN_SET_NAME_POINTER(req_base);
 switch(p->rtpdef_number){
 case 100:p->rtpdef_pointer=mysub;

 p->rtpdef_number_params=3;
 p->rtpdef_param_types=RTPDEF_PARAM_FIRST_IS_STRING+

 RTPDEF_PARAM_SECOND_IS_STRING+
 RTPDEF_PARAM_THIRD_IS_NUMERIC;

 p->rtpdef_desc_pointer=(rtpstr_pointer)
 "(In$, Out$, N) - In$ (upper case)-> Out$, N=#changes";
 p->rtpdef_desc_length=strlen(p->rtpdef_desc_pointer);
 p->rtpdef_flags |= RTPDEF_FLAGS_NO_MALLOC;
 p->rtpdef_next_number=101; /* for LIST ’ scanning */
 if(setname){ /* aliases supported by NPL version ? */

 p->rtpdef_name_pointer="UpperCase";
 p->rtpdef_name_length=strlen(p->rtpdef_name_pointer);
 };
break;

MIXED LANGUAGE PROGRAMMING Writing the RTPEXT Subroutine

NPL Programmer’s Guide 16-49

 case 101:p->rtpdef_pointer=mysub101;
 p->rtpdef_number_params=2;
 p->rtpdef_param_types=RTPDEF_PARAM_FIRST_IS_NUMERIC+

 RTPDEF_PARAM_SECOND_IS_STRING;
 p->rtpdef_desc_pointer=(rtpstr_pointer)
 "This is ’101 - (InN, Out$)";
 p->rtpdef_desc_length=strlen(p->rtpdef_desc_pointer);
 p->rtpdef_flags |= RTPDEF_FLAGS_NO_MALLOC;
 p->rtpdef_next_number=65535; /* for LIST ’ scanning */
 if(setname){ /* aliases supported by NPL version ? */
 p->rtpdef_name_pointer="WindowTitle";

 p->rtpdef_name_length=strlen(p->rtpdef_name_pointer);
 };
 break;
/*
 other defined subroutines would follow a similar pattern to the
above case
*/

case 0:
p->rtpdef_next_number=100; /* for LIST ’ scanning */

 default:
/*
 for all unknown subroutine numbers, set the flag to tell NPL this.
 */

 p->rtpdef_flags |= RTPDEF_FLAGS_NO_SUCH;
 };
 return(0);
};
/*
 for all unknown request types, set the flag to tell NPL request
 type is unknown
/*
 default:
 req_base->rtpreq_flags |=RTPREQ_FLAGS_UNKNOWN_TYPE;
 return(0);
 };
};

16.8 Writing a Test Program

Before attempting to call external subroutines from NPL, it is a good idea to write a test
program which calls the various subroutines with test values and verifies the results. Hav-
ing a test program available allows the user to verify that the subroutines work properly
and link with the appropriate support libraries before interactions with NPL are consid-
ered. In addition, it is generally simpler to compile and link the test program without
NPL, and all the normal debugging tools available to the compiled language can be used
in the test program to locate problems in the subroutines themselves.

Writing a Test Program MIXED LANGUAGE PROGRAMMING

16-50 NPL Programmer’s Guide

The easiest way to write the test program is to set it up as a replacement for the RunTime
subroutine called from the mainline, defined in a separately compiled module.

This technique can also be applied to external FUNCTION and PROCEDURE calls, pro-
viding callback functions to NPL are not used. A couple of predefined types and macros
are defined specifically to allow testing to use the same call procedure as NPL:

• RTP_PARAM_FRAME is a descriptor type that contains the address of the pa-
rameter structure block p in the RTP_PARAM_FRAME variable "frame".

• RTP_PARAM_SET_FRAME(frame,param_frame) places the address of the pa-
rameter structure block p into the RTP_PARAM_FRAME variable "frame".

16.8.1 Example Test Program

/* module name = myrtp.c */

#include "rtpall.h"

/* declaration of function, so C knows it is a function */
extern rtpdeffn_ext mysub(rtpstr_pointer,rtpstr_length,

 rtpstr_pointer,rtpstr_length,
 rtpnum_pointer);

/* NPL ’variables’ used for testing */

byte A[] ="The quick brown fox jumps over the lazy dog.";
byte B[] ="xxxx.xxxx1xxxx.xxxx2xxxx.xxxx3xxxx.xxxx4xxxx.xxxx5xxxx";
struct rtpnum X = {1,2,3,4};
byte C[] ="The quick brown fox jumps over the lazy dog.";
byte D[] ="xxxx.xxxx1xxxx.xxxx2xxxx.xxxx3xxxx.xxxx4xxxx.xxxx5xxxx";
struct rtpnum Y = {1,2,3,4};
int RTP(argc,argv,envp)
int argc;
char **argv;
char **envp;
{
 int returncode;
 RTP_PARAM_FRAME param_frame;
 RTPSTR_FRAME in_frame;
 RTPSTR_FRAME out_frame;
 RTPNUM_FRAME count_frame;
 MYPROCEDURE_PARM myprocedure_parms;

/* test DEFFN’ routine */
 printf("test GOSUB’ call\n");
 printf("A$=\"%s\"\n",A);
 printf("B$=\"%s\"\n",B);
 printf("X=%d %d %d E %d\n",X.rtpnum_high,

 X.rtpnum_mid,

MIXED LANGUAGE PROGRAMMING Writing a Test Program

NPL Programmer’s Guide 16-51

 X.rtpnum_low,
 X.rtpnum_exponent);

 printf("GOSUB’UpperCase(A$,B$,X) ->mysub()\n");
 returncode=mysub(A,sizeof(A) -1, /* note size not including
 ASCIIZ 0 */
 B,sizeof(B)-1, /* & operator on A, B is implied */
 &X;
 printf("returncode=%d\n",returncode);
 printf("A$=\"%s\"\n",A);
 printf("B$=\"%s\"\n",B);
 printf("X=%d %d %d E %d\n",X.rtpnum_high,

 X.rtpnum_mid,
 X.rtpnum_low,
 X.rtpnum_exponent);

 /* test PROCEDURE call */
 /* set pointer parameters */
 RTPSTR_SET_FRAME(in_frame,C,sizeof(C)-1);
 myprocedure_parms.in= &in_frame;
 RTPSTR_SET_FRAME(out_frame,D,sizeof(D)-1);
 myprocedure_parms.out= &out_frame;
 RTPNUM_SET_FRAME(count_frame,&Y)
 myprocedure_parms.count=&count_frame;
 /* pass address of parameter block structure */
 RTP_PARAM_SET_FRAME(param_frame,&myprocedure_parms);

 printf("test PROCEDURE call \n");
 printf("C$=\"%s\"\n",C); printf("D$=\"%s\"\n",D);
 printf("Y=%d %d %d E %d\n",Y.rtpnum_high,
 Y.rtpnum_mid,
 Y.rtpnum_low,
 Y.rtpnum_exponent);
 printf("’MyProcedure(C$,D$,Y) ->myprocedure()\n");
 returncode=myprocedure(¶m_frame);

 printf("returncode=%d\n",returncode);
 printf("C$=\"%s\"\n",C); printf("D$=\"%s\"\n",D);
 printf("Y=%d %d %d E %d\n",Y.rtpnum_high,
 Y.rtpnum_mid,
 Y.rtpnum_low,
 Y.rtpnum_exponent);

 return(0);
};

The test program prints the value of variables both before and after the call. The sizes of
strings are chosen to ensure that the code for padding strings is tested. A more extensive
test program might also check that, if B$ is shorter than A$, the output string is properly
truncated.

Writing a Test Program MIXED LANGUAGE PROGRAMMING

16-52 NPL Programmer’s Guide

16.8.2 Example Linkage for Test Program

The following MS-DOS batch file compiles and links the test program, assuming appro-
priate values for the environment variables INCLUDE (location of C include files), LIB
(location of C support libraries), CL (default options for C compiler) and LINK (default
options for linker) are set to appropriate values. The include files which are part of the
BESDK are assumed to be in the directory ..\include.

rem /* this is the makemain.bat file */
copy ..\include\dos\rtpdeffn.h .
copy ..\include\dos\rtpparm.obj .
cl /AL /c /I..\include mymain.c myrtp.c myrtpext.c mysub.c myproc.c
link /MAP mymain+myrtp+myrtpext+mysub+myproc+rtpparm;

Although the test program does not use the RTPEXT subroutine, it is a good idea to in-
clude it in the standalone program to ensure that any support routines it may need are
available from the support libraries. Part of this support includes the parameter type
checking function ’rtpfn_getparminfo’ which is located in the ’rtpparm.obj’ object file.

16.8.3 Running the Test Program

The resulting executable program may be run as a standalone by typing its name from the
DOS command processor.

NOTE: RTPEXT is not tested by this procedure. Therefore, errors in RTPEXT, such as in-
correct parameter lists or incorrect module names are not detected. A thorough
check of RTPEXT is the best way to detect these kinds of errors in advance.

16.8.4 Running the Example Test Program

Running the example test program (mymain.exe) produces the following output:

C>mymain

A$="The quick brown fox jumps over the lazy dog."
B$="xxxx.xxxx1xxxx.xxxx2xxxx.xxxx3xxxx.xxxx4xxxx.xxxx5xxxx"
X=4 3 2 E 1
call mysub(A$,B$,X)
returncode=0
A$="The quick brown fox jumps over the lazy dog."
B$="THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG. "
X=0 0 34 E 0

MIXED LANGUAGE PROGRAMMING Writing a Test Program

NPL Programmer’s Guide 16-53

Test PROCEDURE call

C$="The quick brown fox jumps over the lazy dog."
D$="xxxx.xxxx1xxxx.xxxx2xxxx.xxxx3xxxx.xxxx4xxxx.xxxx5xxxx"
Y=4 3 2 E 1
’MyProcedure(C$,D$,Y) -myprocedure()
returncode=0
C$="The quick brown fox jumps over the lazy dog."
D$="xxxx.xxxx1xxxx.xxxx2xxxx.xxxx3xxxx.xxxx4xxxx.xxxx5xxxx"
Y=0 0 34 E 0

The programmer might also compile the program with options to keep debug information
(i.e., /Zi in "cl" command for Microsoft C) to allow debugging of the program (i.e., using
Codeview), especially when running the program for the first time and it is necessary to
verify that the subroutines are operating as expected.

16.9 Making the External Library

Once a standalone program has been made that runs acceptably, the next step is to link
the modules into a form which is useful to NPL. The format required by NPL for DOS
and SuperDOS environments is called a "quick library". Unlike the .EXE files normally
produced by the linker, quick libraries may not be executed as standalone programs.
They are designed to be used in conjunction with interpretive languages, such as NPL.

The quick library is produced by essentially the same procedure as the standalone test
file, except that the test module "myrtp.c" is omitted and a precompiled quick library
header file (’qlbhead.obj’) is substituted in its place. This quick library header file allows
the LINK program to resolve the otherwise undefined reference to the RunTime subrou-
tine, and satisfies some other requirements made by the LINK program and by NPL. The
quick library file format contains sufficient symbol and relocation information for NPL to
locate the RTPEXT subroutine.

16.9.1 Example Linkage for External Library

The following DOS batch file compiles and links the test external subroutine library, as-
suming appropriate values for the environment variables INCLUDE (location of C in-
clude files), LIB (location of C support libraries), CL (default options for C compiler)
and LINK (default options for linker) have already been set to appropriate values. The in-
clude files which are part of the BESDK are assumed to be in the directory ..\include.

Making the External Library MIXED LANGUAGE PROGRAMMING

16-54 NPL Programmer’s Guide

rem /* this is the makeqlb.bat file */
copy ..\include\dos\rtpdeffn.h .
copy ..\include\dos\rtpparm.obj .
copy ..\include\dos\qlbhead.obj .
copy ..\include\dos\cnullchk.obj .
cl /AL /c /I..\include mymain.c myrtpext.c mysub.c myproc.c mycallbk.c
rem /* the following line wraps in documentation */
link /MAP/QUICKLIB mymain+qlbhead+myrtpext+mysub+myproc+mycallbk+
rtpparm+cnullchk,mylib.qlb;

The "myrtp" module has been replaced in the link step with "qlbhead", which is the (pre-
compiled) quick library header module. The /QUICKLIB option is used to instruct the
linker to create a quick library format. Quick libraries should always be given the exten-
sion ".QLB". The "cnullchk.c" module is used to disable the "null pointer misuse" check-
ing option of the Microsoft C RunTime library, which is a requirement of quick libraries.

While the above command is the simplest way to make the executable file, it does have
the disadvantage that it always compiles all the modules. Making even small changes to
one of the C programs and remaking the executable file involve considerable excess re-
compiling. The example programs also contain a "makefile" which sets the proper op-
tions for creating the Quick Library for the example external subroutines.

16.9.2 Using an External Library

In order to access the subroutines in a quick library, NPL must be started with an option
specifying that an external library of subroutines and functions is required. The format of
this option is:

RTP /X[quicklib] [bootfile]

Where "/X" indicates that an external library must be attached to NPL and "quicklib" is
the file name of the quick library module. No spaces should appear between /X and the li-
brary name. The /X option must appear before any boot file name specification. The
.QLB extension may be omitted and is assumed if the filename has no extension. If the
/X option is specified without a quick library name, NPL uses the default filename
"RTPXSUBS.QLB". Only one quick library may be specified under the MS-DOS. Refer
to the appropriate NPL Supplement’s specific addenda for information on the operating
environments.

MIXED LANGUAGE PROGRAMMING Making the External Library

NPL Programmer’s Guide 16-55

16.9.3 Using the Example External Library

The example library can be accessed by starting RTI with the option /Xmylib. For test
purposes the programmer may wish to write a "boot" program for NPL that puts the exter-
nal subroutines through some test calls. For this example the following program (mys-
tart.src) was created and compiled using B2C to produce the boot file myboot.obj:

boot file MYBOOT.SRC:
0000 $DEVICE(#0)="MYMODULE.BS2"
 : LOAD T"MYSTART"

Test program files are located in the diskimage MYMODULE.BS2:

0000 REM MYMODULE
 : PUBLIC :;public external functions for MYLIB library
 : PROCEDURE ’MyProcedure(; translate to upper case example

/POINTER _In$, ; source string
 /POINTER Out$, ; translated output
 /POINTER Count)/EXTERNAL : ; count of translated characters
 : END PUBLIC
 : COM StayResident : ; a common variable keeps module always loaded
 : ;provide callback procedure for external mykeyin() routine
 : PROCEDURE ’CallBackKeyin (/POINTER Key$)/PUBLIC
 : STR(Key$,2,1)=HEX(01) :;’special’ key
 : KEYIN Key$,,30
 : STR(Key$,2,1)=HEX(00) :;’normal’ key
 30 END PROCEDURE

0000 REM MYSTART
 : INCLUDE T"MYMODULE"
0010 LIST
0020 DIM B$80
 : B$="xxxx.xxxx1xxxx.xxxx2xxxx.xxxx3xxxx.xxxx4xxxx.xxxx5xxxx"
 : X=1.23456789E30
0030 GOSUB ’100("The quick brown fox jumps over the lazy dog.",B$,X)
 : PRINT B$: PRINT X
0040 GOSUB ’UpperCase("I can use the equivalent name.",B$,X)
 : PRINT B$: PRINT X
0050 ’MyProcedure("I can use the PROCEDURE interface.",B$,X)
 : PRINT B$: PRINT X

Making the External Library MIXED LANGUAGE PROGRAMMING

16-56 NPL Programmer’s Guide

The following is a sample session with the library attached.

C> RTI /Xmylib myboot
-- NPL copyright message display --

READY (NPL) PARTITION 01
0000 REM MYSTART
 : INCLUDE T"MYMODULE"
0010 LIST
0020 DIM B$80
 : B$="xxxx.xxxx1xxxx.xxxx2xxxx.xxxx3xxxx.xxxx4xxxx.xxxx5xxxx"
 : X=1.23456789E30
0030 GOSUB ’100("The quick brown fox jumps over the lazy dog.",B$,X)
 : PRINT B$: PRINT X
0040 GOSUB ’UpperCase("I can use the equivalent name.",B$,X)
 : PRINT B$: PRINT X
0050 ’MyProcedure("I can use the PROCEDURE interface.",B$,X)
 : PRINT B$: PRINT X
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
 34
I CAN USE THE EQUIVALENT NAME.
23
I CAN USE THE PROCEDURE INTERFACE.
 18
:LIST ’
/EXT DEFFN’100 (In$, Out$, N) - In$ (upper case)-> Out$, N=#changes
 - 0030
/EXT DEFFN’UpperCase
 (In$, Out$, N) - In$ (upper case)->Out$, N=#changes
 - 0040
:$END

16.10 Cautions and Restrictions

External subroutines represent a useful additional tool for programmers in the NPL envi-
ronment, and for certain applications can provide a substantial performance benefit. But
before investing large amounts of time and effort in programming external call,stop to
weigh the advantages and disadvantages of making applications dependent on a particu-
lar external library. The following sections mention some areas that might not otherwise
be considered.

MIXED LANGUAGE PROGRAMMING Cautions and Restrictions

NPL Programmer’s Guide 16-57

16.10.1 Compatibility with Other NPL Applications

Currently, most implementations of NPL allow for only one external library to be at-
tached to a running RunTime. The MS-Windows NPL RunTime allows for more than
one external library to be attached. When using a version of NPL that only allows for one
library, but running an application that requires the use of distinct external libraries, it
would be necessary to exit NPL and return to the operating system to switch between li-
braries. Such a restriction can make putting a user’s application on a centralized menu
system problematical, if the menu is to be written in NPL.

NOTE: Refer to the appropriate NPL Supplement’s Addenda for more information on load-
ing quick libraries.

16.10.2 Memory Requirements

Compiled code can be surprisingly expensive in terms of consumed memory, especially
if standard library functions are invoked (e.g., printf()) for simple functions. The example
quick library in a MS-DOS environment reduces the space available for the RunTime
task by about 6K, and this uses only the library functions required by the C startup--add-
ing a single printf() command reduces the available space by a further 7K. Unlike subrou-
tines written in NPL, externals are permanently resident. Since memory used by external
routines is deducted from the available NPL user partition, the programmer must con-
sider the effects of this reduced partition size, particularly on systems where the user task
size available may be limited.

16.10.3 Isolation from NPL Environment

Access to NPL files, screen, keyboard, etc. is generally not available to the external rou-
tines, except through callback functions. Little allowance is made by NPL for applica-
tions that access hardware that is used by NPL--such as setting the screen into a graphic
mode, for example. Consequently keyboard and display interaction with the user is best
left as NPL code if at all possible.

16.10.4 Resource Conflicts

Because the externals and NPL may both make demands on the operating system for lim-
ited resources, the demands of either program may inhibit the operation of the other. The
most likely areas of contention are memory and open files.

Cautions and Restrictions MIXED LANGUAGE PROGRAMMING

16-58 NPL Programmer’s Guide

Depending on the configuration, external subroutines which make requests for additional
memory from the operating system may either be denied, or if requests are granted, this
memory may become permanently unavailable to the NPL environment.

Similarly, NPL typically keeps its files open for a long duration, and this may restrict ap-
plications which open many files.

Another possible area of contention concerns resources which can have only a single
owner, such as access to math coprocessors and interception of interrupt and abort condi-
tions. In cases like this, the convention is that the programmer "owns" the coprocessor or
interrupt only for the duration of the subroutine, and should restore the status of the re-
source to its original condition, as much as possible, before returning from the subrou-
tine.

16.10.5 Increased Expertise Requirement

Supporting an application which depends on an external subroutine library will require
that someone in the programming staff maintain a level of expertise in the area of the lan-
guage in which the external routines are written, as well as having a knowledge of NPL.
This will usually involve a working knowledge of the support tools (compilers, linkers, li-
braries, debuggers) used when programming in the language for each supported environ-
ment (MS-DOS, SuperDOS, etc.), in addition to understanding the language syntax and
semantics.

16.10.6 Portability

NPL program code is extremely portable among all operating system/environments sup-
ported by NPL. Typically only minor changes to device equivalence statements are re-
quired to take an NPL application from one operating environments to another. It is not
necessary to even recompile the programs.

External routines are quite a different story. At a minimum, recompilation, relinking, and
retesting of the external routines will be required for each operating environment to be
supported. In many cases, depending on the actual function of the external routine, poten-
tially extensive coding changes will be required.

MIXED LANGUAGE PROGRAMMING Cautions and Restrictions

NPL Programmer’s Guide 16-59

The programmer must consider this issue carefully in deciding whether or not to use ex-
ternal routines. If the external routine is to be an essential component of the application,
the programmer must either be prepared to develop and support the external routine on
all operating environments supported by NPL or else must accept the fact that the applica-
tion will now be executable only on those operating environments where the external rou-
tine has been implemented.

Alternatively, if the programmer wishes to maintain full portability without providing the
external routines for all NPL supported operating environments, the external routines
must be restricted to optional or nonessential features of the application so that the appli-
cation may use conditional logic to determine whether or not the functions provided by
the external routine are present at a given installation. In other words, the application
must be designed to work with or without the external routines.

Cautions and Restrictions MIXED LANGUAGE PROGRAMMING

16-60 NPL Programmer’s Guide

CHAPTER 17

EXTENDED EXAMPLES

17.1 Overview

This chapter discusses the extended examples of NPL Release IV.

The following extended programming examples demonstrate how some of the Release
IV language capabilities of NPL may be used. Each example increases in complexity and
it is suggested to be reviewed in order.

All examples are contained in the EXSNPL.BS2 diskimage found on the Development
Package Diskettes. Refer to the appropriate hardware supplement for the exact location
of this file.

EXTENDED EXAMPLES Overview

NPL Programmers Guide 17-1

To start the examples, the REL4EXAM.OBJ can be used. This program is located also
on the Development Package.

The following command can be issued:

RTI REL4EXAM

All examples will go to Immediate Mode after executing to allow code examination and
re-execution. When ready to access a different example, the command LOAD RUN will
re-display the startup menu.

NOTE: The menu program is called START.

The REL4EXAM boot program does the following:

• Sets the color options.

• Sets INSERT mode on for all operations.

• Modifies $KEYBOARD and $SCREEN to make the underline character be dis-
played as a true underline instead of a back-arrow under MS-DOS and MS-Win-
dows.

• Establishes a $DEVICE equivalence for NPLSYS.BS2. If this diskimage is
placed in a directory other than the current directory, this statement must be modi-
fied or example number 12 will fail.

Section 17.2 discusses the programming style used in the examples.

Section 17.3 provides the first example: a WHILE/WEND loop.

Section 17.4 contains a second example: a REPEAT/UNTIL loop.

Section 17.5 provides a third example: simple SWITCH/CASE using a FUNCTION.

Section 17.6 is a fourth example, introducing the use of modules (libraries.)

Section 17.7 provides a fifth example: a simple module with a FUNCTION and PUBLIC
section.

Overview EXTENDED EXAMPLES

17-2 NPL Programmers Guide

Section 17.8 provides a sixth example, using the PROCEDURE of Example 1 contained
in another module.

Section 17.9 contains a seventh example, which illustrates a recursively called function.

Section 17.10 is an eighth example: the QSORT routine.

Section 17.11 provides a ninth example, that illustrates the logical type of
SWITCH/CASE.

Section 17.12 includes a tenth example, using a more complex SWITCH/CASE state-
ments.

Section 17.13 provides an eleventh example, demonstrating the use of RECORDs and
FIELDs.

Section 17.14 is example twelve, illustrating more advanced uses of RECORDs and
FIELDs.

17.2 Programming Style Used in Examples

In all of the extended examples, every effort was made to incorporate as many Release
IV features as possible. The structured IF...ELSE...ENDIF is used, rather than the simple
IF/THEN/ELSE. Structured FOR...BEGIN...NEXT was used instead of the simple
FOR...NEXT. SWITCH/CASE statements are used instead of ON...GOTO or ON...GO-
SUB. FUNCTIONs and PROCEDUREs are used instead of DEFFN’ statements.

Where structured constructs are used, statements within the structure have been indented
to provide improved readability, clearly showing the flow of logic. This is a recom-
mended technique for programmers using NPL.

NOTE: In these examples, statements are shown on separate line numbers to make it easier
to refer to a specific statement in the following discussion. Except where noted, state-
ments need not be on separate lines.

EXTENDED EXAMPLES Programming Style Used in Examples

NPL Programmers Guide 17-3

17.3 Example 1: WHILE/WEND

The program "EX1NPL" demonstrates the use of the new structure construct WHILE-
WEND.

17.3.1 Program Listing

0005 ; EX1NPL - Simple example of WHILE/WEND
0007 PRINT HEX(03)
0010 DIM Counter
0020 Counter=10
0030 WHILE Counter>0
 : IF Counter=3
 : BREAK
 : ; allows exiting the loop with transfer outside of the loop to
 the following command after the LOOP
 : END IF
 : Counter=Counter-1
 : IF Counter=4
 : LOOP
 : ; allows skipping execution of remainder of the body of the loop
 with transfer to the WEND
 : END IF
 : PRINT Counter
 : WEND
0040 PRINT "Program Complete - LOAD RUN will reload Menu"

17.3.2 Discussion

This program demonstrates the use of the WHILE/WEND and IF ... ENDIF structures.
Line 30 contains the WHILE/WEND loop and also shows the use of LOOP and BREAK
statements.

This program never prints Counter= 4 because the LOOP statement transfers program
control to the WEND where the loop condition is evaluated (Counter> 0) and the pro-
gram continues back to the beginning of the loop. When Counter= 3 the program ends
due to the BREAK statement that transfers the program control to the statement follow-
ing the WEND (PRINT in line 40).

NOTE: The statement in line 30 "Counter= Counter-1" could be replaced by the new opera-
tor "-= " as follows: "Counter-= ". This change could be made in any code that uses
this type of statement.

Example 1: WHILE/WEND EXTENDED EXAMPLES

17-4 NPL Programmers Guide

General Comments
The above example is very simple, but effectively demonstrates how useful the LOOP
and BREAK statements can be.

17.4 Example 2: REPEAT/UNTIL

The program "EX2NPL" demonstrates the use of the new structure REPEAT-UNTIL.

17.4.1 Program Listing

0005 ; EX2NPL - Simple example of REPEAT/UNTIL
0007 PRINT HEX(07)
0010 DIM Counter
0020 Counter=10
0030 REPEAT
 : IF Counter=2
 : BREAK
 : ; allows exiting with transfer to the statement following the
 UNTIL
 : END IF
 : Counter=Counter-1
 : IF Counter=4
 : LOOP
 : ; allows skipping the remainder of the loop body with transfer
 to the UNTIL
 : END IF
 : PRINT Counter
 : UNTIL Counter=0
0040 PRINT "Program Complete - LOAD RUN will reload Menu"

17.4.2 Discussion

This program demonstrates the use of the new REPEAT/UNTIL and IF ... ENDIF struc-
tures. Line 30 contains the REPEAT/UNTIL structure and also illustrates the use of the
LOOP and BREAK statements.

The program will never print COUNTER= 4 because the LOOP statement transfers pro-
gram control to the UNTIL where the loop condition (Counter= 0) is evaluated. The pro-
gram continues back to the beginning of the loop. When Counter= 2 the program ends
due to the BREAK statement that transfers the program control to the statement follow-
ing the UNTIL (PRINT in line 40).

EXTENDED EXAMPLES Example 2: REPEAT/UNTIL

NPL Programmers Guide 17-5

General Comments
The above example is very simple, but effectively demonstrates how useful the LOOP
and BREAK statements can be.

17.5 Example 3: Simple SWITCH/CASE

The program "EX3NPL" demonstrates the use of the new structure SWITCH/CASE used
in conjunction with FUNCTIONs.

17.5.1 Program Listing

0010 ; EX3NPL - Simple example of SWITCH/CASE
0015 PRINT HEX(03)
0020 FUNCTION ’myfunc
0030 RETURN (2)
0040 END FUNCTION
0100 DIM SwitchVal,A
0110 A=1
0120 SwitchVal=24
0130 SWITCH ’myfunc
 : CASE 2
 : PRINT "first case"
 : CASE 55
 : PRINT "second case"
 : CASE 24
 : PRINT "third case"
 : CASE 48+A
 : PRINT "fourth case"
 : CASE
 : PRINT "default case"
 : END SWITCH
0140 PRINT "End of case"
0150 PRINT "Program Complete - LOAD RUN will reload Munu"

17.5.2 Discussion

The above program shows the use of a SWITCH/CASE construct that compares the
"case-expressions" to the value return by the ’myfunc function. As the function ’myfunc
returns a value of 2 (RETURN(2) in line 30), the program executes the statements follow-
ing CASE 2 and print "first case".

NOTE: CASE can use an expression instead of a value as with CASE 48+ A.

Example 3: Simple SWITCH/CASE EXTENDED EXAMPLES

17-6 NPL Programmers Guide

General Comments
SWITCH/CASE constructs, as demonstrated in the above example, are a very useful tool
in replacing the ON GOTO and ON GOSUB statements. Examples of SWITCH/CASE
constructs using logical conditions are discussed later in the chapter.

17.6 Example 4: Example Module (Library)

The programs "EX4NPL" and "FACT" calculate the factorial of a number entered by the
user. This example illustrates a recursive function and the use of external modules (a library).

17.6.1 Program Listing

Figure 1

0010 ;EX4NPL
0020 PRINT HEX(03)
0030 INCLUDE T "FACT"
0040 INPUT "Input the value to calculate factorial for ",X
0050 PRINT ’factorial(X)
0060 PRINT "Program Complete - LOAD RUN will reload Menu"

Figure 2

0010 ; FACT
0020 FUNCTION ’Factorial(Value)/PUBLIC :; Declare ’Factorial as
 Public Function
0030 DIM /RECURSIVE Answer :; This is a recursive variable
0040 IF Value<0 :; test the trivial case
 : RETURN (0)
 : END IF
0050 IF Value<=1 :; test the second trivial case
 : RETURN (1)
 : END IF
0060 Answer=Value*’Factorial(Value-1) :; Recursively calling itself
0070 RETURN (Answer)
0080 END FUNCTION

17.6.2 Discussion

Program "EX4NPL" in Figure 1 performs the following tasks:

EXTENDED EXAMPLES Example 4: Example Module (Library)

NPL Programmers Guide 17-7

Line Commentary
30 Contains an INCLUDE statement. The INCLUDE statement specifies that the

program file "FACT" on the currently selected diskimage file is to be loaded as a
module. This statement is executed at resolution time.

50 Demonstrates the use of a FUNCTION as a numeric expression. The value entered
by the operator is passed to the function as a parameter. The returned value of the
FUNCTION ’Factorial is what is printed.

Program "FACT" in Figure 2 illustrates use of a recursive function.

NOTE: The line numbers used in "FACT" overlap with those used in "EX4NPL". Line
numbers are local to each module so there is no conflict. Local variables are also
supported but are not used in this example.

The module contains only one function, ’Factorial. This function calculates the factorial
of the parameter it is passed. Specifically:

Line Commentary
20 Declares the function ’Factorial. This function has a single numeric parameter named

Value. This parameter is passed by value
30 Dimensions the recursive variable Answer. It is not necessary to explicitly dimension

all recursive variables.
40 Tests for a valid value. Factorials cannot be calculated for negative numbers.

NOTE: This program uses a new structured form of IF (which does not use the THEN key-
word). Two statements follow the IF (the comment and the RETURN statement).
Both are executed if the condition is true.

Line Commentary
50 Tests for the exit condition of the recursion loop. For a factorial calculation, the exit

condition occurs when the value reaches one.
60 Performs the actual work in this routine. ’Factorial is called recursively with Value

being decremented by one for each call. For each iteration, new copies of Answer
and Value are dynamically allocated.

70 Returns the result of the routine to the calling program.
80 The block terminator for the function.

Example 4: Example Module (Library) EXTENDED EXAMPLES

17-8 NPL Programmers Guide

General Comments
The recursion aspect of this example may make it difficult to follow for readers not famil-
iar with recursion. Functions are always recursive, but the recursive capability does not
have to be used. Most functions are not called recursively.

17.7 Example 5: Module using PUBLIC Sections

This program demonstrates how a program may be written so that the mainline performs
a required procedure (in this case, report from the "SALES" file), while also making the
code used to implement the program available to other modules by declaring them as
PUBLIC within a PUBLIC section. In this case, the ’Report procedure could also be
used by other modules. Refer to Example 2.

17.7.1 Program Listing

0100 ; module EX5NPL :Demonstrate a simple module with a Function
0105 PUBLIC
0110 ; contains ’Report format parameters
0120 DIM Format$32="###,###,###.##--"
 : ; default number format
0135 DIM Spec$1="_"
 : ; default underlines
0145 PROCEDURE ’Report(File$8,Device,Name_Rpt$50)/FORWARD
0150 END PUBLIC
0155 ; **
0160 ; Report is a typical procedure with no return value
0170 PROCEDURE ’Report(File$8,Device,Name_Rpt$50)/PUBLIC /BEGINS
0180 ; File$8 is the name of the file to read from
0190 ; Device is the device number where the file is located
0200 ; Name_Rpt$ contains the report title
0210 ;
0220 DIM Exit,Amount,Total
 : ;/RECURSIVE variables implied
0230 DIM U$64
0240 ; Exit and Amount are initialized to 0 each time ’Report is called
0250 GOSUB 340
 : ; goto the Initialize routine to prepare report
0260 GOSUB 410 : ; goto the ReadRecord routine to Read the first record
0270 WHILE Exit=0
 : ; repeat loop while Exit is still 0
0280 GOSUB 490
 : ; goto ProcessRecord routine to process record
0290 GOSUB 410
 : ; goto ReadRecord routine to read the next record
0300 WEND
 : ; marks the end of the body of the loop
0310 GOSUB 540
 : ; goto routine Finishup to complete the report

EXTENDED EXAMPLES Example 5: Module using PUBLIC Sections

NPL Programmers Guide 17-9

0320 RETURN
0330 ;
0335 ; **
0337 ;
0340 ; Initialize
0350 ; Print the title of the Report
0360 DATA LOAD DC OPEN T#Device,File$
0365 PRINT HEX(03): PRINT AT(4,1);Name_Rpt$: PRINT : PRINT
0370 Exit=0
 : ; clear the end of file condition
0380 Total=0
0390 RETURN
0400 ;
0405 ; **
0407 ;
0410 ;ReadRecord
0420 ; Read The next Record
0430 DATA LOAD DC #Device,Amount
0440 IF END
0450 Exit=1
 : ; set the end of file condition
0460 END IF
0470 RETURN
0480 ;
0485 ; **
0487 ;
0490 ; ProcessRecord
0500 PRINTUSING Format$,Amount
0510 Total=Total+Amount
0520 RETURN
0530 ;
0535 ; **
0537 ;
0540 ; Finishup
0550 U$=ALL(Spec$)
0560 PRINTUSING Format$,U$
0570 PRINTUSING Format$,Total
0590 DATA SAVE DC CLOSE #Device
0600 RETURN
0610 END PROCEDURE
0620 ;
0625 ; **
0627 ;
0630 ; Mainline
0640 DIM ReportSpec$1,Rpt_Title$50
0660 Rpt_Title$="Sales Report for October 1992"
0670 $DEVICE(/D33)="EXSNPL.BS2"
0680 SELECT #1/D33
0700 ’Report("SALES2",1,Rpt_Title$)
0800 PRINT "Program Complete - LOAD RUN will reload Menu"
0810 DATA 22.3,500.40,1200.34,33.5

Example 5: Module using PUBLIC Sections EXTENDED EXAMPLES

17-10 NPL Programmers Guide

17.7.2 Detailed Discussion

Line Commentary
0100 Illustrates the use of line format comments (starting with ";"). Line comments may

contain ":", and this is not treated as end of statement.
0105 Defines the start of the PUBLIC section for the module. By declaring a PUBLIC

section, the items in it which are marked as PUBLIC become usable by other
programs.
Indenting of the statements in a PUBLIC section is a useful way to highlight the
contents of the interface, and serves as a reminder that a matching END PUBLIC
statement is needed. Here, we have opted not to indent the statements in the
interface section.

0120 Defines Format$, with a maximum length of 32 bytes. As the comment indicates,
this is a format value used to print numbers. The initial value is a common one.

0135 Defines Spec$ with a maximum length of 1 byte. As the comment indicates, this is
the character used to print underlines, prior to a total.

0145 Declares the ’Report PROCEDURE and lists the parameters of the PROCEDURE.
Declaring the procedure as PUBLIC allows other modules to call it. The
FORWARD keyword indicates that the actual procedure definition will occur later.

0150 Declares the end of the default PUBLIC for this module. The publicly visible
elements of the module are the variables Format$ and Spec$ and the procedure
’Report.

0170 Redeclares the ’Report PROCEDURE and lists the parameters of the procedure. The
BEGINS keyword indicates that the procedure has been previously defined in a
FORWARD reference. The parameters of the procedure are listed in the order that
the arguments must be provided. In this example all the parameters are passed by
value (no POINTER keyword). The first parameter is a string, and has a maximum
length of 8 characters (if a longer string is passed, it would be truncated to 8). The
second parameter is a number, and the third is a string with a 50 character maximum
(Name_Rpt$).

Indenting of the statements in the body of a procedure is a useful way to highlight
the body of the procedure, and serves as a reminder that a matching END
PROCEDURE statement is needed. In this case, we have opted not to indent the
procedure body.

EXTENDED EXAMPLES Example 5: Module using PUBLIC Sections

NPL Programmers Guide 17-11

Line Commentary
0220 Exit, Amount and Total are dimensioned as (implicitly RECURSIVE) numeric

variables used by the PROCEDURE. Note that memory for these variables and for
the parameters of the procedure is not allocated until the procedure is called, and
they may not be referenced outside the body of the PROCEDURE. The memory for
the variables is released when the procedure RETURNs.

0230 U$ is dimensioned for use as a temporary (RECURSIVE) variable.
0250 A GOSUB is used to execute a local subroutine at line 340 to perform startup for the

report. A statement label could be used at line 340 (i.e., = Initialize), and the
subroutine could be referenced with it (i.e., GOSUB Initialize).

0260 A GOSUB is used to execute a local subroutine at line 410 to read the first record
from the file. A statement label could be used at line 410 (i.e., = ReadRecord), and
the subroutine could be referenced with it (i.e., GOSUB ReadRecord). Implicitly,
this subroutine sets the status variable Exit to a non-zero value when end of file is
reached.

0270 The WHILE statement indicates the start of a structured loop. The condition Exit= 0
tests to make sure end of file was not detected yet. The body of the loop (up to the
matching WEND statement on line 0300) is performed repeatedly as long as the
condition remains true.

0280 A GOSUB is used to execute a local subroutine at line 490 to process the last record
read. A statement label could be used at line 490 (i.e., = ProcessRecord), and the
subroutine could be referenced with it (i.e., GOSUB ProcessRecord). Indenting of
the statements in the body of a structured loop is a useful way to highlight the body
of the loop, and serves as a reminder that a matching WEND statement is needed.

0290 The next record of the file is read, again calling the subroutine at line 410
(ReadRecord.)

0300 The WEND statement marks the end of the body of the structured loop started by the
WHILE statement on line 0270. The condition in the WHILE statement is tested
again, and if it is still true the loop body (lines 0280 to 0290) is executed again.

0310 Once end of file is reached, the structured loop is complete and the local subroutine
at line 540 is called.

0320 This return statement returns control to the caller of the ’Report procedure. Memory
allocated to RECURSIVE variables is released. Since this is a procedure, no return
value is required (or permitted) on the RETURN statement.

0340 This statement (a REMark) marks the start of the Initialize subroutine. Here, a
statement label could be used to define the start of the subroutine.

0360 The file (name and device number specified by the parameters to the procedure) is
opened.

0370 The end of file flag (Exit) is cleared.

Example 5: Module using PUBLIC Sections EXTENDED EXAMPLES

17-12 NPL Programmers Guide

Line Commentary
0380 The report total is (Total) zeroed.
0390 This RETURN statement returns control to the caller of this subroutine (following

the GOSUB.)
0410 This statement (a REMark) marks the start of the ReadRecord subroutine. Here, a

statement label could be used to define the start of the subroutine.
0430 The next record is read from the file.
0440 The IF statement marks the start of a structured IF...ELSE...END IF block. The

system logical variable END is set to a true value by any DC type I/O (here the
DATA LOAD statement on line 430) if the end-of-file is reached.

0450 This statement makes up the block of statements executed when the IF statement is
true. The end of file indicator is set. Indenting of the statements in the true and false
blocks of an IF...ELSE...END IF structure is a useful way to highlight the limits of
the conditionally executed blocks, and serves as a reminder that a matching (ELSE
or) END IF statement is needed.

0460 The END IF statement marks the end of the structured IF...ELSE...END IF block
started on line 440. Here there is no ELSE section in the IF...ELSE...ENDIF
structure.

0470 This RETURN statement returns control to the caller of this subroutine.
0490 This statement (a REMark) marks the start of the ProcessRecord subroutine. Here, a

statement label could be used to define the start of the subroutine.
0500 The value (Amount) read from the current data record is printed, using a format

specified as part of the PUBLIC declaration.
0510 The value from the record is added in to the report total.
0520 This RETURN statement returns control to the caller of this subroutine.
0540 This statement (a REMark) marks the start of the Finishup subroutine. Here, a

statement label could be used to define the start of the subroutine.
0550 A temporary value is set to an underline value, using a character (typically -, = or

blank) chosen as part of the report format specification.
0560 The underline value is printed, using the same width as the field format specified for

the number.
0570 The total is printed, using the same format as the record amounts.
0590 The selected device is closed (to avoid accidental use by other DC statements).
0600 This RETURN statement returns control to the caller of this subroutine.
0610 The END PROCEDURE marks the end of the ’Report procedure body. After this

statement, parameters and variables defined within the procedure body (e.g., Device,
Total, Amount) may no longer be referenced (references revert to whatever meaning
they had before the PROCEDURE declaration).

EXTENDED EXAMPLES Example 5: Module using PUBLIC Sections

NPL Programmers Guide 17-13

Line Commentary
0640 This statement declares the variables ReportSpec$ and Rep_Title$.
0700 The ’Report procedure is called to print the report, using a file called "SALES2" on

the current device #1 address (which is previously defined via a SELECT #1
statement in line 680.)

