NIAKWA PROGRAMMING LANGUAGE
TECHNICAL REFERENCE GUIDE

STATEMENTS GUIDE

1st Edition - July 1993
COPYRIGHT O 1993 Niakwa, Inc.

Niakwa, Inc.
23600 N. Milwaukee Avenue
Mundelein, IL 60060

PHONE: (708) 634-8700 FAX: (708) 634-8718 TELEX: 3719965 NIAK UB

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES AND
PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa) has taken due care in preparing this manual. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution Li-
cense Agreement, the End-User Support Only License Agreement, the Niakwa Software
License Agreement and Warranty, or any other Niakwa License Agreement (collectively,
the "License Agreements") by which this software package was acquired.

This manual is to serve as a guide for use of the Niakwa software only and not as a
source of representations or additional undertakings by Niakwa. The licensee must refer
to the License Agreements for Niakwa product and service representations.

No ownership of Niakwa software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa, is prohibited.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, recording or by any information storage and retrieval system,
without prior written permission from Niakwa, Inc.

Niakwa is a registered trademark of Niakwa Management Services 1975 Ltd. and is licensed to Bluebird Sys-
tems.

Niakwa Programming Language (NPL), Bluebird, and SuperDOS are registered trademarks of Bluebird Sys-
tems.

All other trademarks are property of their respective holders.

PREFACE

PREFACE

The Niakwa Programming Language (NPL) Technical Reference Guide consists of two
manuals: the Programmer’s Guide and the Statements Guide. The Technical Reference
Guide is intended as a hardware-independent reference for programmers in the correct
use of the NPL and its program development and debugging facilities. It should be used
in conjunction with the NPL Supplements, which provide operating system-specific infor-
mation as it relates to NPL and its installation, and the Runtime User’s Guide, which pro-
vide platform-specific information on installing and operating the NPL Runtime.

NOTE: Refer to the Programmer’s Guide Preface for a complete overview of the NPL docu-
mentation.

NPL Statements Guide P-1

Table of Contents PREFACE

Table of Contents

PREFACE
INTRODUCTION
OVETVIEWevtietiietitetieet et et ettt et et et et bessbessbesssesssesssenssesssenssenssesssenssesssesssesesreon 1-1
Notational CONVENTIONSc.eeeveieieeiteiieeteeteteeeeeeeieeteeteesaeeseeeseeeseeesaeesaessaeses 1-1
Form of Presentationccvecvveceieeieeieeiee ettt svee e e v 1-2
Statement Description Layout..........cc.eceeeuereieieneiiinieeiennene e e s 1-3
Statement CONVENTIONSoeeereveeeiee e e et eeeeeeereeeereeee e eeeeeereesereeeesneenes 1-4
TEIMINOIOZY ... vttt ettt ettt ettt et e et e e e e e en 1-7
Variable NAIMEScocueeieeeieeeeee et ettt et e sene e erneene 1-9
Organization of the Statements GUIde...........ccceoeeueeiviientiinent et e 1-14

LANGUAGE STATEMENTS

OVEIVIBW ..ot ittt et et e e e et s e st s e e b st e oo e 2-1
ABS FUNCHON ...c..on it et sttt e e s e e e e s cnenen 2-2
ADD[C] AIPha-0perator........c..cceeueuteuteueuiereereiieie ettt creniereevenereerevieneenens 2-3
F=NUMETIC EXPIESSION w..ovi v creeieit et ettt et ses et st ss e seee e sees e saenteae e 2-5
SALERT ..ot st e sttt et e e st et et 2-6
ALL AIpha-operandccoueeeeiee oottt et st seen e sees e s 2-7
AND AlPha-0P@Iatorc.cuurueeveuirie ettt ettt ettt sttt seen et et et seenasaeseenarae e 2-9
ARC COS FUNCHOMN ... ittt ettt ettt ettt et e e e se e e 2-11
ARC SIN FUNCHON oottt st st sttt st e s s e e 2-12
ATN Function - ARC TANGENTccoviiiiitine st s 2-13
BIN Function/Alpha-operand.............c.ccceoeeeiiiniireioe e 2-14
BOOL AIPha-0perator........ccc.uetieieeeeeseeeieie et etee ettt es e e see e eseee e 2-16
SBOXTABLE ...ttt sttt e et e s e e 2-19
BREAK ... oottt st s ettt et sttt e e st et s b e 2-23
SBREAK ... oottt sttt et e st e sttt e st e e 2-25
CASE Default......coueviiiiiiiiiriiee e sttt s e e e 2-26
CASE LOZICAL. ..ottt e st e 2-28
CASE NUIMETIC ..ot vttt ettt ettt sttt eeettseeseee e sees e ses e sens e sese e sens 2-30
CASE SN .ttt ettt sttt st st e e e st e et st eben e e 2-32