General Comments
This program demonstrates how a program may be written so that the mainline performs
a required procedure (in this case, report from the "SALES2" file), while also making the
code used to implement the program available to other modules by declaring them as
PUBLIC within a PUBLIC section. In this case, the ’Report procedure could also be used
by other modules.

The program also demonstrates the use of GOSUB statements in the body of the PROCE-
DURE. These type of statements may be replaced by ’local’ subroutines. Use of local
subroutines (defined by GOSUB statements) could also have been defined as PROCE-
DURES or simply entered as in-line statements in the ’Report procedure body. However
by defining them as local subroutines within the procedure body has a couple of benefits:

• Use of the subroutines makes the high-level flow of the PROCEDURE clearer
than in-line statements would be. This advantage becomes more obvious as the
size and complexity of the component subroutines increases.

• Code need not be duplicated where it is used more than once (e.g., ReadRecord).

• Parameters common to some or all the subroutines (e.g., the Device number,
Spec user-type and Amount fields) need not be passed as parameters.

• Where code is indented to highlight the structure of code, indenting levels can be
kept within a legible limit by extracting some code as a local subroutine, leaving
lots of room on each line for comments.

• The program illustrates the use of a structured WHILE loop.

NOTE: Because the condition which causes the exit of the loop is set by the last record read,
a test for end of file is required before entering the loop in case the file is empty, and
an additional read to get the next record before the end of the loop. An alternative
loop which would avoid calling ReadRecord could have been (replacing lines 0260-
0300):

Example 5: Module using PUBLIC Sections EXTENDED EXAMPLES

17-14 NPL Programmers Guide

0260 WHILE TRUE : ; loop until BREAK exits
0270 GOSUB 410 : ; (ReadRecord) - read record to process
0280 IF Exit<>0 THEN BREAK : ; test for end of file
0290 GOSUB 490 : ; (ProcessRecord) - process a record
0300 WEND : ; end of loop until BREAK exits

17.8 Example 6: Module using PROCEDURE

This example assumes that the program of Example 5 is stored on the default (#0)
diskimage with the name "EX5NPL".

This program demonstrates how a module may be written so that the mainline performs a
required function (in this case, report from the "PURCHASE" file), by using previously
written procedures that are available within another module’s PUBLIC section. For ex-
ample, the ’Report procedure was already written, and is suitable for our purpose.

17.8.1 Program Listing

0100 ;module EX6NPL
0110 INCLUDE T "EX5NPL"
 : ; defines ’Report and ReportSpec
0115 ; Location of Sales2 file changed but the changes will be made
only here
0120 DIM _Sales2_Device=2
 : ; file number to use
0125 DIM _Sales2_Platter$="D12"
 : ; location of SALES2 file
0128 DIM _Rpt_Title$="Sales for April"
 : ; new title of report
0130 ; Mainline
0155 $DEVICE(<_Sales2_Platter$>)="EXSNPL.BS2"
0160 SELECT #_Sales2_Device/D12
0170 ’Report("NEWSALE",_Sales2_Device,_Rpt_Title$)
0180 PRINT "Program Complete - LOAD RUN will reload Menu"

EXTENDED EXAMPLES Example 6: Module using PROCEDURE

NPL Programmers Guide 17-15

17.8.2 Detailed Discussion

Line Commentary
0110 The INCLUDE statement indicates that, to run, this module needs information in

PUBLIC sections defined elsewhere. The file with the interface information is
located on the default platter address with the file name "EX5NPL". The EX5NPL
module is loaded automatically any time the EX6NPL module is run. On the
INCLUDE statement, no specific module name is given (no "TO xx" specification)
so the module name given to the EX5NPL program is, by default, the same as the
file name ("EX5NPL".)

0120 The device number and platter address of the purchases file are defined here as
constants on the next few lines. Although the location of the file won’t change
during execution, according to the comments, this file appears to move on occasion,
so the values are assigned to constants rather than written into the code as literals.
By defining these as constant values, programs are inhibited from unintentionally
changing the values elsewhere.

0125 Define the platter address for the new sales file.
0160 The program ensures that the selected file number maps to the correct platter address.
0170 The public ’Report procedure (defined in EX5NPL’s PUBLIC section) is called,

with parameters for the purchases file.

General Comments
This program demonstrates how a module may be written so that the mainline performs a
required function (in this case, a report from the "NEWSALE" file), by using previously
written procedures that have been made available within another module’s PUBLIC sec-
tion. The ’Report procedure was already written, and is suitable for our purpose.

NOTE: A complete understanding of the EX6NPL module depends to some extent on know-
ing the contents of the interface provided by EX5NPL. As a minimum, the systems
documentation for any module which is to be made publicly available should in-
clude the names of the available PUBLIC sections, and within each PUBLIC the
names of PROCEDUREs which are provided. A description of the parameters and
return codes of FUNCTIONs should also be provided. Depending on the complexity
of the system, cross references of functions to interface names and module names
may also be useful.

Example 6: Module using PROCEDURE EXTENDED EXAMPLES

17-16 NPL Programmers Guide

The use of constants allows values which are unchanging to be given a name. While the
values could also be assigned to variables, the use of constants has a few clear benefits:

• The names of constants may describe their use more clearly than a simple num-
ber or string would do, (e.g., instead of pulling the magic number 32767 out of a
hat, the name _LARGEST_16_BIT_SIGNED_INTEGER more clearly describes
the derivation of the number.)

• Constants, unlike other variables, may not be assigned new values (except where
they are defined). Inadvertent changes to the value are avoided.

• Program logic may be clearer to follow if some values are evidently constant,
(e.g., in the logical condition IF _LARGEST_ALLOWED_VALUE > X, it is
clearly the value in X that is being tested).

• Especially in PUBLIC sections, PUBLIC constants can make special values
which must be supplied easier to remember, resulting in less need to refer to inter-
face documentation.

17.9 Example 7: A Recursive Function

This illustrates the use of a recursive function.

For deeply recursive functions, it is quite possible that a lot of excess calculations will be
done, depending on how efficiently the function is implemented. In the example, to com-
pute ’Fibonacci(20), the value ’Fibonacci(0) is computed 4181 times and ’Fibonacci(1) is
computed 6765 times. In this case, some simple changes to the algorithm (such as "re-
membering" computed values in an array) could drastically improve performance. In
other cases, where the relationship between values is not so simply defined, this may not
be an option.

The example could be more simply formulated, eliminating the Term1 and Term2 vari-
ables and computing Result= ’Fibonacci(Num-1)+ ’Fibonacci(Num-2) for the non-trivial
case.

EXTENDED EXAMPLES Example 7: A Recursive Function

NPL Programmers Guide 17-17

17.9.1 Program Listing

0100 ;module EX7NPL
0102 PRINT HEX(03)
0105 ; this prigram demonstrates the use of a FUNCTION to determine

 the well known Fibonacci number sequence, of which the first few
terms are: 1, 1, 2, 3, 5, 8, 13, ...
0100 FUNCTION ’Fibonacci(Num)
0110 DIM Term1,Term2,Result
 : ; /RECURSIVE is implied
0120 Num=INT(Num)
 : ; Make sure an integer
0130 IF Num<=1
 : ; all well behaved recursions end some time...
0140 Result=1
 : ; definition of Fibonacci(0) and Fibonacci(1)
0150 ELSE : ; now handle the non-trivial case
0160 Term1=’Fibonacci(Num-1)
 : ; get preceding term
 : Term2=’Fibonacci(Num-2)
 : ; and the one before that
0170 Result=Term1+Term2
 : ; add them to get the result
0180 END IF
0185 RETURN(Result)
0190 END FUNCTION ’Fibonacci
0200 ; Mainline
0210 FOR Index=1 TO 17 BEGIN
0220 PRINT Index;’Fibonacci(Index)
0230 NEXT Index
0240 PRINT ’Fibonacci(18)/’Fibonacci(17),(SQR(5)+1)/2
0250 PRINT "Program Complete - LOAD RUN will reload Menu"

17.9.2 Detailed Discussion

Line Commentary
0100 Declares a numeric function ’Fibonacci, which takes one parameter. This function

computes the well-known Fibonacci number sequence, of which the first few terms
are: 1, 1, 2, 3, 5, 8, 13, 21, ... and subsequent terms are generated by adding the
previous two numbers in the sequence.

0110 Dimensions numerics Term1 and Term2 to hold intermediate values used by the
function. Because these declarations are in a function, they are by default allocated
as recursive variables. This is important, since the function calls itself.

0120 As a precaution against a bad (fractional) parameter, we truncate the parameter to an
integer.

0130 To end recursion, some values of the function must be defined without the function
calling itself! For a number less than or equal to 1.

Example 7: A Recursive Function EXTENDED EXAMPLES

17-18 NPL Programmers Guide

Line Commentary
0140 The true block of the IF...ELSE...END IF structure handles predefined values. By

definition, the first two terms of the sequence are ’Fibonacci(0)= 1, and
’Fibonacci(1)= 1.

0150 Marks the end of the true block of the IF...ELSE...END IF structure.
0160 The false block of the IF...ELSE...END IF structure handles other values. By

definition, for later values ’Fibonacci(X) we must compute the previous two terms,
i.e., ’Fibonacci(X-2) and ’Fibonacci(X-1).

0170 The result of the function in this case is the sum of the two previous terms.
0180 Marks the end of the IF...ELSE...END IF structure.
0185 Defines the return value of the function.
0190 Marks the end of the body of the FUNCTION ’Fibonacci.
0210 Mainline of the program - print the first 20 terms. The FOR/BEGIN statement marks

the start of a structured loop. The index variable T will take on values from 1 to 20.
0220 Prints the index and the function value for the loop index. Indenting of the

statements in the body of a FOR/BEGIN loop is a useful way to highlight the limits
of the loop, and serves as a reminder that a matching NEXT statement is needed.

0230 Matching NEXT statement marks the end of the FOR/BEGIN structured loop.
0240 Shows the ratio of the last two computed terms in the sequence, and a magic

expression which they should approximate.

General Comments
Much like Example 3, this example is a good illustration of the concept of recursion,
which may be difficult to follow for those not familiar with the idea.

17.10 Example 8: QSORT Routine

This example, "QSORT", illustrates a more complex program containing a series of PRO-
CEDUREs and FUNCTIONs. The program sorts 2,000 random numbers.

EXTENDED EXAMPLES Example 8: QSORT Routine

NPL Programmers Guide 17-19

17.10.1 Program Listing

0010 ;--’Swap--
 : ; A utility to swap two numerics X and Y
 : ; Two by-reference parameters are used
 : PROCEDURE ’Swap(/POINTER X,/POINTER Y)
 : DIM temp
 : temp=X
 : X=Y
 : Y=temp
 : END PROCEDURE ’Swap
0040 ;---stats
 : ;Variables used to keep statistics about how often and
 : ;How deeply recursive ’Qsort is called
 : DIM MaximumRecursionLevel,CallsToQsort
0050 ;-------------------------’Qsort
 : ;Quick sort elements LowIndex to HighIndex of array X()
 : ;/PUBLIC decl. is required so the name can be specified indirectly
 : PROCEDURE ’Qsort(/POINTER X(),LowIndex,HighIndex)/PUBLIC
 : ;default declaration is /RECURSIVE, but this is just a reminder...
 : ;DIM /RECURSIVE TopPart
 : ;it turns out these variables could also be statically allocated.
 : ;But if you don’t want to worry, just declare them inside the
 : ;function body.
 : DIM PivotIndex,Pivot,ScanIndex
0060 ;This value must be static, to keep it from being reinitialized by
 : ;each call to ’Qsort.
 : DIM /STATIC LevelOfRecursion
 : ;Update statistics and put something on the screen to show how deep
 : SELECT PRINT 005
 : CallsToQsort=CallsToQsort+1
 : PRINT "X";
 : LevelOfRecursion=LevelOfRecursion+1
 : IF LevelOfRecursion>MaximumRecursionLevel
 : ;We have reached new heights (depths?) of recursion, make a note
 : MaximumRecursionLevel=LevelOfRecursion
 : END IF
0070 ;All good recursion must eventually come to a trivial case...
 : DIM Nelements
 : Nelements=HighIndex-LowIndex+1
 : IF Nelements2
 : ;reduced to trivial cases, (1 or 2 elements)
 : IF X(LowIndex)>X(HighIndex)
 : ’Swap(X(LowIndex),X(HighIndex))
 : END IF
 : ELSE
 : PivotIndex=LowIndex+INT(RND(1)*Nelements)R : ;pick a pivot
 : Pivot=X(PivotIndex)
 : ’Swap(X(PivotIndex),X(HighIndex))
 : ;put it in the top part
 : TopPart=HighIndex
 : ;start index of top part
 : ScanIndex=LowIndex
 : ;first element not yet looked at...
0080 REPEAT
 : IF X(ScanIndex)>Pivot
 : ;does entry belong in top part?

Example 8: QSORT Routine EXTENDED EXAMPLES

17-20 NPL Programmers Guide

 : TopPart=TopPart-1
 : ;yes, make the top part bigger
 : ’Swap(X(ScanIndex),X(TopPart))
 : ;put in top part
 : ELSE
 : ScanIndex=ScanIndex+1
 : ;no, next index
 : END IF
 : UNTIL ScanIndex>=TopPart
 : ;finished when scanned up to top part
 : IF TopPart=LowIndex
 : ;unlucky choice of pivot, it was the smallest!
 : ;swap it to Lo to ensure total size is getting smaller
 : ;on each step of the recursion.
 : ’Swap(X(LowIndex),X(HighIndex)
 : TopPart=LowIndex+1
 : END IF
 : ;Now have LowIndex... Center-1 all <=Pivot
 : ;and Center...HighIndex are all >Pivot
 : ’Qsort(X(),LowIndex,TopPart-1)
 : ’Qsort(X(),TopPart,HighIndex)
 : END IF
 : PRINT HEX(082008);
 : LevelOfRecursion=LevelOfRecursion-1
 : END PROCEDURE
0085 PROCEDURE ’Display(/POINTER _Array(),Nelements,/POINTER _Image$)
 : DIM Index
 : For Index=1 TO Nelements BEGIN
 : PRINTUSING "-##.##;_Array(Index);
 : IF MOD(Index,13)=0 THEN PRINT
 : NEXT Index
 : PRINT
 : END PROCEDURE ’Display
0090 ;---mainline-
 : DIM _ArraySize=2000, DIM T
 : DIM _IndirectQsortName$="Qsort"
 : DIM NumberList(_ArraySize)
 : T=RND(0)
 : ;show consistent results...
 : FOR T=1 TO _ArraySize BEGIN
 : NumberList(T)=ROUND(RND(1)*100,2)
 : NEXT T
 : ’Display(NumberList(),_ArraySize,"+##.##")
 : ’<_IndirectQsortName$>(NumberList(),1,_Arraysize)
 : ’Display(NumberList(),_ArraySize,"+##.##")
 : PRINT "Maximum depth of recursive calls";MaximumRecursionLevel
 : PRINT "Calls to Qsort function required";CallsToQsort
 : CallsToQsort,MaximumRecursionLevel=0
 : ;reset for next call
 : ’Qsort(NumberList(),1,_ArraySize)
 : PRINT "When already sorted";MaximumRecursionLevel;CallsToQsort
 : END

EXTENDED EXAMPLES Example 8: QSORT Routine

NPL Programmers Guide 17-21

17.10.2 Discussion

The program makes use of a whole series of Release IV features like PROCEDUREs, re-
cursive FUNCTIONs, POINTERs, and other structure constructs.

General Comments
The above program makes use of features demonstrated by the previous examples and is
well documented.

17.11 Example 9: Logical SWITCH/CASE

Program "EX9NPL" demonstrates the use of the logical form of the SWITCH/CASE con-
struct. The logical SWITCH/CASE allows a complex expression to be specified on
CASE statements. The first (and only the first) CASE to be evaluated as TRUE is the
CASE that is executed. This form of SWITCH/CASE provides a powerful alternative to
complex nested IF statements.

17.11.1 Program Listing

0010 ; EX9NPL - Simple example of Logical SWITCH/CASE
0015 PRINT HEX(03)
0020 DIM A,B,C
0030 A=1
 : B=2
 : C=3
0040 SWITCH
 : CASE A>1
 : PRINT "case 1"
 : CASE B<C
 : PRINT "case 2"
 : CASE C=A+B
 : PRINT "case 3"
 : CASE
 : PRINT "default case"
 : END SWITCH
0050 PRINT "Program Complete - LOAD RUN will reload Menu"

17.11.2 Discussion

The result of this program is that "case 2" is printed because B is the first case to evaluate
as TRUE. "case 3" does not print because only the first CASE to meet the requirements
is executed.

Example 9: Logical SWITCH/CASE EXTENDED EXAMPLES

17-22 NPL Programmers Guide

General Comments
This is another simple example of using SWITCH/CASE, specifically with logical CASE
statements. Example 3 illustrates the use of simpler numeric CASE statements.

17.12 Example 10: Complex SWITCH/CASE

Program "EX10NPL" demonstrates the use of complex nested SWITCH/CASE logic.

17.12.1 Program Listing

0010 ;EX10NPL - nested switch/case
0020 ;This example demonstrates a good alternative to fall through CASE
 : ; NPL does not support fall through CASE
0025 DIM Error_Code,Error_Sub_Code
0030 Error_Code=12
 : Error_Sub_Code=3
0040 SWITCH
 : CASE Error_Code<10
 : PRINT "Case 1"
 : CASE Error_Code>=10 AND Error_Code<20
 : ; Here is some stuff we want to do for all codes from 10-19
 : PRINT "case 2; error code>=10 and <20"
 : SWITCH Error_Code
 : ; Now we want to do some additional stuff for each specific code
 : CASE 10
 : PRINT "case 1, level 2 - error code=10"
 : CASE 11
 : PRINT "case 2, level 2 - error-code=11"
0050 CASE 12
 : PRINT "case 3, level 2 - error-code=12"
 : SWITCH Error_Sub_Code
 : ; Now we want a third level based on sub-error-code
 : CASE 1
 : PRINT "case 1, level 3"
 : CASE 2
 : PRINT "case 2, level 3"
 : CASE 3
 : PRINT "case 3, level 3"
 : CASE
 : PRINT "default case, level 3"
 : END SWITCH
 : CASE
 : PRINT "default case, level 2"
 : END SWITCH
 : PRINT "Still at case 2, level 1, error-code>=10 and <20"
 : CASE
 : PRINT "default case, level 1"
 : END SWITCH
0060 PRINT "Program Complete - LOAD RUN will reload Menu"

EXTENDED EXAMPLES Example 10: Complex SWITCH/CASE

NPL Programmers Guide 17-23

17.12.2 Results

case 2; error code >=10 and <20
case 3, level 2 - error-code=12
case 3, level 3
Still at case 2, level 1, error-code >=10 and <20
Program Complete - LOAD RUN will reload Menu

17.12.3 Discussion

In this example, the program is required to:

• Execute one group of statements for all Error_Codes within a certain range.

• Execute additional logic for specific Error_Codes.

• Execute further specific logic for Error_Sub_Codes if the Error_Code is a spe-
cific value.

• Execute more statements for all Error_Codes within the range.

This example shows how complex logic can be greatly simplified by the use of
SWITCH/CASE.

General Comments
This example provides a more comprehensive illustration of using SWITCH/CASE state-
ments in a real-world scenario. It shows how structures can be nested within other struc-
tures, providing endless logical combinations, yet remaining well-organized.

17.13 Example 11: RECORDS/FIELDS

Program "EX11NPL" demonstrates the use of the new RECORD/FIELD construct. The
following example demonstrates some more sophisticated features of RECORDs/FIELDs.

Example 11: RECORDS/FIELDS EXTENDED EXAMPLES

17-24 NPL Programmers Guide

17.13.1 Program Listing

0010 ; EX11NPL - Simple Example of Records/Fields
0020 RECORD cr
 : FIELD name$=HEX(A020)
 : FIELD amount=HEX(5205)
 : FIELD last_pay=HEX(F108)
 : END RECORD cr
0030 DIM cust_record$#RECORDLENGTH(cr),A$1
0040 cust_record$.name$="Harry"
0050 cust_record$.amount=123.45
0060 cust_record$.last_pay=678.91
0070 LIST DIM * cust_record$
0080 KEYIN A$
0090 cust_record$.amount=cust_record$.amount+32.78
0100 PRINT "32.78 added to Amount - new value = ";cust_record$.amount
0110 DIM new_cust_record$#RECORDLENGTH(cr)
0115 KEYIN A$
0120 new_cust_record$.name$="Frank"
0130 new_cust_record$.amount=567.89
0140 new_cust_record$.last_pay=123.45
0150 LIST DIM * new_cust_record$
0160 LIST DIM * cust_record$
0170 PRINT "Program Complete - LOAD RUN will reload Menu"

17.13.2 Results

DIM cust_record$45
 "Harry " HEX(4861 7272 7920 2020 2020 2020 2020 2020)
STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
STR(33) "..î4\.....3¢ç" HEX(0000 1234 5C00 0000 0109 33FF FE)
32.78 added to Amount - new value = 156.23
DIM new_cust_record$45
 "Frank " HEX(4672 616E 6B20 2020 2020 2020 2020 2020)
STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
STR(33) "..Vxù....09¢ç" HEX(0000 5678 9C00 0000 0030 39FF FE)
DIM cust_record$45
 "Harry " HEX(4861 7272 7920 2020 2020 2020 2020 2020)
STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
STR(33) "..äb......3¢ç" HEX(0000 1562 3C00 0000 0109 33FF FE)
Program Complete - LOAD RUN will reload Menu

EXTENDED EXAMPLES Example 11: RECORDS/FIELDS

NPL Programmers Guide 17-25

17.13.3 Discussion

Line Commentary
0020 Defines a logical RECORD with three fields. In this example, the field specification

is in the form of $PACK specifications. Name$ is an alpha field of length 32 decimal
(20 binary). Amount is a numeric field stored in a packed decimal format with 2
decimal positions. Last_Pay is a numeric field stored in NPL internal floating point
format.

The record "cr" does not occupy physical storage. Rather this is a logical structure
used to access other variables.

0030 The buffer variable Cust_Record$ is defined. The length for Cust_Record$ is
established using the #RECORDLENGTH function which returns the number of
bytes required to store the specified logical record (in this case "cr").

0040 The logical FIELD Name$ within variable Cust_Record$ is set to a value of "Harry".
Based on the definition of logical record "cr", NPL knows that Name$ is the first
field in the record and that it is an alpha field with a length of 32. Therefore, this
statement is equivalent to:

STR(Cust_Record$,1,32)=" Harry"

0050 The logical FIELD Amount within Cust_Record$ is set to a value of 123.45. Based
on the definition of logical record "cr", NPL knows that Amount is a packed decimal
field of length 5 starting at byte 33. Therefore this statement is equivalent to:

$PACK (F= HEX(5205)) STR(Cust_Record$,33,5) FROM 123.45

0060 Equivalent to:

$PACK (F= HEX(F108)) STR(Cust_Record$,38,8) FROM 678.91

0070 The LIST DIM * statement shows the contents of Cust_Record$ at this point.
0090 The Amount FIELD within Cust_Record$ is incremented by 32.78. This is

equivalent to:

$UNPACK (F= HEX(5205)) STR(Cust_Record$,33,5) TO X

X=X+ 32.78

$PACK (F= HEX(5205)) STR(Cust_Record$,33,5) FROM X

0100 The results of the last operation are displayed by directly printing the current value of
the Amount FIELD from Cust_Record$.

0110 A second record buffer is defined.

Example 11: RECORDS/FIELDS EXTENDED EXAMPLES

17-26 NPL Programmers Guide

The remainder of the program places values into the new record buffer using the same
logical RECORD "cr". This illustrates that logical RECORD "cr" is independent of
physical storage.

17.14 Example 12: Complex Use of RECORDs

Program "EX12NPL" demonstrates advanced features of the RECORD/FIELD imple-
mentation including:

• Use of mnemonic field specifications

• Use of indirect field specifications

• Use of FIELD functions

17.14.1 Program Listing

0010 ; EX12NPL
0015 DIM T$32
0020 INCLUDE T/D21,"PCKFIELD"
0030 USES PackFormats
0040 RECORD /PUBLIC cr
 : FIELD name$=HEX(A020)
 : FIELD amount=’FieldType$(_PACK_IBM_PACKED_DECIMAL_FORMAT,2,5)
 : FIELD last_pay=’FieldType$ (_PACK_FLOATING_POINT_FORMAT,
 _PACK_BASIC2C_INTERNAL_NUMERIC_FORMAT,8)
 : END RECORD cr
0050 DIM cust_record$#RECORDLENGTH(cr),A$1
0060 cust_record$.name$="Harry"
0070 cust_record$.amount=123.45
0080 cust_record$.last_pay=678.91
0090 LIST DIM * cust_record$
0100 KEYIN A$
0110 cust_record$.amount=cust_record$.amount+32.78
0120 PRINT "32.78 added to Amount - new value = ";cust_record$.amount
0130 DIM new_cust_record$#RECORDLENGTH(cr)
0140 KEYIN A$
0145 T$="name$"
0150 new_cust_record$.<T$>$="Frank"
0155 T$="amount"
0160 new_cust_record$.<T$>=567.89
0170 new_cust_record$.last_pay=123.45
0180 LIST DIM * new_cust_record$
0190 KEYIN A$
0200 PRINT ,"Field Start, Field Length, Field Format"
0210 PRINT " Name$ ",#FIELDSTART(.name$),#FIELDLENGTH(.name$),

: HEXPRINT $FIELDFORMAT(.name$)

EXTENDED EXAMPLES Example 12: Complex Use of RECORDs

NPL Programmers Guide 17-27

0220 PRINT " Amount ",#FIELDSTART(.amount),#FIELDLENGTH(.amount),
: HEXPRINT $FIELDFORMAT(.amount)

0230 PRINT " Last_Pay ", #FIELDSTART(.last_pay),
 #FIELDLENGTH(.last_pay),
: HEXPRINT $FIELDFORMAT(.last_pay)

0240 PRINT "Recordlength = ";#RECORDLENGTH(cr)
0250 KEYIN A$
0260 $UNPACK(F=$FIELDFORMAT(.amount)) STR(cust_record$,

 #FIELDSTART(.amount), #FIELDLENGTH(.amount)) TO A
 : PRINT A
0270 PRINT "Program Complete - LOAD RUN will reload Menu"

17.14.2 Results

DIM cust_record$45
 "Harry " HEX(4861 7272 7920 2020 2020 2020 2020 2020)
STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
STR(33) "..î4\.....3¢ç" HEX(0000 1234 5C00 0000 0109 33FF FE)
32.78 added to Amount - new value = 156.23
DIM new_cust_record$45
 "Frank " HEX(4672 616E 6B20 2020 2020 2020 2020 2020)
STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
STR(33) "..Vxù....09¢ç" HEX(0000 5678 9C00 0000 0030 39FF FE)
 Field Start, Field Length, Field Format
 Name$ 1 32 A020
 Amount 33 5 5205
 Last_Pay 38 8 F108
Recordlength = 45
 156.23
Program Complete - LOAD RUN will reload Menu

17.14.3 Discussion

This example is based on example 11 above. Points from that discussion that are un-
changed are not repeated.

Line Commentary
0020 Module "PCKFIELD" is INCLUDEd. This module is required to use

mnemonic field type specifications.

Example 12: Complex Use of RECORDs EXTENDED EXAMPLES

17-28 NPL Programmers Guide

Line Commentary
0030 The PUBLIC section PackFormats is specified in the USES statement. This

allows this program to use all PUBLIC variables, functions, and procedures
declared as PUBLIC in section PackFormats. The module "PCKFIELDS"
has two PUBLIC sections. PackFormats is used to provide mnemonic
descriptions for $PACK formats. NDMFormats is used to provide mnemonic
descriptions using NDM field types. In this example we are using only the
$PACK mnemonics.

0040 The RECORD "cr" is declared as PUBLIC. This is necessary to allow
indirect FIELD specification for FIELDs defined in this RECORD.
The Amount and Last_Pay field specifications are defined
using the ’FieldType$ FUNCTION from PCKFIELDS.
Parameters to this FUNCTION are mnemonic PUBLIC
CONSTANTS established by PCKFIELDS. This function
actually returns the $PACK specification in HEX that is used
to format the field. The module PCKFIELDS is not scramble
protected - it may be examined.

0150 This illustrates the use of indirect FIELD references. The name of the field
being referenced is contained in T$ (set at line 145). The $ in "name$" is
not required.

0170 Another example of indirect field reference.
0210 This statement illustrates the use of the new FIELD functions. The attributes

of the Name$ FIELD are printed.
0220 The attributes of the Amount FIELD are printed. The field format displays as

5205 - not the mnemonic specified in line 40.
0260 This statement $UNPACKs the Amount FIELD using field functions to

determine start position, length, and field format. The field name itself could
be contained in a variable. This illustrates the high degree of abstraction that
is available using RECORDS/FIELDS.

EXTENDED EXAMPLES Example 12: Complex Use of RECORDs

NPL Programmers Guide 17-29

APPENDIX A

UPGRADING OLDER NPL CODE

A.1 Compatibility with Earlier Revisions

Existing applications require no change to run under NPL Release IV. However, develop-
ers are encouraged to spend some time exploring the advantages of NPL’s new productiv-
ity and functionality under Release IV. Once developers become aware of the features of
NPL Release IV, and what those features are capable of, they can selectively implement
the features that best suit their applications.

When making changes to older NPL code (developed prior to Release IV), it is important
to note that Release IV is fully upwardly compatible with Release III code. Release IV is
also downwardly compatible with Release III, provided no Release IV specific features
are used.

The remainder of this Appendix addresses specific issues NPL developers should con-
sider when working with NPL Release IV.

UPGRADING OLDER NPL CODE Compatibility with Earlier Revisions

NPL Programmer’s Guide A-1

A.2 Immediate Benefits of Modularization

Immediate benefits can be achieved by moving subroutines written using the GO-
SUB’/DEFFN’ interface into a separate subroutine module. This requires that developers
identify return value variables, and incorporate these as PUBLIC variables within a PUB-
LIC section or as POINTERS. In addition, the user-callable entry points in the interface
section must be identified.

NOTE: If subroutines use numbered DEFFN’s as call-backs, these must also be identified as
PUBLIC in the calling program.

Benefits:

• Immediately eliminates the problem of line number conflicts with mainline code.

• Reduces the number of potential conflicts with variable names since variables
other than those used to return values are private to the function module.

• The mainline module can freely LOAD various applications without concern for
certain line number ranges which contain subroutines.

• Program overlays can resolve faster, since the subroutine module does not re-
quire re-resolution at each step.

• Modifications to a mainline module are simplified since the program text no
longer includes the subroutine code.

• Subroutine lines no longer interfere with operations like LIST [V,#,’,text], RE-
NUMBER, etc.

• Debugging efforts can be focused on a specific module, making TRACE and
STEP operations more useful since they can ignore operations in previously
tested code.

Refer to Chapter 4 for a complete discussion on working with Release IV’s programming
constructs.

Immediate Benefits of Modularization UPGRADING OLDER NPL CODE

A-2 NPL Programmer’s Guide

A.3 Immediate Benefits of Long Variable Names

Long Identifier Names (LINs) improve the readability of application code and, in turn, de-
crease program maintenance. Programs can easily be revised to use long variable names
instead of short ones by using the RENAME V command. In addition, descriptive state-
ment labels may be added to the start of subroutines, allowing them to be called by name
instead of by number.

Benefits:

• Code becomes more self-documenting.

• Large modules can be easily created without worrying about variable name con-
flicts.

Disadvantages:

• Some additional overhead in object file size, memory requirements and load time
is imposed by long identifiers.

A.4 Upgrading Code Containing GOTO #

Applications that make frequent use of the ON/GOTO conditional statements can be
adapted to SWITCH/CASE constructs.

UPGRADING OLDER NPL CODE Immediate Benefits of Long Variable Names

NPL Programmer’s Guide A-3

For example, if the old code was as follows:

0000 ON X GOTO 100,200,300 :REM Lookup type (assume X=1,2,3 only)
0100 INPUT "Name",A$<
 :IF A$=" " THEN 900<
 :GOSUB ’DoName<
 :GOTO 100
0200 INPUT "Address",A$<
 :IF A$=" "THEN 900<
 :GOSUB ’DoAddress<
 :GOTO 200
 0300 INPUT "ZIP",A$<
 :IF A$=" "THEN 900<
 :GOSUB ’Zip<
 :GOTO 300
0900 REM end case

This is not the same as the following incorrect code:

0000 SWITCH X :REM Lookup type (assume X=1,2,3 only)
0100 CASE 1<
 :INPUT "Name",A$<
 :IF A$=" " THEN 900<
 :GOSUB ’DoName<
 :GOTO 100
 0200 CASE 2<
 :INPUT "Address",A$<
 :IF A$=" "THEN 900<
 :GOSUB ’DoAddress<
 :GOTO 200
 0300 CASE 3<
 :INPUT "Zip",A$<
 :IF A$=" "THEN 900<
 :GOSUB ’Zip<
 :GOTO 300
 0900 END SWITCH

The correct code is:

 0000 SWITCH X :REM Lookup type (assume X=1,2,3 only)<
 :CASE 1
 0100 INPUT "Name",A$<
 :IF A$=" " THEN 900<
 :GOSUB ’DoName<
 :GOTO 100<
 :CASE 2
 0200 INPUT "Address",A$<
 :IF A$=" "THEN 900<
 :GOSUB ’DoAddress<
 :GOTO 200<
 :CASE 3
 0300 INPUT "Zip",A$<
 :IF A$=" "THEN 900<
 :GOSUB ’Zip<
 :GOTO 300
 0900 END SWITCH

Upgrading Code Containing GOTO # UPGRADING OLDER NPL CODE

A-4 NPL Programmer’s Guide

Refer to Chapter 4 for a complete discussion on working with NPL’s structured con-
structs.

A.5 Useful NPL Enhancements

In addition to the major features of NPL Release IV, which are discussed in Chapter 4, a
series of small yet significant enhancements have also been incorporated. These features,
which come directly from NPL developer feedback, are categorized into the following ar-
eas and will be implemented on all platform versions of NPL.

• LANGUAGE FEATURES

• EDITOR ENHANCEMENTS

• MISCELLANEOUS ENHANCEMENTS

A.5.1 Language Features

Expandable Arrays. MAT REDIM can now be used to increase the size of arrays. In addi-
tion, MAT math statements (MAT * for example) can be used to implicitly increase the
size of an array.

MAT SEARCH now allows the use of a numeric scalar or a single numeric array element
as the locator variable.

The $PACK format specification for alpha fields (A0xx) has been extended to support
field lengths up to 4095 bytes (Axxx).

INPUT and LINPUT now support automatic insert mode where characters typed are in-
serted rather than overstriking existing characters. This feature can be controlled with a
new $OPTIONS byte.

NOTE: Refer to the NPL Statements Guide for details on these enhanced statements.

UPGRADING OLDER NPL CODE Useful NPL Enhancements

NPL Programmer’s Guide A-5

A.5.2 Editor Enhancements

Single line scrolling of long program lines is now supported. Both scroll-down and scroll-
up are implemented. Scroll-up capability may not be present on all supported terminals.
Refer to Chapter 5 for details.

Syntax error displays for long program lines will now stop on the first screen with an er-
ror.

The display of program lines for resolution or execution error display, STEP mode,
TRACE * operations, and LIST * operations has been modified to display only the rele-
vant statement preceded by a series of colons indicating how many previous statements
are present on the program line. Previous NPL versions displayed the entire program line.
For programs with long program lines, this cluttered the display. Refer to Chapter 6 for
details.

Insert Mode is now supported in the editor. When insert mode is selected, characters en-
tered are inserted into the program line instead of overwriting existing characters. The IN-
SERT key can be used to toggle between insert mode and overstrike mode. $OPTIONS
Byte 44 is used to control the default behavior of this feature. Refer to the NPL State-
ments Guide for details.

Stacked entry of items with in-line comments is now permitted on FUNCTION and PRO-
CEDURE declarations, DIM, COM, FIELD, and MAT REDIM statements. Refer to
Chapter 5 and the NPL Statements Guide for details.

For example:

0010 DIM Record_Counter, ; comment<
 Record_Buffer$512, ; used for all files<
 Key_Buffer$32

A.5.3 Miscellaneous Enhancements

The start-up banner will no longer appear at the start of an NPL RunTime.

The maximum RunTime user level has been increased to 512 concurrent users.

Useful NPL Enhancements UPGRADING OLDER NPL CODE

A-6 NPL Programmer’s Guide

A new Preboot option allows execution of a specified NPL program prior to loading of
the specified boot program. This provides a convenient method of establishing system-
wide defaults such as device equivalences and $OPTIONS settings in environments
where multiple boot programs are required. Refer to Chapter 2 for details.

In addition, there are many platform-specific enhancements. Refer to the appropriate
NPL Supplement.

A.6 Additional Considerations

Niakwa provides a variety of modifiable support files with the NPL RunTime and Devel-
opment package. These files include:

• Keyboard Translation files

• Screen Translation files

• Printer Translation file

• NPL Error Message file

• Native Operating System Level Error files

Developers should be aware that any customization of these files in earlier versions of
NPL should be preserved prior to updating a system to Release IV.

NOTE: With Release IV the NPL error message file has grown significantly. If a customized
version of an old error message file is in use, these customizations will need to be in-
corporated into the updated Release IV error files.

UPGRADING OLDER NPL CODE Additional Considerations

NPL Programmer’s Guide A-7

APPENDIX B

NPL ERRORS

B.1 Overview

The Niakwa Programming Language provides a method of reporting programming and
execution errors. Many errors are recoverable, while others are not. Some errors may oc-
cur at program resolution time, while others do not occur until program execution. This
appendix outlines the various types of errors, when they may occur, and possible solu-
tions to the errors.

Section B.2 discusses the various error code classes.

Section B.3 presents the RunTime program errors along with a brief description and sug-
gested action.

Section B.4 discusses the RunTime program warnings.

Section B.5 discusses the RunTime error message files.

NPL ERRORS Overview

NPL Programmer’s Guide B-1

Section B.6 discusses the native operating system errors that can effect the NPL opera-
tion.

B.2 Error Code Classes

There are nine different error code classes, each categorized by the first digit of the error
code. The second and third digits identify the specific error condition that occurred. Er-
rors A00-I99 were originally from the Wang 2200 and supported in NPL. Errors in the
200-799 range are errors available only in NPL, and consequently, are not supported on
the Wang 2200.

The following table outlines these nine classes of errors:

Error Code Range Error Class
A00-A09 Miscellaneous Errors
S10-S29 Syntax Errors
P30-P59 Program Errors
C60-C69 Computation Errors
X70-X79 Execution Errors
D80-D89 Disk Errors
I90-I99 I/O Errors
100-199 Reserved
200-499 Extended NPL Errors
500-799 External Errors
800-999 Reserved

B.2.1 RunTime Program Errors and Warnings

When an error occurs, the terminal beeps, the line and statement at fault are displayed,
and the letters "ERR" followed by the 3-digit NPL error code and description appear on
the screen. Warnings appear with a "Warning:" prefix, but not code. For multi-line state-
ments, only the faulty statement is displayed, preceded by one of more colons. Each co-
lon indicates a statement preceding the statement on the same line where the error
occurred.

Error Code Classes NPL ERRORS

B-2 NPL Programmer’s Guide

For example:

1000 ::: X=1/Y
 ^
ERR C62: Division by Zero.

indicates the statement X= 1/0 is in error, and this is the fourth statement on line 1000.

B.2.2 Recoverable Versus Non-Recoverable Errors

Some NPL errors are recoverable, while others are non-recoverable. When handling er-
rors under program control, recoverable errors can be trapped, allowing execution of the
application to continue. Non-recoverable errors are usually the result of some condition
that does not allow program execution and immediately halts the program with the appro-
priate system error message (these types of errors are usually detected at resolution time).
Recoverable errors can only occur once the program or module is fully resolved and is
executing. The following table lists all error-code ranges and indicates which ones are re-
coverable:

Error Code Range Recoverable or Not recoverable
A00-P36 Not recoverable
P37 Recoverable
P38-P47 Not recoverable
P48 Recoverable
P49-P59 Not recoverable
C60-I99 Recoverable
100-199 Reserved
200-299 Not recoverable
300-499 Recoverable
500-599 Not recoverable
600-999 Recoverable

NOTE: There are exceptions: I90-I99 errors or other errors that may occur when loading a
module in an INCLUDE statement may not be recoverable, since this occurs at reso-
lution time, rather than execution time.

Refer to Section 8.5 of the Programmer’s Guide for more information on the handling of
recoverable errors under program control.

NPL ERRORS Error Code Classes

NPL Programmer’s Guide B-3

NOTE: Error P37 is not recoverable on a Wang 2200/CS or on releases of NPL prior to Re-
vision 3.0.

B.3 RunTime Program Errors

Error codes consist of a letter prefix, indicating an error class, followed by a two digit
number which identifies the specific error condition which occurred. The following sec-
tion displays all of the NPL error codes and messages, with a brief description of the
probable cause and possible solution:

B.3.1 Miscellaneous Errors

These include general environment errors relating to memory allocation and usage.

ERR A00 - Not Implemented.
Under normal circumstances, this error will not occur. It may be generated by the com-
piler for statements whose syntax is acceptable on a Wang 2200 but is not supported by
NPL. For example: $INIT "PASSWORD" In some instances, corrupted p-code may
cause this error while loading, resolving, or executing a program.

ERR A01 - Memory Overflow (Text < --> Variable Table).
The program has used up all of the memory available in the user partition. Reduce the
size of the program or reduce the dimension of larger variables.

ERR A02 - Value Stack Overflow.
The program stack has overflowed. Too many loops or branches have been pushed onto
the stack. Check the number of nested FOR/NEXT loops, or possible "broken" loops that
have been abnormally exited but left on the stack. Also, check for possible infinite recur-
sion of FUNCTIONs or PROCEDUREs.

ERR A03 - Insufficient Memory for Buffer.
This error cannot occur under NPL. On a Wang 2200, if the user partition is full, this er-
ror can occur when certain disk statements that require a buffer are executed. NPL al-
ways reserves sufficient memory to perform these statements.