NPL Statements Guide TOC-1

LANGUAGE STATEMENTS

Table of Contents

CLEAR ..ottt ettt sttt sttt sae e saeeebe s ebe s ebe s sae st e s ennnan 2-35
SCLOSE ..o et et et e ettt ettt san e erenaeas 2-38
COM ..ottt e ettt st vt e teete ettt te st ereaeas 2-40
COM CLEAR ..ottt ettt et e es et e s v e 2-44
& (Concatenation) Alpha-Operator...........cccouveeeeieecueiieecreeierecreiee e 2-46
CONTINUE.....c.oooiiie ettt ettt ettt et e e e s eae et raeas s 2-47
CONTINUE LOAD ..ottt ettt e ev e vt eveeas 2-48
CONTINUE NEXT ..ottt ettt et ettt et ee et sve st en e aeae e e 2-49
CONTINUE RETURN........uooiiiie ittt ettt et et eve e aeve e eve s 2-51
CONVERT ...ttt et et ettt et et ettt et eae e sae e et eean 2-55
COPY e e et et et et et et et ete et sttt e eaee e ereearn 2-59
COS FUNCHON ...ttt et et et en e enas 2-63
DAC AlPha-OPeratorccuooveeeieiieeeeiee e eee ettt seen e e seeeas 2-60
1N 1 OO 2-62
DATA LOAD BA ...ttt et et e e et et aeae e s s ene 2-63
DATA LOAD BM.....ooooeeeeeeeeeeeteee et et et e e e et et seaesene e s ene 2-65
DATA LOAD DA ...ttt e et e e e et et v sene e s ene 2-68
DATA LOAD DC ...ttt et et e e e et et v sene e s ene 2-71
DATA LOAD DC OPEN.....ouiiiiiiciectieeteeeeet e e et e et et e e sene e e 2-73
DATA SAVE BA ...ttt e et e et e ere e sre e 2-76
DATA SAVE BM ...t e e et e e e veae e 2-80
DATA SAVE DA ...t et e e et e e 2-85
DATA SAVE DC ... e et e e e e e 2-88
DATA SAVE DC CLOSE ...ttt et et e e et e e 2-90
DATA SAVE DC OPEN ..ottt et et et e et e e 2-91
DATE ... oottt ettt et e e aeeteete eaesereseaesre e 2-94
DBACKSPACE ...t et et e et et e veae e eae 2-96
DEFFN’ Keyboard INPUL.........ccoiiit ittt e e 2-98
DEFFN’ SUDIOULINE.c.oeovveviieieicie ettt e 2= 100
DEFFN Function Definition............ccccoeivieiieeiie et 2-104
DELETE ..ottt ettt ettt ettt ettt eve e eveeeaeeen e enenns 2-108
SDEMO ..ot ettt et ettt st et enae 2-110
SDET (CONL.) covvvcivieie ettt srev e srev v v v srev s snev s enennene s 2= 1 14
SDEVICE.......o oottt ettt et et et e evee s eae s ereeenaene e 2-115
DIM. e ettt et et et et et et et et et et saesre e 2-126
DIM Constant Variable Declarations.............ccccceeeeeeeeeceecieceeeeeeeeeeeenen. 2131
DIM /PUBLICcouiitiiitteeteeteet et et ettt e et et e et et et v seveseaesn e 2-133
DIM /RECURSIVE ...ttt ettt et et et v 2-135

TOC -2

NPL Statements Guide

Table of Contents LANGUAGE STATEMENTS

DIM /STATIC oottt st ettt e e et e e s 2-137
DO/ENDDO ...ttt sttt ettt e e st e et sttt e s e e 2-141
DSC AIpha-0perator...........cccoueeeeeeieeeeieeieieecreiee e creeieneevenienecvennene e 2= 140
DISKIP ..ottt sttt ettt ettt et sttt b e e st e e st st s e e e 2-148
ELSE ... oottt ettt ettt s e s et e et et st e st e et sa st s e s sren e e 2-146
ELSE SHruCtured......ccveoveeeeieieie ettt sttt st s e e e 2-148
EIND .ottt e et ettt s s e e et et e et e et s sees e e 2149
SEND ..o et b et e e sttt e st e e 2-150
END FUNCTION........cootiitieiiieiririssis et s seoe st eeeeeesessseesseesssessaessenen 2-152
EIND TF. ...ttt s ettt et sees s e s e e et e e e 2-153
END PROCEDURE ..ottt st sttt seesseesceessaesenen 2-154
END PUBLICccuitiiitieetieiiree e ettt s st e eee st seesseessoes s enen 2-155
END RECORD ..ottt s ettt seee s s s eee e seesseesceessneeon 2-156
END SWITCH.... oottt et st sttt ettt cees e e s s s seneeees 2-157
ERR FUNCHOMN ... e e e e e 2-158
ERRSttt et s et et ee s s e et 2160
ERROR ..ottt e et et et e e et ettt stes e s eees sres s 2-162
EXEC K@Y ..t eirteieeeetiet et et ee e ettt st e sttt saee et cses s s e seeoe 2-165
EXP FUNCHON ...ttt st st st e s s 2-166
FIELD ...ttt ettt s e e et et e e st et et eseeesceencres e e 2-167
String FIELD-Expressions - Alpha-Variable Equivalentcccoou... 2-170
Numeric FIELD-Expressions - Term in Numeric Expression..................... 2-172
SFIELDFORMAT FUNCHON... .ttt e ettt e s 2-173
HFIELDLENGTH FUNCHON ...cvotivtietiiei et st s 2-175
HFIELDSTART FUNCHON. ... et s et ettt 2-177
FIX FUNCHION. c.. ottt et et et et e e 2-179
FIN FUNCHOMN -ttt sttt 2-180
FOR/BEGIN Structuredccccoeeutieiee ettt e e s e 2-182
FOR/TO ..ttt ettt et et s s st ettt e e 2-184
SFORMAT DISK ...oviiiiietiieiieeini ettt st st ettt ciescaen e e e e 2-187
FUNCTION ...ttt sttt e et et st ettt et e e e et s s st 2188
’Function-name (...) Numeric-Expression Equivalent..............ccccveveenenne.. 2-191
"Function-name$(...) Literal-String Equivalentccccoceveivnneecninenen. 2-192
SGIO e e e s e et e e 2-193
#GOLDKEY Functioncc.ceevvvvininninnneneine s seneenee e 22200
GOSUB ..ottt sttt ettt et sttt et ettt b st s e s e eae e 2-203
GOSUB ..ottt ettt et sttt e ettt e st s s e e ses e s e 2-205
GOTO et st ettt e et et et bbb st eres e 2-209
HALT KEY ..ttt ettt ettt sttt e s st sttt stesseesseessenssaenen 2-211