ERR A04 - Operator Stack Overflow.
The operator stack has overflowed. There are too many complex arguments to evaluate.
Try simplifying the expression into multiple statements or use intermediate variables.

RunTime Program Errors NPL ERRORS

B-4 NPL Programmer’s Guide

ERR A05 - Program Line Too Long.
This error cannot occur under NPL. On some releases of Wang Basic-2, programs exceed-
ing a certain maximum (tokenized) line length could be executed but not saved on disk.

ERR A06 - Program Protected.
An attempt was made to list or edit a program which has been scrambled. Load the un-
scrambled version to make changes. There is no way to unscramble protected programs.

ERR A07 - Illegal Immediate Mode Statement.
An invalid statement was used in immediate mode (e.g., DATA, DEFFN’, or FUNC-
TION). Refer to Section 2.5.3 of the Programmers Guide for information on the use of
certain statements in immediate mode.

ERR A08 - Statement Not Legal Here.
A statement was placed such that the Interpreter cannot compile it (e.g., placing an ELSE
statement (using non-structured IF/THEN) on a separate line without using DO/ENDDO
groups causes this error). Check the rules of the statement at fault in the Statements
Guide.

ERR A09 - Program Not Resolved.
A program was EXECuted or CONTINUEd after being HALTed, but changes were
made to its resolve status such that it cannot continue. The program must be restarted
with RUN or LOAD RUN.

B.3.2 Syntax Errors

With all syntax errors (S10-S29), the message describes specifically what component is
missing from the statement. As such, no detailed cause/solution follows these errors. For
all syntax errors, refer to the appropriate statement in the NPL Statements Guide for
proper syntax use.

ERR S10 - Missing Left Parenthesis "(".

ERR S11 - Missing Right Parenthesis ")".

ERR S12 - Missing Equal Sign "=".

ERR S13 - Missing Comma ",".

ERR S14 - Missing Asterisk "*".

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-5

ERR S15 - Missing "" Character.

ERR S16 - Missing Letter.

ERR S17 - Missing Hex Digit (0-9,A-F).

ERR S18 - Missing Relational Operator (=,<,>,<=,>=,<>).

ERR S19 - Missing Required Word.

ERR S20 - Expected End of Statement.

ERR S21 - Missing Line-Number.

ERR S22 - Illegal PLOT Argument.

ERR S23 - Invalid Literal String.

ERR S24 - Illegal Expression or Missing Variable.

ERR S25 - Missing Numeric-Scalar-Variable.

ERR S26 - Missing Array-Variable.

ERR S27 - Missing Numeric-Array.

ERR S28 - Missing Alpha-Array.

ERR S29 - Missing Alpha-Variable.

B.3.3 Program Errors

These errors include errors in the logical organization or information in a program that
would otherwise pass without a syntax error.

ERR P32 - Start greater than End.
Certain disk I/O statements such as COPY or DATA SAVE DC OPEN TEMP require a
range of disk sector addresses, in which the starting sector must be less than the end sec-
tor. Check the values or the parameters being used.

RunTime Program Errors NPL ERRORS

B-6 NPL Programmer’s Guide

ERR P33 - Line-Number Conflict.
On RENUMBER statements applied to only a portion of a program, the renumbered set
of lines must not conflict with any other unchanged lines. Be sure the range specified, tak-
ing into account the step interval, will not overlap with any lines that already exist out-
side of the range.

ERR P34 - Illegal Value.
The value for a parameter was supplied that is out of range. Refer to the Statements
Guide for the proper range of values.

ERR P35 - No Program in Memory.
This error cannot occur under NPL. On the Wang 2200, attempting to run an empty pro-
gram (no program lines) is diagnosed as an error. NPL permits this.

ERR P36 - Undefined Line-Number or CONTINUE Illegal.
A branching reference was found to a non-existent line number. Replace this line with
one that exists.

ERR P37 - Undefined Marked Subroutine.
A GOSUB’ was found with no matching DEFFN’ available. Check the spelling of the
subroutine identifier and be sure the DEFFN’ is within the scope of the currently execut-
ing module.

ERR P38 - Undefined FN Function.
A reference to a one-line function cannot be resolved. Compare the reference with the
definition and be sure the FN number matches.

ERR P39 - FN’s Nested Too Deep.
One-line FN functions can only be nested five deep. This is designed to trap any recur-
sion, but the limit still applies, even if no recursion takes place. If recursion is desired,
convert the FN function to a structured FUNCTION. If not, simplify the nesting by com-
bining FN functions.

ERR P40 - No Corresponding FOR for NEXT Statement.
A NEXT statement was encountered without a matching FOR statement on the program
stack. Be sure the FOR statement exists and nested FOR/NEXT loops are complete. Also
check for improper transfer of execution into the inside of a FOR/NEXT loop.

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-7

ERR P41 - RETURN Without GOSUB.
A RETURN statement was encountered without a GOSUB command on the program
stack or a FUNCTION was called and never encountered a RETURN statement. Check
for improper transfer of program execution, such as using GOTO instead of GOSUB.
Also, be sure a FUNCTION has a RETURN (...) statement within its body.

ERR P42 - Illegal Image.
The line number supplied in a PRINTUSING statement is not in the proper image format.
The line must begin with a "%". Check the line number again, and check for overlays that
might accidentally overwrite the image line.

ERR P43 - Illegal Matrix Operand.
Certain matrix operations cannot execute correctly if the result is the same as the oper-
and. This is diagnosed as a syntax error by NPL. Be sure the MAT receiver variable is dif-
ferent from the variables used as operands.

ERR P44 - Matrix Not Square.
The source or receiver array is not a square n by n matrix. Both dimensions must be the
same size (i.e., DIM Matrix(10,10)).

ERR P45 - Operand Dimensions Not Compatible.
Different arrays in the MAT operation have different dimensions. Some matrix opera-
tions require that the dimensions of operands match in some way. For example, to add
two matrices, they both must have the same number of rows and columns.

ERR P46 - Illegal Microcommand.
A $GIO statement was encountered with an invalid microcommand. Check the syntax or
the microcommand in the NPL Statements Guide, $GIO.

ERR P47 - Missing Buffer Variable.
A $GIO statement was encountered with no buffer variable specified. Specify an alpha
variable that is large enough to accommodate the block of data being read or written.

ERR P48 - Illegal Device Specification
The RunTime cannot open the device as specified. This error is usually accompanied
with a native operating system error code. Refer to the appropriate NPL Supplement for
further information on these error codes.

RunTime Program Errors NPL ERRORS

B-8 NPL Programmer’s Guide

ERR P49 - Interrupt Table Full.
This error cannot occur under NPL. On the Wang 2200, SELECT ON/OFF statements
that are used to allow servicing device interrupts use a fixed size table, which could be ex-
ceeded.

ERR P50 - Illegal Array Dimensions or Variable Length.
An operation such as a MAT statement was performed on an array or string with mis-
matching sizes between the source and receiver variables. Check the dimensions of the
variables.

ERR P51 - Variable or Value Too Short.
The specified receiver variable has been declared with a size too small to be used with
this statement (e.g., DATA LOAD BA requires that the buffer (receiver) variable be at
least 256 bytes in size). Check the dimensions of the variable in question.

ERR P52 - Variable or Value Too Long.
The specified string parameter (or value) in the statement is too large to be used. For ex-
ample, in a DATA LOAD DC OPEN statement, the filename specified (either literally or
indirectly) may not exceed eight characters. Shorten the value to the required maximum
length.

ERR P53 - Noncommon Variables Already Defined.
A variable was declared as COM after other variables have been declared with DIM. All
COM statements must appear before all DIM statements or any reference to non-common
variables.

ERR P54 - Common Variable Required.
The multiple-program LOAD statement requires that the variable that specifies the list of
program names must be a COM variable. Change the declaration from DIM to COM.

ERR P55 - Undefined Variable.
A reference was made to a variable that has not been declared with a DIM or COM state-
ment (which is a requirement of certain MAT statements, or if Byte 38 of $OPTIONS has
been set to HEX(01)). Add the variable to a DIM or COM statement, or check the value
of Byte 38 of $OPTIONS.

ERR P56 - Illegal Subscripts.
A subscript was specified that exceeded the dimensioned size of the array. Check the
DIM statement, or the method of calculating the subscript.

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-9

ERR P57 - Illegal STR Arguments.
The start or length parameter specified in the STR() function is invalid or out of range.
Compare the size of the variable with the values specified. Refer to the STR() Function in
the NPL Statements Guide for more details.

ERR P58 - Illegal Field/Delimiter Specification.
When using $PACK/$UNPACK, the pack specification bytes are invalid. Check the field
form or delimiter form specification. Refer to $PACK or $UNPACK in the NPL State-
ments Guide.

ERR P59 - Illegal Redimension.
A variable in a DIM statement was encountered after the variable had already been de-
clared in a previous DIM statement.

B.3.4 Computational Errors

These errors are associated with mathematical calculations or expressions.

ERR C60 - Underflow.
The value has diminished below the minimum allowable by NPL.

ERR C61 - Overflow.
The value has exceeded the maximum allowable value by NPL.

ERR C62 - Division by Zero.
When dividing, the divisor cannot be zero.

ERR C63 - Zero Divided by Zero or Zero ^ Zero.
Special cases where zero values are illegal.

ERR C64 - Zero Raised to Negative Power.
Mathematically the same as dividing by zero.

ERR C65 - Negative Number Raised to Non-integer Power.
Roots (including square root) of negative numbers are imaginary, thus are illegal.

ERR C66 - Square Root of Negative Value.
The square root of a negative number is imaginary, thus illegal.

ERR C67 - LOG of Zero.
Cannot take the logarithm of zero.

RunTime Program Errors NPL ERRORS

B-10 NPL Programmer’s Guide

ERR C68 - LOG of Negative Value.
Cannot take the logarithm of a negative number.

ERR C69 - Argument Too Large.
Certain math functions can only accept arguments within a defined range. For example,
the ARC SIN () function requires an argument in the range -1 to +1. Check the value be-
ing passed to the function.

B.3.5 Execution Errors

These errors are the most common run time errors that occur once program execution be-
gins, and usually relates to improper variable handling.

ERR X70 - Insufficient Data.
A READ statement was encountered, but all of the DATA statements have been read. No
more data is available to read. Check for sufficient DATA statements or use the RE-
STORE statement to reset the DATA pointer to a specified value.

ERR X71 - Value Exceeds Format.
The value contained in the variable cannot be stored in the format specified (e.g, in a
$PACK statement). Use a different field-form pack specification.

ERR X72 - Singular Matrix.
The source array supplied for a MAT operation is one-dimensional. It must be two-di-
mensional with equal (square) n by n dimensions. Be sure the correct array is being used,
or in certain instances,

ERR X73 - Illegal INPUT Data.
INPUT operations with strings normally don’t permit commas to allow multiple answers
to be entered on the same line. However, the entered value may also be placed in quotes,
to allow a value to contain a comma in it. The there is no matching quote, this error oc-
curs. Be sure an ending quote is entered following the comma to contain it in the string
value.

ERR X74 - Wrong Variable Type.
The variable type does not match the field-form pack specification of a $PACK/$UN-
PACK statement. Check to make sure the variables are being packed or unpacked in the
proper order and that the pack specification is correct. Also check the buffer variable be-
ing used.

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-11

ERR X75 - Illegal Number.
The value that was input or received is not a valid number. Check to make sure alpha-
betic characters are not being placed into numeric variables.

ERR X76 - Buffer Exceeded.
The buffer variable supplied in the statement is not large enough to accommodate the
data placed into it (e.g., a $PACK or $UNPACK statement). Change the dimension of the
buffer variable to a larger size, or reduce the amount of data placed into it.

ERR X77 - Invalid Partition Reference.
A reference has been made to a #PART value that is invalid or is not accessible from the
current foreground partition. If using background partitions, the specified partition num-
ber in $RELEASE TERMINAL is not active.

ERR X79 - Invalid Password.
A modification to the DATE or TIME variables was made with an invalid password. For
syntactic compatibility, NPL supports only the password "SYSTEM" as default. Gener-
ally, no PASSWORD parameter is necessary to change the date or time from within NPL.

B.3.6 Disk Errors

These errors are associated with disk and catalog operations such as opening and closing
data files, and loading and saving of program files.

ERR D80 - File Not Open.
An attempt was made to read data from a file that has not yet been opened. Check the file
number in the device table. Use DATA LOAD DC OPEN to open a previously cataloged
file for further processing.

ERR D81 - File Full.
The space in the file currently allocated in the catalog has been used. The file must be
moved to the end of platter and the old file scratched.

ERR D82 - File Not in Catalog.
An attempt was made to open a file that is not listed in the catalog. Check the spelling of
the filename and check the device address or file number being used.

ERR D83 - File Already Cataloged.
An attempt was made to create or save a file that already exists. For programs, use RE-
SAVE instead of SAVE. For data, use DATA LOAD to open a file instead of DATA
SAVE and make sure the data file and file number are specified correctly.

RunTime Program Errors NPL ERRORS

B-12 NPL Programmer’s Guide

ERR D84 - File Not Scratched.
An attempt was made to establish a new data file using an old data file’s allocation (the
old file has not been scratched). If the "scratch-file" is no longer needed, use SCRATCH
T to scratch it, then try again. Otherwise, specify a file that has already been scratched.

ERR D85 - Index Full.
The catalog index for the diskimage or platter is full and cannot accommodate new en-
tries. A new diskimage must be created with a larger index size to accommodate more
files.

ERR D86 - Catalog End Error.
A file was attempted to be saved, but the file would go beyond the end of catalog. Try re-
moving older files or move the end of catalog to accommodate the new file.

ERR D87 - No End-of-File.
A DSKIP END statement was encountered, but no valid end-of-file was found. This state-
ment requires that a valid end-of-file mark be saved on the file at the position indicated
when the last DATA SAVE DC END statement was done. Check to make sure a DATA
SAVE DC statement didn’t overwrite the end-of-file, or that a DATA SAVE DC END
was executed.

ERR D88 - Wrong Record Type.
When reading data, the format is unreadable or not delimited correctly. When loading
programs, the program may be a non-NPL program or the p-code is unreadable by NPL.
If the program is in Wang 2200 atomized code format, it must be compiled before it can
be loaded. Otherwise the program may be damaged or missing a required password.

ERR D89 - Sector Address Beyond End-of-File.
Access to a file caused access to sectors outside the range of the file. This is likely to oc-
cur if the end-of-file mark is corrupted. Check the file, and restore the end-of-file (possi-
bly even data, if corrupted.)

B.3.7 I/O Errors

These errors are rather esoteric, but are likely to be accompanied by a native operating
system error code. Refer to the specific hardware supplement for more information on the
native error codes.

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-13

ERR I90 - Disk Hardware Error.
A disk I/O operation reported to NPL of a failure. This error is usually accompanied with
a native operating system error code. Refer to the appropriate NPL Supplement for fur-
ther information on these error codes.

ERR I91 - Disk Hardware Error.
A disk I/O operation reported to NPL of a failure. This error is usually accompanied with
a native operating system error code. Refer to the appropriate NPL Supplement for fur-
ther information on these error codes.

ERR I92 - Timeout Error.
A disk I/O request was made, but no response was received from the native operating sys-
tem. Check for possible hardware failures or corrupted files.

ERR I93 - Format Error.
The raw diskette format does not match that specified by its device equivalence or the
floppy disk format is incompatible. Check the $DEVICE statement or try reformatting
the floppy disk.

ERR I94 - Format Key Engaged.
This error cannot occur under NPL. On the Wang 2200, certain drives had a key-operated
format option. While this was active, access to the drive was not permitted.

ERR I95 - Device Error (Write Protect).
The device to be written to is currently write protected. Change the write-protect status
(the notch on a diskette) to enable writing.

ERR I96 - Data Error.
This error cannot occur under NPL. CRC data integrity errors would normally be re-
ported by the native operating system.

ERR I97 - Longitudinal Redundancy Check Error.
This error cannot occur under NPL. LRC data integrity errors would normally be re-
ported by the native operating system.

ERR I98 - Illegal Sector Address or Platter Not Mounted.
The specified sector is beyond the end of the physical diskimage or file. Check the value
specified against the highest sector available for that file.

RunTime Program Errors NPL ERRORS

B-14 NPL Programmer’s Guide

ERR I99 - Read-After-Write Error.
An error has occurred while the program or data was being saved with a $ parameter. The
verification with the read-after-the-write of the file failed. Check the integrity of the file,
the diskimage, or save again so that the file is placed elsewhere on the platter.

B.3.8 NPL Extended Errors

These errors are unique only to NPL, and do not occur on the Wang 2200.

ERR 200 - Handle table full / cannot expand.
NPL’s internal handle table could not be dynamically resized due to memory limitations.
Extra space can be pre-allocated at startup by using the /H option to specify handle table
size. Refer to Section 2.4 for information on the /H option.

ERR 201 - Variable already referenced in program.
A RENAME V/FIELD/PROCEDURE command refers to a new name that is already
used in the current module. If the uses of the old variable/identifier and the new are identi-
cal, the MERGE option may be used to override this check.

ERR 202 - Variable not referenced in program.
A RENAME V/FIELD/PROCEDURE command refers to an old name that is not used in
the current module. An existing identifier name must be specified as the old name.

ERR 203 - Branch into body of a function or procedure.
A GOTO or GOSUB to a line in the middle of a FUNCTION or PROCEDURE is not le-
gal and is flagged as an error at resolution time. The entire function must be called.

ERR 204 - Branch out of body of a function or procedure.
A GOTO or GOSUB within a FUNCTION or PROCEDURE to a line outside of it is not
legal and is flagged as an error at resolution time. A function must be exited normally.

ERR 205 - This error code is reserved for future use by NPL.

ERR 206 - FUNCTION/PROCEDURE not matched with END FUNCTION/PROCEDURE.
A FUNCTION or PROCEDURE declaration was found, but no END FUNCTION or
END PROCEDURE was found. Functions cannot be nested and the END FUNCTION
statement must appear after the declaration. If declaring a function that appears later in
the program, use the /FORWARD parameter.

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-15

ERR 207 - Nested functions/procedures not permitted.
A FUNCTION or PROCEDURE cannot occur within another FUNCTION or PROCE-
DURE. All structures must occur at the same level and can call each other as long as the
called function or procedure is declared before the calling function or procedure.

ERR 208 - Function/ procedure already defined.
A FUNCTION or PROCEDURE already exists with the same identifier. Use a different
identifier or change the scope such that the functions are "private" to each other (i.e., dif-
ferent modules.)

ERR 209 - Function/ procedure differs from /FORWARD declaration.
The declarations in the /FORWARD line does not match with the actual declaration.
Check the parameter list and types.

ERR 210 - RETURN(value) not within FUNCTION body.
A RETURN(value) statement was encountered outside of a FUNCTION body. This state-
ment must appear within the FUNCTION body. If a GOSUB was used, use RETURN
without a value.

ERR 211 - RETURN(value) incorrect type for FUNCTION.
An attempt was made to return a string value for a numeric function or a numeric value
for a string function. Check the RETURN statement and be sure the value type matches
the FUNCTION type.

ERR 212 - End Structure name does not agree.
The appropriate structure END statement has an identifier specified, but does not match
with the most recent structure declaration (FUNCTION, PROCEDURE, RECORD, etc.).
Check the spelling of the identifier.

ERR 213 - Arguments of function/procedure incorrect.
The variables passed to the function do not match with the function declaration either by
type or number of parameters. Check the function/procedure declaration for the correct
parameters needed.

ERR 214 - No such function or procedure has been declared or included.
A call or reference has been made to a non-existent FUNCTION or PROCEDURE.
Check the spelling of the identifier, make sure the module is properly INCLUDEd, and
that the subroutine has been declared before the reference. If a function reference must ap-
pear before the function body, use the /FORWARD declaration.

RunTime Program Errors NPL ERRORS

B-16 NPL Programmer’s Guide

ERR 215 - Argument for non-constant /POINTER parameter is not modifiable.
A constant or literal was passed to a /POINTER variable, thus the reference back to the
original entry cannot modify its contents. When using /POINTER, avoid passing con-
stants to variables where modification may be done. Use constants in the parameter list
when no modifications will be made.

ERR 216 - Not legal after an :ERROR clause.
A statement that defines the start or end of a FUNCTION or PROCEDURE is not permit-
ted after an ERROR statement on the same line, since these statements could result in im-
plied branches into or out of a function body. This does not apply if an ERROR DO
statement is used.

ERR 217 - Only simple IF permitted here.
A structured IF statement cannot immediately follow a THEN or ELSE clause of a sim-
ple IF statement. Be consistent with using either simple IF or structured IF statements. If
a structured IF statement must be nested within a simple IF, use the DO...END DO struc-
ture (simple IF/THEN/ELSE statements can be nested within structured IF statements).

ERR 218 - This error code is reserved for future use by NPL.

ERR 219 - This error code is reserved for future use by NPL.

ERR 220 - No enclosing WHILE, REPEAT or FOR/BEGIN loop structure.
A BREAK or LOOP statement was encountered outside of these structured loops. These
statements are only valid for these three types of structures. BREAK unconditionally ex-
its the loop, while LOOP skips to the next iteration of the loop.

ERR 221 - This error code is reserved for future use by NPL.

ERR 222 - Structured IF not matched with END IF.
The structured IF or END IF statement was encountered, without any matching IF or
END IF statement, or a structure form was mixed in with the simple IF/THEN/ELSE
form. If using simple IF/THEN/ELSE, no structured ELSE or END IF is allowed.

ERR 223 - Structured ELSE not matched with END IF.
A structured ELSE clause was encountered, but no END IF statement exists. When using
structured IF statements, the structure must end with END IF. Avoid mixing of simple IF
and structured IF syntax.

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-17

ERR 224 - REPEAT not matched with UNTIL.
A REPEAT statement was encountered with no matching UNTIL expression, or an UN-
TIL was encountered with no matching REPEAT. The UNTIL expression must follow
the REPEAT statement and exist together in the same structure.

ERR 225 - WHILE not matched with WEND.
A WHILE expression was encountered with no matching WEND statement, or a WEND
statement was encountered with no matching WHILE expression. The WEND statement
must follow the WHILE expression and exist together in the same structure.

ERR 226 - FOR/BEGIN not matched with NEXT.
A structured FOR...BEGIN statement was encountered with no matching NEXT state-
ment found. If nesting loops, be sure equal number of NEXT’s exist for the loops. The en-
tire FOR..BEGIN...NEXT loop must exist completely within a structure.

ERR 227 - Recursive/parameter value not legal in declaration.
The expression in a declaration cannot contain recursive variables (e.g., a DIM statement
private to a FUNCTION, recursive variables cannot be used to define the variable size or
number of elements). Use STATIC or PUBLIC variables in the declaration.

ERR 228 - Variable already declared with different access.
A variable was attempted to be declared, but already exists in the current scope (e.g., a
variable cannot be declared STATIC within the function body, if it already exists as RE-
CURSIVE). The static declaration should appear outside the function body, or use a dif-
ferent name.

ERR 229 - Local variable already declared.
A DIM /STATIC variable declaration was encountered, but the variable in question is al-
ready declared as STATIC in the current scope. If in the mainline, a variable can be de-
clared STATIC with the same name only if within a function body.

ERR 230 - Local function already declared.
DEF FN() statements within a function body are local to the function. Like any other
identifiers, only one declaration of a specific FNx() function is permitted within a func-
tion body.

ERR 231 - /BEGINS declaration not preceded by /FORWARD declaration.
An unresolved FUNCTION declaration was encountered with the /BEGINS parameter,
but the function must already be resolved with a previous /FORWARD declaration (as re-
quired by the /BEGINS parameter). Be sure a /FORWARD declaration exists before the
defining declaration. Removing the /BEGINS parameter also avoids this error.

RunTime Program Errors NPL ERRORS

B-18 NPL Programmer’s Guide

ERR 232 - Structured statements not allowed as THEN or ELSE clause.
A structure (SWITCH, Structured IF, WHILE, REPEAT, etc.) was encountered follow-
ing the THEN or ELSE clause of the simple IF statement. Convert the simple
IF...THEN...ELSE logic to use the structured IF...ELSE...END IF logic. If the simple IF
statement must be used, enclose the structure within a DO...END DO structure.

ERR 233 - Recursive arrays cannot be redimensioned.
Arrays that are passed as parameters or declared as local variables within a function can-
not be dynamically redimensioned if used recursively. Here, the array should be dimen-
sioned to the size necessary for function use and should be passed as a /POINTER
parameter type.

ERR 234 - CASE located after default CASE for this SWITCH.
An additional CASE with expression was found after the default CASE. The default
CASE must always be the last CASE within a SWITCH. Since the default CASE signi-
fies "all other values" no further testing of the SWITCH variable would be desired after-
ward.

ERR 235 - SWITCH not matched with CASE/END SWITCH.
A SWITCH statement was encountered with no matching CASE statement(s) or END
SWITCH statement, or a CASE or END SWITCH statement was encountered with no
matching SWITCH statement. Be sure the structure is completely within any other struc-
ture.

ERR 236 - CASE expression not same type as SWITCH.
The CASE expressions are numeric while the SWITCH is alpha (string) or vise-versa.
The expression must match type for any of the CASE expressions to be true.

ERR 237 - FUNCTION/FNx() term not legal in declarations.
The expression containing a function is not legal. For example, a variable declaration in a
DIM statement cannot use a FUNCTION value to define the variable size or number of
elements unless the FUNCTION is declared in a previously INCLUDEd library module.

ERR 238 - Conflicting options in function declaration.
Options specified after the function declaration do not match those with the /FORWARD
declaration. Parameters such as /PUBLIC must appear with both declarations.

ERR 239 - /FORWARD declaration not followed by /BEGINS declaration.
A FUNCTION or PROCEDURE declaration was made with the /FORWARD parameter,
but no actual declaration follows it in the program. Check that the subroutine identifier
name is spelled correctly and is of matching type (string or numeric.)

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-19

ERR 240 - Invalid module name.
No such module is currently loaded. Only INCLUDEd modules can be accessed. Verify
the correct spelling of the module name. Use LIST DT to view a list of currently IN-
CLUDEd modules.

ERR 241 - Circular INCLUDE/USE references.
A module or public section is referencing back to the module or public section that origi-
nally had the INCLUDE or USES statement. This resulted in an infinite loop.

ERR 242 - Internal Error.
An internal error has occurred in the RunTime, and the integrity of the programs in mem-
ory is in question. Do not edit or run the programs anymore. Completely exit and restart
NPL.

ERR 243 - No EXTERNAL function is defined with this name and these parameters.
A FUNCTION declaration with the /EXTERNAL parameter was encountered, but it can-
not find a matching label or parameter list in the external library. Check to make sure the
library is loading properly (if using /X) and check the external routine again to make sure
the label name and parameter types match.

ERR 244 - Already defined as Non-public Variable.
A variable was attempted to be declared as PUBLIC, but was already declared in a DIM
statement outside of a PUBLIC section or without /PUBLIC within the current scope of
the executing module.

ERR 245 - Already defined as PUBLIC function.
A FUNCTION was declared as PUBLIC, but a FUNCTION already exists in an IN-
CLUDEd module, using the same identifier, and is PUBLIC. Use a different identifier to
avoid conflicting names. Use LIST PUBLIC FUNCTION to show all current declarations.

ERR 246 - Already defined as PUBLIC section.
A PUBLIC section was defined, but a PUBLIC section already exists in an INCLUDEd
module with the same identifier. Use a different PUBLIC section identifier.

ERR 247 - PUBLIC not matched with END PUBLIC.
A PUBLIC section header was encountered with no matching END PUBLIC statement,
or and END PUBLIC statement was encountered with no matching PUBLIC statement.
The END PUBLIC statement must appear afterward and have a matching public section
identifier to the declaration.

RunTime Program Errors NPL ERRORS

B-20 NPL Programmer’s Guide

ERR 248 - No such PUBLIC section.
A USES statement is referencing an invalid PUBLIC section. Check to make sure the
public section identifier is spelled correctly and that the module that contains the public
section is properly INCLUDEd and resolved.

ERR 249 - Another procedure is already marked as /MAIN, /EXIT.
A module was found to contain more than one PROCEDURE with one these parameters
specified. Only one PROCEDURE declaration per module is allowed for each type of pa-
rameter.

ERR 250 - This error code is reserved for future use by NPL.

ERR 251 - Forced error exit to /EXTERNAL from callback.
While executing in a callback from an external function, certain operations (program
LOAD or edit operations, CLEAR V) would clear the execution stack and result in never
returning to the external library. In such circumstances, attempts to execute these state-
ments result in a forced RETURN ERROR (251) to the pending function, to allow the
caller to clean up.

ERR 252 - Callbacks not available.
External routines are not always permitted to call into NPL. In particular, callbacks may
not be permitted at interrupt time or in response to Windows messages which occur while
an NPL program is active. Any attempts to callback to NPL at inappropriate times are re-
fused with the equivalent of a RETURN ERROR (252) from the callback routine.

ERR 253 - Nested RECORD declarations not permitted.
A new RECORD declaration cannot occur between another RECORD/END RECORD
declaration. All RECORDs must be declared at the same level.

ERR 254 - RECORD not matched with END RECORD.
A RECORD declaration was encountered, but no matching END RECORD statement
was found. The entire RECORD structure must exist completely within another structure.

ERR 255 - RECORD exceeds maximum allowed length.

ERR 256 - FIELD statement not in RECORD declaration.
A FIELD statement was encountered outside of a RECORD/END RECORD structure.
All field declarations must be enclosed within RECORD declarations.

NPL ERRORS RunTime Program Errors

NPL Programmer’s Guide B-21

ERR 257 - PUBLIC section is not in an INCLUDEd module.
A USES statement was encountered and referenced a PUBLIC section that is not avail-
able. The module containing the PUBLIC section may not be INCLUDEd. Check the IN-
CLUDE statement, and be sure the section identifier is spelled correctly.

ERR 258 - This error code is reserved for future use by NPL.

ERR 259 - Statement label already defined.
There cannot be multiple statement labels with the same label identifier together in a
mainline or together in a function body. For example, in the mainline, multiple labels can-
not have the same name unless all but one of the identical labels are out of scope (i.e.,
each in a different function body or module.)

ERR 260 - No such statement label in mainline.
An illegal branch to a non-existent statement label was encountered in the main program.
In the mainline, only statement labels declared within the currently executing module can
be accessed. Statement labels within FUNCTION or PROCEDURE bodies cannot be ac-
cessed. Check the labels with the LIST = command.

ERR 261 - No such statement label in same FUNCTION/PROCEDURE body.
An illegal branch to a non-existent statement label was encountered within a FUNCTION
or PROCEDURE. Within the FUNCTION or PROCEDURE body, only those statement
labels declared within that same body are accessible. Statement labels in other functions
or the mainline cannot be accessed. Check the labels with the LIST = command.

ERR 262 - FUNCTION used by declaration did not complete.
While executing in a library function used in a declaration of a module (during a RUN or
LOAD statement,) certain operations (program LOAD or edit operations, CLEAR V)
would clear the execution stack and result in never completing the module’s resolution.
In such circumstances, attempts to do these statements result in a forced RETURN ER-
ROR (262) from the pending function, to allow NPL to clean up a partially resolved mod-
ule.

ERR 263 - DIM/RECURSIVE must be in a FUNCTION/PROCEDURE body.
A variable was declared with the /RECURSIVE parameter outside of a function body. Ex-
plicit /RECURSIVE declaration of variables is only valid inside the body of a FUNC-
TION or PROCEDURE.

RunTime Program Errors NPL ERRORS

B-22 NPL Programmer’s Guide

ERR 300 - Incorrect number or types for parameters of GOSUB’.
A DEFFN’ with more than 16 parameters was called with the wrong number of parame-
ters or mismatched variable types in the GOSUB’ statement. Refer to the DEFFN’ state-
ment to determine the proper number of parameters and their variable types.

ERR 301 - Insufficient memory or bad COMSPEC for $SHELL.
The $SHELL statement could not be started. Check the amount of available system mem-
ory and that the native shell program (i.e., COMMAND.COM, /bin/sh, etc.) is accessible
by the RunTime. Refer to Chapter 8 of the appropriate NPL Supplement for specific re-
quirements of $SHELL.

ERR 302 - No such PUBLIC FIELD name.
An indirect reference was made to a FIELD name that does not exist in a PUBLIC RE-
CORD. Check the variable containing the indirect reference. Be sure all RECORDs that
are PUBLIC are accessible via an INCLUDE or USES statement.

ERR 303 - No such PUBLIC PROCEDURE/FUNCTION name.
An indirect reference was made to a FUNCTION or PROCEDURE identifier that does
not exist in any PUBLIC section. Check the variable containing the indirect reference. Be
sure all functions that are PUBLIC are INCLUDEd and resolved.

ERR 304 - Cannot expand array variable.
There is not enough memory available to expand the allocation of the specified array vari-
able with MAT REDIM. Use the SPACEF variable to examine the amount of free mem-
ory. The array may be expandable up to the amount of available memory.

B.4 RunTime Program Warnings

These are generated by the Interpreter only (RTI). When generated, no code is displayed,
just the "Warning: ..." message. These are provided for informational purposes. Although
these are not errors, the warning should be heeded or unexpected side-effects may occur
when executing the program.

WARN 01 - Warning: Programs merged.
A LOAD or LOAD BOOT statement was issued with a program already residing in mem-
ory. The new program merges or overlays on top of any existing program, which may or
may not be desired. A CLEAR or CLEAR P statement can be used to erase all programs
in memory prior to LOADing another.

NPL ERRORS RunTime Program Warnings

NPL Programmer’s Guide B-23

WARN 02 - Warning: Program moved to end of platter.
A program has been RESAVEd but cannot fit in the space previously cataloged to it. The
program is saved at the end of the platter at the next available contiguous open space and
the old program is deleted.

WARN 03 - Warning: RUN statement is in progress.
The program has been halted before the last issued RUN or LOAD statement has com-
pleted program resolution. This usually occurs if a library function used in a declaration
performs a STOP or otherwise is halted before it completes. It can also occur if an IN-
CLUDEd library module has a procedure with the /MAIN parameter and performs a
STOP or is halted before it completes. Whenever possible, the halted function or proce-
dure should be allowed to complete normally, so that program resolution can be com-
pleted. If this is not possible, an immediate mode RETURN ERROR (x) command
should be used to indicate that the function/procedure cannot complete.

B.5 Error Message Files

The NPL Runtime Package supplies two files which contain the literal text for the error
codes which are generated. Refer to Section 8.5 for more information.

B.6 Operating System Level Errors

Besides errors that may occur within the RunTime, errors may also occur outside of the
RunTime. Native operating system errors can sometimes occur, even causing NPL errors
to occur. On most platforms, an error code is generated by the operating system that NPL
looks up in an error table (much like one for NPL errors) for the appropriate message.
The RTIxERR.HLP file (where "x" is the platform code) contains the literal text for na-
tive operating system error codes. The text is displayed by the RunTime in the event of a
nonrecoverable error. The associated text is also returned by the $OSERR alpha function.
This file must be present in the appropriate operating system directory where the Run-
time is installed to generate this text.

NOTE: The file names and associated error messages are unique to each hardware version
of NPL (i.e., File Not Found, Access Denied, etc.). Please refer to the specific hard-
ware supplement for the appropriate naming conventions used.

Error Message Files NPL ERRORS

B-24 NPL Programmer’s Guide

Other external operating system conditions may force NPL to display an "Error Screen".
This looks very similar to the NPL Help Screen, but reports the error as text in the middle
of the screen. Errors are usually associated with timeout of a hardware device such as a
parallel or serial port, or network connection. Options are to "Leave Help" and execution
can be attempted to continue, or, depending on system settings, options normally avail-
able in the Help Screen can be selected. Refer to Chapter 11 in this manual or Chapter 4
or the appropriate NPL Supplement for the appropriate errors.

NPL ERRORS Operating System Level Errors

NPL Programmer’s Guide B-25

APPENDIX C

COMPILER ERRORS

C.1 Compiler Options Errors

The following diagnostic messages are generated by the compiler when compiler options
or source program names are incorrectly specified:

Cannot open LSTLOC (or ERRLOC) file
Explanation: Either an invalid path name has been specified, or there is

not enough room on the disk to create the specified file, or
the directory is full, or the specified filename contains char-
acters which are invalid in a native operating system file
name.

Possible Solution: Check the available space on disk, and be sure the path and
filename are legal.

COMPILER ERRORS Compiler Options Errors

NPL Programmer’s Guide C-1

Cannot open SRCLOC (or OBJLOC) as a diskimage file
Explanation: An improper specification for SRCLOC (or OBJLOC) has

been given. Either the specified pathname does not exist, the
diskette specified is of the wrong format ("raw" diskette in
drive when directory is specified), or for some other reason
the native operating system has returned an error code when
the compiler attempted to open the specified file.

Possible Solution: Check the path and filename. If using raw diskettes, be sure
to have the correct drive specification.

Extensions not permitted
Explanation: The compiler can only access ASCII text files with a .SRC

extension as source files. Any other extension is invalid.

Possible Solution: Rename the ASCII file with the .SRC extension. The exten-
sion is not necessary in the compiler parameter.

Fields may not contain embedded spaces
Explanation: Refers to the compiler display only. No field except the

Source Programs field may contain embedded spaces.

Possible Solution: Specify filenames without spaces.

Filename too long
Explanation: Filename was specified incorrectly. It can only be a maxi-

mum of eight characters.

Possible Solution: Correct the filename specification.

LSTFORMAT option must be one of; .LST, .SRC, 2200, 2200S
Explanation: Parameter was entered incorrectly, only those four are possi-

ble.

Possible Solution: Correct the LSTFORMAT specification.

Compiler Options Errors COMPILER ERRORS

C-2 NPL Programmer’s Guide

Missing Option after (literal)
Explanation: An option (literal) has been specified, but a required parame-

ter has not been provided.

Possible Solution: Add the appropriate parameter after the option, or remove
the option from the command line. Refer to the Program-
mers Guide for syntax.

No source programs specified
Explanation: No wildcard program names have been specified or no

source programs have been found that match the wildcard(s)
specified.

Possible Solution: Check the source program location, and be sure the wildcard
specification indeed matches the subset of files desired.

Non-Hex digits in option
Explanation: Digits other than 0-9, A-F were specified. The TRANS-

LATE option requires pairs of hex digits (e.g., 5F20).

Possible Solution: Correct the option with proper HEX digits.

OBJFORMAT must be one of; SCRAMBLED, UNSCRAMBLED
Explanation: One of the two keywords was spelled incorrectly, or some

non-keyword was specified.

Possible Solution: Correct the option with only one of the two possible key-
words.

Option is not a number
Explanation: Non-numeric characters were specified. The OBJEXTRA

option must be digits only.

Possible Solution: Correct the option by entering a number.

COMPILER ERRORS Compiler Options Errors

NPL Programmer’s Guide C-3

Option must be one of; ON, OFF
Explanation: Refers to WARNINGS, LCASE, NUMBERS, REM$, and

DISPLAY options. Only the keywords ON or OFF can be
used.

Possible Solution: Correct the option by entering either ON or OFF following
the option.

Option too long
Explanation: The TRANSLATE option can have a maximum of 30 pairs

of hex digits.

Possible Solution: Shorten the HEX string to at most 30 characters.

SRCLOC (or OBJLOC) is not a diskimage file
Explanation: The specified SRCLOC (OBJLOC) has been opened, but

the internal format of the file is not that of a 2200 diskimage.

Possible Solution: Make sure the file is an actual diskimage. If the source is
ASCII files, specify a pathname rather than a filename.

Too many parameters on command line
Explanation: A maximum of 20 parameters is allowed. Parameters in-

clude options, the parameters for options, and wildcards.

Possible Solution: Shorten the parameter list so that no more than 20 appear.

Unknown option on command line (literal)=(parameter)
Explanation: An option has been specified that is not known to the com-

piler. The option is displayed in the (literal) along with the
(parameter).

Possible Solution: Check the spelling of the option keyword.

Compiler Options Errors COMPILER ERRORS

C-4 NPL Programmer’s Guide

The following compiler messages are generated by the compiler during execution:

Diskimage index is full
Explanation: The compiler is attempting to add a newly compiled pro-

gram to the OBJLOC specified, but found that the
diskimage index was full. The program is not compiled.

Possible Solution: Specify a diskimage that has available index space to accom-
modate the newly compiled programs.

Filename in catalog is not a program
Explanation: The compiler has found that the filename being compiled al-

ready exists in the OBJLOC but is not a program file. The
file is not overwritten. The program is not compiled.

Possible Solution: The destination file can be COPY’d to a new filename then
scratched.

No names found in (location) for wildcard (wildcard)
Explanation: The compiler found no source files matching the specified

wildcard in the SRCLOC specified.

Possible Solution: Check the pathname and be sure the source files are avail-
able, and the wildcard includes the files desired.

Object program was moved to end of catalog in object diskimage
Explanation: The compiler was attempting to overwrite an existing object

file in the OBJLOC diskimage, but found that the newly
compiled program did not fit in the old space. The program
was successfully relocated to the end of catalog.

Possible Solution: No action necessary. Message is just informative.

COMPILER ERRORS Compiler Options Errors

NPL Programmer’s Guide C-5

Out of space in Object diskimage
Explanation: The compiler has found insufficient space in the OBJLOC

diskimage to place the compiled program. This may result
when compiling a new program or when compiling a pro-
gram which already exists but has expanded. The program
specified when this message is issued has NOT been com-
pletely compiled and is not executable.

Possible Solution: Use NPL and issue a MOVE END command to expand the
size of the diskimage, or specify a diskimage that has
enough available space.

C.2 Program Syntax Errors

The compiler displays program syntax errors by displaying the source program line
where the error occurred, and on the following line, an up arrow points to the approxi-
mate location of the error, followed by a three position NPL error code.

However, the compiler continues syntax checking on the balance of the program. The par-
tial object program on disk is marked as non-executable.

The compiler continues normal compilation of the balance of programs specified in the
source programs list.

C.3 Program Syntax Warnings

Compiler WARNINGS are generated for certain program statements which may have
RunTime variances under NPL as compared to Wang 2200 BASIC-2. These warnings
are not meant to be totally comprehensive. Rather, they are selectively issued for state-
ments which may have to be rethought. There may well be other statements, as docu-
mented in the NPL Statements Guide, which have variances which affect the operation of
the application.