NPL Statements Guide TOC -3

LANGUAGE STATEMENTS Table of Contents

SHELP ..ottt sttt sttt e st e et st eae e 2212
SHELPINDEXc.uttiitiietirieree ettt ettt et ettt et ses e et seseenesenesees 2214
HEX FUNCHON ...ttt ettt et e et e e e e 2-217
HEXPRINT .ottt sttt sttt st st s e 2-220
HEXUNPACK ..ottt ettt sttt st ettt et stes s sses s saes s snenas 2-221
HID FUNCHON ... vttt et sttt et st e e see s eesene e seene s eseeene 2-222
BT e e et ettt sttt st s et et s et etes et etes et etes et stentene s 2-223
TE/THEN ...ttt et e e e st s stes s ssesesessesesessensnnnas 2-228
TF END THEN.......ooiiiiie ettt sttt ettt saes et sttt sren s sten s aseees 2-234
IMAGE (Y0) 1ottt ettt ettt sttt sttt e et st neeseeess st ses s saessne s 2236
INCLUDE ...ttt sttt sttt sttt sttt st et ses e e es et st es e seeeen 2-238
INTT ottt ettt et et ettt eees et etesetestesenessensnnessensenseenans 2:241
INPUT ..ottt e ettt et et et et ettt ettt stesseseesesteaeeaenseees 2-242
INPUT SCREEN ..ottt ettt et st e st e 2-245
INT fUNCHION .ttt et e e e e e e e e 2-254
SKEEPREMS ...ttt sttt st s s e e 2-255
SKEYBOARD ...ttt ettt et et s et st e e nn e 2-259
KEYIN Lottt st et et et et stes et eaen et eeenseneaeeeee 2-264
LEN FUNCHON ...ttt ettt et et e s e sees e snennne e 2-267
LET Alpha ASSIZNMENL.......ceiiitirieeitirie ettt sttt sttt seeen 2-269
LET NUMETIC ASSIZNMENL.......ceiiiritieeeieieeeeieeeteeneeteneneeeeneaeeeeneneseenneneas 2-273
LET Numeric Field ASSINMENtcc.ecvreiiiieeeieie et 2277
LGT FUNCHON -ttt et ettt et e e e e e e e 2-278
LIMITS ettt ettt ettt et e et e et s e et e et neaeen 2-279
LIMITS INDEX ...ttt ettt et ettt e e s e see e e 2-282
LINPUT . ettt ettt sttt st et st ee e e es e seeen 2-284
LIST (General Parameters)c.oceveerrieceeseerieeeinieeresseesieresseeeveeesvene e 2-288
LS T et et et et ettt et e et et b et eh e et et et e 2:290
LIS T ettt et ettt ettt sttt ettt ettt st e en e 2-295
S T e et et ettt ettt ettt ettt sttt sttt ettt et bbb seen e 2-299
LIST DIC ettt et sttt et sttt st e sttt sttt st 2-304
LIST DIM ...ttt et et sttt sttt sttt sttt st sttt sestre e 2-309
LIST DTttt ettt e sttt sttt st st e st 2-314
LIST FUNCTION ...ttt ettt e ettt e e 2-322
LIST PROCEDURE ..ottt ettt ettt et et 2-326
LIST PUBLIC DEFFN....ccociiiiiiiiiiire it 27330
LIST PUBLIC FIELD ...ttt sttt e e e 2:334

LIST PUBLIC FUNCTIONcccooiviiviiiiiiniiiinseicieeceeee e e 22338

TOC-4 NPL Statements Guide

Table of Contents LANGUAGE STATEMENTS

LIST PUBLIC PROCEDUREccccociiiiiiiiiiiiciicceicce e 22342
LIST PUBLIC RECORDccoooiiiiiiiiiiiiiciiccciccce e 22345

LIST PUBLIC V.cutiitiiititettet ettt et sevestaesanesaeeeve s 2-348
LIST RECORDoooviiiiitieetete ettt e et e st v v 2-351
LIST Statement Label Referencesccceovveeeeeioeieeeieeeeee e 2-355
LIST STACK ...ttt et et et et et et v eae st v v saeesaeesaeesaea 2-359
LIST STACK DIM......ooitiitiieiieetieeeieeee et et e e e eae v e v sreesaeesaee v 2-363
|) 1 0 OO 2367
LIST V oottt ettt ettt et ettt et e en e er e e 2371
LOAD Commandccouoouioeiee e e 2-376
LOAD Statementooeoveieiieee ettt et e e ere e 2377
LOADY ...ttt ettt et et et ettt aenneneene e 2-380
LOAD BOOT Commandc.cocoeeeeueieeueeieeee e et 2-382
LOAD DA Commandc...ooueeiiiiioeieeeee e e e e 2-384
LOAD DA Statementcc.uooeoieeoieieeie e e 2-386
LOAD RUN ...ttt oot et et e v et et evesevesevesenesvesnesne e e 2-389
LOG FUNCHON ... e e 2-391
LOOP ... oottt et et e e e eaeeasetesetesetesereseresnesane e 2-392
SMACHINE ..ottt et e et e eteeereeeaeeeaee e 2-394
IMAT CON ...ttt e e et e e e eneeasaeneseteseteseneseresnesneen 2-400
IMAT COPY ...ttt et ettt et et e n s s aen s aeneee 2401
MAT IDN .ottt et et e e e easeaeseveseteseaesetesneseneen 2-404
MAT INPUT ..ottt ettt ettt et et et et e e e s ennaennaenes 2-405
MAT INV et e et e et e e easeteeteseteseteseresnesene e 2-407
MAT MERGE ..ot e et e e e e e e eaeene v e 2410
MAT MOVE ...t et e et et et setesetesnesne e 2-416
MATH (IMUIIPLY) ettt et e st et s e e 2-423
MAT PRINT ..ottt et et et et et et aeaesevesaeseae e sane e 2-424
MAT READ ..ottt et et et et v etesevesnesane e 2-425
MAT REDIMoooiiiiiiiiie et ettt ettt et eveeene e 2-426
MAT SEARCH ..ottt et et 2-429
MAT SORT ...ttt et et ettt et et st st v v s sane e 2-434
IMAT TR oottt ettt ettt ettt eaeeeteeeve e eve e eaeeeae e 2-441
MAT AQAItION ..ottt ettt ettt et et e e e e aeaeaeseaesere e 2-443
MAT ASSIZNMENEoeeiveeviiitieee it eteeee e etesseesaeee st ssesessesesres saessesesseesrenns 2-444
MAT Scalar Multiplicationccoeveevieeieieeeieties e e e 2-445
MAT SUDEIACHIONccvviivieetieiieetieet et ettt et ee e eaeaeasaereaereseaeseresereseaesere e 2-446
MAX FUNCHION.cvviitiiitieetietieetieet et e vesaeeeaeeaeaeseasseasaersaereseresereseresenesereen 2-448
IMIN FUNCHION ...ttt ettt et et et et et et v sene v snesevesanesanesene s 2-449

NPL Statements Guide TOC -5

LANGUAGE STATEMENTS

Table of Contents

MOD FUNCHION.cvtiitiiitiietiet ettt ettt e eeeaeaeseaeseasaersaeresereseresenesenesreen 2450
MODULE Commandcccoeueivuiiieerieniieeieeieeiesieesereeereseveseneseneseneene s 2-451
IMOVE ..ottt e et et e et aseaesae e e eae s 2-452
MOVEEND 2-455
SIMSG .o et ettt et ettt e 2-457
SNAMEOF() - Built-in String Functionccoeeeeeevivree e 2-456
SNETID ...ttt et ettt ettt ettt ete e ete e ere s eteeereeeeennnenns 2-458
NEXT ..ottt et e e s e nsensseneseneseresereseaesnesane e 2-459
NEXT CLEAR ...ttt et et et e e ensene enesene e 2-461
NUM FUNCHON.........covi oottt et e ene e eree e 2-463
SNUMBERS ..ottt et ettt et et e et eteeeteeeteeeteeeren e 2-464
SOBUIECT ...ttt et ettt ettt et eteeete e eteeeteeeae e 2-466
ON ERROR ..ottt et et et et et et et et v evesevesnesenesvesnesanesane e 2-468
ON/GOSUB ...ttt et et et et et et eteseaesetesae e sreesaeeeaeeetea s 2-471
ON/GOTO ..ot e et et et et e e et eaeeeteeereeeteesreeereas 2-473
ON/SELECT ...ttt et et e et et ettt eaeeeteeeteeereesreeseen e 2-475
SOPEN ...ttt et et ettt et et et et eteeteseaesetesetesereaereseresneereen 2-477
SOPTIONS ...ttt ettt et et et et et eeteeeteeeresae st saeeeraeereeeaeeeteeere s 2-479
OR AIPNA-OPEIALOT ... ettt sttt sttt et 2-491
SOSERR ...ttt et et et et et et ettt e te e ete e e 2-493
PACK .ottt ettt et et et et e eaeeaeeae et e 2-495
SPACKttt et et e et et et et et et et et et sere et e 2-497
HPART FUNCHON.ooueiiteiitieetieetieet ettt et e et e eaeseteseveseneseaesene e sene e 2-521
HPT FUNCHION ...oovieeeeteeee et ettt et e et et et et eaesetesevesevesevesnesane e e 2-522
POS FUNCHON.oieeeeeeeeeee ettt et et e e eaeeaeenesenesenesenesne e 2-523
PRINT .ottt ettt et ettt ee et et e et e eneeeeeseenns 2-525
PRINT AT FUNCHONovviitiiiietieeieeee et ettt eaneeaeeeae 2-529
PRINT BOX FUNCHON.......c..ooiiiuiieeiieie et ettt sve e 2-531
PRINT HEXOF FUNCHONccviivieiieiieeieee et e e e evne e 27533
PRINT SCREENoooiioiitiiiieee ettt ettt et vt eveae e v s aens e 2-534
PRINT TAB FUNCHON ..ottt 2-538
PRINT TO ..ottt e ettt ettt et ete e eve e eveeeaeeeaeeaeaas 2-539
SPRINTER. ..ottt ettt et ettt et et et eseve eae e ee et aene e ereene 2-542