These warnings may be suppressed by the WARNINGS OFF compiler option. Compiler
warnings do not affect the production of object code.

Program Syntax Errors COMPILER ERRORS

C-6 NPL Programmer’s Guide

ALL(x) & X$ is illogical syntax, likely an error
Explanation: Refer to the NPL Statements Guide, "ALL" for details.

Cannot do RESTORE LINE / DATA checks due to table overflow
Explanation: In order to check RESTORE LINE statements against

DATA statements, the compiler uses a table with a maxi-
mum of 200 entries. This message means that more than 200
DATA lines have been found in the module being compiled.
This means that the warning "RESTORE LINE does not
point to DATA statement in this module" can no longer be
issued for this module (refer below).

ELSE clause not preceded by IF statement
Explanation: This also is valid but illogical syntax.

ERROR clause not preceded by statement
Explanation: This is valid, but illogical syntax.

Programs which use SPACE(K) may need adjustment ... under "THIS O/S"
Explanation: Refer to the Section 3.2 of the Programmer’s Guide for de-

tails.

RESTORE LINE does not point to DATA statement in this module
Explanation: This statement results in a RunTime error when executed un-

less an overlay module containing a DATA statement with
the specified LINE number is loaded.

SAVE DA/DC is not supported at run time
Explanation: Refer to Section 1.5.1 of the Programmer’s Guide for details.

Statement requires RTP Rev x.xx.xx or later to execute
Explanation: This indicates that there is a program statement which is

new for the revision specified in the warning and does not
execute on prior versions of the RunTime. The revision
specified in the warning and does not execute on prior ver-
sions of the RunTime.

COMPILER ERRORS Program Syntax Warnings

NPL Programmer’s Guide C-7

APPENDIX D

NPL DIRECTLY SUPPORTED
TERMINAL CHARACTERISTICS

D.1 Overview

This appendix concerns itself with the terminals which are supported under the various
versions of NPL. Inclusion of a terminal in this chapter does not guarantee that it operates
under all supported NPL environments. Please refer to the appropriate NPL Supplement
for details on terminals supported under each operating system.

NOTE: Consoles and monitors are documented in the appropriate Supplement due to their
operating environment/hardware dependence.

Section D.2 discusses terminal identification, supported terminals and local printer desig-
nation using NPL.

Sections D.3 through D.16 discuss considerations for each NPL supported terminal.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Overview

NPL Programmer’s Guide D-1

D.2 General Considerations

The following section discusses general considerations of NPL supported terminals.

D.2.1 Determination of Terminal Type

On all versions of NPL, the terminal type is determined by a system variable or disk
based table (i.e., BASIC2C_TERM under Xenix, TERMTYPE.TBL under SuperDOS,
etc.). Refer to the appropriate NPL Supplement for details of terminal type determination.

D.2.2 Supported Terminals

As of Revision 4.00, the following terminals are directly supported by the NPL RunTime
and have their supporting files distributed on the NPL Development Package Utilities
diskette. Each supported terminal has a value assigned to it in byte 9 of the $MACHINE
variable. This value is consistent across all operating systems that support the terminal.
For details on which terminals are supported under a specific operating system, refer to
Chapter 6 in the appropriate NPL Supplement.

TERMINAL $MACHINE BYTE 9 VALUE
Altos III HEX(02)
Altos V HEX(08)
Bull HDS 1 HEX(06)
Bull HDS 3 HEX(03)
DEC VT100 HEX(03)
DEC VT200 Series HEX(03)
IBM 3151 HEX(0D)
NCR 4970 HEX(03)
Spectrix SPX 701 HEX(0C)
Wang 2110a HEX(01)
Wang 2x36 DE/DW HEX(07)
Wyse 50 HEX(06)
Wyse 60,150, 160 HEX(05)
Wyse 370 HEX(0B)

General Considerations NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-2 NPL Programmer’s Guide

D.2.3 Support of Native Operating Systems and Utilities

Each operating system supported by NPL supports specific terminals. Not all supported
NPL terminals are supported on all operating systems. Refer to Chapter 6 of the appropri-
ate NPL Supplement for details on specific terminals supported by NPL on that operating
system and for details on which terminals are well suited for use with native operating
system functions or applications.

D.3 Altos III

The following section details the configuration and use of the Altos III terminal for use
with the Niakwa Programming Language.

D.3.1 Screen Character Set

Downloadable Fonts
The Altos III terminal does not support the use of downloadable fonts.

Alternate Character Set (Pixel Graphics)
The Altos III does not fully support the alternate character set .

Non-English Character Sets
Byte 15 of $OPTIONS system variable has been implemented as a "font designator",
whereby a specific type of character set may be selected. For Altos III terminals, the most
practical choices are:

"0" - (the default) standard graphics.

"A" - this is used to support the UK (British) character set.

"B" - this is used to support the US (ASCII) character set.

Non-English users must choose between using the non-English character set and using
pixel graphics. If byte 15 of $OPTIONS is set to "< ", then the non-English characters
can be assigned to any hex code desired through the use of the Screen Translation Table.
In both cases, the appropriate font file should be downloaded.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Altos III

NPL Programmer’s Guide D-3

Where the required national replacement character set is different, it is possible to choose
another appropriate character set through the setting of byte 15 of $OPTIONS to a desig-
nated code. Available codes include:

Character Set Font Designator
ASCII "B"
DEC special graphics "0"
British "A"

Character Translation
The default values for the Altos III terminal are contained in the disk file provided with
the NPL Development Package. Refer to Chapter 6 of the appropriate NPL Supplement
for the name and location of the file on the operating system being used.

D.3.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

D.3.3 Attributes

The Altos III terminal allows only one "hidden" attribute (does not occupy a character po-
sition). For the Altos III, the RunTime uses this single attribute for displaying any of the
four supported attributes or any combination of attributes. The single attribute to be dis-
played can be modified by use of the SETUP option on the Altos III terminal. Available
attributes are DIM (the default), REVERSE, and UNDERLINE.

NOTE: Testing has shown that the default attribute of DIM is least attractive in NPL appli-
cation software. Try the different attribute choices with the software being used and
determine which is the most applicable.

The Altos III does support multiple "non-hidden" attributes. However, these cannot
be used by NPL since they occupy a character position on the screen. Refer to the Al-
tos III User’s Guide for further details on the use of attributes on the Altos III termi-
nal.

Altos III NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-4 NPL Programmer’s Guide

D.3.4 Cursor Handling

The cursor on the Altos III terminal can be set to on or off under program control.

The type of cursor displayed (blinking or steady, block or underline) is not programma-
ble. This makes it impossible to tell by examining the screen whether or not "EDIT"
mode has been invoked.

Refer to the Altos III User’s Guide for further details on cursor appearance.

D.3.5 Support for 132-Column Mode

The Altos III terminal supports a 132-column mode output. Refer to Section 7.4.12 for de-
tails on the implementation of this mode.

D.3.6 Keyboard Characteristics

The default values for the Altos III terminal are contained in a disk file provided with the
NPL Development Package. Refer to Chapter 6 of the appropriate NPL Supplement for
the name and location of the file on the operating system being used.

Default equivalences for commonly used keys are:

HALT (Definable by the host operating system). Refer to Chapter
6 of the appropriate NPL Supplement for details.

EXECUTE LINE FEED

CANCEL HOME

HELP HELP

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Altos III

NPL Programmer’s Guide D-5

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST and WEST)

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.)

INS/LINE Inserts a linefeed within a line of text.

DEL/LINE Deletes characters from the current cursor position to the
end of the line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/SCRN Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/SCRN Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

Altos III NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-6 NPL Programmer’s Guide

In Edit Mode, SF keys are assigned the following functions:

F5 Moves cursor to end of line being edited.
F6 Moves cursor down one line.
F7 Moves cursor up one line.
F8 Moves cursor to beginning of line being edited.
F9 Erases all text from current position to end of line.
F10 Deletes one character at the current cursor position.
F11 Inserts one space at the current cursor position.
F12 Moves cursor 5 spaces to the right.
F13 Moves cursor one space to the right.
F14 Moves cursor one space to the left.
F15 Moves cursor 5 spaces to the left.
F16 Recalls the current line.

Altos III Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Altos III Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE LINE FEED
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’XX UNDERSCORE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F1 ... F10
’0A ... ’0F SF ’10 ... ’15 F11 ... F16
’10 ... ’19 SHIFT SF ’0 ... ’9 SHIFT F1 ... F10
’1A ... ’1F SHIFT SF’10 ... ’15 SHIFT F11 ... F16
’42 PREV-SCREEN SHIFT PREV/SCRN
’43 NEXT-SCREEN NEXT/SCRN
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE DEL CHAR
’4A INSERT INS CHAR
’4C EAST EAST

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Altos III

NPL Programmer’s Guide D-7

Altos III Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Altos III Key
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH SHIFT SOUTH
’56 SHIFT-NORTH SHIFT NORTH
’59 SHIFT-DEL (LINE DEL) DEL LINE
’5A SHIFT-INSERT (LINE INS) INS LINE
’5C SHIFT-EAST (EAST-5) SHIFT EAST
’5D SHIFT-WEST (WEST-5) SHIFT WEST
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT TAB
’E1 HELP HELP
’F0 EDIT HOME

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.3.7 Local Printer Support

The Altos III terminal supports a local serial printer under NPL .

NOTE: Output directed to a non-existent or de-selected local serial printer will be lost.

Altos III NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-8 NPL Programmer’s Guide

D.3.8 Configuration Requirements

The Altos III terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
baud rate varies by operating system

If a local printer is in use, the AUX port of the terminal should be configured to match
the settings of the printer.

Refer to Chapter 6 of the appropriate NPL Supplement for details on operating system
configuration requirements.

The ALTOS III can be operated at up to 19200 baud, however, baud rates higher than
9600 may have restricted cable length requirements.

NOTE: The baud rate may also be limited by the operating system the terminal is being
used on.

D.3.9 Use as a Remote Terminal

The Altos III terminal may be connected as a remote workstation. Use as a remote work-
station does not affect the operation of NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit, and no par-
ity would be appropriate.

NOTE: Two stop bits will not cause a problem; however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

D.3.10 Use with Native Operating System Functions and Utilities

The Altos III will operate properly while executing the Niakwa RunTime and with native
operating system functions and utilities.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Altos III

NPL Programmer’s Guide D-9

D.4 Altos V

The following section details the configuration and use of the Altos V terminal for use
with the Niakwa Programming Language.

D.4.1 Screen Character Set

Downloadable Fonts
The Altos V terminal supports the use of pixel graphics. The Altos V terminal has a
"downloadable" character set contained in a disk file provided with the development
package for each operating system. Refer to Chapter 6 of the appropriate NPL Supple-
ment for details on the naming and location of these files as well as for specific com-
mands necessary to download this character set. The discussion of this chapter assumes
the character set has been downloaded. This font file should not be downloaded to any
other type of terminal.

NOTE: There is a black raster line between pixel graphic characters on successive lines of
the display.

The NPL utility program EDFONT can be used to modify the downloadable fonts. Refer
to Chapter 13 for details on the Font Editor utility program.

Alternate Character Set (Pixel Graphics)
The Altos V terminal fully supports the alternate character set under NPL.

Non-English Character Set
Byte 15 of $OPTIONS system variable has been implemented as a "font designator",
whereby a specific type of character set may be selected. For Altos V terminals, the most
practical choices are:

"@" - (the default) this supports pixel graphics but no non-English characters.

"< " - (the DEC supplemental FONT) this generates all non-English characters (for
all languages) in the range HEX(A1) to HEX(FE), instead of pixel graphics.

Non-English users must choose between using the non-English character set and using
pixel graphics. If byte 15 of $OPTIONS is set to "< ", then the non-English characters
can be assigned to any hex code desired through the use of the Screen Translation Table.
In both cases, the appropriate font file should be downloaded.

Altos V NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-10 NPL Programmer’s Guide

Where the required national replacement character set is different, it is possible to choose
another appropriate character set through the setting of byte 15 of $OPTIONS to a desig-
nated code. Available codes include:

Character Set Font Designator
ASCII "B"
DEC supplemental (VT200 only) "< "
DEC special graphics "0"
Downloaded Fonts "@"
Alternate Graphics "|"
Only one of the following:
British "A"
Dutch "4"
Finnish "C" or "5"
French "R"
French Canadian "Q"
German "K"
Italian "Y"
Norwegian/Danish "E" or "6"
Spanish "Z"
Swedish "H" or "7"
Swiss "= "

Character Translation
The default values for the Altos V terminal are contained in a disk file provided with the
NPL Development Package. Refer to Chapter 6 of the appropriate NPL Supplement for
the name and location of the file on the operating system being used.

D.4.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

D.4.3 Attributes

The Altos V terminal supports all of the video attributes in any combination (BRIGHT,
BLINK, UNDERLINE, REVERSE).

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Altos V

NPL Programmer’s Guide D-11

Refer to the Altos V User’s Guide for further details on the use of attributes on the Altos
V terminal.

D.4.4 Cursor Handling

The cursor on the Altos V terminal can be set to on, off or blinking under program con-
trol.

The type of cursor displayed (block or underline) is left as a user option to be defined in
SETUP.

Refer to the Altos V User’s Guide for further details on cursor appearance.

D.4.5 Support for 132-Column Mode

The Altos V terminal supports 132-column mode output. Refer to Section 7.4.12 for de-
tails on the implementation of this mode.

D.4.6 Keyboard Characteristics

The default values for the Altos V terminal are contained in a disk file provided with the
NPL Development Package. Refer to Chapter 6 of the NPL Supplement for the name and
location of the file on the operating system being used.

Default equivalences for commonly used keys are:

HALT (Definable by the host operating system). Refer to Chapter
6 of the appropriate NPL Supplement for details.

EXECUTE LINE FEED

CANCEL HOME

HELP HELP

Altos V NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-12 NPL Programmer’s Guide

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST).

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.

INS/LINE Inserts a linefeed.

DEL/LINE Deletes characters from the current cursor position to the
end of the line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/SCRN Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/SCRN Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Altos V

NPL Programmer’s Guide D-13

In Edit Mode, SF keys are assigned the following functions:

F5 Moves cursor to end of line being edited
F6 Moves cursor down one line.
F7 Moves cursor up one line.
F8 Moves cursor to beginning of line being edited.
F9 Erases all text from current position to end of line.
F10 Deletes one character at the current cursor position.
F11 Inserts one space at the current cursor position.
F12 Moves cursor 5 spaces to the right.
F13 Moves cursor one space to the right.
F14 Moves cursor one space to the left.
F15 Moves cursor 5 spaces to the left.
F16 Recalls the current line.

Altos V Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Altos V Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE LINE FEED
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’XX UNDERSCORE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F1 ... F10
’0A ... ’0F SF ’10 ... ’15 F11 ... F16
’10 ... ’19 SHIFT SF ’0 ... ’9 SHIFT F1 ... F10
’1A ... ’1F SHIFT SF’10 ... ’15 SHIFT F11 ... F16
’42 PREV-SCREEN SHIFT PREV/SCRN
’43 NEXT-SCREEN NEXT/SCRN
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE DEL CHAR
’4A INSERT INS CHAR
’4C EAST EAST

Altos V NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-14 NPL Programmer’s Guide

Altos V Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Altos V Key
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-C
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH SHIFT SOUTH
’56 SHIFT-NORTH SHIFT NORTH
’59 SHIFT-DEL (LINE DEL) DEL LINE
’5A SHIFT-INSERT (LINE INS) INS LINE
’5C SHIFT-EAST (EAST-5) SHIFT EAST
’5D SHIFT-WEST (WEST-5) SHIFT WEST
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT TAB
’E1 HELP HELP
’F0 EDIT HOME

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.4.7 Local Printer Support

The AltosV terminal supports a local serial printer under NPL .

NOTE: Output directed to a non-existent or de-selected local serial printer will be lost.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Altos V

NPL Programmer’s Guide D-15

D.4.8 Configuration Requirements

The Altos V terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
baud rate varies by operating system

NOTE: When using the Altos V terminal, be sure to set it to 7 bit mode under the GEN-
ERAL 1 setup screen and to 8 bit transfer under the COMMUNICATIONS 1 setup
screen. If the terminal is not configured with the above parameters, the numeric key-
pad and function keys will not work properly.

If a local printer is in use the AUX port of the terminal should be configured to match the
settings of the printer.

Refer to Chapter 6 of the appropriate NPL Supplement for details on operating system
configuration requirements.

The Altos V can be operated at up to 38400 baud, however, baud rates higher than 9600
may have restricted cable length requirements.

NOTE: The baud rate may also be limited by the operating system the terminal is being
used on.

D.4.9 Use as a Remote Terminal

The Altos V terminal may be connected as a remote workstation. Use as a remote work-
station does not affect the operation of NPL. For remote operations, it may be desirable to
configure the terminal for use with modems which support only 10 bit data. In this case, a
setting of 8 data bits, 1 stop bit, and no parity would be appropriate.

NOTE: Two stop bits will not cause a problem, however, 1 stop bit is approximate 10%
faster, which may be important over a (slow) modem.

Altos V NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-16 NPL Programmer’s Guide

D.4.10 Use with Native Operating System Functions and Utilities

The Altos V will operate properly while executing the Niakwa RunTime and with native
operating system functions and utilities.

D.5 Bull HDS 1

The Honeywell Bull HDS 1 terminal is used in Wyse 50 emulation mode, and operates as
follows under NPL.

D.5.1 Screen Character Set

Downloadable Fonts
The HDS 1 terminal does not fully support the use of downloadable fonts.

Alternate Character Set (Pixel Graphics)
The HDS 1 terminal does not fully support the alternate character set.

Non-English Character Sets
Use of non-English character sets through the $OPTIONS Font Designator is not sup-
ported on the HDS 1 terminal.

Character Translation
The default values for the HDS 1 terminal are contained in the file SCREEN.wy50.

D.5.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide for details on the use and syntax of
the $BOXTABLE system variable to generate character box graphics.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Bull HDS 1

NPL Programmer’s Guide D-17

D.5.3 Attributes

The HDS 1 terminal allows only one "hidden" attribute (does not occupy a character posi-
tion). For the HDS 1, the RunTime Program uses this single attribute for displaying any
of the four supported attributes or any combination of attributes. The single attribute to be
displayed can be modified by use of the SETUP option on the HDS 1 terminal. Available
attributes are DIM (the default) and NORMAL.

NOTE: Testing has shown that the default attribute of DIM is least attractive in the applica-
tion software we have tested. Try the different attribute choices with your software
and determine the most applicable.

The HDS 1 does support multiple "non-hidden" attributes. However, these cannot
be used by NPL since they occupy a character position on the screen.

Refer to the HDS 1 User’s Guide for further details on the use of attributes on the HDS 1
terminal.

D.5.4 Cursor Handling

The cursor on the HDS 1 terminal can be set to on, off, or blink under program control.

The type of cursordisplay is controlled by the RunTime, and always sets the cursor type
to line.

Refer to the HDS 1 User’s Guide for further details on cursor appearance.

D.5.5 Support For 132-Column Mode

The HDS 1 terminal does not support 132-column mode output.

D.5.6 Keyboard Characteristics

With the HDS 1 running in Wyse 50 mode, the numeric keypad of the HDS 1 takes on
the characteristics of the Wyse 50 editing keys. The values for the editing keys is dis-
played above the keypad.

Bull HDS 1 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-18 NPL Programmer’s Guide

Default equivalences for commonly used keys are:

HALT CTRL/C (or other key as defined by stty intr command)

EXECUTE HOME

CANCEL BREAK/DEL

HELP ESC,ESC

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST).

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line will be recalled.)

INS/LINE Inserts a linefeed within a line of text.

DEL/LINE Deletes characters from the current cursor position to the
end of line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/PAGE Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/PAGE Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for details.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Bull HDS 1

NPL Programmer’s Guide D-19

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for details.

In Edit Mode, SF keys are assigned the following functions:

F5 Move cursor to end of line being edited.
F6 Move cursor down one line.
F7 Move cursor up one line.
F8 Move cursor to beginning of line being edited.
F9 Erase all text from current position to end of line.
F10 Delete one character at the current cursor position.
F11 Not available
F12 Not available
F13 Not available
F14 Not available
F15 Not available
F16 Not available

HDS 1 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key HDS 1 in Wyse 50 mode Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERLINE UNDERLINE
81 ? ?
82 EXEC HOME
84 ? ?
A1 SHIFT EXEC CTRL-X
E5 SHIFT ERASE CTRL-6
FF’A0’xx UNDERLINE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F1 ... F10
’0A ... ’0D SF ’10 ...’13 PF1 ... PF4
’0E ... ’0F SF ’14 ...’15 CTRL-PF1 ... CTRL-PF2
’10 ... ’19 SHIFT SF ’0...’9 SHIFT F1 ... F10
’1A ... ’1D SHIFT SF’10...’13 SHIFT PF1 ..SHIFT PF4
’1E ... ’1F SHIFT SF’14...’15 CTL+ SHIFT PF1 ... CTL+

SHIFT PF2

Bull HDS 1 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-20 NPL Programmer’s Guide

HDS 1 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key HDS 1 in Wyse 50 mode Key
’42 PREV CTRL-3
’43 NEXT CTRL-PERIOD
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-9
’49 DELETE CTRL-8
’4A INSERT CTRL-7
’4C EAST EAST
’4D WEST BACKSPACE
’4F RECALL CTRL-R
’50 SHIFT CANCEL
’52 SHIFT PREV CTRL-P
’53 SHIFT NEXT CTRL-N
’55 SHIFT SOUTH ?
’56 SHIFT NORTH ?
’59 SHIFT DEL (LINE DEL) CTRL-5
’5A SHIFT INS (LINE INS) CTRL-4
’5C SHIFT EAST (EAST-5) ?
’5D SHIFT WEST (WEST-5) ?
’5F D TAB CTRL-T
’7C GL ?
’7D SHIFT GL CTRL-Z
’7E TAB TAB
’7F SHIFT TAB SHIFT TAB
’E1 HELP ESC,ESC
’F0 EDIT ?

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" dash is
used in a key sequence, it indicates that the keys should be pressed simultaneously. When
a "," (comma) is used in a key sequence, it indicates that the keys should be pressed in se-
quential order.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Bull HDS 1

NPL Programmer’s Guide D-21

D.5.7 Configuration Requirements

The HDS 1 terminal must be set for 8 data bits. There are no special requirements for
baud rate, stop bits or parity, but terminal setup must match the operating system configu-
ration for the serial port. The XON/XOFF handshake must be used.

The default configuration for HDS 1 terminals in Wyse 50 mode is:

8 data bits
2 stop bits
no parity
9600 baud

The keypad on the HDS 1 must be set to "soft keys" mode. If the key pad is set to "nu-
meric" the editing keys will not work.

The HDS 1 can be operated at up to 38400 baud. Baud rates higher than 9600 may have
restricted cable length requirements. See the HDS 1 User’s Guide for details on setting
baud rates.

D.5.8 Use As Remote Terminals

The HDS 1 terminal may be connected as a remote workstation. Use as a remote worksta-
tion does not affect the operation of NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit, and no par-
ity would be appropriate.

NOTE: Two stop bits will not cause a problem; however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

D.5.9 Use With Native Operating System Functions And Utilities

The HDS 1 will operate properly while executing the Niakwa RumTime and with native
operating system functions and utilities.

Bull HDS 1 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-22 NPL Programmer’s Guide

D.6 Bull HDS 3

The Honeywell Bull HDS 3 terminal is used in VT200 emulation mode with the Niakwa
Programming Language.

D.6.1 Screen Character Set

Downloadable Fonts
The Bull HDS 3 terminal supports the use of pixel graphics. The Bull HDS 3 terminal has
a "downloadable" character set contained in a disk file provided with the NPL Develop-
ment Package for each operating system. Refer to Chapter 6 of the appropriate NPL Sup-
plement for details on the naming and location of these files and for specific commands
necessary to download this character set. The discussion of this chapter assumes the char-
acter set has been downloaded. This font file should not be downloaded to any other type
of terminal.

Alternate Character Set (Pixel Graphics)
The Bull HDS 3 terminal fully supports the alternate character set under NPL.

Non-English Character Set
Byte 15 of the $OPTIONS system variable has been implemented as a "font designator",
whereby a specific type of character set may be selected. For Bull HDS 3 terminals, the
most practical choices are:

"A" - (the default) this supports pixel graphics but no non-English characters.

"< " - (the DEC supplemental FONT) this generates all non-English characters
(for all languages) in the range HEX(A1) to HEX(FE) instead of pixel graphics.

Non-English users must choose between using the non-English character set and using
pixel graphics. If byte 15 of $OPTIONS is set to "< ", then the non-English characters
can be assigned to any hex code desired through the use of the Screen Translation Table.
In both cases, the first should be downloaded. Where the required national replacement
character set is different, it is possible to choose another appropriate character set through
the setting of byte 15 of $OPTIONS to a designated code. Available codes include:

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Bull HDS 3

NPL Programmer’s Guide D-23

Character Set Font Designator
ASCII "B"
DEC supplemental (VT200 only) "< "
DEC special graphics "0"
Only one of the following:
British "A"
Dutch "4"
Finnish "C" or "5"
French "R"
French Canadian "Q"
German "K"
Italian "Y"
Norwegian/Danish "E" or "6"
Spanish "Z"
Swedish "H" or "7"
Swiss "= "

Character Translation
The default values for the Bull HDS 3 terminal are contained in a disk file provided with
the NPL Development Package. Refer to Chapter 6 of the NPL Supplement for the name
and location of the file on the operating system being used.

D.6.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

D.6.3 Attributes

The Bull HDS 3 terminal supports all of the video attributes in any combination
(BRIGHT, BLINK, UNDERLINE, REVERSE).

Refer to the Bull HDS 3 terminal User’s Guide for further details on the use of attributes
on the Bull HDS 3 terminal.

Bull HDS 3 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-24 NPL Programmer’s Guide

D.6.4 Cursor Handling

The cursor on the Bull HDS 3 terminal can be turned on and off under program control.
However, it is not possible to distinguish between a blinking and non-blinking cursor.

Refer to the Bull HDS 3 User’s Guide for further details on cursor appearance.

D.6.5 Support for 132-Column Mode

The Bull HDS 3 terminal supports 132-column mode output. Refer to Section 7.4.12 of
the Programmer’s Guide for details on the implementation of this mode.

D.6.6 Keyboard Characteristics

The default values for keyboard translation on the Bull HDS 3 terminal are contained in a
disk file provided with the development package. Refer to Chapter 6 of the NPL Supple-
ment for the name and location of the file on the operating system being used.

Uppercase Bull HDS 3 function keys are "programmable", and do not normally generate
any key codes when pressed. The NPL Development Package contains a disk file that al-
lows for the downloading of uppercase key definitions. Please refer to the appropriate
NPL Supplement for details on operating system specific commands necessary for the im-
plementation of this file.

NOTE: This file should not be downloaded to any other type of terminal.

Default equivalences for commonly used keys are:

HALT CTRL/C (Definable by the host operating system). Refer to
Chapter 6 of the appropriate NPL Supplement for details.

EXECUTE SELECT

CANCEL FIND

HELP HELP

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Bull HDS 3

NPL Programmer’s Guide D-25

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST)

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.

PF2 Inserts a linefeed within a line of text.

PF4 Deletes characters from the current cursor position to the
end of the line.

INS HERE/P F1 Inserts a blank space within a line of text.

REMOVE/PF3 Deletes a character at the current cursor position.

PREV/SCRN Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/SCRN Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or causes cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

Bull HDS 3 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-26 NPL Programmer’s Guide

In Edit Mode, SF keys are assigned the following functions:

F10 Moves cursor to end of line being edited.
F11 Moves cursor down one line.
F12 Moves cursor up one line.
F13 Moves cursor to beginning of line being edited.
F14 Erases all text from current position to end of line.
F17 Deletes one character at the current cursor position.
F18 Inserts one space at the current cursor position.
F19 Moves cursor 5 spaces to the right.
F20 Moves cursor one spaces to the right.
CTRL/[,e Moves cursor one space to the left.
CTRL/[,r Moves 5 spaces to the left.

Bull HDS 3 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Bull HDS 3 Key
08 BACKSPACE CTRL-BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE SELECT
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’XX UNDERSCORE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F6 ... F14, F17
’0A ... ’0C SF ’10 ... ’12 F18 ... F20
’0D ... ’0F SF ’13 ... ’15 CTRL-[, (e, r, t)
’10 ... ’19 SHIFT SF ’0 ... ’9 SHIFT F6 ... F14, F17
’1A...’1C SHIFT SF’10...’12 SHIFT F18 ... F20
’1D...’1F SHIFT SF’13...’15 CTRL-[,SHIFT, (E, R, T)
’42 PREV-SCREEN PREV SCRN
’43 NEXT-SCREEN NEXT SCRN
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE REMOVE / PF3
’4A INSERT INS HERE / PF1

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Bull HDS 3

NPL Programmer’s Guide D-27

Bull HDS 3 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Bull HDS 3 Key
’4C EAST EAST
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH CTRL-B
’56 SHIFT-NORTH CTRL-U
’59 SHIFT-DEL (LINE DEL) CTRL-Y / PF4
’5A SHIFT-INSERT (LINE INS) PF2
’5C SHIFT-EAST (EAST-5) CTRL-F
’5D SHIFT-WEST (WEST-5) CTRL-D
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-L
’7E TAB TAB
’7F SHIFT-TAB CTRL-[, TAB]
’E1 HELP HELP
’F0 EDIT FIND

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.6.7 Local Printer Support

The Bull HDS 3 terminal supports a local serial printer under NPL.

NOTE: Output directed to a non-existent or de-selected local serial terminal will be lost.

Bull HDS 3 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-28 NPL Programmer’s Guide

D.6.8 Configuration Requirements

The Bull HDS 3 series terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
baud rate varies by operating system

If a local printer is in use, the AUX port of the terminal should be configured to match
the settings of the printer.

Refer to Chapter 6 of the appropriate NPL Supplement for details on operating system
configuration requirements.

NOTE: The Bull HDS 3 supports up to a 38400 baud rate, however, baud rates higher than
9600 may have restricted cable length requirements. The baud rate may also be lim-
ited by the operating system the terminal is being used on. Refer to the Bull HDS 3
User’s Guide for details on setting baud rates.

D.6.9 Use as a Remote Terminal

The Bull HDS 3 terminal may be connected as a remote workstation. Use as a remote
workstation does not affect the operation of NPL. For remote operations, it may be desir-
able to configure the terminal for use with modems which support only 10 bit data. In this
case, a setting of 8 data bits, 1 stop bit, and no parity would be appropriate.

NOTE: Two stop bits will not cause a problem, however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

D.6.10 Use with Native Operating System Functions and Utilities

The Bull HDS 3 operates properly while executing the Niakwa RunTime and with native
operating system functions and utilities.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Bull HDS 3

NPL Programmer’s Guide D-29

D.7 DEC VT100

The following section details the configuration and use of the DEC VT100 terminal for
use with the Niakwa Programming Language.

D.7.1 Screen Character Set

Downloadable Fonts
The DEC VT100 terminal does not support the use of downloadable fonts.

Alternate Character Set (Pixel Graphics)
The DEC VT100 terminal does not support the Alternate Character set under NPL.

Non-English Character Set
Use of non-English character sets through the $OPTIONS Font Designator is supported
on the DEC VT100 terminal, but alternate fonts are limited.

Character Translation
The default values for the DEC VT100 terminal are contained in a disk file provided with
the development package. Refer to Chapter 6 of the appropriate NPL Supplement for the
name and location of the file on the operating system being used.

D.7.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

D.7.3 Attributes

The DEC VT100 terminal supports all of the video attributes in any combination
(BRIGHT, BLINK, UNDERLINE, REVERSE).

Refer to the DEC VT100 terminal User’s Guide for further details on the use of attributes
on the DEC VT100 terminal.

DEC VT100 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-30 NPL Programmer’s Guide

D.7.4 Cursor Handling

Cursor control on the DEC VT100 is not programmable.

Refer to the DEC VT100 series User’s Guide for further details on cursor appearance.

D.7.5 Support for 132-Column Mode

The DEC VT100 terminal supports 132-column mode output. Refer to Section 7.4.12 of
the Programmer’s Guide for details on the implementation of this mode.

D.7.6 Keyboard Characteristics

The default values for the DEC VT100 terminal are contained in a disk file provided with
the NPL Development Package. Refer to Chapter 6 f the NPL Supplement for the name
and location of the file on the operating system being used.

Default equivalences for commonly used keys are:

HALT (Definable by the host operating system). Refer to Chapter 6
of the NPL Supplement for details.

EXECUTE LINE FEED

CANCEL ESC, c (pressing ESC then lower case c)

HELP ESC, h (pressing ESC then lower case h)

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST and WEST)

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.)

F2 Inserts a linefeed within a line of text.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS DEC VT100

NPL Programmer’s Guide D-31

F4 Deletes characters from the current cursor position to the
end of line.

F1 Inserts a blank space within a line of text.

F3 Deletes a character at the current cursor position.

In Edit Mode, SF keys are assigned the following functions:

ESC, 5 Moves cursor to end of line being edited.
ESC, 6 Moves cursor down one line.
ESC, 7 Moves cursor up one line.
ESC, 8 Moves cursor to beginning of line being edited.
ESC, 9 Erases all text from current position to end of line.
ESC, p Deletes one character at the current cursor position.
ESC, q Inserts one space at the current cursor position.
ESC, w Moves cursor 5 spaces to the right.
ESC, e Moves cursor one space to the right.
ESC, r Moves cursor one space to the left.
ESC, t Moves cursor 5 spaces to the left.
ESC,) Recalls the current line.

DEC VT100 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key DEC VT100 Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE LINE FEED
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’XX UNDERSCORE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 ESC, (0 ... 9)
’0A ... ’0C SF ’10 ... ’12 ESC, (p, q, w)
’0D ... ’0F SF ’13 ... ’15 ESC, (e, r, t)
’10 ... ’19 SHIFT SF ’0 ... ’9 ESC, SHIFT, (0 ... 9)

DEC VT100 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-32 NPL Programmer’s Guide

DEC VT100 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key DEC VT100 Key
’1A ... ’1C SHIFT SF’10 ... ’12 ESC, (P, Q, W)
’1D ... ’1F SHIFT SF’13 ... ’15 ESC, (E, R, T)
’42 PREV-SCREEN ESC, s
’43 NEXT-SCREEN ESC, n
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE F3
’4A INSERT F1
’4C EAST EAST
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-C
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH CTRL-B
’56 SHIFT-NORTH CTRL-U
’59 SHIFT-DEL (LINE DEL) F4
’5A SHIFT-INSERT (LINE INS) F2
’5C SHIFT-EAST (EAST-5) CTRL-F
’5D SHIFT-WEST (WEST-5) CTRL-D
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-L
’7E TAB TAB
’7F SHIFT-TAB ESC, TAB
’E1 HELP ESC, h
’F0 EDIT ESC, c

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" dash is
used in a key sequence, it indicates that the keys should be pressed simultaneously. When
a "," (comma) is used in a key sequence, it indicates that the keys should be pressed in se-
quential order.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS DEC VT100

NPL Programmer’s Guide D-33

D.7.7 Local Printer Support

The DEC VT100 terminal does not support a terminal printer. Some similar models, e.g.,
VT102 and emulator packages, do support a terminal printer. The RunTime allows for a
VT100 terminal to be configured with a local printer. If a printer is not attached, output
will be lost.

D.7.8 Configuration Requirements

The DEC VT100 terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
baud rate varies by operating system

If a local printer is in use, the AUX port of the terminal should be configured to match
the settings of the printer.

Refer to Chapter 6 of the appropriate NPL Supplement for details on operating system
configuration requirements.

The DEC VT100 can be operated at up to 9600 baud.

NOTE: The baud rate may also be limited by the operating system, the terminal is being
used on. Refer to the DEC VT100 User’s Guide for details on setting baud rates.

D.7.9 Use as a Remote Terminal

The DEC VT100 terminal may be connected as a remote workstation. Use as a remote
workstation does not affect the operation of NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit, and no par-
ity would be appropriate.

NOTE: Two stop bits will not cause a problem, however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

DEC VT100 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-34 NPL Programmer’s Guide

D.7.10 Use with Native Operating System Functions and Utilities

The DEC VT100 will operate properly while executing the Niakwa RunTime and with
native operating system functions and utilities.

D.8 DEC VT200 Series

The following section details the configuration and use of the DEC VT200 terminal for
use with the Niakwa Programming Language.

D.8.1 Screen Character Set

Downloadable Fonts
The DEC VT200 series terminal supports the use of pixel graphics. The DEC VT200 se-
ries terminal has a "downloadable" character set contained in a disk file provided with the
NPL Development Package for each operating system. Refer to Chapter 6 of the appropri-
ate NPL Supplement for details on the naming and location of these files and for specific
commands necessary to download this character set. The discussion of this chapter as-
sumes the character set has been downloaded. This font file should not be downloaded to
any other type of terminal.

Alternate Character Set (Pixel Graphics)
The DEC VT200 series terminal fully supports the alternate character set under NPL.

Non-English Character Set
Byte 15 of the $OPTIONS system variable has been implemented as a "font designator",
whereby a specific type of character set may be selected. For VT200 series terminals, the
most practical choices are:

"A" - (the default) this supports pixel graphics but no non-English characters.

"< " - (the DEC supplemental FONT) this generates all non-English characters
(for all languages) in the range HEX(A1) to HEX(FE) instead of pixel graphics.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS DEC VT200 Series

NPL Programmer’s Guide D-35

Non-English users must choose between using the non-English character set and using
pixel graphics. If byte 15 of $OPTIONS is set to "< ", then the non-English characters
can be assigned to any hex code desired through the use of the Screen Translation Table.
In both cases, the first should be downloaded. Where the required national replacement
character set is different, it is possible to choose another appropriate character set through
the setting of byte 15 of $OPTIONS to a designated code. Available codes include:

Character Set Font Designator
ASCII "B"
DEC supplemental (VT200 only) "< "
DEC special graphics "0"
Only one of the following:
British "A"
Dutch "4"
Finnish "C" or "5"
French "R"
French Canadian "Q"
German "K"
Italian "Y"
Norwegian/Danish "E" or "6"
Spanish "Z"
Swedish "H" or "7"
Swiss "= "

Character Translation
The default values for the DEC VT200 series terminal are contained in a disk file pro-
vided with the NPL Development Package. Refer to Chapter 6 of the NPL Supplement
for the name and location of the file on the operating system being used.

D.8.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

DEC VT200 Series NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-36 NPL Programmer’s Guide

D.8.3 Attributes

The DEC VT200 series terminal supports all of the video attributes in any combination
(BRIGHT, BLINK, UNDERLINE, REVERSE).

Refer to the DEC VT200 series terminal User’s Guide for further details on the use of at-
tributes on the DEC VT200 series terminal.

D.8.4 Cursor Handling

The cursor on the DEC VT200 series terminal can be turned on and off under program
control. However, it is not possible to distinguish between a blinking and non-blinking
cursor.

Refer to the DEC VT200 series User’s Guide for further details on cursor appearance.

D.8.5 Support for 132-Column Mode

The DEC VT200 series terminal supports 132-column mode output. Refer to Section
7.4.12 of the Programmer’s Guide for details on the implementation of this mode.

D.8.6 Keyboard Characteristics

The default values for keyboard translation on the DEC VT200 series terminal are con-
tained in a disk file provided with the development package. Refer to Chapter 6 of the
NPL Supplement for the name and location of the file on the operating system being used.

Uppercase VT200 series function keys are "programmable", and do not normally gener-
ate any key codes when pressed. The NPL Development Package contains a disk file that
allows for the downloading of uppercase key definitions. Please refer to the appropriate
NPL Supplement for details on operating system specific commands necessary for the im-
plementation of this file.

NOTE: This file should not be downloaded to any other type of terminal.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS DEC VT200 Series

NPL Programmer’s Guide D-37

Default equivalences for commonly used keys are:

HALT (Definable by the host operating system). Refer to Chapter
6 of the appropriate NPL Supplement for details.

EXECUTE SELECT

CANCEL FIND

HELP HELP

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST)

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.

F2 Inserts a linefeed within a line of text.

F4 Deletes characters from the current cursor position to the
end of the line.

INSERT or F1 Inserts a blank space within a line of text.

DELETE or F3 Deletes a character at the current cursor position.

PREV/SCRN Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/SCRN Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or causes cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

DEC VT200 Series NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-38 NPL Programmer’s Guide

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

In Edit Mode, SF keys are assigned the following functions:

F10 Moves cursor to end of line being edited.
F11 Moves cursor down one line.
F12 Moves cursor up one line.
F13 Moves cursor to beginning of line being edited.
F14 Erases all text from current position to end of line.
F17 Deletes one character at the current cursor position.
F18 Inserts one space at the current cursor position.
F19 Moves cursor 5 spaces to the right.
F20 Moves cursor one spaces to the right.
CTRL/[,e Moves cursor one space to the left.
CTRL/[,r Moves 5 spaces to the left.

DEC VT200 Series Default Keyboard Equivalences Table
NPL Code NPL Virtual Key DEC VT200 Key
08 BACKSPACE CTRL-BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE SELECT
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’XX UNDERSCORE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F6 ... F14, F17
’0A ... ’0C SF ’10 ... ’12 F18 ... F20
’0D ... ’0F SF ’13 ... ’15 CTRL-[, (e, r, t)
’10 ... ’19 SHIFT SF ’0 ... ’9 SHIFT F6 ... F14, F17
’1A...’1C SHIFT SF’10...’12 SHIFT F18 ... F20
’1D...’1F SHIFT SF’13...’15 CTRL-[,SHIFT, (E, R, T)
’42 PREV-SCREEN PREV SCRN
’43 NEXT-SCREEN NEXT SCRN
’45 SOUTH SOUTH

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS DEC VT200 Series

NPL Programmer’s Guide D-39

DEC VT200 Series Default Keyboard Equivalences Table
NPL Code NPL Virtual Key DEC VT200 Key
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE REMOVE / PF3
’4A INSERT INS HERE / PF1
’4C EAST EAST
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH CTRL-B
’56 SHIFT-NORTH CTRL-U
’59 SHIFT-DEL (LINE DEL) CTRL-Y / PF4
’5A SHIFT-INSERT (LINE INS) PF2
’5C SHIFT-EAST (EAST-5) CTRL-F
’5D SHIFT-WEST (WEST-5) CTRL-D
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-L
’7E TAB TAB
’7F SHIFT-TAB CTRL-[, TAB]
’E1 HELP HELP
’F0 EDIT FIND

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.8.7 Local Printer Support

The DEC VT200 series terminal supports a local serial printer under NPL.