PROCEDUREcccooviiviniciicericnes
"Procedure-name (Call PROCEDURE).......ccccoiiiiniiniiine e
SPSTAT ..ot
PUBLICccovtiiiiiiiicricriciicre e

TOC -6

NPL Statements Guide

Table of Contents LANGUAGE STATEMENTS

READ .ottt et ettt et et et e et b bbb sanesane e 2-560
READ DC ..ottt ettt ettt et e aeve v v sve v sanesane e 2-563
RECORD ...ttt ettt ettt et e as e as e aeaeaeseasaeseaeaeseresebesenesne v e 2-566
#RECORDLENGTH FUNCHONoooveieiieeeee e e e 2-568
SRELEASE PART ...ttt vttt e v 2-569
SRELEASE TERMINAL.......cooi ittt 2-570
REM ...ttt ettt ettt ettt ettt ettt et e eae 2572
REM SPC ... oottt ettt et ettt et s s s ene e 2-574
RENADME ..ottt et et et e et eneeaesenesenesenesenesne e 2-576
RENAME DEFFN ...ttt et et et et et e e e e e es e e en s e 2-577
RENAME FIELD ...ttt et et e e e sene v senesenesnesene e 2-579
RENAME FUNCTIONoouioiiiectieeeeeteee et e et et e seve v snesne e 2-581
RENAME PROCEDUREooooiitiitiictieetieeeeee et et et et et e sene e en 2-583
RENAME RECORDciiieeeeeeeeeteet et et e e e e seneseresenesne e 2-585
RENAME = (Statement Label).......c..ocoeveiiiinire e 2-588
RENAME V oottt et et e e ene et et sevesenesnesne e 2-590
RENUMBER ...ttt e et e e et et et seveseresnesne e 2-592
REPEAT ...t et e et e e et et eaeeteseteseneavesne e sane e 2-595
RESAVE oottt et e et e e eaeeaesetesenesre e 2-596
RESET ...ttt ettt e ettt es et et e s e s aenn e 2-598
RESTORE ...ttt e et et et et et et sete e sae e saneeaneeaee s 2-600
RETURN ..ottt ettt ettt et et e en s s aennaensaene e 2-602
RETURN CLEAR ...ttt et et et et et et e eaneeaee v 2-605
BREV ettt ettt et e ettt et ettt e e enae 2-607
RIND FUNCHON ...ttt ettt e e et e e eaeeae et seaesenesenesene e 2-609
ROTATE ...ttt et ettt e e e ensene e 2610
ROUND FUNCHON.....c.viiieeeee et eteeteet et et e e e v v seaeseresenesne e 2-612
RUN COmmand...........coueoueeieeiieeieeiee e et ete et e e e eaeeeaneeaneeaea 2-613
RUN Stat@MENT ...c.vevicvie ittt ettt et v s eane e 2-615
SAVE ..o e e ettt ettt 2-618
SAVE BOOT Command...........cccooeueeiieieiieeeeeeeeceeeeeeeceeee e 2-623
SAVE DA .o ettt 2-625
SCRATCH. ...ttt et et e s e 2-628
SCRATCH DISK ..ottt et e e 2-630
SSCREEN ..ottt ettt ettt et e et s et e er et eas st etene s aeresaneeeenns 2-633
SELECT ...ttt ettt ettt et et et n s vene e 2-635
SBSELECT ...ttt ettt e ettt v sae st et enssevestee e enaeneon 2-637
SELECT @PART ...ttt ettt v see saes e s st e nee 2-640
SELECT Cl..ocoo ettt et vene e 2-641
SELECT CO ..ottt et e e e aene e 2-642

NPL Statements Guide TOC -7

LANGUAGE STATEMENTS Table of Contents

SELECT D,R,G . 2-644
SELECT DISK/FILE-NUMBERcccccceoiiiiiiiieiiee e 2-646
SELECT DRIVER.......ccoooiiiiiiiiiii s v 2-648
SELECT ERROR ..ottt et e e e e 2-649
SELECT LINE ..ottt et ettt et e e et e e e e 2-653
SELECT LIST ..ottt sttt sttt ettt et eve et et v e e e et 2-649
SELECT LISTLINEccociit ittt et et ettt et e e e e e 2-650
SELECT LOG ..ottt ettt et v e et e e en 2651
SELECT ON/OFF ...ttt ettt et et e e e 2-654
SELECT ON CLEARoooitiiiitirinine ettt sttt sttt st v seenene e 2-655
SELECT P ottt ettt ettt et et e et e e b e et e cveee 2-656

SET PROGRAMooovitiie it et ettt e st anee 2-668
SGN FUNCHIONcoveive ittt et ettt et e er s e e 2-671
SSHELL ..ottt ettt ettt et ettt e v srea e s aeaesaeeseenns 2-672
SIN FUNCHON.cviiiveectee et et ettt et ettt e ee e e ee e ee e e e e s e e enneenn 2-675
SSOURCE FUNCHON ..o et ete s e snn s e 2-0T6
SPACE FUNCHON ..ottt ettt 2-680
SPACEF FUNCHON ...ttt enns 2-083
SPACEK FUNCHON.........ooiieieieiceetect et ettt 2-084
SPACEP FUNCHON ... e e e 2-086
SPACEV FUNCHON..........oivieieeeceeeet ettt et e et v v seve e 2-687
SPACEW FUNCHON.c.oooviiieiie e 2-088
SQR FUNCHION ...ttt e ettt s sre s sres s b sre e enae 2-689
= statement-name (Statement Labels)ccoocevevvieeiveiceieiire e 2-690

STR() FUNCHON ..o ittt ettt sttt ettt ettt v s v srae s enees 2-701
SUBJ[C] Alpha-0peratorccceevveeieeeseeienririesieseerieeeseesvensssnsesenesnesnnnens 2= 104
== NUMETIC-CXPIESSIONveuvieveiereereeiesiereseeestessessaesesnesaessesssssesseessessessessessenns 2-706

TOC-8 NPL Statements Guide

Table of Contents

LIBRARY FUNCTIONS

SWITCH LOZICAL...c.cuitieiit ittt sttt sttt st et e e 2707
SWITCH NUIMETIC. . c.cueue ettt ettt et et ettt et et ses et e ne e e 2-710
STAB <.t et e sttt et et e s e 2-714

TAN FUNCHON.ceeuitieit ettt st et sees e e ste e s eneanee e 2-716
HTERM ..ottt sttt sttt st st s s st s st e s s seasan 2-717
TIME ..ottt s es e st s et st sess st e s e e st e st neesan 2-718
TRAGCE ..ottt et ettt st et st se st s e an 2-720
TRACE OFF ...ttt ettt st st et s an 2-722
TRACE H oottt sttt sttt saes et sreseteebes et ssesesestessesesreees 2-723
TRACE 7.ttt ettt ettt s et s s et s et aae e en 2-726
TRACE V ettt ettt ettt et st s s et e e s 2-729
STRAN .ottt ettt ettt ettt saes et saes et saes st saes s saessena s 2-733
UNPACK ...ttt ettt ettt ettt et stes et steseeesseseneseennnesseensereens 2-735
SUNPACK ...ttt ettt et et st e ste e s stes eaestesesessensensasensnneas 2-737
UNSCRATCH ..ottt sttt sttt st e st saen s sten s e 2751
UNTIL <ot et et ettt eees et etes et etes e s stenenestensenseeeans 2754
USES ettt et ettt st sttt et et es e et en et st eseae een s 2-755

VAL FUNCHON. ... ettt ettt ettt e sttt e et e ene e 2-757

VER FUNCHON ..ottt ettt e s e st e e e 2-760
VERIFY ..ottt sttt st st s e s en 2-762
WEND L e ettt e et et et e st e e e ese e e 2764
WHILE ..ottt ettt ettt st et en 2-765

XOR AIPNA-OPEIALOTev et ettt ettt ettt ettt stes e eeeeeaesaesbeaesaeniea e 2-766

LIBRARY FUNCTIONS

OVETVIBW ..ottt ettt sttt ettt et et ettt bbb bbbt bt et b et et et et e et s et 3-1
Development Package Files for Library Functions.............cecveeeeeeoeneiece e e 3-2
Changes to $SOURCE Functionality to Support LIN’Scccccceeivivenieeieie e 33
SourceioGetTableLengths.coccvveieiire e e e 3-3
"SourceioLoadldentifierTablec..cocvvriveiniine e e 3-4
?SoUrceiOREAALINE ...t et e 34
SSOURCE ...ttt et ettt et st e e s e e 3-4
’SourceioCloseObjectFileccccoooeiiiiniiiinnnnnnnr e 3-4
$OBJECT Functionality Changes for LIN’S.........cccvvviieniirenee e 3-5
’ObjectioCreateFile...............coocooviiiiiii it 3-5
’ObjectioClearldentifierTablecccoovueiieieceiseiee e e 3-5
’ObjectioAPPendLine............coccoouiiiiiie i e e 3-5
’ObjectioAppendLongldentifierTableccoueeviveeeiiiniiee e 3-6

NPL Statements Guide

TOC -9

Table of Contents

ObJeCtiOCIOSEFILE. ...ttt et e e s e e e e 3-6
FIELD Type SPeCIfICatiONSoueeveuieueeieuieie ettt ettt vt v e et e cees e e 3-6
Defining Field Type Using $PACK Mnemonic Codes...............c.ccoeeeennnee. 3-7
FIELD Type NDM SpecifiCations..........cccceueteeieteremieeereiere e oo crenereevenvenes 3-8

Defining Field Type Using NDM Mnemonic Codescccceerenee. 3-8

APPENDIX A

RESERVED WORDS TABLE

LANGUAGE COMPATIBILITY CHART

OVEIVIEW ..ottt et et ettt et e eve e seaetene e e eaeeeaee sene e enteesaeesereaeesneen eaeeseresenen B-1

TOC - 10 NPL Statements Guide

INTRODUCTION Overview

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter provides general information relating to this Statements Guide and its use.
Section 1.2 explains the notational conventions used in this guide.