NOTE: Output directed to a non-existent or de-selected local serial terminal will be lost.

DEC VT200 Series NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-40 NPL Programmer’s Guide

D.8.8 Configuration Requirements

The DEC VT200 series terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
baud rate varies by operating system

If a local printer is in use, the AUX port of the terminal should be configured to match
the settings of the printer.

Refer to Chapter 6 of the appropriate NPL Supplement for details on operating system
configuration requirements.

NOTE: The DEC VT200 series supports up to a 19200 baud rate, however, baud rates
higher than 9600 may have restricted cable length requirements. The baud rate may
also be limited by the operating system the terminal is being used on. Refer to the
DEC VT200 User’s Guide for details on setting baud rates.

D.8.9 Use as a Remote Terminal

The DEC VT200 series terminal may be connected as a remote workstation. Use as a re-
mote workstation does not affect the operation of NPL. For remote operations, it may be
desirable to configure the terminal for use with modems which support only 10 bit data.
In this case, a setting of 8 data bits, 1 stop bit, and no parity would be appropriate.

NOTE: Two stop bits will not cause a problem, however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

D.8.10 Use with Native Operating System Functions and Utilities

The DEC VT200 operates properly while executing the Niakwa RunTime and with na-
tive operating system functions and utilities.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS DEC VT200 Series

NPL Programmer’s Guide D-41

D.9 IBM 3151

The following section details the configuring and use of the IBM 3151 terminal for use
with the Niakwa Programming Language.

D.9.1 Screen Character Set

Downloadable Fonts
The IBM 3151 console terminal does not support downloadable fonts.

Alternate Character Set (Pixel Graphics)
 The IBM 3151 terminal does not support use of the alternate character set.

Non-English Character Sets
Use of non-English character sets through the $OPTIONS Font Designator is not sup-
ported on the IBM 3151 terminal.

Character Translation
The default values for both screen and keyboard translation for the IBM 3151 terminal
are not built into the Niakwa RunTime. The downloadable files must be present and are
used by the Niakwa RunTime instead of the built-in defaults. Refer to the appropriate
NPL Supplement for the use of these files.

D.9.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Niakwa Programming Language Statements Guide
for details on the use and syntax of the $BOXTABLE system variable to generate charac-
ter box graphics.

D.9.3 Attributes

The IBM 3151 terminal supports all of the video attributes in any combination (BRIGHT,
BLINK, UNDERLINE, REVERSE).

Refer to the IBM 3151 User’s Guide for further details on the use of attributes on the
IBM 3151 terminal.

IBM 3151 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-42 NPL Programmer’s Guide

D.9.4 Cursor Handling

The IBM 3151 cannot display a "steady" cursor. A steady cursor appears the same as a
blinking cursor.

NOTE: There is no control available for the cursor’s appearance on the IBM 3151 terminal.

D.9.5 Support for 132-Column Mode

The IBM 3151 terminal supports 132-column mode output. Refer to Section 7.4.12 for
details on the implementation of this mode.

D.9.6 Keyboard Characteristics

The IBM 3151 terminal should be configured to use the appropriate NPL keyboard file.
Refer to Chapter 6 of the appropriate NPL Supplement for details.

Default equivalences for commonly used keys are:

HALT CTRL-C (configurable by the stty intr command)

EXECUTE HOME

CANCEL BACK TAB (under HOME key)

HELP ESC, ESC

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST).

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.)

? Inserts a linefeed within a line of text.

? Deletes characters from the current cursor position to the
end of line.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS IBM 3151

NPL Programmer’s Guide D-43

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/PAGE Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/PAGE Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the NPL Program-
mer’s Guide for more information.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the NPL Programmer’s
Guide for more information.

In Edit Mode, SF keys are assigned the following functions:

F5 Moves cursor to end of line being edited.
F6 Moves cursor down one line.
F7 Moves cursor up one line.
F8 Moves cursor to beginning of line being edited.
F9 Erases all text from current position to end of line.
F10 Deletes one character at the current cursor position.
F11 Insert one space at the current cursor position.
F12 Moves cursor 5 spaces to the right.
SHIFT-CTRL-F1 Moves cursor one space to the right.
SHIFT-CTRL-F2 Moves cursor one space to the left.
SHIFT-CTRL-F3 Moves cursor 5 spaces to the left.
SHIFT-CTRL-F4 Recalls the current line.

IBM 3151 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-44 NPL Programmer’s Guide

IBM 3151 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key IBM 3151 KEY
08 BACKSPACE BACKSPACE
0D RETURN RETURN

ENTER
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXEC HOME

CTRL-J
CTRL-RETURN

84 CONTINUE (LOAD) ?
FF’A0’xx KEY) UNDERLINE(DEAD KEY) ?
’00 ... ’0B SF ’0 ... ’11 F1 ... F12
’0C ... ’0F SF ’12 ...’15 CTRL-SHIFT F1 ... F4
’10 ... ’1B SHIFT-SF ’0...’11 SHIFT-F1 ... F12
’1C ... ’1F SHIFT-SF’12...’15 CTRL-SHIFT F5 ... F8
’42 PREV-SCREEN CLEAR
’43 NEXT-SCREEN ERASE
’45 SOUTH SOUTH
’46 NORTH NORTH
’49 DELETE DELETE
’4A INSERT INSERT
’4C EAST EAST
’4D WEST WEST
’50 SHIFT-CANCEL CTRL-HOME
’52 SHIFT-PREV-SCREEN CTRL-CLEAR
’53 SHIFT-NEXT-SCREEN CTRL-ERASE
’59 SHIFT-DEL (Line DEL) CTRL-DELETE
’5A SHIFT-INS (LINE INS) CTRL-INSERT
’7E TAB TAB
’7F SHIFT- TAB SHIFT-TAB

BACKTAB
’E1 HELP ESC, ESC
’F0 EDIT (CANCEL) BACK TAB

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS IBM 3151

NPL Programmer’s Guide D-45

The column "IBM 3151 Key" represents default values under AIX.

A question mark (?) indicates that no key is assigned to the Niakwa Programming Lan-
guage code. When a "-" (dash) is used in a key sequence it indicates that the keys should
be pressed simultaneous. When a "," (comma) is used in a key sequence it indicates that
the keys should be pressed in sequential order.

D.9.7 Local Printer Support

The IBM 3151 terminal supports a local serial printer under NPL. Output directed to a
non-existent or de-selected local serial printer is lost.

D.9.8 Configuration Requirements

The IBM 3151 terminal should be set to:

Machine Mode IBM 3151
Row and Column 25 x 80
Auto LF OFF
Word Length 8
Turnaround Character CR
Insert Character SPACE

NOTE: The IBM 3151 terminal must be configured in the above manner for proper opera-
tion with the NPL.

If a local printer is in use the AUX port of the terminal should be configured to match the
settings of the printer.

D.9.9 Use as Remote Terminals

The IBM 3151 terminal may be connected as a remote workstation. Use as a remote
workstation does not affect the operation of NPL.

D.9.10 Use with Native Operating System Functions and Utilities

The IBM 3151 terminal is supported for use with NPL and for native operating system
functions and utilities.

IBM 3151 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-46 NPL Programmer’s Guide

D.10 NCR 4970

The NCR 4970 terminal is used in VT200 emulation mode. The following section details
the use of this terminal under NPL.

D.10.1 Screen Character Set

Downloadable Fonts
The NCR 4970 terminals have a "downloadable" character set. Refer to Chapter 6 of the
appropriate NPL Supplement for details.

NOTE: This file should not be downloaded to any other type of terminal.

The NPL utility program EDFONT can be used to modify the downloadable fonts. Refer
to Chapter 13 of the Programmer’s Guide, Compiler Utilities, for details on the Font Edi-
tor utility program.

Alternate Character Set (Pixel Graphics)
The NCR 4970 terminal fully supports the Alternate Character set under NPL.

Non-English Character Set
Byte 15 of $OPTIONS system variable has been implemented as a "font designator",
whereby a specific type of character set may be selected. For NCR 4970 terminals, the
most practical choices are:

"A" (the default) this supports pixel graphics but no non-English characters.

"< " (the supplemental FONT) this generates all non-English characters (for all lan-
guages) in the range HEX(A1) to HEX(FE) instead of pixel graphics.

Non-English users must choose between using the non-English character set and using
pixel graphics. If byte 15 of $OPTIONS is set to "< ", then the non-English characters
can be assigned to any hex code desired through the use of the Screen Translation Table.
In both cases, the appropriate file should be downloaded.

Where the required national replacement character set is different, it is possible to choose
another appropriate character set through the setting of byte 15 of $OPTIONS to a desig-
nated code. Available codes include:

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS NCR 4970

NPL Programmer’s Guide D-47

Character Set Font Designator
ASCII "B"
DEC supplemental (VT200 only) "< "
DEC special graphics "0"
Only one of the following:
British "A"
Dutch "4"
Finnish "C" or "5"
French "R"
German "K"
Italian "Y"
Norwegian/Danish "E" or "6"
Spanish "Z"
Swedish "H" or "7"
Swiss "= "

Character Translation
The default values for the NCR 4970 terminal are contained in a downloadable file. Refer
to Chapter 6 of the appropriate NPL Supplement for more details.

D.10.2 Box Graphics

"True" box graphics are not supported for this terminal.

Character box graphics are supported on this terminal. Refer to the Statements Guide for
details on the use and syntax of the $BOXTABLE system variable to generate character
box graphics.

D.10.3 Attributes

The NCR 4970 terminal supports all of the video attributes in any combination
(BRIGHT,BLINK, UNDERLINE, REVERSE).

Refer to the NCR 4970 User’s Guide for further details on the use of attributes on the
NCR 4970 terminal.

NCR 4970 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-48 NPL Programmer’s Guide

D.10.4 Cursor Handling

The cursor control on the NCR 4970 can be set to on and off under program control.
However, blink or steady is not programmable.

Refer to the NCR 4970 User’s Guide for further details on cursor appearance.

D.10.5 Support For 132-Column Mode

The NCR 4970 terminal supports 132-column mode output. Refer to Section 7.4.12 of
the Programmer’s Guide for details.

D.10.6 Keyboard Characteristics

The uppercase NCR 4970 function keys are "programmable", and do not normally gener-
ate any key codes when pressed. A downloadable file is used for support of the NCR
4970 keyboard. Refer to Chapter 6 of the appropriate NPL Supplement for details.

NOTE: The downloadable file should not be downloaded to any other type of terminal.

Default equivalences for commonly used keys are:

HALT CTRL/C (or key as defined by the stty intr command)

EXECUTE SELECT

CANCEL FIND

HELP HELP

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST).

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.)

PF2 Inserts a linefeed within a line of text.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS NCR 4970

NPL Programmer’s Guide D-49

PF4 Deletes characters from the current cursor position to the
end of line.

INS HERE/PF1 Inserts a blank space within a line of text.

REMOVE/PF3 Deletes a character at the current cursor position.

PREV/SCRN Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/SCRN Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or causes cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for details.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for details.

In Edit Mode, SF keys are assigned the following functions:

F10 Moves the cursor to end of line being edited.
F11 Moves the cursor down one line.
F12 Moves the cursor up one line.
F13 Moves the cursor to beginning of line being edited.
F14 Erases all text from current position to end of line.
F17 Deletes one character at the current cursor position.
F18 Inserts one space at the current cursor position.
F19 Moves the cursor 5 spaces to the right.
F20 Moves the cursor one space to the right.
CTRL-[,e Moves the cursor one space to the left.
CTRL-[,r Moves the cursor 5 spaces to the left.

NCR 4970 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-50 NPL Programmer’s Guide

NCR 4970 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key NCR 4970 Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERLINE UNDERLINE
81 ? ?
82 EXEC SELECT
84 ? ?
A1 SHIFT EXEC CTRL-X
E5 SHIFT ERASE CTRL-W
FF’A0’xx UNDERLINE(DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F6 ... F14,F17
’0A ... ’0C SF ’10 ...’12 F18 ... F20
’0D ... ’0F SF ’13 ...’15 CTRL-[,(e,r,t)*
’10 ... ’19 SHIFT SF ’0...’9 SHIFT F6 ...F14,F17
’1A ... ’1C SHIFT SF’10...’12 SHIFT F18 ... F20
’1D ... ’1F SHIFT SF’13...’15 CTRL-[,SHIFT,(E,R,T)*
’42 PREV PREV SCRN
’43 NEXT NEXT SCRN
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE REMOVE,PF3
’4A INSERT INS HERE,PF1
’4C EAST EAST
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT CANCEL CTRL-K
’52 SHIFT PREV CTRL-P
’53 SHIFT NEXT CTRL-N
’55 SHIFT SOUTH CTRL-B
’56 SHIFT NORTH CTRL-U
’59 SHIFT DEL (LINE DEL) PF4
’5A SHIFT INS (LINE INS) PF2
’5C SHIFT EAST(EAST-5) CTRL-F
’5D SHIFT WEST (WEST-5) CTRL-D

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS NCR 4970

NPL Programmer’s Guide D-51

NCR 4970 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key NCR 4970 Key
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT GL ?
’7E TAB TAB
’7F SHIFT TAB CTRL-[,TAB*
’E1 HELP HELP
’F0 EDIT FIND

A question mark (?) indicates that no key is assigned to the NPL code.

CTRL and [must be pressed simultaneously, then released before the other key se-
quences are pressed.

When a "-" (dash) is used in a key sequence it indicates that the keys should be pressed
simultaneously. When a "," (comma) is used in a key sequence it indicates that the keys
should be pressed in sequential order.

D.10.7 Local Printer Support

The NCR 4970 terminal supports a local serial printer under NPL.

NOTE: Output directed to a non-existent or de-selected local serial printer will be lost.

D.10.8 Configuration Requirements

The NCR 4970 terminal must be configured as follows:

GENERAL FEATURES

VT200 Mode, 7 Controls
User Defined Keys Unlocked
User Features Unlocked
Save User Defined Keys
Application Keypad
Normal Cursor Keys

NCR 4970 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-52 NPL Programmer’s Guide

 ENHANCEMENT FEATURES MENU

F-key Priority: Coded Keys Prime
VT100 Keys: F1 to F20

Terminal setup must match the system configuration for the serial port.

The NCR 4970 terminals is should be set up as follows:

Baud rate optimal
1 stop bits
Even parity
XON/XOFF handshake

The NCR 4970 can be operated at up to 19200 baud. Baud rates higher than 9600 may
have restricted cable length requirements. See the NCR 4970 User’s Guide for details on
setting baud rates.

D.10.9 Use As Remote Terminals

The NCR 4970 terminal may be connected as a remote workstation. Use as a remote
workstation does not affect the operation of NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit, and no par-
ity would be appropriate.

NOTE: Two stop bits will not cause a problem, however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

D.10.10 Use With Native Operating System Functions And Utilities

The NCR 4970 is supported under NPL and well suited for native operating system func-
tions and utilities.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS NCR 4970

NPL Programmer’s Guide D-53

D.11 Spectrix SPX 701

The Spectrix 701 terminal is supported in its native Spectrix mode by NPL. This provides
functionality that is very similar to a Wang 2x36 terminal.

The NPL RunTime will automatically place the Spectrix 701 terminal into native mode at
start up time and place it in VT100 mode when the RunTime is exited, provided the termi-
nal is set up correctly for NPL use. Refer to the appropriate NPL Supplement for more in-
formation.

This feature allows the Spectrix 701 terminal to be configured as a VT100 terminal for
use with host operating system functions or non-NPL applications (refer to the DEC
VT200 discussion in Section D.7).

D.11.1 Screen Character Set

Downloadable Fonts
The Spectrix SPX701 terminals fully supports the standard and alternate character sets
without "downloadable" fonts.

Alternate Character Set (Pixel Graphics)
The Spectrix SPX701 terminal fully supports the Alternate Character set under NPL.

Non-English Character Set
Use of non-English character sets through the $OPTIONS Font Designator is not sup-
ported on the Spectrix SPX701 terminal.

Character Translation
The default values for the Spectrix SPX701 terminal are contained in a downloadable
file. Refer to the appropriate NPL Supplement for more details.

D.11.2 Box Graphics

"True" box graphics are supported for this terminal. Refer to the Statements Guide for de-
tails on the use and syntax of the $BOXTABLE system variable to generate "true" box
graphics. Character box graphics are not supported on this terminal.

Spectrix SPX 701 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-54 NPL Programmer’s Guide

D.11.3 Attributes

The Spectrix SPX701 terminal supports all of the video attributes in any combination
(BRIGHT, BLINK, UNDERLINE, REVERSE).

NOTE: The BLINK attribute does not function properly unless the status line is enabled.

Refer to the Spectrix SPX701 User’s Guide for further details on the use of attributes on
the Spectrix SPX701 terminal.

D.11.4 Cursor Handling

The cursor on the Spectrix SPX701 can be set to on, off, or blink under program control.

The cursor appearance is controlled by byte 32 of $OPTIONS (00 for default, 01 for line
and 02 for block).

Refer to the Spectrix SPX701 User’s guide for further details on cursor appearance.

D.11.5 Support For 132-Column Mode

The Spectrix SPX701 terminal supports 132-column mode output. Refer to section 7.4.12
of the Release III Programmer’s Guide for details.

D.11.6 Keyboard Characteristics

Default values for keyboard translation on the Spectrix SPX701 are contained in down-
loadable files. Refer to the appropriate NPL Supplement for details.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Spectrix SPX 701

NPL Programmer’s Guide D-55

Default equivalences for commonly used keys are:

HALT Definable by operating system (see note below).

EXECUTE EXEC

CANCEL SHIFT-CANCEL

HELP SHIFT-CONTROL-RESET

NOTE: Due to the Spectrix SPX701’s handling of XON/XOFF handshaking, and the codes
transmitted by the various function keys, the HALT key on the keyboard cannot be
used for the HALT function. The only keys which can be used without affecting the
operation of the other keys are "@", "‘", and "{". Of these three choices, we recom-
mend that the "{" key be used as the HALT key. Information on setting the HALT
key under the native operating environment is given in Chapter 6 of the appropriate
NPL Supplement. The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST).

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line will be recalled.

INS/LINE Inserts a linefeed within a line of text.

DEL/LINE Deletes characters from the current cursor position to the
end of line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/PAGE Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or causes cursor movement
to the first line of text.

NEXT/PAGE Causes the screen display to shift to the next screen (if more
than 23 line of text exist) or causes cursor movement to the
last line of text.

Spectrix SPX 701 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-56 NPL Programmer’s Guide

In Edit Mode, SF keys are assigned the following functions:

SF’4 Moves the cursor to end of line being edited.
SF’5 Moves the cursor down one line.
SF’6 Moves the cursor up one line.
SF’7 Moves the cursor to beginning of line being edited.
SF’8 Erases all text from current position to end of line.
SF’9 Deletes one character at the current cursor position.
SF’10 Inserts one space at the current cursor position.
SF’11 Moves the cursor 5 spaces to the right.
SF’12 Moves the cursor one space to the right.
SF’13 Moves the cursor one space to the left.
SF’14 Moves the cursor 5 spaces to the left.
SF’15 Recalls the current line.

Spectrix SPX701 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Spectrix SPX701 Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERSCORE ?
81 CLEAR CLEAR
82 EXECUTE EXEC
84 CONTINUE CONT
A1 LOAD SHIFT EXEC
E5 SHIFT ERASE SHIFT ERASE
FF’A0’xx UNDERLINE(DEAD KEY) ?
’00 ... ’0F SF ’0 ... ’15 SF ’0 ... ’15
’10 ... ’1F SHIFT SF ’0...’15 SHIFT SF ’0...’15
’42 PREV SCREEN PREV/SCRN
’43 NEXT SCREEN NEXT/SCRN
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE ERASE
’49 DELETE REMOVE
’4A INSERT INSERT
’4C EAST EAST
’4D WEST WEST

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Spectrix SPX 701

NPL Programmer’s Guide D-57

Spectrix SPX701 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Spectrix SPX701 Key
’4F RECALL RECALL
’50 CANCEL SHIFT CANCEL
’52 SHIFT PREV SCREEN SHIFT PREV/SCRN
’53 SHIFT NEXT SCREEN SHIFT NEXT/SCRN
’55 SHIFT SOUTH SHIFT SOUTH
’56 SHIFT NORTH SHIFT NORTH
’59 SHIFT DELETE SHIFT REMOVE
’5A SHIFT INSERT SHIFT INS (LINE INS)
’5C SHIFT EAST SHIFT EAST (EAST-5)
’5D SHIFT WEST SHIFT WEST (WEST-5)
’5F D TAB SHIFT RECALL
’7C GL GL
’7D SHIFT GL SHIFT GL
’7E TAB TAB
’7F SHIFT TAB SHIFT TAB
’E1 HELP SHIFT CONTROL RESET
’F0 EDIT CANCEL

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.11.7 Local Printer Support

The Spectrix SPX701 terminal supports a local serial or parallel printer under NPL.

NOTE: Output directed to a non-existent or de-selected local printer will be lost.

D.11.8 Configuration Requirements

The Spectrix SPX701 terminal is supported by NPL with byte 9 of $MACHINE set to
HEX(0C) if the RunTime recognizes that a Spectrix SPX701 terminal is in use.

Spectrix SPX 701 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-58 NPL Programmer’s Guide

The Spectrix SPX701 terminal has several emulation modes, but for use with NPL it
must be set to VT100.

Refer to the appropriate NPL Supplements for more details on using this terminal with
NPL files.

The Spectrix SPX701 terminal must be configured as:

VT100 Mode
Status line enabled
DTR flow control disabled
RTS flow control disabled
XON/XOFF handshaking

The default configuration for Spectrix SPX701 terminals is:

8 data bits
1 stop bits
No parity
9600 baud

There are no special requirements for stop bits, or parity. Terminal setup must match the
operating system configuration for the serial port. The XON/XOFF handshake must be
used with the DTR and RTS flow control disabled.

The Spectrix SPX701 can be operated at up to 19200 baud. Baud rates higher than 9600
may have restricted cable length requirements. See the Spectrix SPX701 User’s Guide
for details on setting baud rates.

D.11.9 Use As Remote Terminals

The Spectrix SPX701 terminal may be connected as a remote workstation. Use as a re-
mote workstation does not affect the operation of NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit, and no par-
ity would be appropriate.

NOTE: Two stop bits will not cause a problem, however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Spectrix SPX 701

NPL Programmer’s Guide D-59

D.11.10 Use With Native Operating System Functions And Utilities

The Spectrix SPX701 is supported under NPL for native operating system functions and
utilities.

D.12 Wang 2110A

The following section details the configuration and use of the Wang 2110a terminal for
use with the NPL.

D.12.1 Screen Character Set

Downloadable Fonts
The Wang 2110A terminal does not support downloadable fonts.

Alternate Character Set (Pixel Graphics)
The Wang 2110A terminal does not support the Alternate Character Set under NPL.

Non-English Character Set
All characters available on the Wang PC in remote mode (i.e., WISCII) are supported by
NPL on this terminal.

Character Translation
The default values for the Wang 2110A terminal are contained in a disk file provided
with the development package. Refer to Chapter 6 of the appropriate NPL Supplement
for the name and location of the file on the operating system being used.

D.12.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

D.12.3 Attributes

The Wang 2110A terminal supports all of the video attributes in any combination
(BRIGHT, BLINK, UNDERLINE, REVERSE).

Wang 2110A NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-60 NPL Programmer’s Guide

NOTE: BLINK and BRIGHT display the same--always between normal and bright mode.

D.12.4 Cursor Handling

The cursor on the Wang 2110A terminal can be set to on, off or blink under program con-
trol.

D.12.5 Support for 132-Column Mode

The Wang 2110A terminal supports 132-column mode output. Refer to Section 7.4.12 for
details on the implementation of this mode.

D.12.6 Keyboard Characteristics

The default values for the Wang 2110A terminal are contained in a disk file provided
with the development package. Refer to Chapter 6 of the appropriate NPL Supplement
for the name and location of the file on the operating system being used. The default key-
board file includes additional key codes to match upper case function keys on the WANG
2210A which by default do not generate any key codes for NPL. To use these upper case
function keys, the following values must be programmed into the "Keyboard Configura-
tion" section of the terminal’s built-in SETUP program.

SETUP Key Name Program Value for NPL NPL Key
PF21 ^[[50~ SF’20
PF22 ^[[51~ SF’21
PF23 ^[[52~ SF ’22
PF24 ^[[53~ SF ’23
PF25 ALREADY DEFINED SF ’24
PF26 ^[[54~ SF ’25
PF27 ^[[55~ SF ’26
PF28 ^[[56~ SF ’27
PF29 ^[[57~ SF ’28
PF30 ^[[58~ SF ’29
PF31 ^[[59~ SF ’30

NOTE: In the "Program value" column, the "^[" is the notation used for the ESCAPE con-
trol code (HEX(1B)), and the "~" is a HEX(7E).

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wang 2110A

NPL Programmer’s Guide D-61

Default equivalences for commonly used keys are:

HALT (Definable by the host operating system). Refer to Chapter 6
of the NPL Supplement for details.

EXECUTE EXEC

CANCEL CANCEL

HELP HELP

The following editing keys are available:

Keypad arrows NORTH, SOUTH, EAST, and WEST

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

Wang 2110A NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-62 NPL Programmer’s Guide

In Edit Mode, SF keys are assigned the following functions:

SF’5 Moves cursor to end of line being edited.
SF’6 Moves cursor down one line.
SF’7 Moves cursor up one line.
SF’8 Moves cursor to beginning of line being edited.
SF’10 Deletes one character at the current cursor position.
SF’11 Inserts one space at the current cursor position.
SF’12 Moves cursor 5 spaces to the right.
SF’13 Moves cursor one space to the right.
SF’14 Moves cursor one space to the left.
SF’15 Moves cursor 5 spaces to the left.
SF’16 Recalls the current line.

Wang 2110A Default Keyboard Equivalences Table
NPL Code NPL Virtual Key WANG 2110A Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE EXEC
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’XX UNDERSCORE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F1 ... F10
’0A ... ’0F SF ’10 ... ’15 F11 ... F16
’10 ... ’19 SHIFT SF ’0 ... ’9 SHIFT F1 ... F10
’1A ... ’1F SHIFT SF’10 ... ’15 SHIFT F11 ... F16
’42 PREV-SCREEN PREV
’43 NEXT-SCREEN NEXT
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE DELETE
’4A INSERT INSERT
’4C EAST EAST
’4D WEST WEST

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wang 2110A

NPL Programmer’s Guide D-63

Wang 2110A Default Keyboard Equivalences Table
NPL Code NPL Virtual Key WANG 2110A Key
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH CTRL-B
’56 SHIFT-NORTH CTRL-U
’59 SHIFT-DEL (LINE DEL) CTRL-Y
’5A SHIFT-INS (LINE INS) CTRL-O
’5C SHIFT-EAST (EAST-5) CTRL-F
’5D SHIFT-WEST (WEST-5) CTRL-D
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-L
’7E TAB TAB
’7F SHIFT-TAB CTRL-[, TAB
’E1 HELP HELP
’F0 EDIT Cancel

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.12.7 Local Printer Support

The Wang 2110A terminal supports a local parallel printer under NPL.

NOTE: On the 2110A, the terminal hangs if attempting to print to a non-existent or de-se-
lected local printer.

For the 2110A terminal to use a local printer, the section titled "Host Access" under the
Aux Port setup screen of the terminal must be set to "YES".

Wang 2110A NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-64 NPL Programmer’s Guide

D.12.8 Configuration Requirements

The Wang 2110A terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
25 line display
baud rate varies by operating system

If a local printer is in use, the AUX port of the terminal should be configured to watch the
settings of the printer. Refer to Chapter 6 of the appropriate NPL Supplement for details
on operating system configuration requirements. The default setting for the "LOCK" key
causes all keys to produce upper shifted keys. This can be changed by the build-in
SETUP program of the Wang 2110A. The default is set to "SHIFT LOCK". Changing
this to "CAPS LOCK" only produces upper case letters.

NOTE: The Wang 2110A terminal supports up to a 19200 baud rate, however, baud rates
higher than 9600 may have restricted cable length requirements. Baud rate may
also be limited by the operating system the terminal is being used on. Refer to the
Wang 2110A Terminal User’s Guide for details on setting baud rates.

D.12.9 Use as a Remote Terminal

The Wang 2110A terminal may be connected as a remote workstation. Use as a remote
workstation does not affect the operation of NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit and no par-
ity would be appropriate.

D.12.10 Use with Native Operating System Functions and Utilities

The Wang 2110a does not support native operating system functions or utilities.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wang 2110A

NPL Programmer’s Guide D-65

D.13 Wang 2x36 DE/DW

The following section details the configuration and use of the Wang 2x36 terminals for
use with the NPL.

D.13.1 Screen Character Set

Downloadable Fonts
The NPL character set is fully supported on the Wang 2x36 DE/DW terminal without the
use of downloadable fonts.

Alternate Character Set (Pixel Graphics)
The Wang 2x36 DE/DW terminal fully supports the Alternate Character Set under NPL.

Non-English Character Set
All characters available on the Wang 2200 are supported by NPL on this terminal.

Character Translation
The default values for the Wang 2x36 DE/DW terminal are contained in a disk file pro-
vided with the NPL Development Package. Refer to Chapter 6 of the appropriate NPL
Supplement for the name and location of the file on the operating system being used.

D.13.2 Box Graphics

"True" box graphics are supported for this terminal. Character box graphics are not sup-
ported on this terminal. "True" box graphics are always generated even if character boxes
are specified.

D.13.3 Attributes

The Wang 2x36 DE/DW terminal supports all of the video attributes in any combination
(BRIGHT, BLANK, UNDERLINE, REVERSE).

NOTE: BLINK and BRIGHT BLINK display the same--always between normal and bright
mode.

Wang 2x36 DE/DW NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-66 NPL Programmer’s Guide

D.13.4 Cursor Handling

The cursor on the Wang 2x36 DE/DW terminal can be set to on, off or blink under pro-
gram control.

D.13.5 Support for 132-Column Mode

The Wang 2x36 DE/DW terminal does not support 132-column mode output.

D.13.6 Keyboard Characteristics

The default values for the Wang 2x36 DE/DW terminal are contained in a disk file pro-
vided with the NPL Development Package. Refer to Chapter 6 of the appropriate NPL
Supplement for the name and location of the file on the operating system being used.

Default equivalences for commonly used keys are:

HALT HALT (not modifiable by keyboard translation)

EXECUTE RUN

CANCEL EDIT

HELP RESET

NOTE: Unlike on the Wang 2200, HALT does not perform single step operation. HALT sim-
ply invokes Immediate Mode upon completion of the currently executing instruc-
tion. To single step requires that a STEP instruction be executed from Immediate
Mode or the HELP processor. RUN (EXECUTE) is then used to single step through
the program.

The Wang 2.36 DE/DW keyboard must be in upper case only mode to use HELP (RE-
SET) or HALT.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wang 2x36 DE/DW

NPL Programmer’s Guide D-67

The following editing keys are available:

Keypad arrows NORTH, SOUTH, EAST and WEST (available on 2x36
DW only).

RECALL Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.)

SHIFT INSERT Inserts a linefeed within a line of text.

SHIFT DELETE Delete characters from the current cursor position to the end
of line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/SCRN Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text (available on 2x36 DW only).

NEXT/SCRN Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or causes cursor movement to the
last line of text (available on 2x36 DW only).

SHIFT NEXT/SCREEN Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

SHIFT PREV/SCREEN Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

Wang 2x36 DE/DW NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-68 NPL Programmer’s Guide

In Edit Mode, SF keys are assigned the following functions:

SF’4 Moves cursor to end of line being edited.
SF’5 Moves cursor down one line.
SF’6 Moves cursor up one line.
SF’7 Moves cursor to beginning of line being edited.
SF’8 Erases all text from current position to end of line.
SF’9 Deletes one character at the current cursor position.
SF’10 Inserts one space at the current cursor position.
SF’11 Moves cursor 5 spaces to the right.
SF’12 Moves cursor one space to the right.
SF’13 Moves cursor one space to the left.
SF’14 Moves cursor 5 spaces to the left.
SF’15 Recalls the current line.

Wang 2x36 DE/DW Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Wang 2x36DE Key Wang 2x36DW Key
08 BACKSPACE BACKSPACE BACKSPACE
0D RETURN RETURN RETURN
5F UNDERSCORE ? ?
81 CLEAR CLEAR ?
82 EXECUTE RUN EXEC
84 CONTINUE CONTINUE ?
A1 LOAD LOAD SHIFT EXEC
E5 SHIFT-ERASE ERASE ERASE
FF’A0’XX UNDERSCORE

(DEAD KEY)
? ?

’00 ... ’09 SF ’0 ... ’9 SF ’0 ... ’9 SF ’0 ... ’9
’0A ... ’0F SF ’10 ... ’15 SF ’10 ... ’15 SF ’10 ... ’15
’10 ... ’19 SHIFT SF ’0 ... ’9 SHIFT SF ’0 ... ’9 SHIFT SF ’0 ... ’9
’1A ... ’1F SHIFT SF’10 ... ’15 SHIFT SF’10 ... ’15 SHIFT SF’10 ... ’15
’42 PREV-SCREEN - PREV/SCRN
’43 NEXT-SCREEN - NEXT/SCRN
’45 SOUTH - SOUTH
’46 NORTH - NORTH
’48 ERASE - ERASE

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wang 2x36 DE/DW

NPL Programmer’s Guide D-69

Wang 2x36 DE/DW Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Wang 2x36DE Key Wang 2x36DW Key
’49 DELETE - DELETE
’4A INSERT - INSERT
’4C EAST - EAST
’4D WEST - WEST
’4F RECALL - RECALL
’50 SHIFT-CANCEL - SHIFT-CANCEL
’52 SHIFT-PREV-

SCREEN
- SHIFT PREV/SCRN

’53 SHIFT-NEXT-
SCREEN

- SHIFT NEXT/SCRN

’55 SHIFT-SOUTH - SHIFT SOUTH
’56 SHIFT-NORTH - SHIFT-NORTH
’59 SHIFT-DELETE - SHIFT DEL (LINE

DEL)
’5A SHIFT-INSERT - SHIFT INS (LINE

INS)
’5C SHIFT-EAST - SHIFT EAST

(EAST-5)
’5D SHIFT-WEST - SHIFT WEST

(WEST-5)
’5F D TAB - D TAB
’7C GL - GL
’7D SHIFT-GL - SHIFT GL
’7E TAB FN TAB
’7F SHIFT-TAB SHIFT FN SHIFT TAB
’E1 HELP SHIFT RESET SHIFT RESET
’F0 EDIT EDIT EDIT

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

Wang 2x36 DE/DW NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-70 NPL Programmer’s Guide

D.13.7 Local Printer Support

The Wang 2x36 DE/DW terminal supports a local parallel printer under NPL.

NOTE: On the Wang 2x36 DE/DW, the terminal hangs if attempting to print to a non-exis-
tent or de-selected local printer.

D.13.8 Configuration Requirements

The Wang 2x36 DE/DW terminal should be set to:

8 data bits
1 stop bit
odd parity
XON/XOFF handshake
baud rate varies by operating system

Since the local printer port on the Wang 2x36 DE/DW is a parallel port, there are no con-
figuration requirements.

NOTE: The Wang 2x36 DE/DW requires execution of a special program. This program is
contained on a disk provided with the development package. This program sets up
proper XON/XOFF codes for use with the Wang 2x36 DE/DW terminal. If this pro-
gram is not executed, flow control problems will occur and the terminal will not be
usable. Please refer to Chapter 6 of the appropriate NPL Supplement for more in-
formation on this file.

D.13.9 Use as a Remote Terminal

The Wang 2x36 DE/DW terminal may be connected as a remote workstation. Use as a re-
mote workstation does not affect the operation of NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit, and no par-
ity would be appropriate.

D.13.10 Use with Native Operating System Functions and Utilities

The Wang 2x36 does not support native operating system functions or utilities.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wang 2x36 DE/DW

NPL Programmer’s Guide D-71

D.14 Wyse 50

The Wyse 50 terminal is supported by the Niakwa Programming Language as discussed
below.

D.14.1 Screen Character Set

Downloadable Fonts
The Wyse 50 terminal does not support the use of downloadable fonts.

Alternate Character Set (Pixel Graphics)
Use of the alternate character set is not well supported by the Wyse 50.

Non-English Character Sets
Use of non-English character sets through the $OPTIONS Font Designator is not sup-
ported on the Wyse 50 terminal.

Character Translation
The default values for the Wyse 50 terminal are continued in a disk file provided with the
NPL Development Package. Refer to Chapter 6 of the appropriate NPL Supplement for
the name and location of the file on the operating system being used.

D.14.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

D.14.3 Attributes

The Wyse 50 terminal allows only one "hidden" attribute (does not occupy a character po-
sition). For the Wyse 50, the RunTime Program uses this single attribute for displaying
any of the four supported attributes or any combination of attributes. The single attribute
to be displayed can be modified by use of the SETUP option on the Wyse 50 terminal.
Available attributes are DIM (the default), REVERSE, and NORMAL.

Wyse 50 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-72 NPL Programmer’s Guide

NOTE: Testing has shown that the default attribute of DIM is the least attractive in the ap-
plication software we have tested. Try the different attribute choices with the soft-
ware being used and determine which is the most applicable.

The Wyse 50 does support multiple "non-hidden" attributes. However, these cannot
be used by NPL since they occupy a character position on the screen. Refer to the
Wyse 50 terminal User’s Guide for further details on the use of attributes on the
Wyse 50 terminal.

D.14.4 Cursor Handling

The cursor on the Wyse 50 terminal can be set to on, off or blink under program control.

The cursor appearance is controlled by the RunTime Program, and always set the cursor
type to line.

Refer to the Wyse 50 User’s Guide for further details on cursor appearance.

D.14.5 Support for 132-Column Mode

The Wyse 50 terminal supports 132-column mode output. Refer to Section 7.4.12 of the
Programmer’s Guide for details on the implementation of this mode.

D.14.6 Keyboard Characteristics

The default values for the Wyse 50 terminal are contained in a disk file provided with the
development package. Refer to Chapter 6 of the NPL Supplement for the name and loca-
tion of the file on the operating system being used.

Default equivalences for commonly used keys are:

HALT (Definable by the host operating system). Refer to Chapter 6
of the NPL Supplement for details.

EXECUTE SEND

CANCEL DEL

HELP INS/REPLACE

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 50

NPL Programmer’s Guide D-73

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST and WEST)

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line is recalled.)

INS/LINE Inserts a line fee within a line of text.

DEL/LINE Deletes characters from the current cursor position to the
end of the line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/PAGE Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/PAGE Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

Wyse 50 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-74 NPL Programmer’s Guide

In Edit Mode, SF keys are assigned the following functions:

F5 Moves cursor to end of line being edited.
F6 Moves cursor down one line.
F7 Moves cursor up one line.
F8 Moves cursor to beginning of line being edited.
F9 Erases all text from current position to end of line.
F10 Deletes one character at the current cursor position.
F11 Inserts one space at the current cursor position.
F12 Moves cursor 5 spaces to the right.
F13 Moves cursor one space to the right.
F14 Moves cursor one space to the left.
F15 Moves cursor 5 spaces to the left.
F16 Recalls the current line.

Wyse 50 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Wyse 50 Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE SEND
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’XX UNDERSCORE (DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F1 ... F10
’0A ... ’0F SF ’10 ... ’15 F11 ... F16
’10 ... ’19 SHIFT SF ’0 ... ’9 SHIFT F1 ... F10
’1A ... ’1F SHIFT SF’10 ... ’15 SHIFT F11 ... F16
’42 PREV-SCREEN PREV
’43 NEXT-SCREEN NEXT
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE DELETE
’4A INSERT INSERT
’4C EAST EAST

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 50

NPL Programmer’s Guide D-75

Wyse 50 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Wyse 50 Key
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH SHIFT SOUTH
’56 SHIFT-NORTH SHIFT NORTH
’59 SHIFT-DELETE (LINE DEL) SHIFT DEL (LINE DEL)
’5A SHIFT-INSERT (LINE INS) SHIFT INS (LINE INS)
’5C SHIFT-EAST (EAST-5) SHIFT EAST
’5D SHIFT-WEST (WEST-5) SHIFT WEST
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT TAB
’E1 HELP REPL
’F0 EDIT DEL

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.14.7 Local Printer Support

The Wyse 50 terminal supports a local serial printer under NPL.

NOTE: Output directed to a non-existent or de-selected local serial printer will be lost.

Wyse 50 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-76 NPL Programmer’s Guide

D.14.8 Configuration Requirements

The Wyse 50 terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
baud rate varies by operating system

If a local printer is in use the AUX port of the terminal should be configured to match the
settings of the printer.

Refer to Chapter 6 of the appropriate NPL Supplement for details on operating system
configuration requirements.

The Wyse 50 can be operated at up to 38400 baud, however, baud rates higher than 9600
may have restricted cable length requirements.

NOTE: Baud rate may also be limited by the operating system the terminal is being used on.

D.14.9 Use as a Remote Terminal

The Wyse 50 terminal may be connected as a remote workstation on operating systems
which support it. Use as a remote workstation does not affect the operation of NPL. For
remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. In this case, a setting of 8 data bits, 1 stop bit, and no par-
ity would be appropriate.

NOTE: Two stop bits will not cause a problem, however, 1 stop bit is approximately 10%
faster, which may be important over a (slow) modem.

D.14.10 Use with Native Operating System Functions and Utilities

The Wyse 50 will operate properly while executing the Niakwa RunTime and with native
operating system functions and utilities.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 50

NPL Programmer’s Guide D-77

D.15 Wyse 60, 150, and 160

The Wyse 60, 150 and 160 terminals are supported by the Niakwa Programming Lan-
guage as discussed below.