Section 1.3 discusses the organization and presentation of material in this Statements
Guide.

1.2 Notational Conventions

The NPL Statements Guide uses the following notational conventions.

NPL Statements Guide 1-1

Notational Conventions INTRODUCTION

NOTE: Notes provide information of particular importance.

WARNING--Warnings are special conditions that require extra care by
the user.

Hint: Hints provide helpful comments pertaining to the use of particular features.

1.2.1 Form of Presentation

The complete set of all NPL instructions is found in Chapter 2 of this guide, in alphabeti-
cal order. If an instruction begins with a special character ($, =,or #), the special character
is ignored for ordering purposes. For example, the instruction #ID is located between
HEXUNPACK and IF.

For each instruction, the verb definition, type, and English equivalent are shown.

In the verb type area, the NPL instructions are classed as either statements, functions, or
operators. A statement is a programmable instruction. A function is used to construct nu-
meric or alpha-expressions within a statement. Operators perform operations on alpha-op-
erands and can be used only within alpha-expressions on the right side of an alpha LET

statement.

Verbs which are used as functions or operators are so indicated on the instruction defini-
tion line.

In the "Compatibility Issues" area of each statement, the following issues are discussed:
1. Compatibility with earlier revisions of NPL

If a statement is not supported on all NPL revisions (starting with 1.00.02), the revi-
sion number and release date upon which it was first supported are specified.

2. Compatibility with Wang 2200 Basic-2

All differences in syntax or functionality from the Wang 2200 Basic-2 language are
described.

1-2 NPL Statements Guide

INTRODUCTION

Notational Conventions

3. NPL platform versions

NPL operates on many different computers under many different operating systems.
Although every effort is made to achieve complete compatibility across different plat-
forms, operating systems and environments, 100% compatibility is not possible. In-
compatibilities based on different hardware versions which do result are primarily
limited to certain I/O routines. Any statement which has even potential incompatibili-
ties across platform versions is so indicated. In all cases where incompatibilities are
noted in this section, the incompatibilities are fully described in the appropriate NPL
operating system-specific Supplement.

1.2.2 Statement Description Layout

Information pertaining to each statement is delineated in a group of specific categories.
These categories are:

General Form. This section shows the statement format, along with variables, op-
erators or other parameters. The general form of the statement is enclosed within
a syntax box, and attributes of variables or operators are defined within this box.
Refer to the next section for conventions used to display the general form of NPL
statements.

Discussion. This section explains the purpose and circumstances for using the
statement.

Examples. This section provides one or more examples of how the statement may
be used in writing programs.

Compatibility Issues. This section describes any considerations or problems with
using this statement in conjunction with Wang Basic-2 programs.

References. This section lists any statements related to the statement being de-
scribed.

Here is an illustration of the statement description layout.

NPL Statements Guide

Notational Conventions INTRODUCTION

Statement —}-ABS

General Form —}— General Form:
ABS (numeric-expression)

Discussion —fDiscussion:

The ABS function computes the absolute value of a numeric-expression. This is valid wherever a

numeric function is legal.

Examples =~ —} Examples:
0010 PRINT "RESULT"=";ABS(-4.75)
Compatibili .
patibiiity —|. Compatibility Issues:
Issues
References | References:

Hllustration of Statement Description

1.2.3 Statement Conventions

Format conventions are used to illustrate the various elements of NPL statements. These
conventions are described below.

» Each statement appears on a separate page, with the statement as a page header.

* The general form of each statement is enclosed within a box.

» Uppercase letters ("A" through "Z"), digits ("0" to "9"), and special characters
(such as "$", "#", ":") must always appear exactly as presented in the general for-

mat.

* Alllower-case words indicate information that the user must supply. These
words appear in italic type.

1-4 NPL Statements Guide

INTRODUCTION Notational Conventions

For example:
LEN (alpha-variable)
The user must supply the alpha-variable.

* When braces, "{ }", enclose a vertically stacked list, or a horizontal list with

each item separated by a comma (","), the user must choose one of the options
within braces. Information within braces is shown in italic type.

For example:
ALL ({literal-string, alpha-variable, two-hexdigits})
or
ALL ({literal-string })
{alpha-variable }
{two-hexdigits }
Here, the ALL instruction must be followed by one and only one of the items in the list.
* Brackets, "[]", indicate that the enclosed items are optional. When brackets en-
close a vertical list or a horizontal list, the user may specify one or none of the
items. Information within brackets is shown in italic type.
For example:
INPUT [literal-string,] variable [,variable]
Here, the INPUT instruction may optionally contain a literal-string fol-
lowed by an optional comma preceding the required "variable". Additional
variables may optionally be specified.
or:
CLEAR [V]

[N
[P [line-numberl][,[line-number2]]]

NPL Statements Guide 1-5

Notational Conventions

INTRODUCTION

Here, either the V, N, or P parameter may be specified, but no parameter is
required.

NOTE: Here, line-number parameters may be optionally specified only if the "P" parame-

Statement page header

General form

Lower-case in

ter is specified.