D.15.1 Screen Character Set

Downloadable Fonts
The character set for the Wyse 60, 150, and 160 terminal supports the use of pixel graph-
ics. For use with the NPL, the Wyse 60, 150, and 160 terminals require a "downloadable"
character set. Refer to Chapter 6 of appropriate NPL Supplement for details on the nam-
ing and location of this file.

NOTE: This font file should not be downloaded to terminals other than the Wyse 60, 150,
and 160.

The Niakwa utility program EDFONT can be used to modify the downloadable fonts. Re-
fer to Chapter 13 for details on the Font Editor utility program.

Alternate Character Set (Pixel Graphics)
The Wyse 60, 150, and 160 terminals fully support the alternate character set under the
NPL.

Non-English Character Set
Use of non-English character sets through the $OPTIONS Font Designator is not sup-
ported on the Wyse 60, 150, or 160 terminals.

Character Translation
The default values for the Wyse 60, 150, and 160 terminals are contained in a disk file.
Refer to Chapter 6 in the appropriate NPL Supplement for the name and location of this
file.

D.15.2 Box Graphics

"True" box graphics are not supported for the Wyse 60, 150, or 160 terminals. Character
box graphics are supported on these terminals. Refer to the Statements Guide, $BOX-
TABLE for details on the syntax to generate character box graphics.

Wyse 60, 150, and 160 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-78 NPL Programmer’s Guide

D.15.3 Attributes

The Wyse 60, 150, and 160 terminals support all video attributes in any combination
(BRIGHT, BLINK, UNDERLINE, REVERSE), however support for the BRIGHT attrib-
ute is slightly different from other terminals. Refer to the Wyse 60, 150, or 160 User’s
Guide for further details on the use of attributes on the Wyse 60 terminal. The Wyse 60,
150, and 160 only support DIM and NORMAL attributes. The NPL BRIGHT attribute
can be handled as:

NORMAL= DIM and BRIGHT= NORMAL (default)

 or

NORMAL= NORMAL and BRIGHT= DIM

Byte 21 of $OPTIONS controls this feature (00 for default, 01 for alternate method).

D.15.4 Cursor Handling

The cursor on the Wyse 60, 150, and 160 terminals can be set to on, off, or blink under
program control. This appearance is controlled by byte 32 of $OPTIONS (00 for default,
01 for line, and 02 for block). Refer to the Wyse 60, 150, or 160 User’s Guide for further
details on cursor appearance.

D.15.5 Support For 132 Column Mode

The Wyse 60, 150, and 160 terminals support 132 column mode output. Refer to Section
7.4.12 for details on the implementation of this mode.

D.15.6 Keyboard Characteristics

The default values for the Wyse 60, 150, and 160 terminals are contained in a disk file.
Refer to Chapter 6 of the appropriate NPL Supplement for the name and location of this
file.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 60, 150, and 160

NPL Programmer’s Guide D-79

NOTE: The Wyse 150 and 160 do not support application key mode like the Wyse 60. As
such, the file WYKEYS.ON must be downloaded on both the Wyse 150 and 160
prior to starting the RunTime. To return the keyboard back to its standard mode,
the file WYKEYS.OFF must be downloaded on both the Wyse 150 and 160 prior to
returning to the operating system.

For detailed information on downloading files, refer to Chapter 6 of the appropriate NPL
Supplement.

With the Wyse 150 and 160 terminal keyboards "reprogrammed" for use with the NPL,
leaving the Niakwa RunTime (SHELL, END, etc.) does not change the keyboard mode
back to native operating system mode until the WYKEYS.OFF file is downloaded. This
is true even if the terminal is turned off. To avoid conflicts with other native operating
system programs, make sure the WYKEYS.OFF file is automatically downloaded when
users who are using other native operating system applications leave the Niakwa Run-
Time.

The Wyse 60, 150, and 160 support several different keyboards. Niakwa provides sup-
port for the ASCII and PC styles only.

Default equivalences for commonly used keys are:

HALT CTRL-C (ASCII keyboard)
CTRL-ALT (PC Style keyboard)

EXECUTE SEND or HOME (ASCII keyboard)
HOME (PC Style keyboard)

CANCEL DEL (ASCII keyboard)
END (PC Style keyboard)

HELP INS/REPLACE (ASCII keyboard)
ESC (PC Style keyboard)

Wyse 60, 150, and 160 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-80 NPL Programmer’s Guide

The following editing keys are available:

Keypad arrows (NORTH,SOUTH,EAST, and WEST)

Right arrow Recalls the previous command entry. If a line number is entered
before pressing the right arrow key, that specific program line will
be executed.

INS/LINE Inserts a linefeed within a line of text.

DEL/LINE Deletes characters from the current cursor position to the end of the line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/PAGE Causes the screen display to shift to the previous screen (if more than 23
lines of text exist) or cause cursor movement to the last line of text.

NEXT/PAGE Causes the screen display to shift to the next screen (if more than 23
lines of text exist) or cause cursor movement to the last line of text.

CTRL-P Recalls the previous command from the "multi-command" keyboard
buffer. Refer to chapter 5 for more information.

CTRL-N Recalls the next command from the "multi-command" keyboard
buffer. Refer to chapter 5 for more information.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 60, 150, and 160

NPL Programmer’s Guide D-81

In Edit Mode, SF keys are assigned the following function:

F5 Moves cursor to end of line being edited.
F6 Moves cursor down one line.
F7 Moves cursor up one line.
F8 Moves cursor to beginning of line being edited.
F9 Erases all text from current position to end of line.
F10 Deletes one character at the current cursor position.
F11 Inserts one space at the current cursor position.
F12 Moves cursor 5 space to the right.
F13 Moves cursor one space to the right.
F14 Moves cursor one space to the left.
F15 Moves cursor 5 spaces to the left.
F16 Recalls the current line.

NOTE: Default PC Style Keyboard Equivalences Table for the PC style keyboard, the Wyse
60, 150, and 160 terminals’ default keyboard equivalences tables is as shown below
followed by the ASCII keyboard equivalences table.

Wyse 60,150,and 160 Default Keyboard Equivalences Table - PC Style Keyboard
Niakwa Code Niakwa Virtual Key PC Style Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERLINE UNDERLINE
81 CLEAR ?
82 EXECUTE HOME

CTRL-J
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
’00...’09 SF ’0...’9 F1...F10
’0A...’0F SF ’10...’15 ESC-0...ESC-5
’10...’19 SHIFT SF ’0...’9 SHIFT F1...F10
’1A...’1F SHIFT SF ’10...’15 ESC-SHIFT-0 ...

ESC-SHIFT-5
’42 PREV-SCREEN PG UP
’43 NEXT-SCREEN PG DN

Wyse 60, 150, and 160 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-82 NPL Programmer’s Guide

Wyse 60,150,and 160 Default Keyboard Equivalences Table - PC Style Keyboard
Niakwa Code Niakwa Virtual Key PC Style Key
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE DELETE
’4A INSERT INSERT
’4C EAST EAST
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL SHIFT-END

CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH SHIFT-SOUTH
’56 SHIFT-NORTH SHIFT-NORTH
’59 SHIFT-DEL (LINE DEL) SHIFT-DELETE
’5A SHIFT-INS (LINE INS) SHIFT-INSERT
’5C SHIFT-EAST SHIFT-EAST
’5D SHIFT-WEST SHIFT-WEST
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT-TAB
’E1 HELP ESC,ESC
’F0 EDIT END

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 60, 150, and 160

NPL Programmer’s Guide D-83

Wyse 60,150,and 160 Default Keyboard Equivalences Table - ASCII Keyboard
Niakwa Code Niakwa Virtual Key Wyse 60 Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERLINE UNDERLINE
81 CLEAR ?
82 EXECUTE SEND
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W

SHIFT CLR
FF’A0’xx UNDERSCORE (DEAD KEY) ?
’00...’09 SF ’0...’9 F1...F10
’0A...’OF SF ’10...15 F11...F16
’10...’19 SHIFT SF ’0...’9 SHIFT F1...F10
’1A...’1F SHIFT SF ’10...’15 SHIFT F11...F16
’42 PREV-SCREEN PREV
’43 NEXT-SCREEN NEXT
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE DELETE
’4A INSERT INSERT
’4C EAST EAST
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH SHIFT SOUTH
’56 SHIFT-NORTH SHIFT NORTH
’59 SHIFT-DEL (LINE DEL) SHIFT DEL (LINE DEL)
’5A SHIFT-INS (LINE INS) SHIFT INS (LINE INS)
’5C SHIFT-EAST (EAST-5) SHIFT EAST
’5D SHIFT-WEST (WEST-5) SHIFT WEST
’5F D TAB CTRL-T

Wyse 60, 150, and 160 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-84 NPL Programmer’s Guide

Wyse 60,150,and 160 Default Keyboard Equivalences Table - ASCII Keyboard
Niakwa Code Niakwa Virtual Key Wyse 60 Key
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT TAB
’E1 HELP REPL
’F0 EDIT DEL

A question mark (?) indicates that no key is assigned to the NPL code. When a "-" (dash)
is used in a key sequence, it indicates that the keys should be pressed simultaneously.
When a "," (comma) is used in a key sequence, it indicates that the keys should be
pressed in sequential order.

D.15.7 Local Printer Support

The Wyse 60 terminal supports a local serial printer under NPL.

NOTE: Output directed to a non-existent or de-selected local serial printer will be lost.

The Wyse 150 supports a local parallel printer under NPL. The Wyse 160 terminal sup-
ports a local parallel or a serial printer under NPL.

WARNING--The Wyse 150 terminal is configured with a parallel port, not a serial port
as the Wyse 60 is. This port is labeled Aux1 on the Wyse 150. Do not attempt to run a se-
rial device from this port or damage may result.

NOTE: The COM2 port of the Wyse 160 terminal is supported by Niakwa for local serial
printing. To use the COM2 port, it is necessary to use the Wyse 160 Setup to modify
the setting of the LOCAL PRINTER value, from parallel to serial. Refer to the
Wyse 160 terminal Guide for details on setting this option.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 60, 150, and 160

NPL Programmer’s Guide D-85

D.15.8 Configuration Requirements

The Wyse 60, 150, and 160 terminals should be set to:

Native personality
8 data bits
1 stop bit
No parity
XON/XOFF handshake
10 x 16 character cells
25 line display

If a local serial printer is in use on the Wyse 60 terminal, the AUX port of the terminal
should be configured to match the settings of the serial printer.

NOTE: This does not apply to the Wyse 150 terminal since only parallel printing is sup-
ported locally, but does apply to the Wyse 160 terminal if serial printing has been se-
lected through the Wyse 160 Setup.

The Wyse 60, 150, and 160 can all operate at up to 38400 baud, however, baud rates
slighter than 9600 may be restricted by cable length requirements.

D.15.9 Use As Remote Terminal

The Wyse 60, 150, and 160 terminals may be connected as a remote workstation. Use as
a remote workstation does not affect the operation of the NPL.

For remote operations, it may be desirable to configure the terminal for use with modems
which support only 10 bit data. Here, a setting of 8 data bits, 1 stop bit , and no parity
would be appropriate.

NOTE: Two stop bits will not cause a problem, however 1 stop bit is approximately 10%
faster, which may be important over a modem (slow baud rate).

D.15.10 Use with Native Operating System Functions and Utilities

The Wyse 60, 150, and 160 will all operate properly while executing the Niakwa Run-
Time and with native operating system functions and utilities.

Wyse 60, 150, and 160 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-86 NPL Programmer’s Guide

D.16 Wyse 370

The NPL RunTime supports the Wyse 370 color terminal. This terminal fully supports
the NPL color conventions as documented in Chapter 7 of the NPL Programmer’s Guide.
The following sections detail configuring this terminal for use with NPL.

D.16.1 Screen Character Set

Downloadable Fonts
The character set for the Wyse 370 terminal supports the use of pixel graphics. The Wyse
370 terminal has a "downloadable" character set contained on 2 files provided on the Ter-
minal Support Files Diskette provided with the NPL Development Package. Both of
these files must be downloaded to insure correct operation of the Wyse 370 under NPL.
Refer to Chapter 6 of the appropriate NPL Supplement for more information.

The NPL utility program EDFONT can be used to modify the downloadable fonts. Refer
to Chapter 13 for details on the Font Editor utility program.

 Alternate Character Set (Pixel Graphics)
The Wyse 370 terminal fully supports the Alternate Character set under NPL. However,
it should be noted that the pixel graphic characters on this terminal are represented
slightly smaller than on other terminals. As a result of this, these characters do not join to-
gether as they would on other terminals. A small gap will be present between the bottom
of one character and the top of the character below.

Non-English Character Set
Use of non-English character sets through the $OPTIONS Font Designator is supported
on the Wyse 370 terminal, but alternate fonts are limited.

Byte 15 of $OPTIONS system variable has been implemented as a "font designator",
whereby a specific type of character set may be selected. For Wyse 370 terminals, the
most practical choices are:

Non-English users must choose between using the non-English character set and using
pixel graphics. If byte 15 of $OPTIONS is set to "< ", then the non-English characters
can be assigned to any hex code desired through the use of the Screen Translation Table.
In both cases, the appropriate font file should be downloaded.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 370

NPL Programmer’s Guide D-87

Where the required national replacement character set is different, it is possible to choose
another appropriate character set through the setting of byte 15 of $OPTIONS to a desig-
nated code. Available codes include:

Character Set Font Designator
ASCII "A"
DEC supplemental "< "
Downloaded Fonts "@"
Only one of the following:
British "A"
Dutch "4"
Finnish "C" or "5"
French "R"
French Canadian "Q"
German "K"
Italian "Y"
Norwegian/Danish "E" or "6"
Spanish "Z"
Swedish "H" or "7"
Swiss "= "

Character Translation
The default values for the Wyse 370 terminal are contained in a file on the Terminal Sup-
port Files Diskette provided with the NPL Development Package. Refer to the appropri-
ate NPL Supplement for more information.

D.16.2 Box Graphics

"True" box graphics are not supported for this terminal. Character box graphics are sup-
ported on this terminal. Refer to the Statements Guide, $BOXTABLE for details on the
syntax to generate character box graphics.

Wyse 370 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-88 NPL Programmer’s Guide

D.16.3 Attributes

The Wyse 370 terminal supports all of the video attributes in any combination (BRIGHT,
BLINK, UNDERLINE, REVERSE). Refer to the Wyse 370 User’s Guide for further de-
tails on the use of attributes on the Wyse 370 terminal.

D.16.4 Cursor Handling

The cursor on the Wyse 370 terminal can be set to on or off under program control. The
cursor appearance is controlled by byte 32 of $OPTIONS (00 for default, 01 for line and
02 for block).

See the Wyse 370 User’s Guide for further details on cursor appearance.

D.16.5 Support For 132-Column Mode

The Wyse 370 terminal supports 132-column mode output. Refer to Section 7.4.12 of the
Programmer’s Guide for details on the implementation of this mode.

D.16.6 Keyboard Characteristics

The default values for the Wyse 370 terminal are contained in a file on the Terminal Sup-
port Files Diskette provided with the NPL Development Package.

Many of the Wyse 370 function keys are "programmable" and do not normally generate
any key codes when pressed. The NPL Development Package contains a file on the Ter-
minal Support diskette containing definitions to these keys. This file must be downloaded
to insure correct operation of the Wyse 370 under NPL. Refer to the appropriate NPL
Supplement for more details.

The Wyse 370 supports several different keyboards. The recommended keyboard is the
Wyse 60 style, ASCII keyboard. Other keyboard styles may be used, but default key-
board translation values provided by Niakwa would require modification by the devel-
oper. Note that other keyboard styles have not been tested by Niakwa.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 370

NPL Programmer’s Guide D-89

Default equivalences for commonly used keys are:

HALT (Definable by the host operating system). Refer to the appro-
priate the NPL Supplement for details.

EXECUTE SEND

CANCEL DEL

HELP INS/REPLACE

 The following editing keys are available:

 Keypad arrows (NORTH, SOUTH, EAST, and WEST).

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line will be recalled.)

INS/LINE Inserts a linefeed within a line of text.

DEL/LINE Deletes characters from the current cursor position to the
end of line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

 PREV/PAGE Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/PAGE Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

Wyse 370 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-90 NPL Programmer’s Guide

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the Programmer’s Guide
for more information.

In Edit Mode, SF keys are assigned the following functions:

F5 Move cursor to end of line being edited.
F6 Move cursor down one line.
F7 Move cursor up one line.
F8 Move cursor to beginning of line being edited.
F9 Erase all text from current position to end of line.
F10 Delete one character at the current cursor position.
F11 Insert one space at the current cursor position.
F12 Move cursor 5 spaces to the right.
F13 Move cursor one space to the right.
F14 Move cursor one space to the left.
F15 Move cursor 5 spaces to the left.
F16 Recall the current line.

Wyse 370 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Wyse 370 Key
08 BACKSPACE BACKSPACE
0D RETURN RETURN
5F UNDERSCORE UNDERLINE
81 CLEAR ?
82 EXECUTE SEND
84 CONTINUE (LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W, SHIFT CLR
FF’A0’ xxUNDERSCORE(DEAD

KEY
?

’00 ... ’09 SF ’0 ... ’9 F1 ... F10
’0A ... ’0F SF ’10 ...’15 F11 ... F16
’00 ... ’19 SHIFT SF ’0...’9 SHIFT F1 ... F10
’1A ... ’1F SHIFT SF’10...’15 SHIFT F11 ... F16
’42 PREV-SCREEN PREV
’43 NEXT-SCREEN NEXT

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 370

NPL Programmer’s Guide D-91

Wyse 370 Default Keyboard Equivalences Table
NPL Code NPL Virtual Key Wyse 370 Key
’45 SOUTH SOUTH
’46 NORTH NORTH
’48 ERASE CTRL-E
’49 DELETE DELETE
’4A INSERT INSERT
’4C EAST EAST
’4D WEST WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH SHIFT-SOUTH
’56 SHIFT-NORTH SHIFT-NORTH
’59 SHIFT-DEL (LINE DEL) SHIFT DEL(LINE DEL)
’5A SHIFT-INS (LINE INS) SHIFT DEL(LINE INS)
’5A SHIFT-INS (LINE INS) SHIFT INS (LINE INS)
’5C SHIFT-EAST (EAST-5) SHIFT EAST
’5D SHIFT-WEST (WEST-5) SHIFT WEST
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT TAB
’E1 HELP REPL
’F0 EDIT DEL

A question mark (?) indicates that no key is assigned to the NPL code.

When a "-" (dash) is used in a key sequence, it indicates that the keys should be pressed
simultaneous. When a "," (comma) is used in a key sequence, it indicates that the keys
should be pressed in sequential order.

Wyse 370 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-92 NPL Programmer’s Guide

D.16.7 Local Printer Support

The Wyse 370 terminal supports a local serial printer under NPL.

NOTE: Output directed to a non-existent or de-selected local serial printer will be lost.

D.16.8 Configuration Requirements

The Wyse 370 terminal should be set to:

8 data bits
1 stop bit
no parity
XON/XOFF handshake
24 line display
baud rate will vary by operating system

This terminal should be defined as a VT100 to the host environment.

If a local printer is in use the AUX port of the terminal should be configured to match the
settings of the printer.

Refer to Chapter 5 of the appropriate NPL Supplement for details on operating system
configuration requirements.

The Wyse 370 terminal can be operated at up to 38400 baud. However, baud rates higher
than 9600 may have restricted cable length requirements. Please note that baud rate may
also be limited by the operating system the terminal is being used on.

D.16.9 Color Support

The Wyse 370 terminal supports the use of color when configured with a WYSE 370 per-
sonality

D.16.10 Use As Remote Terminals

The Wyse 370 terminal may be connected as a remote workstation. Use as a remote work-
station does not affect the operation of NPL.

NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS Wyse 370

NPL Programmer’s Guide D-93

D.16.11 Use With Native Operating System Functions And Utilities

The Wyse 370 terminal is not supported or well suited for use with native operating sys-
tem functions and utilities.

Wyse 370 NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS

D-94 NPL Programmer’s Guide

APPENDIX E

KEYBOARD KEYWORDS

If the keyboard translation table causes a key to return a code in the range HEX(80)
through HEX(FF), the Wang 2200 equivalent to this key appears, except in the case of
the following two exceptions:

HEX(82) - (RUN/EXECUTE) Used when program stepping (STEP mode is on) or to
continue a halted program (STEP mode is off).

HEX(E5) - ERASE entire line.

Keyboard keywords are supported only during command mode (not LINPUT or INPUT),
and only by the interpretive RunTime (RTI, not RTP). Keys may be defined according to
individual programming preferences and needs. The following list summarizes the Wang
2200 atomization scheme.

NOTE: Due to compatibility limitations, the items with asterisks (*) after them are never
available as keyboard keywords (RUN and HEX).

KEYBOARD KEYWORDS

NPL Programmer’s Guide E-1

Refer to Appendix D for information on default keys used to generate these key codes on
specific terminals.

KEYWORD ATOMIZATION SCHEME
HEX Keyword HEX Keyword HEX Keyword HEX Keyword
(80) ’LIST ’ (A0) ’PRINT ’ (C0) ’FN’ (E0) ’LS=’
(81) ’CLEAR’ (A1) ’LOAD ’ (C1) ’ABS(’ (E1) ’ALL’
(82) ’RUN ’* (A2) ’REM ’ (C2) ’SQR(’ (E2) ’PACK’
(83) ’RENUMBER ’ (A3) ’RESTORE ’ (C3) ’COS(’ (E3) ’CLOSE’
(84) ’CONTINUE ’ (A4) ’PLOT ’ (C4) ’EXP(’ (E4) ’INIT’
(85) ’SAVE ’ (A5) ’SELECT ’ (C5) ’INT(’ (E5) ’HEX’*
(86) ’LIMITS ’ (A6) ’COM ’ (C6) ’LOG(’ (E6) ’UNPACK’
(87) ’COPY ’ (A7) ’PRINTUSING ’(C7) ’SIN(’ (E7) ’BOOL’
(88) ’KEYIN ’ (A8) ’MAT ’ (C8) ’SGN(’ (E8) ’ADD’
(89) ’DSKIP ’ (A9) ’REWIND ’ (C9) ’RND(’ (E9) ’ROTATE’
(8A) ’AND ’ (AA) ’SKIP ’ (CA) ’TAN(’ (EA) ’$’
(8B) ’OR ’ (AB) ’BACKSPACE ’ (CB) ’ARC’ (EB) ’ERROR’
(8C) ’XOR ’ (AC) ’SCRATCH ’ (CC) ’#PI’ (EC) ’ERR’
(8D) ’TEMP ’ (AD) ’MOVE ’ (CD) ’TAB(’ (ED) ’DAC’
(8E) ’DISK ’ (AE) ’CONVERT ’ (CE) ’DEFFN’ (EE) ’DSC’
(8F) ’TAPE ’ (AF) ’PLOT ’ (CF) ’TAN(’ (EF) ’SUB’
(90) ’TRACE ’ (B0) ’STEP ’ (D0) ’SIN(’ (F0) ’LINPUT ’
(91) ’LET ’ (B1) ’THEN ’ (D1) ’COS(’ (F1) ’VER(’
(92) ’FIX(’ (B2) ’TO ’ (D2) ’HEX(’ (F2) ’ELSE ’
(93) ’DIM ’ (B3) ’BEG ’ (D3) ’STR(’ (F3) ’SPACE’
(94) ’ON ’ (B4) ’OPEN ’ (D4) ’ATN(’ (F4) ’ROUND’
(95) ’STOP ’ (B5) ’CI ’ (D5) ’LEN(’ (F5) ’AT(’
(96) ’END ’ (B6) ’R’ (D6) ’RE’ (F6) ’HEXOF(’
(97) ’DATA ’ (B7) ’D’ (D7) ’#’ (F7) ’MAX(’
(98) ’READ ’ (B8) ’CO ’ (D8) ’%’ (F8) ’MIN(’
(99) ’INPUT ’ (B9) ’LGT(’ (D9) ’P’ (F9) ’MOD(’
(9A) ’GOSUB ’ (BA) ’OFF’ (DA) ’BT’ (FA) ’DATE’
(9B) ’RETURN ’ (BB) ’DBACKSPACE ’(DB) ’G’ (FB) ’TIME’
(9C) ’GOTO ’ (BC) ’VERIFY ’ (DC) ’VAL(’
(9D) ’NEXT ’ (BD) ’DA ’ (DD) ’NUM(’
(9E) ’FOR ’ (BE) ’BA ’ (DE) ’BIN(’
(9F) ’IF ’ (BF) ’DC ’ (DF) ’POS(’

KEYBOARD KEYWORDS

E-2 NPL Programmer’s Guide

KEYBOARD KEYWORDS

NPL Programmer’s Guide E-3

APPENDIX F

DECOMPILER COMPATIBILITY

F.1 Overview

NPL includes provisions to "decompile" previously compiled programs. This capability
is present both in the interpretive RunTime (RTI) and the compiler (B2C). Using the in-
terpretive version of the RunTime Program, RTI, all existing NPL compiled code exe-
cutes directly without conversion of any kind, with full interpretive capabilities enabled.
RTI decompiles program code "on the fly" as required.

As each individual program line is "requested" during a HALT/STEP, LIST, EDIT/RE-
CALL or other debugging or program editing commands, it is decompiled and displayed
on the screen. Whenever a specific program line is EDITed, it is immediately recompiled.
In essence, the RunTime Program decompiles and recompiles each line in the program as
it is required for the particular interpretive operation.

DECOMPILER COMPATIBILITY Overview

NPL Programmer’s Guide F-1

Chapter 14 of the NPL Programmer’s Guide explains that the "2200" option of the
LSTFORMAT compiler option generates 2200 atomized code, which can then be ported
directly to a Wang 2200 for operation.

This procedure for decompiling object code into source code is not without certain unex-
pected results, however. Reconstruction of some specific statements and syntactic ele-
ments of a program produces functionally equivalent code, but somewhat different in
appearance. This is an important consideration. The remainder of this Appendix dis-
cusses these known differences, along with specific examples.

F.2 Differences In Source Code Decompilation

The following are expeced differences in source code decomplilation.

Spacing of syntactic elements is not preserved:

A = B + C - D * E
decompiles as A=B+C-D*E

Some statements in 2200T format:

BIN(A$)=1
decompiles as STR(A$,,1)=BIN(1)

OR(A$,B$)
decompiles as A$=OR B$

XOR(A$,B$)
decompiles as A$=XOR B$

AND(A$,B$)
decompiles as A$=AND B$

BOOL4(A$,B$)
decompiles as A$=BOOL4 B$

MAT CONVERT A() TO B$()
decompiles as MAT MOVE A() TO B$()

Differences In Source Code Decompilation DECOMPILER COMPATIBILITY

F-2 NPL Programmer’s Guide

Some structures of IF statements:

IF X=1 THEN GOTO 1000
decompiles as IF X=1 THEN 1000

IF X=1 THEN IF Y=1 THEN 1000
decompiles as IF X=1 AND Y=1 THEN 1000

IF X=1 THEN 1000: ELSE X=2
decompiles as IF X=1 THEN 1000: X=2

The TRANslate instruction:

$TRAN(A$,B$)FF
decompiles as $TRAN(A$,B$)

Some logical operations using BOOLx:

A$=BOOLE B$
decompiles as A$=OR B$

A$=BOOL6 B$
decompiles as A$=XOR B$

A$=BOOL8 B$
decompiles as A$=AND B$

Statements with optional commas in syntax:

LINPUT "PRINT" A$
decompiles as LINPUT "PRINT",A$

$GIO #2(A$)
decompiles as $GIO#2,(A$)

STR functions with a first argument of "1":

STR(A$,1,10)
decompiles as STR(A$,,10)

DECOMPILER COMPATIBILITY Differences In Source Code Decompilation

NPL Programmer’s Guide F-3

Some formats of numerics:

00001
decompiles as 1

0.01
decompiles as .01

100E-4
decompiles as .0100

FOR/TO statement using STEP value of 1:

FOR I=1 TO 10 STEP 1
decompiles as FOR I=1 TO 10

Explicit images used for PACK/UNPACK containing editing characters and sign in-
dicators:

PACK($#,###.##-)A$ FROM A
decompiles as PACK(+####.##) A$ FROM A

STR functions which have no numeric arguments:

STR(A$,2)=STR(A$)
decompiles as STR(A$,2)=A$

NOTE: This may cause problems if ported back to the 2200. Refer to the NPL Statements
Guide, STR() function, for a discussion on the effects of string ravel.

MAT SEARCH statement using STEP value of 1:

MAT SEARCH A$,=B$ TO C$ STEP 1
decompiles as MAT SEARCH A$,=B$ TO C$

MAX/MIN functions generates combinations of simpler MAX/MIN functions:

MAX(A,B(),C,D)
decompiles as MAX(A,MAX(B()),C,D)

Differences In Source Code Decompilation DECOMPILER COMPATIBILITY

F-4 NPL Programmer’s Guide

Math expressions with extraneous parentheses:

A+(B*C)
decompiles as A+B*C

IF (A+B+C+D)>100 THEN 1000
decompile s as IF A+B+C+D>100 THEN 1000

Use of an alpha-variable in ON ... GOTO/GOSUB/SELECT statements:

ON A$ GOTO 10,20,30
decompiles as ON VAL(A$) GOTO 10,20,30

Use of an alpha-variable in alpha-argument type expressions:

$TRAN(A$<,L$>,B$)
decompiles as $TRAN(A$<,VAL(L$,2)>,B$)

Syntax which allows for hex digits instead of a HEX() literal:

POS(A$=HEX(1F))
decompiles as POS(A$=1F)

ALL(HEX(99))
decompiles as ALL(99)

INIT(HEX(01))Z$
decompiles as INIT(01)Z$

Use of the RESTORE statement with "1" parameter:

RESTORE 1
decompiles as RESTORE

RESTORE LINE 100,1
decompiles as RESTORE LINE 100

DECOMPILER COMPATIBILITY Differences In Source Code Decompilation

NPL Programmer’s Guide F-5

Certain 2200T-syntax of DISK statements:

COPY FR(0,X)
decompiles as COPY #0,FR(0,X)

DATASAVE DC OPEN T A$,B$
decompiles as DATASAVE DC OPEN T (A$)B$

SELECT #1310,PRINT /215,#0 D32
decompiles as SELECT #1/310,PRINT 215,DISK/D32

DEFFN’ literals separated by semicolons:

DEFFN’10"Press ";"RETURN ";"key"
decompiles as DEFFN’10"Press RETURN key"

DC disk type accesses which do not specify a file number:

DATALOAD DC A$,B$
decompiles as DATA LOAD DC #0,A$,B$

LOAD T#0,"PROGRAM"
decompiles as LOAD T "PROGRAM"

Optional DC keyword:

LOAD DC T "PROGRAM"
decompiles as LOAD T "PROGRAM"

Use of $FORMAT same as simple STR assignment:

$FORMAT A$=A10,P+5.2
decompiles as STR(A$,,4)=HEX(A00A5205)

ELSE clauses after ON GOTO are redundant:

ON X GOTO 10,20,30: ELSE PRINT
decompiles as ON X GOTO 10,20,30: PRINT

Differences In Source Code Decompilation DECOMPILER COMPATIBILITY

F-6 NPL Programmer’s Guide

Use of the HEXOF statement:

PRINT HEXOF(A$,3,2)
decompiles as PRINT HEXOF(STR(A$,3,2))

Use of STR function on MAT COPY and MAT SEARCH:

MAT COPY STR(A$,S,L) TO B$
decompiles as MAT COPY A$<S,L >TO B$

NOTE: This could cause a problem if the string length equates to zero and the code is
ported back to the 2200, since the first form would generate an error, but the second
would not.

DIM/COM statements not indicating the default 16 byte string length become explic-
itly stated:

DIM A$,B$(2)
decompiles as DIM A$16,B$(2)16

Default line number ranges in a LOAD statement:

LOAD T Z$ 0,9999 BEG 0
decompiles as LOAD T Z$ 0

LOAD T Z$,9999 BEG 0
decompiles as LOAD T Z$ 0

LOAD RUN default same as explicit specification:

LOAD RUN
decompiles as LOAD RUN T "START"

SELECT addresses optionally preceded by a slash:

SELECT PRINT /215,DISK/D31,#1/310,LIST/215
decompiles as SELECT PRINT 215,DISK/D31,#1/310,LIST 215

DECOMPILER COMPATIBILITY Differences In Source Code Decompilation

NPL Programmer’s Guide F-7

Use of the $BREAK ! statement:

$BREAK !
decompiles as $END

STOP statements with comments ending in a 4-digit line number which is the same
as the current line number:

1000 STOP "ERROR ON LINE 1000"
decompiles as 1000 STOP "ERROR ON LINE "#

SAVE protected options are treated the same:

SAVE T P N$
decompiles as SAVE T !N$

Uses of the STR(STR()) argument:

B$=STR(STR(A$,2),,L)
decompiles as B$=STR(A$,2,L)

The following examples indicate how certain code decompiles if the compiler options
KEEPREMS and NUMBERS are set to OFF, or, under the Interpreter,
$KEEPREMS=BIN(0) and $NUMBERS=BIN(0).

Implicit redimensioning of arrays by MAT statements becomes explicitly redimen-
sioned (MAT ZER, MAT CON, MAT IDN, MAT READ and MAT INPUT):

MAT REDIM A(10,10):MAT A=IDN
decompiles as MAT A=IDN(10,10)

Certain statements with multiple arguments appear as single argument (PRINT,
READ, COM, DIM, DATA, $CLOSE, SELECT, MAT REDIM, MAT INPUT, and
MAT READ):

COM A$10,B$10:COM C$10,D$10
decompiles as COM A$10,B$10,C$10,D$10

Differences In Source Code Decompilation DECOMPILER COMPATIBILITY

F-8 NPL Programmer’s Guide

Syntax variance of $SELECT statement as of revision 3.0:

SELECT LIST
decompiles as $SELECT (LIST)

NOTE: This only occurs if $KEEPREMS=BIN(0), where $NUMBERS may have any value.

F.3 Differences Between Rev. 1.03 and Later Revs.

The following examples indicate how certain code decompiles under the Interpreter with
KEEPREMS=OFF and NUMBERS=OFF, after having been originally compiled under
Revision 1.03.

Certain statements with multiple arguments appear as single argument (PRINT,
READ, COM, DIM, DATA, $CLOSE, SELECT, NEXT, MAT REDIM, MAT IN-
PUT, and MAT READ):

PRINT A$;:PRINT B$;:PRINT C$
decompiles as PRINT A$;B$;C$

READ A$:READ B$:READ C$
decompiles as READ A$,B$,C$

Compounded NEXT instructions from individual NEXTs:

NEXT I: NEXT J
decompiles as NEXT I,J

NOTE: This only occurs if $NUMBERS=BIN(0), where $KEEPREMS may have any value.

DECOMPILER COMPATIBILITY Differences Between Rev. 1.03 and Later Revs.

NPL Programmer’s Guide F-9

F.4 Summary

The importance of noting these decompilation differences is really a matter of program-
mer "style". The content and syntax of each line of program code function the same, but
appear different in program listings and EDIT/RECALL mode, as compared to how the
code was initially entered. In some cases a particular line of code may be easier to read
when decompiled, while in other cases if may appear more lengthy in content.

Summary DECOMPILER COMPATIBILITY

F-10 NPL Programmer’s Guide

APPENDIX G

"RAW" DEVICE COMPATIBILITY
CHART

G.1 "Raw" Diskette Chart

This chart lists the "raw" diskette compatibility for all operating system groups currently
supported by the NPL.

"RAW" DEVICE COMPATIBILITY CHART "Raw" Diskette Chart

NPL Programmer’s Guide G-1

NPL "RAW" DEVICE COMPATIBILITY TABLE
5.25 Diskettes 3.5 Diskettes

System Drive Type $FORMAT 320K 360K 720K 1.2MB 720K
(8)

1.44MB
(8)

2.88MB
(9)

Wang 2200/CS 360K X X X(1) - - - - -
1.2MB* X(2) - - - -(3) - - -

MS-DOS 360K X X X(4) - - - - -
720K X - - - - X(4) - -
1.2MB* X X X(4) - X(4) - - -
1.44MB X - - - - X(4) X(4) -
2.88MB X - - - - X(4) X(4) X(4)

Intel UNIX
&Xenix

360K (5) - X X - - - -

720K (5) - - - - X - -
1.2MB* (5) - X X X - - -
1.44MB (5) - - - - X X -
2.88MB (5) - - - - X X X

SuperDOS 360K X X X(4) - - - - -
720K X(6) - - - - X(4) - -
1.2MB* X X X(4) - X(4) - - -
1.44MB X(6) - - - - X(4) X(4) -
2.88MB X(6) - - - - X(4) X(4) -

Honeywell
XPS-100

720K (7) - -(7) X - - - -

Bull DPX/2 720K (7) - -(7) X - - - -
NCR TOWER 1.2MB (10) X(11) X(11) X(11) - - - -
IBM RS/6000 1.44MB (5) - - - - X X -

X SUPPORTED

* Any 360K diskette (DSDD) which has been written to in a 1.2MB drive may be unreli-
able when accessed on a 360K drive. This is a stated hardware limitation of the
1.2MB drive technology.

"Raw" Diskette Chart "RAW" DEVICE COMPATIBILITY CHART

G-2 NPL Programmer’s Guide

NOTE: Diskettes which have been written to on 1.2MB drives can always be read success-
fully on another 1.2MB drive. In addition, diskettes which have been created on a
360K drive can always be read successfully on any 1.2MB drive. This restriction
applies only to reading diskettes on a 360K drive which have been written to on a
1.2MB drive.

NOTES:

(1) Using the "PC Interchange" format. A special $GIO microcommand sequence is re-
quired to format 360K diskettes. Refer to Section 15.7.1 of the Programmer’s Guide
for details.

(2) Neither 360K or 320K diskettes can be formatted in the 1.2MB diskette drive on the
DS. 1.2MB diskettes created in the native 2200 format (256 byte sectors) on the
Wang DS are not supported on any NPL machine.

(3) Although the Wang Documentation specifies that "PC Interchange" format is sup-
ported on the 1.2MB diskette, our testing to date has not yielded positive results.

(4) Access to 360K, 1.2MB, 720K, 1.4MB, and 2.88MB "RAW" diskettes under MS-
DOS and SuperDOS (excluding 2.88MB) is supported by RTP and RTI, but not by
B2C, which requires 320K "raw" formatted diskettes..

(5) $FORMAT DISK is not supported under Intel UNIX or Xenix. Refer to the Intel
UNIX Supplement for details.

(6) $FORMAT DISK for 3.5 inch diskettes is not supported under Protected Mode Su-
perDOS.

(7) Many restrictions apply to the use of 360K "raw" diskettes on the Honeywell Bull
XPS-100 and Bull DPX/2. Refer to Section 10.3 of the appropriate UNIX Adden-
dum in the NPL Release III UNIX V Supplement for more information.

(8) Support of 3.5" 720K and 1.44MB diskettes require Release 3.00 or higher.

(9) Support of 3.5" 2.88MB diskettes require Release 4.00 or higher.

(10) The $FORMAT DISK command is not supported for any "raw" diskettes on the
NCR TOWER 32.

"RAW" DEVICE COMPATIBILITY CHART "Raw" Diskette Chart

NPL Programmer’s Guide G-3

(11) Only read and write operations of "raw" diskettes are supported. It is possible to
format 640K diskettes using the UNIX format command. According to the NCR
documentation, 720K diskettes are not supported. This is because the UNIX format
command does not always succeed when a 720K diskette is specified. As a result,
you may not be able to format 720K diskettes on the NCR TOWER 32 systems, It
is not possible to format 320K or 360K diskettes. Therefore, 320K and 360K disk-
ettes must be preformatted on another system.

For information regarding naming conventions and accessing "raw" diskettes within spe-
cific hardware environments, refer to Chapter 5 of the appropriate NPL Supplement.

"Raw" Diskette Chart "RAW" DEVICE COMPATIBILITY CHART

G-4 NPL Programmer’s Guide

GLOSSARY

The following terms are commonly used throughout the NPL documentation. Those
terms displayed in all lower case refer to specific NPL statement option definitions as
used in the NPL Statements Guide.

2227 Device Driver
A Niakwa-developed MS-DOS device driver which communicates with the serial
ports to emulate the capabilities of the Wang 2227 Asynchronous Communications
Controller.

address-var
An alpha-variable in which the first three bytes contain an ASCII representation of a
hex-digit (0-9; A-F) which corresponds to a NPL device address must be specified.

Address-variable
A string variable used to store a three-byte NPL device address. The first three char-
acters of the string are an ASCII representation of a hexadecimal digit.

2227 Device Driver GLOSSARY

G -1 NPL Statements Guide

Alpha (string)
Alpha ("alpha-numeric") is a general term applied to any identifier in an NPL pro-
gram which is of a string type. For example, a string variable or a FUNCTION
which returns a string. The following are examples of alpha identifiers:

employeeRec$ = ’readNextEmployeeRecord$()
name$(2) = employeeRec$.Name
firstName$ = STR(name$(2),1,10)

alpha-array
An alpha array variable must be specified.

Alpha Array
A variable that represents a one or two dimensional table used to hold strings.

alpha-expression
Any valid alpha expression may be used. This includes the use of literals as well as
alpha functions. Refer to LET for further details on alpha expressions.

alpha-receiver
A series of alpha variables delimited by commas. At least one alpha variable must be
specified. When multiple variables are specified, all are set to the value of the expres-
sion on the right side of the equivalence.

Alpha Receiver
Any alpha which may be assigned a string value. For example, an element of an al-
pha array or a field variable. Some examples of alpha receivers include:

name$
screen_colors$(1,5)
characters$(3)
books$.Title$
STR(buffers$,x,y)
(block$()

Alpha Scalar
Any string variable which is not an array.

alpha-variable
An alpha variable, either scalar or array, alpha array element, or STR function must
be specified.

GLOSSARY Alpha (string)

NPL Statements Guide G -2

Application Software
A program or set of program tools which allow an end-user to perform a certain task.
Some examples would be an accounting program or a word processor.

Array
A one or two dimensional table used to hold a set of elements of the same type. In
NPL, arrays may be used to store either strings or numerics.

array-variable
A numeric or alpha array variable must be specified.

Array Variable
A variable that represents a table containing either strings or numerics.

Atomized Format
A Wang source code format that is used when storing Basic-2 programs in a format
which must be read on a Wang 2200/CS minicomputer.

Autosize
A user-selectable option under the NPL MS-Windows RunTime. If a window is
resized, the RunTime will attempt to pick a font size that will allow 24 lines of text
to be displayed vertically.

Background Partition
For compatibility with the Wang 2200, the /B RunTime start-up option allows the
RunTime to execute as a background task. No terminal input is allowed when a task
is running in the background. The status of the output is maintained, but is not vis-
ible until the task is switched to the foreground.

Background Task
A process which runs without terminal I/O (user interaction).

BESDK
NPL (formerly "Basic-2C") External Subroutine Development Kit. This kit provides
an interface which allows an NPL program to call external functions written in other
languages such as C or Pascal.

Boot Program
In NPL, a boot program sets-up device specifications for NPL virtual devices and
will load the starting program of an application.

Application Software GLOSSARY

G -3 NPL Statements Guide

Box Graphics
The use of graphics characters to enclose specific portions of a screen display. The
graphics can be either "true" or "character" boxes. "True" boxes are drawn on a
screen independent of text, allowing horizontal lines to be placed in between rows.
"Character" boxes use the standard character set and, therefore, are limited. With
"character" boxes, separating two rows of text requires an extra row of text to draw
the line.

Browse Keys
A user-selectable option under the NPL MS-Windows RunTime. This option allows
certain keyboard input to be accessed directly from the screen by using a mouse.
When this option is active, a window is displayed on the screen with the names of
the Niakwa virtual keys that can be accessed with a mouse.

Catalog
The area of a diskimage used for storing program and data files.

Catalog Index
An area in a diskimage which contains the directory information of every NPL pro-
gram or data file stored.

Catalogued File/Program
A program or data file saved in a diskimage whose directory information is stored in
the catalog index.

Common Variables
Variables which may be shared by multiple program overlays. Common variables
are declared with the COM statement which allocates memory that is no cleared
whenever new program overlays are loaded.

Compiler
A program that translates a source language into a different format. A C compiler,
for example, translates a C source file into a machine-dependent object file which
must be linked with other object file to for an executable file.

In NPL, the B2C compiler translates an NPL source file into machine-independent p-
code file. The p-code file may then be executed by the RunTime interpreter (RTI) or
by the RunTime program (RTP).

Compiling
Within the NPL environment, compiling is the process of translating an ASCII text
file representing an NPL program into a machine-independent p-code file.

GLOSSARY Box Graphics

NPL Statements Guide G -4

Constant
Any string or numeric data value in an NPL program which is not represented by a
variable. For example:

"ABCD 1234 XYZ"
HEX(0D) 10 123.456 99.99e-5

Constant Array
A constant variable that is an array. Under the current release, constant arrays may
not be initialized when declared therefore their only practical use is as function pa-
rameters.

Constant Scalar
A numeric or string variable which cannot be assigned a different value after it has
been declared or initialized. Constant scalar identifier names are always preceded by
the underscore character. For example:

DIM _MAX_N_CHARS = 10 return$1 = HEX(0D)
_specialChar$1 = "X"

Date/Time Stamp
Date and time information that is saved with a program or data in a NPL diskimage
and that can be viewed later in a diskimage listing.

Declaration
A declaration is a statement which defines an identifier and associates it with a vari-
able. It will also associate all relevant attributes of the variable. Here, the word vari-
able is used in the loosest possible context. Declarations may be made for data
variables, statement-labels, functions, procedures, marked DEFFN subroutines, field
variables, record variables, named public sections or INCLUEd modules. The attrib-
utes defined by the declaration will vary, depending on the specific variable type.
The following are examples of definitions:

DIM _MAXIMUM_RECORD_SIZE=4096
DIM X, Buffer$(_MAXIMUM_RECORD_SIZE)
COM Y
=Bail_Out
FUNCTION ’TaxRate(Gross_Income)
PROCEDURE ’StepByStep/PUBLIC
DEFFIN’100
FIELD Misc_Deduction1=_Standard_Numeric$
RECORD PayrollRecord

Constant GLOSSARY

G -5 NPL Statements Guide

PUBLIC DustyOldFunctions
INCLUDE T "MYLIB"
USES DustyOldFunctions

Development Software
Software provided by Niakwa to a NPL developer. This includes the Niakwa com-
piler, terminal, keyboard, screen files, BESDK files, the ENABLED file, and the
NPL Utilities.

DET
(see Device Equivalence Table)

device-address
A valid NPL device address in the format /xxx where x is a hex-digit must be speci-
fied. Refer to Chapter 7 of the NPL Programmer’s Guide for details on NPL device
addresses.

Device Address
A physical file or device in the native operating system is accessed indirectly
through a logical device address. The address is specified as an ASCII representation
of a unique three digit hexadecimal number.

Device Driver
A program used under the active operating system that communicates with specific
hardware devices such as a serial port or video adapter.

Device Equivalence Table (DET)
A look-up table used by the NPL RunTime to link a logical device address to a physi-
cal file or device managed by the native operating system.

Device Sharing
In a multi-user environment, devices such as a printer may be accessed by two or
more users at the same time. Typically, an application will require exclusive access
to the device during the course of an operation; therefore, some form of lock/unlock
mechanism is used. When a device is locked, its access is limited to the application
which issued the lock. Until that application releases control of the device by issuing
an unlock, no one else may access it. NPL supports the lock/unlock mechanism
through the $OPEN and $CLOSE statements.

Disk Catalog Index
An area in a diskimage which contains directory information of every NPL program
or data file stored.

GLOSSARY Development Software

NPL Statements Guide G -6

diskimage
Refers to a NPL diskimage file or a "raw" disk device. Refer to Chapter 7 of the NPL
Programmer’s Guide for details on diskimage files and "raw" devices.

Diskimage
A logical disk device used to store NPL program and data files. Physically it is a nor-
mal native operating system file.

DLL
(see Dynamic Link Library)

DOS-Extender
System software which provides a layer between protected and real modes under
MS-DOS. Under a DOS-extender environment, an application may be developed to
run in protected mode with its larger address space/memory and still have access to
the ROM BIOS or device drivers.

DT
(see Internal Device Table)

Dynamic Link Library (DLL)
An external library of dynamically linked procedures and functions used under MS-
Windows. A dynamically linked module has its external references resolved at load
or run time. This is different from a library whose modules have their external refer-
ences resolved by a separate linking phase.

ENABLED File
A special file used with the development package which allows use of the NPL Run-
Time interpreter (RTI) at end-user sites.

Environment
A set of variables which define conditions under which system commands, system
software, or applications should execute.

System software, such as the 386/DOS-Extender or MS-Windows extender which
can sit on top of a native operating system and execute other programs such that the
original system is functionally enhanced.

Environment Variable
A variable used to hold information to be used by the operating system or applica-
tions. For example, the variable NIAKWA_RUNTIME describes the directory
where the NPL RunTime should look for NPL system files.

diskimage GLOSSARY

G -7 NPL Statements Guide

Expanded Memory
Physical memory above one megabyte that is not addressable on 80x86 class comput-
ers (except in protected mode or by an XMS driver).

Extended Memory
Physical memory above one megabyte that is addressable on 80x86 class computers.

Field Identifier
A special variable type which allows access to a specific field in a record. Field iden-
tifiers allow modification of an area in a string buffer by a meaningful name. Field
identifiers are always used with a string buffer. The following are examples of field
identifiers used with a string variable named buffer$:

buffer$.fileNumber
buffer$.names$
buffer$.table$(5)

Field Level Reset
If an installed Gold Key Security is lost, Niakwa can provide a developer with a re-
set number which may be used with a special program to (RESET) allow the Gold
Key security to be reinstalled (MS-DOS based operating environments only).

file-number
A valid NPL file number in the format #X where 0 X 15 must be specified. Refer to
Chapter 7 of the NPL Programmer’s Guide for details on file numbers.

File Number
A number which maps to an explicit logical device address stored in the device
equivalence table. The number provides a second level of redirection to a native op-
erating system file or I/O device.

Follow
A selectable user option under the NPL MS-Windows RunTime, which allows the
RunTime to always keep the cursor in the visible portion of a window.

Foreground Task
A process which can communicate with the operator by means of a terminal display
and keyboard. Most NPL applications run as a foreground task. On platforms that
support only non-windowed multi-tasking, only one task assigned to a terminal may
be the foreground task (task switchers may allow more than one foreground task as
well).

GLOSSARY Expanded Memory

NPL Statements Guide G -8

FUNCTION
A self-contained, user defined subroutine that may return a string or numeric value.
Arguments may be passed by value or by reference to a function. FUNCTIONs may
have their own set of private local variables and statement labels.

Function (Private)
A FUNCTION or PROCEDURE has its own set of local variables with scope lim-
ited to the FUNCTION or PROCEDURE body. A variable declared in the mainline
and a variable of the same name and type declared in a FUNCTION are independent
of each other.

Global
(see Global Partition)

Global Partition
A section of memory on a Wang 2200 that is reserved for global variables and func-
tions. These variables or functions can be accessed by all users. NPL does not sup-
port global partitions.

Gold Key
Disk-based security which uses a numeric fingerprint to prevent an NPL RunTime
from being illegally copied .

Gold Key Number
An encrypted number based on the serial number of the Gold Key.

Handle Table
An internal table used by the RunTime to manage memory.

HELP Processor
A sub-program of the NPL RunTime which allows an end-user to access help infor-
mation and perform other useful functions.

HELP Screen
The main screen of the Help Processor showing the options that have been made
available by the application program.

hex-digit
A hexadecimal digit (0-9; A-F) must be specified.

Hexadecimal (HEX) Digit
A digit in base 16. Hexadecimal digits use the numbers 0-9 to represent 0-9 and let-
ters A-F to represent 10-15 in base 10.

FUNCTION GLOSSARY

G -9 NPL Statements Guide

High Memory
The area of MS-DOS memory between conventional (640K) and 1024K (1MB) re-
served for use by system hardware such as the ROM, video adapters, etc.

High Memory Area
The first 64K of extended memory (1024K-1088K) as defined by XMS. It is the only
area of extended memory that is accessible to MS-DOS programs (HMA).

High RAM
Areas of high memory into which RAM has been mapped. TSRs and device drivers
may be loaded here so that use of conventional memory is minimized. Also known
as Upper Memory Blocks (UMBs).

Hogging
The same as file locking. In a multi-user environment, locking will prevent that file
or device from being accessed by another user until it is unlocked. NPL supports the
lock/unlock mechanism through the $OPEN and $CLOSE statements.

identifier
Any legal (long) identifier. Up to 255 alphanumeric characters (A-Z, a-z, 0-9, or _),
starting with a letter (digits, _ not permitted as first character).

Identifier
A name that is used to identify a variable, PROCEDURE, FUNCTION, or statement
label in an NPL program. Identifiers must consist of the characters: (A-Z, a-z, 0-9,
and _) with the first character being an alpha identifier. Identifiers have a maximum
length of 255 characters. For example:

A B4 XYZ123
_MAX_TABLE_ENTRIES stringTable$(2) PI_div_by_2
OpenLevel2File() =Proc_Exit

Incremental Compiler
A program which compiles source code a small amount at a time as the code is being
entered. The RunTime interpreter (RTI), is an incremental compiler which immedi-
ately converts NPL statements into p-code as each line is entered.

Immediate Mode
An interactive editing and debugging mode of the NPL RunTime interpreter. When
entering a command or program line is entered, it is immediately parsed, compiled to
p-code and, if applicable, executed.

GLOSSARY High Memory

NPL Statements Guide G -10

Installation Guide
Documentation provided with the RunTime package describing the contents, con-
figuration, and RunTime installation.

Internal Device Table (DT)
A look-up table which links a set of file numbers and default devices to explicit logi-
cal device addresses stored in the device equivalence table. This table provides a sec-
ond level of redirection to a native operating system file or I/O device.

Interpreter
A program which will execute source code without going through a complete com-
pile/link phase.

Interpretive Program
A program which is an interpreter. RTI is an interpretive program which can incre-
mentally compile a NPL program to p-code and then execute it.

Invoke
The "!" option of $SHELL used to start a native operating system process.

IQ
An ad-hoc query application program from Intelligent Query (formerly Programmed
Intelligence). This application allows the user to access data from a file in a variety
of user-defined formats. Allows users of Niakwa’s NDM applications to easily cre-
ate custom reports.

ISAM Files
Indexed Sequential Access Method, a database storage method.

Keyboard Character Set
Different mapped keyboards that allow NPL to maintain Wang 2200 compatibility.

Keyboard Logging
The process of recording keystrokes and saving them into an ASCII file. The file can
be played back by using the NPL $DEMO command.

Library
A library is a diskimage file containing one or more modules. Each module may con-
tain a number of PROCEDUREs and FUNCTIONs that can be referenced by another
program.

Installation Guide GLOSSARY

G -11 NPL Statements Guide

Line Remark
Line Remarks are specified by a semi-colon (";") as the first character in the state-
ment. Line remarks are terminated only by a soft carriage return or by the end of the
program line. Line Remarks are not terminated by a colon.

line-number
A valid NPL program line number must be specified. Valid values are in the range 0
to 32K.

Line Number
A number which is used to identify a line in a program source file.

Linking
When creating an executable from a main object module, a linker will search
through specified object and system/user library files to resolve all external refer-
ences. If a reference is found in a library module, then the linker will extract the re-
quired object code. The linker then completes address calculations for all references
creating a single executable.

Literal
(see Literal String)

literal-string
An alpha literal string must be specified. This may be either a string (enclosed in
quotes) or a hex literal.

Literal String
Any string value in an NPL program which is not a variable. For example, "any old
string" and HEX(05) are considered string literals.

Local Printer
A printer that may be connected off the back of a terminal, usually on a multi-user
terminal system.

LIN
(see Long Identifier Name)

Logical Construct
Any structured construct which makes use of a conditional expression. The
WHILE/WEND and REPEAT/UNTIL statements are examples of logical constructs.

GLOSSARY Line Remark

NPL Statements Guide G -12

logical-expression
A conditional expression which evaluates to either true or false, used when making
decisions. Refer to the IF/THEN statement for further details on logical expressions.

Logical Expression
A conditional expression which evaluates to a boolean value of true or false.

Long Identifier Name
A name that is associated with a variable, FUNCTION, PROCEDURE, or statement
label. All identifiers are long identifiers except short variable names. For example, a
function or statement label called x is a long identifier, but the variable X12 is not.

Mainline
The highest level subroutine in a the code hierarchy of an application.

Memory Manager
During memory allocation/de-allocation, the total free space eventually becomes
fragmented into small, scattered, uneven sized chunks. The more fragmented avail-
able memory becomes the harder it is to allocate large blocks. A memory manager
collects and moves free chunks into larger contiguous blocks.

Modules
A group of FUNCTIONs and PROCEDUREs contained in one file that can be used
by other NPL programs with the use of the NPL INCLUDE statement. The variables,
FUNCTIONs, and PROCEDURES can be either private or public.

Native File System
The organization of files and directories managed by the native operating system.
Files stored in a diskimage are not part of the native file system.

Native Operating System
The set of programs that manage system resources on a particular platform.

NDM
The Niakwa Data Manager. This provides NPL applications with fully portable
ISAM capabilities through the use of an external library.

NIAKSER.DAT Files
A file used by the RunTime for security and configuration information.

Niakwa Compiler
B2C, a program that provides a mechanism for converting BASIC-2 programs from
one form to another in batch mode.

logical-expression GLOSSARY

G -13 NPL Statements Guide

Niakwa Software
System software developed, distributed and supported by Niakwa.

Non-Catalogued Disk Space
The disk platters used with the Wang 2200 has a variable-sized catalogue area used
to store program and data files with some space used for an index that holds file in-
formation. The remaining space on the platter is called non-catalogued.

Non-Common Variables
When overlaying programs, variables declared with DIM are cleared and variables
declared with COM remain. The variables that are cleared are non-common.

Non-Interpretive Program
The RunTime Program (RTP) which can execute p-code that has already been gener-
ated. Program debugging, inspection, and modification are not available when using
the non-interpretive program.

NPL Development Package
(see Development Package)

NPL Utilities
A group of programs included in the Niakwa Development Software that provides
the developer with a set of Utilities that help in the development and maintenance of
NPL programs.

Numeric
Numeric is a general term applied to any identifier in an NPL program which is of
numeric type. For example, a numeric variable or a FUNCTION which returns a nu-
meric. The following are examples of numeric identifiers:

num(20) COS(2*PI)
rec$.employeePay totalAmount
’leastSquaresFit(points(), curve(), m, n)

numeric-array
A numeric array variable must be specified. A specific element of a numeric-array
may not be specified.

Numeric Array
A variable that represents a one or two dimensional table used to hold integral or
floating-point values.

GLOSSARY Niakwa Software

NPL Statements Guide G -14

numeric-constant
A numeric constant must conform to the format:

[+]d...[.]d]...][E[+]d[d]]
[+] [-]

where:

d is a digit (0-9). Up to 13 digits may be specified. + or - are signs and may be
either leading or trailing. E is the exponent symbol (may be preceded by an op-
tional sign and followed by one or two digits). . is a decimal point.

Numeric Constant
Any integral or floating-point data in an NPL program which is not represented by a
variable. For example:

10 123.456 99.99e-5

numeric-expression
A valid numeric expression must be specified. This may include numeric constants,
functions, and variables. Refer to LET for further details on numeric expressions.

numeric field-expression:
An alpha-variable followed by a "." and a numeric field identifier. The numeric field
identifier may be either a scalar field or an array element. A numeric field-expres-
sion refers to a single numeric field of a record, using the named alpha-variable as a
buffer for the record.

numeric-receiver
A numeric scalar or numeric array element used to receive the results of an operation.

Numeric Receiver
Any numeric which may be assigned an integral or floating-point value. for example,
a numeric variable or an element of a numeric array. Examples of numeric receiver
are shown below.

any_num num_table(10)
matrix(3,3) taxTable()

numeric-scalar
A valid numeric scalar variable must be specified.

numeric-constant GLOSSARY

G -15 NPL Statements Guide

Numeric Scalar
Any numeric variable that is not an array.

numeric-variable
A valid numeric variable, either scalar or array, must be specified.

Once-a-day Security
The check NPL makes on a Novell NetWare installation that allows the "supervisor"
to pass security for that day allowing all other users on the network to access the
RunTime for the day without making a security check (since it was already passed
for that day).

Operating Environment
A specific flavor or enhancement made to an existing operating system that allows
for better user interaction (e.g., MS-Windows).

Operating System
The software that controls the operations of the system in use and allows user interac-
tion (i.e., command structure, I/O, etc).

Operating System Specific Supplement
Documentation specific to the hardware platform being used by the NPL.

Overlay
A smaller component or module of a larger excutable program which is loaded into
memory as needed and discarded when not in use. The use of overlays conserves
memory use.

.profile File
Used under UNIX, Xenix, or AIX to define the user’s system environment when log-
ging in.

PATH
An environment variable which lists a set of default directories to be searched when
files need to be located.

P-Code
(refer to Pseudo-Code)

Pixel Graphics
A "semi" or "block" type of graphics. This makes use of the 64 characters from hex
C0 to hex FF from the NPL alternate character set.

GLOSSARY Numeric Scalar

NPL Statements Guide G -16

Platform
The computer hardware upon which the native operating system is running.

Plot Operations
A plotter driver is available in the Niakwa Scientific and Communications Drive
Package which allows NPL programs to plot functions on screens with graphics capa-
bilities.

Pointer
A variable which contains the address of another variable. In NPL, pointer variables
are only used in function or procedure parameter lists. This allows variables to be
passed to functions or procedures by reference as opposed to being passed by value.
A variable passed by reference can be modified within the function body, whereas a
variable passed by value cannot.

Polling
Process of querying an I/O device such as the keyboard.

Preboot
A setup program used to set programming preference options and then load the NPL
Boot Program, if any.

Printer Control Screen
A sub-screen of the NPL HELP system allowing a user to send configuration infor-
mation to a printer.

Private
Variables or other identifiers may be declared so that they may be referenced directly
by only the module or function which declares them. Such variables are said to be
"private" to the module or function which makes the declaration.

PROCEDURE
Similar to a FUNCTION but does not return a value.

Process
Any executing program running independently of other running programs.

Programming Atoms
Assigning specific keys of the keyboard to generate BASIC-2 keywords with a sin-
gle key-press.

Platform GLOSSARY

G -17 NPL Statements Guide

Programmer’s Guide
An NPL reference manual that provides the developer with a guide to NPL program-
ming techniques. Part of the NPL Technical Reference Guide set.

Protected Mode
An enhanced operating mode of 80x86 microprocessors that allows access to more
than 1 MB of memory. Protected mode also offers capabilities that allow operating
system to support multi-tasking and protection of system resources. For 80386 class
microprocessors, protected mode may also offer virtual memory capabilities.

Pseudo-Code (P-code)
An intermediate code generated by the compiler and interpreter. The code is de-
signed to perform custom operations that are hardware independent.

Public
Variables, FUNCTIONs and some additional identifiers may be declared so that they
may be referenced directly by any other module that INLUDEs the module in which
the declarations appear. Such variables or FUNCTIONs are said to be public.

Quick Library
An external library of functions which may be dynamically linked to the RunTime
under MS-DOS.

Raw Diskette
A physical disk which contains no native file system.

Real Mode
The 8086 operating mode of 80286, 80386 and 80486 microprocessors. In this mode
only the first megabyte of memory may be accessed and there is no hardware sup-
port for multi-tasking or protection of system resources. On IBM PC-compatible sys-
tems, only the first 640K of this memory (so-called conventional memory) may
normally contain programs and variables. The remaining 384K is reserved for I/O
adapter RAM and ROM space. Access to conventional memory blocks larger that
64K requires the use of a segmented address.

Recursion
The process where a FUNCTION or PROCEDURE makes a call to itself.

GLOSSARY Programmer’s Guide

NPL Statements Guide G -18

Recursive Allocation
Each time a FUNCTION or PROCEDURE is called new space is allocated in mem-
ory for all private variables and labels; upon exiting, the space is de-allocated. If a
FUNCTION or PROCEDURE makes a call to itself, then new space is allocated
upon each call. That is, space is not reused just because the variable names are the
same. Memory allocation in this manner facilitates the use of recursive function calls.

REDIRECT Option
An option under the HELP processor which gives control of a terminal to a serial
port allowing remote support under MS-DOS.

Release
The number that refers to a particular Release of the RunTime (e.g., Release III, 4).

Remark
(see Line Remark)

Resettable Security
The ability of the MS-DOS based NPL RunTimes to have their Gold Key Security re-
set if the installable Gold Key Security is lost. This prevents the need for a replace-
ment disk.

Resolve Time
The time between when a program is loaded to run and when it can start executing.

Return-Graphic
The graphic on an editing line that indicates the end of a statement.

Revision
The exact revision number of a particular release of an NPL RunTime (e.g., 3.21,
4.00).

Rights
The ability that users on a multi-user system are granted that allows them to perform
certain files and access functions within a directory. These include the ability to read,
write, create, delete, modify, etc., files within a directory.

RTI
The Niakwa program which allows interactive editing and debugging of NPL source
programs. The Interpretive RunTime program.

Recursive Allocation GLOSSARY

G -19 NPL Statements Guide

RTP
The Niakwa program which will execute p-code generated by the interpreter or com-
piler. The Non-interpretive RunTime program.

RTPEXT Subroutine
A subroutine used in BESDK to provide NPL with information describing newly de-
fined external functions. The routine provides the number for a GOSUB’ statement,
parameter count and type checking and LIST’ information.

rtix
Custom UNIX version of RTI which has external subroutines linked to it.

rtpx
Custom UNIX version of RTP which has external subroutines linked to it.

rticx
Custom UNIX version of RTI which has external subroutines and NDM linked to it.

rtpcx
Custom UNIX version of RTP which has external subroutines and NDM linked to it.

RTIWIN
MS-Windows version of RTI.

RTPWIN
MS-Windows version of RTP.

RTIWIN.INI
Initialization file used by the RunTime under MS-Windows.

RTI386
Version of RTI to be used within the 386/DOS-Extender environment.

RTP386
Version of RTP to be used within the 386/DOS-Extender environment.

RTISHARE
Sharable version of RTI for Super DOS, which allows more than one user to run the
executable at the same time.

RTPSHARE
Sharable version of RTP for Super DOS, which allows more than one user to run the
executable at the same time.

GLOSSARY RTP

NPL Statements Guide G -20

RunTime
Either the RTI or the RTP, both of which allow the execution of NPL applications.

RunTime Options
Options specified at RunTime start-up (e.g., /R, /B).

RunTime Package
Package which contains the NPL Installation Guide, RTP, RTI, and their supporting
files.

RunTime Program
RTI or RTP.

Scalar Variable
Any non-array variable.

Scientific and Communications Driver (SCD)
A package supplied by Niakwa which provides a driver for complete asynchronous
communications by emulating the Wang 2227 communications board and a plotter
driver to emulate plotting functions on screens with graphics capabilities.

SCD
(see Scientific and Communications Driver)

Scope (of a variable declaration)
The range of statements in a module for which a reference to a variable of the same
name refers to the variable name used in the declaration.

Scrambled
An encryption scheme that is applied to programs in diskimages.

Scramble Protecting
The process of encrypting program code in diskimages.

Scratch
A file in a diskimage may be "scratched" to indicate that the data file or program is
out of date, to allow replacement by a newer version, or to allow deletion when the
diskimage is reorganized.

A new diskimage may also be scratched or an old one cleared for use (all files de-
leted) by a SCRATCH DISK operation.

RunTime GLOSSARY

G -21 NPL Statements Guide

Screen Character Set (NPL)
A generic character set used by NPL which may or may not be different from a na-
tive operating system’s own character set.

Screen Translation Table
A table which is used to map the NPL screen characters to the native system screen
characters so that they will appear the same on different terminals.

Script File
A file containing commands that are executed by the operating system or an applica-
tion.

Security Fingerprint
Gold Key Security information that has been installed on a hard disk.

Security TSR
A program used by the NPL RunTime for security checks under MS-DOS based sys-
tems.

Serial Number
A number associated with every Gold Key security fingerprint. The number is vis-
ible from within NPL with the $SER system variable.

Shelling
Using the NPL $SHELL command to exit NPL temporarily and run a program in the
native operating system.

simple-statement
A simple statement is a statement that can stand alone as a complete program. Some
statements, in particular those used to implement structured programming constructs,
are incomplete in that they require a corresponding statement to terminate them (e.g.,
WHILE requires WEND).

Special Function Keys
Some terminals have a row of 16 function keys which may be used in upper or lower
case providing 32 assignable functions. The RunTime supports this through a virtual
keyboard.

Statements Guide
An NPL Reference manual that lists all NPL statements, their use, and examples.
Part of the NPL Technical Reference Guide set.

GLOSSARY Screen Character Set (NPL)

NPL Statements Guide G -22

statement-label
An identifier which appears elsewhere in a program as a statement label (=identi-
fier).

Statement Label
An identifier which appears in a program that is used as a target in a branching state-
ment, such as GOTO or ON. In the following sample NPL program, the identifier
"top_of_loop" is a statement label.

100 i = 10
: =top_of_loop
: i = i-1
: IF i > 0 THEN GOTO top_of_loop

Static Allocation
Memory allocated for variables that remains for the duration of a program unless ex-
plicitly cleared with either a CLEAR V or CLEAR N command. The memory may
be implicitly cleared when an overlay is executed.

Step Mode
A mode in the interpreter which allows stepped execution of an NPL program for de-
bugging purposes. The program may be executed one statement at a time with all the
facilities of immediate mode available between each executed statement.

Step Range
A specified range of line numbers between which stepped execution is allowed to oc-
cur.

Stepped Execution
Execution of one program statement at a time.

string field-expression:
An alpha-variable followed by a "." and a string field identifier. The string field iden-
tifier may be either a scalar field or an array element. A string field-expression refers
to a single string field of a record, using the named alpha-variable as a buffer for the
record.

String Ravel
A side effect which occurs with statements that use both the value of a string and as-
sign a value to another string when the two strings overlap.

statement-label GLOSSARY

G -23 NPL Statements Guide

Structured Programming
Program development in a modular hierarchical fashion with a well organized flow
(path) of execution. Main program tasks are broken down into smaller simpler tasks
whose objectives are clearly and easily defined. Large or often repeated tasks are im-
plemented through function and procedure calls. Sets of related functions and proce-
dures are commonly stored in separate program files. Modern programming
constructs such as SWITCH/CASE/END SWITCH, WHILE/WEND, REPEAT/UN-
TIL help with code organization and readability.

System Software
A program or set of program tools which help a software developer perform a task.
Some examples would be a compiler or an assembler.

System Variable
A variable in NPL in which system information may be examined or modified. $OP-
TIONS and $SCREEN are examples of system variables.

Task
(see Process)

Technical Reference Guide (TRG)
Refers to the complete set of generic NPL documentation available to an NPL devel-
oper that applies to all NPL platforms (Programmer’s Guide and Statements Guide).

Terminal Files
Definition files to allow NPL to work on specific terminals. These files are included
with the NPL Development Software.

Terminal Type
Hardware specifics of a terminal or graphics display that a native operating system
must know to communicate with it.

TRACE Mode
A mode used for debugging NPL programs. While in this mode variable modifica-
tions and control transfers can be displayed as a program is executing.

TRG
(see Technical Reference Guide)

ttys File
Used by the UNIX, Xenix, and AIX RunTimes to determine unique partition num-
bers for terminals using NPL.

GLOSSARY Structured Programming

NPL Statements Guide G -24

UMB Memory
Upper memory block; memory above 640K (in the area normally reserved for I/O
adapter RAM and ROM, but where the addresses are unused by configured devices)
which may be made available to programs on 386 class microprocessors using a 386
memory manager driver such as EMM386.SYS or QEMM386.SYS. Also called
High RAM.

Undeclared
If a program contains reference to an identifier which is not preceded by declaration
for the identifier, the variable or function associated with the identifier is said to be
undeclared. Here, the word variable is used in the loosest possible context. Unde-
clared references usually indicate a programming error or an attempt to reference a
variable before its declaration.

Upgrade Guide
Documentation provided with the Upgrade RunTime Package describing the con-
tents, configuration, installation and NPL Upgrade RunTime operation.

Upgrade Package
The Upgrade Guide and diskette media provided by Niakwa to upgrade a RunTime
Package to a current NPL release level.

User Limit
A maximum number of users which may be running the RunTime at the same time
for a given site.

User Partition
The part of memory available for use by a NPL program code and its defined vari-
ables.

Version
The third set of numbers in the NPL release number (e.g., 3.21.15, 4.00.23). This is
also referred to as the minor revision level in the NPL documentation (refer to $REV
is the NPL Statements Guide).

Variables
A location in memory, referenced by a program identifier, where a date value can be
stored and changed during program execution.

Virtual Keyboard
The NPL language assumes the existence of an "ideal" keyboard that contains all of
the keys required for the full use of the language. This is referred to as the virtual
keyboard.

UMB Memory GLOSSARY

G -25 NPL Statements Guide

Virtual Machine Environment
To be fully portable across different platforms, NPL facilitates the handling of all
hardware access in a generic manner. Physical (actual) I/O devices or files are
mapped to logical devices or files through translation tables. Functionally, a software
developer may create an application for no specific or "real" target system.

Virtual Memory
Virtual memory is an operating system technique which allows the operation of proc-
esses whose total size exceeds available physical memory. This occurs in such a way
as to be invisible to any application program. Virtual memory requires the use of spe-
cial hardware which is often integrated into the microprocessor. The operating sys-
tem ensures that any portions of a process which are currently needed are in
memory. When portions are not needed, the operating system ensures that the values
are preserved, usually by writing them to a hard disk swap file.

XMS Memory
Extended memory specification. Allows MS-DOS programs to utilize extended
memory, high RAM and the high memory area in an organized way.

Workspace
The memory used by all program modules, variables, etc. which comprise a single
NPL application.

GLOSSARY Virtual Machine Environment

NPL Statements Guide G -26

HALHEL

PRE

SF’2

NEX

SF’2 SF’2SF’2SF’2

BACKSP

SF’2SF’1SF’1SF’1

LOA
D

 >

SF’3SF’3SF’2SF’2SF’2SF’2

D TAB

EDIT/

]

 "

 ? . ,

 * ^ + _) ($ # !

 :

SF’1

NPL Standard Characters

0 1 2 3 4 5 6 7 8 9 A B C D E F

1x â ê î ô û ä ë ï ö ü à è ù Ä Ö Ü

2x ! " # $ % & ’ () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ↑ ←

6x ° a b c d e f g h i j k l m n o

7x p q r s t u v w x y z § £ é ç ¢

8x ♦ > < → | ⋅⋅ ’ ‘ ^ !! ß ¶

9x â ê î ô û ä ë ï ö ü à è ù Ä Ö Ü

Ax _ ! " # $ % & ’ () * + , - . /

Bx 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

Cx @ A B C D E F G H I J K L M N O

Dx P Q R S T U V W X Y Z [\] ↑ ←

Ex ° a b c d e f g h i j k l m n o

Fx p q r s t u v w x y z § £ é ç ¢

NPL Alternate Characters

0 1 2 3 4 5 6 7 8 9 A B C D E F

1x â ê î ô û ä ë ï ö ü à è ù Ä Ö Ü

2x ! " # $ % & ’ () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ↑ ←

6x ° a b c d e f g h i j k l m n o

7x p q r s t u v w x y z § £ é ç ¢

8x ♦ ▼

▼

→ ¬ | ⋅⋅ ’ ‘ ^ ❚❚ !! ↕ ß ¶

9x • ◊ ▲ ▼ ↓ ¬ ✓ ° { } ∇

Ax - - ⊥ ❘ ⊥

Bx

Cx

Dx

Ex

Fx

	TABLE OF CONTENTS
	 P-1
	PREFACE P-1
	The NPL Documentation -- An Overview P-1
	The NPL Technical Reference Guide P-2
	Operating System-Specific Supplements P-2
	Installation Guides P-3
	Upgrade Guides P-3
	Supplementary Documentation/Services P-3

	How to Use the Programmer's Guide P-3
	Documentation Conventions P-4
	Programmer's Guide Overview P-6
	Getting Started with NPL P-8
	New to NPL P-8
	Experienced BASIC-2 User - New to NPL P-9
	Experienced NPL Users P-10

	Getting Help P-10
	Warranty Information P-10
	Patch - Update - Upgrade Policies P-10
	Product Support P-11
	Reporting Problems P-13

	INTRODUCTION 1-1
	Overview 1-1
	The Niakwa Development Environment 1-2
	The Niakwa Programming Language (NPL) 1-2
	Creating NPL Programs 1-4
	NPL Add-Ons 1-6

	The Niakwa Development Tools 1-6
	Niakwa Data Manager 1-6
	Intelligent Query 1-7

	Niakwa's Objectives 1-7

	NPL Technical Features 1-8
	Performance 1-8
	Interactive Environment 1-8
	Debugging Facilities 1-9
	Portability 1-11
	Multi-User 1-11
	Program Constructs 1-11
	Program Modules (Libraries) 1-11
	FUNCTION Interface 1-12
	Mixed Language Programming 1-12
	Data Conversion Statements 1-12
	Advanced Math Functions 1-12
	String Handling 1-13
	Advanced Matrix Manipulation 1-13
	Device Independent 1-13
	Native Operating System Calls 1-13
	Data Verification and Error Handling 1-13
	HELP Subsystem 1-13
	$DEMO 1-14
	Program Encryption 1-14
	Wang 2200/Basic-2 Upward Compatibility 1-14

	NPL Limits 1-14
	The NPL Virtual Machine Environment 1-17
	Input/Output 1-18
	Storage Devices 1-18
	Native Operating System Files 1-19
	ISAM Files 1-19

	Display Devices 1-20
	NPL Character Sets 1-20
	NPL Virtual Keyboard 1-23

	RUNTIME OPERATIONS 2-1
	Overview 2-1
	RTP Versus RTI 2-2
	Enabling RTI 2-2

	Starting the NPL RunTime 2-3
	Starting from the Command Processor 2-3
	Starting from Batch/Script Files 2-4
	Starting from a Menu 2-4

	Command Line (Start-up) Options 2-5
	/B (Background Partition) 2-5
	/D (DET Entries) 2-6
	/G (Graphics Mode) 2-7
	/H (Handle Table Size) 2-8
	/K (Mouse Support) 2-10
	/L (Leave Overhead Memory) 2-11
	/M (XMS Memory) 2-11
	/P (Pre-boot) 2-11
	/R (Remote Control) 2-13
	/S (Separate Program Segments) 2-13
	/T (Terminal/Port Number) 2-14
	/U (UMB Memory) 2-14
	/X (External Library) 2-15
	Boot Program 2-16

	Immediate Mode Operation 2-18
	Two Types of Immediate Mode Entries 2-18
	Immediate Mode Program Lines (Deferred Execution) 2-18
	Immediate Mode Commands (Immediate Execution) 2-19

	Invoking Immediate Mode 2-20
	Invoking Immediate Mode from the Keyboard 2-20
	Invoking Immediate Mode from Program Control 2-21
	Conditionally Invoking Immediate Mode 2-22
	Invoking Immediate Mode on ERROR Conditions 2-23
	Summary Table 2-24

	Immediate Mode Operation 2-24
	Statements Which Are Illegal As Commands 2-25
	Statements Which Operate Differently As Commands 2-25
	1. Transfer of Control Statements 2-26
	2. Program LOAD Statements 2-26
	3. PRINT Statements 2-27
	4. $SHELL Statement 2-27
	Preserving a Program's "Execution Status" 2-27

	Exiting Immediate Mode 2-28
	CONTINUE Command 2-28
	EXECUTE Key 2-29
	RUN Command 2-29
	$END Command 2-29

	Exiting NPL 2-30
	Exiting under Program Control 2-30
	Exiting Using the HELP Key 2-31
	Exiting Using the Interrupt Key 2-31

	The HELP Processor 2-31
	Selecting HELP Options 2-32
	HELP Options 2-33
	Disabling Immediate Mode Options 2-35

	Print Control 2-36
	Accessing Printer Control 2-36
	The Print Control Screen 2-36
	Printer Control Options 2-37
	Print Control Values 2-39

	Redirect Feature for Remote Support 2-40
	Establishing the Communications Link 2-40
	Turning Control Over to the Remote Terminal 2-41
	Example of Redirect Feature 2-44
	Troubleshooting from Remote Sites 2-45
	Relinquishing Control Back to the End-User Site 2-46

	RunTime Errors 2-47
	Error Handling Under RTP 2-47
	Error Handling Under RTI 2-50
	Device Not Ready Conditions 2-50
	Error Descriptions 2-52

	RUNTIME MEMORY USE 3-1
	Overview 3-1
	Dynamic Partition Size 3-2
	Space Functions 3-3
	P-Code Size Relative to Wang 2200 3-4

	NPL PROGRAMMING CONSTRUCTS 4-1
	Overview 4-1
	NPL Logical Program Organization 4-2
	Structured Programming 4-3
	Code Modularization 4-4

	Program Lines 4-5
	Statement separators 4-6
	Order of Execution 4-6
	Statement Labels 4-7
	Transfer of Control 4-7

	Data Types 4-9
	String 4-9
	Numeric 4-9

	Literals and Constants 4-9
	Literals 4-10
	Numeric Constants 4-10
	Constant Variables 4-10

	Variables 4-11
	Naming Conventions 4-11
	Significance of Spaces in Syntax 4-11
	Identifier Abbreviations 4-12

	Case Conventions 4-12
	Short Identifier Names 4-13
	Long Identifier Names (LINs) 4-13

	Variable Types 4-14
	String Variables 4-14
	Numeric Variables 4-15
	Array 4-16
	Pointer 4-17
	Constant Variables 4-17
	Field Identifiers and Logical Records 4-17

	Allocation Classes of Variables 4-18
	Static Allocation 4-18
	Recursive Allocation 4-18

	Scope of Variables 4-19
	Function Private Variables 4-20
	Module Private Variables 4-20
	Public Variables 4-20

	Variable Declaration 4-21
	Undeclared Variables 4-22

	Variables Larger than 64KB 4-22
	Restrictions on Use 4-23

	Expanding Array Size 4-24

	Numeric and String Expressions 4-25
	Numeric Operators 4-25
	Numeric Expressions 4-26
	Matrix Support 4-27
	String Operators 4-27
	String Expressions 4-28
	Data Conversion 4-29

	FUNCTIONs and PROCEDUREs 4-29
	Parameter Types of Functions 4-30
	Parameter Passing Conventions 4-30
	Parameter Specifying Modifiable Arguments 4-31
	Passing Large Arguments by Reference 4-31
	Scope of Functions 4-31
	Module Private Functions 4-32
	Public Functions 4-32
	Scope of Variables Declared within Functions 4-33
	Coding Restrictions 4-33
	Location of the Body of a Function 4-33
	Branching Restrictions in a Function 4-33
	Nesting of Function Bodies 4-34
	Function Body Skip-over 4-34
	DEFFN' Declarations 4-34

	Calling a Defined Function 4-34
	Argument Type Checking 4-34
	Use of Constant Parameters 4-34
	Use of /POINTER Parameters 4-34
	Restrictions on Arguments for POINTER Parameters 4-35

	Resolution of Function Identifier 4-35
	Indirect Specification of Function Name 4-35

	Modules 4-36
	Module Concepts 4-36
	Module Categories 4-37
	Root Module 4-37
	Run Module 4-37
	Executing Module 4-37
	List Module 4-38

	Choosing Module Names 4-38
	Reviewing Loaded Modules 4-39
	Modifying an Active Module 4-39
	Nested Included Modules 4-40
	Module Initialization and Cleanup 4-41
	Discarding Modules 4-41
	Effect on Immediate Mode Commands 4-42
	 Execution Time LOAD and SAVE 4-43
	 Guidelines for Writing Modules 4-43

	Logical Constructs 4-44
	Structured IF...ELSE...ENDIF 4-44
	WHILE...WEND 4-45
	REPEAT...UNTIL 4-46
	FOR/BEGIN...NEXT 4-46
	SWITCH...CASE 4-47

	RECORDs/FIELDs 4-48
	Field Identifiers 4-49
	Field Expressions 4-50
	Indirect Field References 4-52
	Example of RECORDs/FIELDs 4-53

	CREATING NPL PROGRAMS AND THE NPL EDITOR 5-1
	5-1
	Overview 5-1
	Creating NPL Programs 5-2
	NPL P-Code 5-2
	The NPL Interpreter (RTI) 5-2
	The NPL Compiler (B2C) 5-3
	$SOURCE/$OBJECT 5-4

	Loading Programs 5-4
	Program Text Merging 5-5
	Loading from Diskimages 5-5
	Loading from Native Operating System Files (BOOT and PREBOOT) 5-6
	Loading Program Text at RunTime 5-7
	Loading Modules 5-8

	The Line Editor 5-8
	Multi-Command Buffering 5-11
	EDIT Functions 5-11
	Standard Keys 5-12
	Special Function Keys 5-12
	Special Function Keys - DEFFN Mode 5-13
	Special Function Keys - EDIT Mode 5-14
	Alternative to EDIT Mode SF Keys 5-16
	Multi-Character Insertion 5-18
	Overstrike Mode 5-18
	Insert Mode 5-19

	Multi-Statement Program Lines 5-21
	Suppression of Statement Separators 5-21

	Statement Insertion and Deletion 5-22
	Adding Statements 5-23
	Inserting a Statement 5-23
	Deleting a Statement 5-24
	Forcing Return-Graphics 5-24

	Multi-Screen Text Lines 5-25
	Use of TAB/SHIFT-TAB 5-26

	Editing Programs 5-27
	Selecting a Module to Edit 5-27
	Entering a New Program Line 5-28
	Replacing a Program Line 5-28
	Changing a Program Line with RECALL 5-28
	Deleting Program Lines 5-29
	Concatenating Program Lines 5-30
	Moving Program Lines 5-30
	Recalling Long Identifier Names 5-31
	Syntax Errors 5-32
	Other Useful Editing Tools 5-33

	Saving Programs 5-34
	Saving New Programs to Diskimages 5-35
	Saving Existing Programs to Diskimages 5-36
	Insufficient Space in Old Program 5-36
	Use of DEFFN' 5-36

	Saving Portions of Programs to Diskimages 5-37
	Saving Programs to Native Operating System Files 5-38
	Scramble Protecting Programs 5-39

	DEBUGGING CODE 6-1
	Overview 6-1
	Prerequisites 6-2

	Debugging Modules 6-2
	Inspection and Modification of Program Logic 6-4
	Logic Inspection Using Stepped Execution 6-4
	Step Mode 6-5
	Step Range 6-5
	Activating Stepped Execution 6-5
	Operating Stepped Execution 6-7
	Temporary Exit from Stepped Execution 6-9
	CONTINUE RETURN 6-9
	CONTINUE NEXT 6-9
	CONTINUE LOAD 6-10
	DEFFN' 6-10
	Deactivating Stepped Execution 6-10

	Logic Inspection Using TRACE 6-11
	Activating TRACE Mode 6-11
	TRACE Output 6-12
	TRACE Output on Transfer of Control 6-12
	Trace Output on Variable Modification 6-13
	Selective TRACE 6-15
	Redirecting TRACE Output 6-17

	Logic Inspection Using LIST 6-17
	LIST STACK 6-17
	LIST DT 6-18

	Logic Modification 6-18
	GOTO 6-19
	RETURN 6-19
	RETURN CLEAR 6-19
	RETURN (value) 6-20
	RETURN ERROR (code) 6-20
	NEXT 6-20
	RUN # 6-21
	RUN 6-21

	Inspection/Modification of Program Variables 6-21
	Variable Inspection 6-21
	Automatic Variable Inspection with TRACE 6-23
	TRACE V 6-24

	Variable Modification 6-25

	Inspection of Program Text 6-26
	Inspection Using the LIST Commands 6-26
	Redirecting LIST Output 6-27

	Inspection of the Program Environment 6-28
	Commands 6-28
	System Variables 6-29
	Public Functions, Procedures and Variables 6-30

	DEVICE SUPPORT 7-1
	Overview 7-1
	Device Emulation 7-2
	Device Addressing 7-3
	The Device Equivalency Table (DET) 7-3
	The $DEVICE Statement 7-4
	Default Device Equivalence Table 7-6
	Maximum Entries Allowed in the Device Equivalence Table 7-7
	Inspecting the Device Equivalence Table 7-7
	Modifying the DET 7-7
	Clearing Entries in the Device Equivalence Table 7-8

	The Internal Device Table (DT) 7-8
	Default Devices 7-9
	File Number Slots 7-10
	Modifying the Internal Device Table 7-10
	Use of the SELECT Statement 7-10
	Other Functions and Statements 7-11
	Examining the DT 7-11
	Module Status 7-12
	Wang 2200 Compatibility Note 7-12

	Exclusive Access 7-12
	The $OPEN Statement 7-13
	Implied Exclusive Access 7-13

	Storage Devices 7-14
	NPL Diskimages 7-15
	General Features of Diskimages 7-15
	Sector Size 7-15
	Maximum Size 7-16
	Maximum Number of Diskimages 7-16
	File Storage 7-16
	Compatibility 7-16
	Compatibility with Native Operating System File Structures 7-17

	Diskimage Addressing 7-17
	Native Operating System Files as Diskimage Files 7-18
	Creating Diskimage Files 7-18
	Changing the Size of a Diskimage File 7-19
	Deleting Diskimage Files 7-20
	Wang 2200 Compatibility Notes 7-20

	Native Operating System "RAW" Devices as Diskimages 7-21
	Purpose of Using "Raw" Devices 7-21
	Characteristics of "Raw" Devices 7-21

	Internal Structure of Diskimage Files 7-22
	Catalog Index and Catalog Area 7-22
	Listing the Index 7-25
	Non-Cataloged Area 7-25

	Cataloged Files 7-26
	Wang 2200 Compatibility Notes 7-27
	Creating Files 7-28
	Maintaining Files 7-28
	Accessing Files 7-29
	Internal Format of Program Files 7-29
	Internal Format of Data Files 7-29

	Catalog Access Methods 7-30
	Summary of Statements Used for Catalog Access to Data Files 7-30
	The Logical Record 7-32
	Diskimage Utilization for Logical Records 7-32
	Logical End-of-File 7-33
	Use of the Internal Device Table 7-34

	Direct Access 7-35
	Summary of Statements Used for Direct Access to Data Files 7-35

	Extended Diskimages 7-37
	Implementation 7-37
	Maximum Size 7-38
	Compatibility 7-38
	Implications for Application Software 7-38
	Three-Byte Addresses 7-39
	Direct Access to the Index 7-39
	Use of Bytes 7 & 8 for Other Purposes 7-39
	Internal Structure of Diskimages 7-40
	NPL Statements Affected 7-41
	For Non-Extended Diskimages: 7-43

	Native Operating System Files 7-44
	ASCII File Access 7-44
	Print Class Devices 7-44
	Disk Class Devices 7-45
	The Niakwa Data Manager (NDM) 7-47

	Screen Handling 7-47
	General Features 7-47
	Addressing the Screen 7-48
	The NPL Screen Character Set 7-49
	Screen Output Character Translation 7-51

	Internal Access 7-51
	Screen Control Codes and Attributes 7-52
	Video Attributes 7-53

	Graphics 7-55
	Color Support 7-55
	Dynamic Selection of Colors Using HEX Sequences 7-57
	Underline Color Replacement 7-58
	Selecting "BRIGHT" Attribute 7-59
	Sample Color Program 7-59

	Box Graphics 7-60
	True Boxes 7-60
	Character Boxes 7-60

	Pixel Graphics 7-61
	Plotting Capabilities 7-61
	Statements Used to Print to the Screen 7-61
	132-Column Support 7-62
	Uses and Limitations of INPUT SCREEN/PRINT SCREEN 7-63

	Keyboard Support 7-64
	The Keyboard Device Address 7-64
	Virtual Key Names and Codes 7-65
	Use of Special Function Keys by NPL 7-66
	The HALT Key 7-67
	The Underline Key 7-67

	Keyboard Translation 7-68
	Statements Used for Keyboard Input 7-69
	Extended Keyboard Entry 7-69

	Mouse Support 7-71
	Terminal/Monitor Support 7-72
	Determination of Type 7-73
	NPL Directly Supported Terminals/Monitors 7-73
	Local Printer Support 7-75
	Support of Native Operating System and Utilities 7-75

	Printers 7-76
	Valid NPL Print Addresses 7-76
	Equivalent Native Operating System Devices or Files 7-76
	Specifying the Output Printer Device 7-77
	Available Print Statements 7-77
	Control Sequences 7-78
	Use of Native Operating System Files 7-78
	Printer Translation 7-79
	Local Printer 7-81
	Special End-of-Line Handling 7-81

	Serial Devices 7-82
	Directing Output to Other Devices 7-82
	Accepting Input 7-83
	Input from the Serial Port 7-83

	Telecommunications Support 7-85

	ERROR HANDLING 8-1
	Overview 8-1
	Error Classes 8-2
	RunTime Program Errors and Warnings 8-2

	Recoverable Versus Non-Recoverable Errors 8-3
	Resolution Versus Execution Errors 8-5
	Handling Under Program Control 8-7
	ERROR DO 8-7
	ERR 8-8
	ERR$ 8-10
	$OSERR 8-11
	Error Help Files 8-12

	SYSTEM VARIABLES 9-1
	Overview 9-1
	$MACHINE 9-2
	$OPTIONS 9-2
	Other System Variables 9-3
	$BOXTABLE 9-3
	$KEEPREMS 9-4
	$KEYBOARD 9-4
	$NETID 9-4
	$PRINTER 9-5
	$PROGRAM 9-5
	$REV 9-5
	$SCREEN 9-5
	$SER 9-6

	$SHELL 10-1
	Overview 10-1
	Uses of $SHELL 10-2
	General Versus Specific Program Use 10-3
	General Form 10-3
	Executing Specific Commands 10-5
	Native Operating System File System 10-6
	Return Code 10-6

	Command Usage 10-6
	From Immediate Mode 10-6
	From The HELP Processor 10-7
	From Program Control 10-7

	Memory Requirements 10-8

	THE HELP PROCESSOR 11-1
	Overview 11-1
	User-Definable Help Screens 11-2
	The HELP ENTRY 11-2
	Stand-alone HELP Files 11-3
	Indexed HELP Files 11-3
	The $HELP Statement 11-4

	Special Sequences 11-5
	Nested Help Entries 11-6
	Indexed Help Files 11-7
	Advantages and Disadvantages of Indexed HELP Files 11-7
	Creating an Indexed HELP File 11-8
	Defining HELP Entries Within an Indexed File 11-8
	Creating the Index for the File 11-9
	To Use an Indexed HELP File 11-9
	Alternative Search 11-10
	External References within Indexed HELP Files 11-11
	Internal References within an Indexed File 11-11

	General Notes on Help Files 11-12
	Additional HELP Processor Features 11-13
	Mouse Support 11-13
	Keyboard Functionality 11-13

	$DEMO 12-1
	Overview 12-1
	$DEMO Statement 12-2
	Syntax 12-2
	Effect of Execution 12-3
	Determining $DEMO Status 12-4

	DEMO Script File 12-4
	Keystrokes 12-4
	Keystroke Processing 12-5
	Special Keys 12-6
	Repeat Keys 12-7
	Timing 12-7

	Display of Informational Text 12-8
	The BOX Statement 12-8
	Special Sequences 12-9
	End-of-Text Delimiter 12-10
	Modifying Box Parameters 12-11
	BOX Graphics Display 12-11
	Redefining the Prompt 12-12

	Adding Comments 12-12
	Restrictions 12-13
	The HELP Key 12-13
	Polling KEYIN 12-13
	$IF ON 12-13

	Keyboard Logging 12-13

	NPL UTILITIES 13-1
	Overview 13-1
	Starting the NPL Utilities 13-3
	The NPL Utilities Menu 13-4
	Menu Utility 13-4
	Format Floppy Disks 13-4
	General Backup Utility 13-4
	General Recovery Utility 13-5
	General File Copy Utility 13-5
	Diskimage Listing 13-5
	New Diskimage Creation 13-5
	Change Diskimage Size 13-5
	Scratch Single File 13-5
	Change Utilities Device Equivalences Table 13-5
	Keyboard Translation Tables Editor 13-5
	Screen Translation Tables Editor 13-5
	Font Table Editor 13-5
	Printer Control Table Editor 13-5
	Indexed Help Table Editor 13-5
	Diagnostic Dump File Processor 13-6
	Printer Translation Table 13-6

	Edit Options 13-6
	Other Program 13-6
	Operation 13-6
	Menu Options Setup 13-7
	Accessing the Menu Options Program 13-7
	Error Handling 13-8
	Format Floppy Disks 13-8
	Features 13-9
	Operation 13-9

	General Backup Utility 13-10
	Features 13-11
	Operation 13-12
	Selecting Files 13-13
	The Copying Process 13-13
	Limitations 13-14

	General Recovery Utility 13-15
	Features 13-15
	Operation 13-16
	Error Handling 13-17
	Limitations 13-17

	General File Copy Utility 13-18
	Features 13-18
	Operation 13-19
	Selecting Files 13-20
	The Copying Process 13-21
	Exceptions 13-21
	Overwrite Exceptions 13-22

	Diskimage Listing 13-22
	Features 13-23
	Operation 13-24

	New Diskimage Creation 13-24
	Features 13-25
	Operation 13-25

	Change Diskimage Size 13-26
	Features 13-26
	Operation 13-27

	Scratch Single Files 13-28
	Features 13-28
	Operation 13-28

	Change Utilities Device Equivalences Table 13-29
	Features 13-29
	Operation 13-30

	Keyboard Translation Tables Editor 13-31
	Features 13-31
	Operation 13-32

	Screen Translation Tables Editor 13-34
	Features 13-35
	Operation 13-35

	Font Table Editor 13-37
	Features 13-37
	Operation 13-37

	Printer Control Table Editor 13-40
	Features 13-40
	Operation 13-40

	Indexed HELP File Processor 13-41
	Features 13-41
	Operation 13-41
	Error Handling 13-42

	Diagnostic Dump Variables List 13-43
	Printer Translation Table 13-43
	Features 13-44
	Operation 13-44

	Edit Options 13-45
	Features 13-45
	Operation 13-46

	OTHER Program 13-47
	Features 13-47
	Operation 13-47

	Generating 2200 Source 13-48
	COMPILER OPERATION 14-1
	Overview 14-1
	The Compiler Command Line 14-3
	Format 14-4
	Discussion 14-6

	Selecting Input Programs for Compilation 14-7
	Literal Program Selection 14-7
	Wildcard Program Selection 14-8

	Compiler Options 14-9
	Default Options 14-10
	Changing Options During a Compiler Run 14-10
	Specifying Path Names and Device Names 14-10

	The SRCLOC Option 14-10
	Format 14-11
	Discussion 14-11
	Diskimage Files 14-11

	The OBJLOC Option 14-13
	Format 14-13
	Discussion 14-13
	Diskimage Files 14-14
	Native Disk Environment 14-15
	No Object Programs Produced 14-15
	Scrambled Program Considerations 14-15

	The OBJFORMAT Option 14-16
	Format 14-16
	Discussion 14-16
	Scrambled Program Considerations 14-16

	The OBJEXTRA Option 14-17
	Format 14-17
	Discussion 14-17

	The LSTLOC Option 14-17
	Format 14-18
	Discussion 14-18
	Diskimage Files 14-18
	Native Directory 14-19
	Native Files 14-19
	"RAW" Diskettes 14-19
	Print Device 14-20

	The LSTFORMAT Option 14-20
	Format 14-20
	Discussion 14-20
	.LST Format 14-20
	.SRC Format 14-21
	2200 Format 14-21
	2200 "Compressed" Format 14-21

	The ERRLOC Option 14-21
	Format 14-22
	Discussion 14-22
	Native Files 14-22
	Print Device 14-22

	The WARNINGS Option 14-23
	Format 14-23
	Discussion 14-23

	The NUMBERS Option 14-23
	Format 14-24
	Discussion 14-24

	The REM$ Option 14-24
	Format 14-25
	Discussion 14-25

	The KEEPREMS Option 14-25
	Format 14-26
	Discussion 14-26
	The KEEPREMS Compiler Option 14-26

	The DISPLAY Option 14-27
	Format 14-27
	Discussion 14-28
	Explicitly Invoking the Compiler Display 14-28
	Implicitly Invoking the Compiler Display 14-28

	The TRANSLATE Option 14-28
	Format 14-29
	Discussion 14-29
	Translation Is Performed Only When Required 14-31

	The LCASE Option 14-31
	Format 14-31
	Discussion 14-31

	The User-Friendly Compiler Display 14-32
	Invoking the Display 14-32
	The Display Screen 14-33
	Limitations of the Compiler Display 14-34
	Compiler Display Example 14-35

	Batch Files 14-35
	Discussion 14-36
	Example Batch Files 14-37

	2200 Compatibility Issues 14-37
	Compatibility with Earlier Revisions 14-38
	New Statements 14-39
	Program Stamp 14-39
	Using the Compiler 14-39

	Commonly Used Compiler Options 14-39

	PORTING PROGRAMS AND DATA 15-1
	Overview 15-1
	Porting Options 15-2
	"RAW" Diskette Transfer 15-2
	Serial Communications 15-3
	Native Operating System Utility Options 15-4

	NPL General Backup/Recovery Utilities 15-5
	Steps Required for Transfer 15-5

	NPL General File Copy Utility Use 15-8
	User Programs 15-9
	Transferring Over Your Own Utility Programs 15-10
	Executing Your Own Utility Programs 15-11

	Transfer to and from the Wang 2200 15-11
	Formatting a PC Interchange Disk on the 2200 15-12

	File Types for Porting 15-14
	Methods of Transferring 15-15

	MIXED LANGUAGE PROGRAMMING 16-1
	Overview 16-1
	Interface to External Subroutines 16-2
	GOSUB/DEFFN Versus FUNCTION/PROCEDURE Interface 16-3
	Using the GOSUB'/DEFFN' Interface 16-3
	Using the FUNCTION/PROCEDURE Interface 16-5
	Callbacks to /PUBLIC FUNCTIONs from the External Library 16-7

	External Subroutine Interface Specifications 16-8
	Calling Conventions 16-8
	Near Versus Far Pointers 16-8
	C Versus Pascal Calling Convention 16-9

	Parameter Format 16-10
	Numeric Parameters 16-10
	String Parameters 16-12

	Execution of the Subroutine 16-13
	Return Value of the Subroutine 16-13
	Example of External Subroutine 16-14

	External Function Interface Specifications 16-15
	Calling Conventions 16-15
	Near Versus Far Pointers 16-15
	C Versus Pascal Calling Convention 16-16

	Parameter Format 16-16
	Base Data Types 16-16
	Numeric Data Type 16-16
	String Data Type 16-18
	Arrays of Base Data Types 16-18
	Parameters Passed by Reference 16-18

	Declaring the Parameter Block 16-18
	Declaring the Function 16-20
	Accessing the Parameter Block 16-20
	Accessing Parameters Passed by Value 16-21
	Accessing Parameters Passed by Reference (/POINTER) 16-21

	Execution of the Function 16-22
	Return Value of the Subroutine 16-23
	Example of an External Function 16-23

	NPL Function Callback Interface Specifications 16-25
	Locating the Function 16-25
	Validating the Function 16-26
	Calling the Function 16-26
	Passing Parameters by Value 16-26
	Passing Parameters by Reference (/POINTER) 16-26
	Passing the Address of the Function to be Called 16-27
	Making the Callback 16-28

	Checking for Errors and Getting the Return Value 16-28
	Restrictions on Callbacks 16-29
	Error Handling in Callbacks 16-29
	Example of External Callback to NPL Function 16-29

	Writing a Mainline for External Subroutines 16-31
	Why a Mainline is Needed 16-31
	Calling NPL from the Mainline - The RunTime Subroutine 16-32
	The RTP() Subroutine Calling Conventions 16-32
	The RTP() Subroutine Parameters 16-32
	The RTP() Subroutine Return Value 16-32
	Example of Mainline 16-33

	Writing the RTPEXT Subroutine 16-33
	What Is the RTPEXT Subroutine? 16-33
	The RTPEXT Calling Conventions 16-35
	The RTPEXT Parameters 16-35
	Information Requests about External DEFFN's 16-37
	Named Aliases of External DEFFN' Routines 16-40
	RTPEXT Requests for Information about External FUNCTIONs 16-41
	Validating a FUNCTION/PROCEDURE 16-43
	The RTPEXT Return Code 16-45
	Example RTPEXT Subroutine 16-45
	Another Example RTPEXT Subroutine 16-48

	Writing a Test Program 16-50
	Example Test Program 16-51
	Example Linkage for Test Program 16-53
	Running the Test Program 16-53
	Running the Example Test Program 16-53

	Making the External Library 16-54
	Example Linkage for External Library 16-54
	Using an External Library 16-55
	Using the Example External Library 16-56

	Cautions and Restrictions 16-57
	Compatibility with Other NPL Applications 16-58
	Memory Requirements 16-58
	Isolation from NPL Environment 16-58
	Resource Conflicts 16-58
	Increased Expertise Requirement 16-59
	Portability 16-59
	 17-1

	EXTENDED EXAMPLES 17-1
	Overview 17-1
	Programming Style Used in Examples 17-3
	Example 1: WHILE/WEND 17-4
	Program Listing 17-4
	Discussion 17-4
	General Comments 17-5

	Example 2: REPEAT/UNTIL 17-5
	Program Listing 17-5
	Discussion 17-5
	General Comments 17-6

	Example 3: Simple SWITCH/CASE 17-6
	Program Listing 17-6
	Discussion 17-6
	General Comments 17-7

	Example 4: Example Module (Library) 17-7
	Program Listing 17-7
	Discussion 17-7
	General Comments 17-9

	Example 5: Module using PUBLIC Sections 17-9
	Program Listing 17-9
	Detailed Discussion 17-11
	General Comments 17-14

	Example 6: Module using PROCEDURE 17-15
	Program Listing 17-15
	Detailed Discussion 17-16
	General Comments 17-16

	Example 7: A Recursive Function 17-17
	Program Listing 17-18
	Detailed Discussion 17-18
	General Comments 17-19

	Example 8: QSORT Routine 17-19
	Program Listing 17-20
	Discussion 17-22
	General Comments 17-22

	Example 9: Logical SWITCH/CASE 17-22
	Program Listing 17-22
	Discussion 17-22
	General Comments 17-23

	Example 10: Complex SWITCH/CASE 17-23
	Program Listing 17-23
	Results 17-24
	Discussion 17-24
	General Comments 17-24

	Example 11: RECORDS/FIELDS 17-24
	Program Listing 17-25
	Results 17-25
	Discussion 17-26

	Example 12: Complex Use of RECORDs 17-27
	Program Listing 17-27
	Results 17-28
	Discussion 17-28

	UPGRADING OLDER NPL CODE A-1
	Compatibility with Earlier Revisions A-1
	Immediate Benefits of Modularization A-2
	Immediate Benefits of Long Variable Names A-3
	Upgrading Code Containing GOTO # A-3
	Useful NPL Enhancements A-5
	Language Features A-5
	Editor Enhancements A-6
	Miscellaneous Enhancements A-6

	Additional Considerations A-7

	NPL ERRORS B-1
	Overview B-1
	Error Code Classes B-2
	RunTime Program Errors and Warnings B-2
	Recoverable Versus Non-Recoverable Errors B-3

	RunTime Program Errors B-4
	Miscellaneous Errors B-4
	ERR A00 - Not Implemented. B-4
	ERR A01 - Memory Overflow (Text < --> Variable Table). B-4
	ERR A02 - Value Stack Overflow. B-4
	ERR A03 - Insufficient Memory for Buffer. B-4
	ERR A04 - Operator Stack Overflow. B-4
	ERR A05 - Program Line Too Long. B-5
	ERR A06 - Program Protected. B-5
	ERR A07 - Illegal Immediate Mode Statement. B-5
	ERR A08 - Statement Not Legal Here. B-5
	ERR A09 - Program Not Resolved. B-5

	Syntax Errors B-5
	Program Errors B-6
	ERR P32 - Start greater than End. B-6
	ERR P33 - Line-Number Conflict. B-7
	ERR P34 - Illegal Value. B-7
	ERR P35 - No Program in Memory. B-7
	ERR P36 - Undefined Line-Number or CONTINUE Illegal. B-7
	ERR P37 - Undefined Marked Subroutine. B-7
	ERR P38 - Undefined FN Function. B-7
	ERR P39 - FN's Nested Too Deep. B-7
	ERR P40 - No Corresponding FOR for NEXT Statement. B-7
	ERR P41 - RETURN Without GOSUB. B-8
	ERR P42 - Illegal Image. B-8
	ERR P43 - Illegal Matrix Operand. B-8
	ERR P44 - Matrix Not Square. B-8
	ERR P45 - Operand Dimensions Not Compatible. B-8
	ERR P46 - Illegal Microcommand. B-8
	ERR P47 - Missing Buffer Variable. B-8
	ERR P48 - Illegal Device Specification B-8
	ERR P49 - Interrupt Table Full. B-9
	ERR P50 - Illegal Array Dimensions or Variable Length. B-9
	ERR P51 - Variable or Value Too Short. B-9
	ERR P52 - Variable or Value Too Long. B-9
	ERR P53 - Noncommon Variables Already Defined. B-9
	ERR P54 - Common Variable Required. B-9
	ERR P55 - Undefined Variable. B-9
	ERR P56 - Illegal Subscripts. B-9
	ERR P57 - Illegal STR Arguments. B-10
	ERR P58 - Illegal Field/Delimiter Specification. B-10
	ERR P59 - Illegal Redimension. B-10

	Computational Errors B-10
	ERR C60 - Underflow. B-10
	ERR C61 - Overflow. B-10
	ERR C62 - Division by Zero. B-10
	ERR C63 - Zero Divided by Zero or Zero ^ Zero. B-10
	ERR C64 - Zero Raised to Negative Power. B-10
	ERR C65 - Negative Number Raised to Non-integer Power. B-10
	ERR C66 - Square Root of Negative Value. B-10
	ERR C67 - LOG of Zero. B-10
	ERR C68 - LOG of Negative Value. B-11
	ERR C69 - Argument Too Large. B-11

	Execution Errors B-11
	ERR X70 - Insufficient Data. B-11
	ERR X71 - Value Exceeds Format. B-11
	ERR X72 - Singular Matrix. B-11
	ERR X73 - Illegal INPUT Data. B-11
	ERR X74 - Wrong Variable Type. B-11
	ERR X75 - Illegal Number. B-12
	ERR X76 - Buffer Exceeded. B-12
	ERR X77 - Invalid Partition Reference. B-12
	ERR X79 - Invalid Password. B-12

	Disk Errors B-12
	ERR D80 - File Not Open. B-12
	ERR D81 - File Full. B-12
	ERR D82 - File Not in Catalog. B-12
	ERR D83 - File Already Cataloged. B-12
	ERR D84 - File Not Scratched. B-13
	ERR D85 - Index Full. B-13
	ERR D86 - Catalog End Error. B-13
	ERR D87 - No End-of-File. B-13
	ERR D88 - Wrong Record Type. B-13
	ERR D89 - Sector Address Beyond End-of-File. B-13

	I/O Errors B-13
	ERR I90 - Disk Hardware Error. B-14
	ERR I91 - Disk Hardware Error. B-14
	ERR I92 - Timeout Error. B-14
	ERR I93 - Format Error. B-14
	ERR I94 - Format Key Engaged. B-14
	ERR I95 - Device Error (Write Protect). B-14
	ERR I96 - Data Error. B-14
	ERR I97 - Longitudinal Redundancy Check Error. B-14
	ERR I98 - Illegal Sector Address or Platter Not Mounted. B-14
	ERR I99 - Read-After-Write Error. B-15

	NPL Extended Errors B-15
	ERR 200 - Handle table full / cannot expand. B-15
	ERR 201 - Variable already referenced in program. B-15
	ERR 202 - Variable not referenced in program. B-15
	ERR 203 - Branch into body of a function or procedure. B-15
	ERR 204 - Branch out of body of a function or procedure. B-15
	ERR 205 - This error code is reserved for future use by NPL. B-15
	ERR 206 - FUNCTION/PROCEDURE not matched with END FUNCTION/PROCEDURE. B-15
	TION/PROCEDURE. B-15
	ERR 207 - Nested functions/procedures not permitted. B-16
	ERR 208 - Function/ procedure already defined. B-16
	ERR 209 - Function/ procedure differs from /FORWARD declaration. B-16
	ERR 210 - RETURN(value) not within FUNCTION body. B-16
	ERR 211 - RETURN(value) incorrect type for FUNCTION. B-16
	ERR 212 - End Structure name does not agree. B-16
	ERR 213 - Arguments of function/procedure incorrect. B-16
	ERR 214 - No such function or procedure has been declared or included. B-16
	ERR 215 - Argument for non-constant /POINTER parameter is not modifiable. B-17
	not modifiable. B-17
	ERR 216 - Not legal after an :ERROR clause. B-17
	ERR 217 - Only simple IF permitted here. B-17
	ERR 218 - This error code is reserved for future use by NPL. B-17
	ERR 219 - This error code is reserved for future use by NPL. B-17
	ERR 220 - No enclosing WHILE, REPEAT or FOR/BEGIN loop structure. B-17
	ERR 221 - This error code is reserved for future use by NPL. B-17
	ERR 222 - Structured IF not matched with END IF. B-17
	ERR 223 - Structured ELSE not matched with END IF. B-17
	ERR 224 - REPEAT not matched with UNTIL. B-18
	ERR 225 - WHILE not matched with WEND. B-18
	ERR 226 - FOR/BEGIN not matched with NEXT. B-18
	ERR 227 - Recursive/parameter value not legal in declaration. B-18
	ERR 228 - Variable already declared with different access. B-18
	ERR 229 - Local variable already declared. B-18
	ERR 230 - Local function already declared. B-18
	ERR 231 - /BEGINS declaration not preceded by /FORWARD declaration. B-18
	ERR 232 - Structured statements not allowed as THEN or ELSE clause. B-19
	ERR 233 - Recursive arrays cannot be redimensioned. B-19
	ERR 234 - CASE located after default CASE for this SWITCH. B-19
	ERR 235 - SWITCH not matched with CASE/END SWITCH. B-19
	ERR 236 - CASE expression not same type as SWITCH. B-19
	ERR 237 - FUNCTION/FNx() term not legal in declarations. B-19
	ERR 238 - Conflicting options in function declaration. B-19
	ERR 239 - /FORWARD declaration not followed by /BEGINS declaration. B-19
	ERR 240 - Invalid module name. B-20
	ERR 241 - Circular INCLUDE/USE references. B-20
	ERR 242 - Internal Error. B-20
	ERR 243 - No EXTERNAL function is defined with this name and these parameters. B-20
	these parameters. B-20
	ERR 244 - Already defined as Non-public Variable. B-20
	ERR 245 - Already defined as PUBLIC function. B-20
	ERR 246 - Already defined as PUBLIC section. B-20
	ERR 247 - PUBLIC not matched with END PUBLIC. B-20
	ERR 248 - No such PUBLIC section. B-21
	ERR 249 - Another procedure is already marked as /MAIN, /EXIT. B-21
	ERR 250 - This error code is reserved for future use by NPL. B-21
	ERR 251 - Forced error exit to /EXTERNAL from callback. B-21
	ERR 252 - Callbacks not available. B-21
	ERR 253 - Nested RECORD declarations not permitted. B-21
	ERR 254 - RECORD not matched with END RECORD. B-21
	ERR 255 - RECORD exceeds maximum allowed length. B-21
	ERR 256 - FIELD statement not in RECORD declaration. B-21
	ERR 257 - PUBLIC section is not in an INCLUDEd module. B-22
	ERR 258 - This error code is reserved for future use by NPL. B-22
	ERR 259 - Statement label already defined. B-22
	ERR 260 - No such statement label in mainline. B-22
	ERR 261 - No such statement label in same FUNCTION/PROCEDURE body. B-22
	ERR 262 - FUNCTION used by declaration did not complete. B-22
	ERR 263 - DIM/RECURSIVE must be in a FUNCTION/PROCEDURE body. B-22
	ERR 300 - Incorrect number or types for parameters of GOSUB'. B-23
	ERR 301 - Insufficient memory or bad COMSPEC for $SHELL. B-23
	ERR 302 - No such PUBLIC FIELD name. B-23
	ERR 303 - No such PUBLIC PROCEDURE/FUNCTION name. B-23
	ERR 304 - Cannot expand array variable. B-23

	RunTime Program Warnings B-23
	WARN 01 - Warning: Programs merged. B-23
	WARN 02 - Warning: Program moved to end of platter. B-24

	WARN 03 - Warning: RUN statement is in progress. B-24

	Error Message Files B-24
	Operating System Level Errors B-24
	COMPILER ERRORS C-1
	Compiler Options Errors C-1
	Cannot open LSTLOC (or ERRLOC) file C-1
	Cannot open SRCLOC (or OBJLOC) as a diskimage file C-2
	Extensions not permitted C-2
	Fields may not contain embedded spaces C-2
	Filename too long C-2
	LSTFORMAT option must be one of; .LST, .SRC, 2200, 2200S C-2
	Missing Option after (literal) C-3
	No source programs specified C-3
	Non-Hex digits in option C-3
	OBJFORMAT must be one of; SCRAMBLED, UNSCRAMBLED C-3
	Option is not a number C-3
	Option must be one of; ON, OFF C-4
	Option too long C-4
	SRCLOC (or OBJLOC) is not a diskimage file C-4
	Too many parameters on command line C-4
	Unknown option on command line (literal)=(parameter) C-4
	Diskimage index is full C-5
	Filename in catalog is not a program C-5
	No names found in (location) for wildcard (wildcard) C-5
	Object program was moved to end of catalog in object diskimage C-5
	Out of space in Object diskimage C-6

	Program Syntax Errors C-6
	Program Syntax Warnings C-6
	ALL(x) & X$ is illogical syntax, likely an error C-7
	Cannot do RESTORE LINE / DATA checks due to table overflow C-7
	ELSE clause not preceded by IF statement C-7
	ERROR clause not preceded by statement C-7
	Programs which use SPACE(K) may need adjustment ... under "THIS O/S" C-7
	RESTORE LINE does not point to DATA statement in this module C-7
	SAVE DA/DC is not supported at run time C-7
	Statement requires RTP Rev x.xx.xx or later to execute C-7

	NPL DIRECTLY SUPPORTED TERMINAL CHARACTERISTICS D-1
	TERISTICS D-1
	Overview D-1
	General Considerations D-2
	Determination of Terminal Type D-2
	Supported Terminals D-2
	Support of Native Operating Systems and Utilities D-3

	Altos III D-3
	Screen Character Set D-3
	Downloadable Fonts D-3
	Alternate Character Set (Pixel Graphics) D-3
	Non-English Character Sets D-3
	Character Translation D-4

	Box Graphics D-4
	Attributes D-4
	Cursor Handling D-5
	Support for 132-Column Mode D-5
	Keyboard Characteristics D-5
	Local Printer Support D-8
	Configuration Requirements D-9
	Use as a Remote Terminal D-9
	Use with Native Operating System Functions and Utilities D-9

	Altos V D-10
	Screen Character Set D-10
	Downloadable Fonts D-10
	Alternate Character Set (Pixel Graphics) D-10
	Non-English Character Set D-10
	Character Translation D-11

	Box Graphics D-11
	Attributes D-11
	Cursor Handling D-12
	Support for 132-Column Mode D-12
	Keyboard Characteristics D-12
	Local Printer Support D-15
	Configuration Requirements D-16
	Use as a Remote Terminal D-16
	Use with Native Operating System Functions and Utilities D-17

	Bull HDS 1 D-17
	Screen Character Set D-17
	Downloadable Fonts D-17
	Alternate Character Set (Pixel Graphics) D-17
	Non-English Character Sets D-17
	Character Translation D-17

	Box Graphics D-17
	Attributes D-18
	Cursor Handling D-18
	Support For 132-Column Mode D-18
	Keyboard Characteristics D-18
	Configuration Requirements D-22
	Use As Remote Terminals D-22
	Use With Native Operating System Functions And Utilities D-22

	Bull HDS 3 D-23
	Screen Character Set D-23
	Downloadable Fonts D-23
	Alternate Character Set (Pixel Graphics) D-23
	Non-English Character Set D-23
	Character Translation D-24

	Box Graphics D-24
	Attributes D-24
	Cursor Handling D-25
	Support for 132-Column Mode D-25
	Keyboard Characteristics D-25
	Local Printer Support D-28
	Configuration Requirements D-29
	Use as a Remote Terminal D-29
	Use with Native Operating System Functions and Utilities D-29

	DEC VT100 D-30
	Screen Character Set D-30
	Downloadable Fonts D-30
	Alternate Character Set (Pixel Graphics) D-30
	Non-English Character Set D-30
	Character Translation D-30

	Box Graphics D-30
	Attributes D-30
	Cursor Handling D-31
	Support for 132-Column Mode D-31
	Keyboard Characteristics D-31
	Local Printer Support D-34
	Configuration Requirements D-34
	Use as a Remote Terminal D-34
	Use with Native Operating System Functions and Utilities D-35

	DEC VT200 Series D-35
	Screen Character Set D-35
	Downloadable Fonts D-35
	Alternate Character Set (Pixel Graphics) D-35
	Non-English Character Set D-35
	Character Translation D-36

	Box Graphics D-36
	Attributes D-37
	Cursor Handling D-37
	Support for 132-Column Mode D-37
	Keyboard Characteristics D-37
	Local Printer Support D-40
	Configuration Requirements D-41
	Use as a Remote Terminal D-41
	Use with Native Operating System Functions and Utilities D-41

	IBM 3151 D-42
	Screen Character Set D-42
	Downloadable Fonts D-42
	Alternate Character Set (Pixel Graphics) D-42
	Non-English Character Sets D-42
	Character Translation D-42

	Box Graphics D-42
	Attributes D-42
	Cursor Handling D-43
	Support for 132-Column Mode D-43
	Keyboard Characteristics D-43
	Local Printer Support D-46
	Configuration Requirements D-46
	Use as Remote Terminals D-46
	Use with Native Operating System Functions and Utilities D-46

	NCR 4970 D-47
	Screen Character Set D-47
	Downloadable Fonts D-47
	Alternate Character Set (Pixel Graphics) D-47
	Non-English Character Set D-47
	Character Translation D-48

	Box Graphics D-48
	Attributes D-48
	Cursor Handling D-49
	Support For 132-Column Mode D-49
	Keyboard Characteristics D-49
	Local Printer Support D-52
	Configuration Requirements D-52
	Use As Remote Terminals D-53
	Use With Native Operating System Functions And Utilities D-53

	Spectrix SPX 701 D-54
	Screen Character Set D-54
	Downloadable Fonts D-54
	Alternate Character Set (Pixel Graphics) D-54
	Non-English Character Set D-54
	Character Translation D-54

	Box Graphics D-54
	Attributes D-55
	Cursor Handling D-55
	Support For 132-Column Mode D-55
	Keyboard Characteristics D-55
	Local Printer Support D-58
	Configuration Requirements D-58
	Use As Remote Terminals D-59
	Use With Native Operating System Functions And Utilities D-60

	Wang 2110A D-60
	Screen Character Set D-60
	Downloadable Fonts D-60
	Alternate Character Set (Pixel Graphics) D-60
	Non-English Character Set D-60
	Character Translation D-60

	Box Graphics D-60
	Attributes D-60
	Cursor Handling D-61
	Support for 132-Column Mode D-61
	Keyboard Characteristics D-61
	Local Printer Support D-64
	Configuration Requirements D-65
	Use as a Remote Terminal D-65
	Use with Native Operating System Functions and Utilities D-65

	Wang 2x36 DE/DW D-66
	Screen Character Set D-66
	Downloadable Fonts D-66
	Alternate Character Set (Pixel Graphics) D-66
	Non-English Character Set D-66
	Character Translation D-66

	Box Graphics D-66
	Attributes D-66
	Cursor Handling D-67
	Support for 132-Column Mode D-67
	Keyboard Characteristics D-67
	Local Printer Support D-71
	Configuration Requirements D-71
	Use as a Remote Terminal D-71
	Use with Native Operating System Functions and Utilities D-71

	Wyse 50 D-72
	Screen Character Set D-72
	Downloadable Fonts D-72
	Alternate Character Set (Pixel Graphics) D-72
	Non-English Character Sets D-72
	Character Translation D-72

	Box Graphics D-72
	Attributes D-72
	Cursor Handling D-73
	Support for 132-Column Mode D-73
	Keyboard Characteristics D-73
	Local Printer Support D-76
	Configuration Requirements D-77
	Use as a Remote Terminal D-77
	Use with Native Operating System Functions and Utilities D-77

	Wyse 60, 150, and 160 D-78
	Screen Character Set D-78
	Downloadable Fonts D-78
	Alternate Character Set (Pixel Graphics) D-78
	Non-English Character Set D-78
	Character Translation D-78

	Box Graphics D-78
	Attributes D-79
	Cursor Handling D-79
	Support For 132 Column Mode D-79
	Keyboard Characteristics D-79
	Local Printer Support D-85
	Configuration Requirements D-86
	Use As Remote Terminal D-86
	Use with Native Operating System Functions and Utilities D-86

	Wyse 370 D-87
	Screen Character Set D-87
	Downloadable Fonts D-87
	 Alternate Character Set (Pixel Graphics) D-87
	Non-English Character Set D-87
	Character Translation D-88

	Box Graphics D-88
	Attributes D-89
	Cursor Handling D-89
	Support For 132-Column Mode D-89
	Keyboard Characteristics D-89
	Local Printer Support D-93
	Configuration Requirements D-93
	Color Support D-93
	Use As Remote Terminals D-93
	Use With Native Operating System Functions And Utilities D-94

	KEYBOARD KEYWORDS E-1
	DECOMPILER COMPATIBILITY F-1
	Overview F-1
	Differences In Source Code Decompilation F-2
	Differences Between Rev. 1.03 and Later Revs. F-9
	Summary F-10

	"RAW" DEVICE COMPATIBILITY CHART G-1
	"Raw" Diskette Chart G-1

	GLOSSARY 1-1