* The presence of an ellipsis (...) within any format indicates that the unit immedi-
ately preceding the ellipsis can occur one or more times in succession.

For example:

DEFFN’integer

[(variable[,variable]...)]

Here, any number of "variable" may be specified, but the format " variable"

must be used for the second and subsequent "variables".

* All other punctuation such as commas or parentheses must be included where

shown.

Here is an illustration of statement conventions.

* FUNCTION

—1.General Form:

FUNCTION
Where:

identifier return-type [(

italics--user must supply

return-type = [$

]

[
Uppercase, digits,

parameter = [/POINTER][Jidentifier [$[length]]
t

special characters as
shown

attribute = {/PUBLIC }
{/FORWARD }

parameter|,parameter]...)]

—

Include punctuation as
shown

I Ellipsis in
italics--preceding
item can be repeated
in succession

Brackets in
italics--optional

items

Braces in

italics--user must
choose an option

Hllustration of Statement Conventions

NPL Statements Guide

INTRODUCTION Notational Conventions

1.24

Terminology

The following terms are commonly used and are specifically related to the statements de-
scribed in Chapter 2 of this manual. Those terms not found in this section are defined by
the "Where:" clause for the individual statement.

address-var:
An alpha-variable in which the first three bytes contain an ASCII representation of a
hex-digit (0-9; A-F) which corresponds to a NPL device address must be specified.

alpha-array:
An alpha array variable must be specified.

alpha-expression:
Any valid alpha expression may be used. This includes the use of literals as well as
alpha functions. Refer to LET for further details on alpha expressions.

alpha-receiver:
A series of alpha variables delimited by commas. At least one alpha variable must be
specified. When multiple variables are specified, all are set to the value of the expres-
sion on the right side of the equivalence.

alpha-variable:
An alpha variable, either scalar or array, alpha array element, STR function, or string
field-expression must be specified.

array-variable:
A numeric or alpha array variable must be specified.

device-address:
A valid NPL device address in the format /xxx where x is a hex-digit must be speci-
fied. Refer to Chapter 7 of the NPL Programmer’s Guide for details on NPL device
addresses.

diskimage:
Refers to a NPL diskimage file or a "raw" disk device. Refer to Chapter 7 of the NPL
Programmer’s Guide for details on diskimage files and "raw" devices.

file-number:
A valid NPL file number in the format #X where 0 <= X <= 15 must be specified.
File numbers above 15 require the appearance of a SELECT #n statement in the pro-
gram. Refer to Chapter 7 of the NPL Programmer’s Guide for details on file numbers.

NPL Statements Guide 1-7

Notational Conventions INTRODUCTION

hex-digit:
A hexadecimal digit (0-9, A-F) must be specified.

identifier:
Any legal (long) identifier. Up to 255 alphanumeric characters (A-Z, a-z, 0-9 or _),
starting with a letter (digits, _ not permitted as first character).

line-number:
A valid NPL program line number must be specified. Valid values are in the range 0
to 32117.

literal-string:
An alpha literal string must be specified. This may be either a string (enclosed in
quotes) or a HEX literal.

logical-expression:
An conditional expression which evaluates to either true or false, used when making
decisions. Refer to the IF/THEN statement for further details on logical expressions.

numeric-array:
A numeric array variable must be specified. A specific element of a numeric-array
may not be specified.

numeric-constant:
A numeric constant must conform to the format:

[+]d...[.[d]...)IE[+]d[d]]
[+] [-]

where:

d is a digit (0-9). Up to 13 digits may be specified.

+ or - are signs and may be either leading or trailing.

E is the exponent symbol (may be preceded by an optional sign and followed by one
or two digits).

. is a decimal point.

numeric-expression:
A valid numeric expression must be specified. This may include numeric constants,
functions, and variables. Refer to LET for further details on numeric expressions.

1-8 NPL Statements Guide

INTRODUCTION Notational Conventions

1.2.5

NOTE:

numeric field-expression:
An alpha-variable followed by a "." and a numeric field identifier. The numeric field
identifier may be either a scalar field or an array element. A numeric field-expres-
sion refers to a single numeric field of a record, using the named alpha-variable as a
buffer for the record.

numeric-receiver:
A numeric scalar or numeric array element used to receive the results of an operation.

numeric-scalar:
A valid numeric scalar variable must be specified.

numeric-variable:
A valid numeric variable, either scalar or array, must be specified.

simple-statement:
A simple statement is a statement that can stand alone as a complete program. Some
statements, in particular those used to implement structured programming constructs,
are incomplete in that they require a corresponding statement to terminate them (e.g.,
WHILE requires WEND).

statement-label:
An identifier which is appears elsewhere in the program as a statement label (=identi-
fier).

string field-expression:
An alpha-variable followed by a "." and a string field identifier. The string field iden-
tifier may be either a scalar field or an array element. A string field-expression refers
to a single string field of a record, using the named alpha-variable as a buffer for the
record.

Variable Names
The following variable names are used with the NPL statements defined in this manual.
For historical reasons, short identifiers (a letter followed by 0-9 or a number in the

range 10-62 with no leading zeroes) used for numeric scalar, alpha scalar, numeric
array, and string array variables are always displayed in upper case.

NPL Statements Guide 1-9

Notational Conventions INTRODUCTION

Numeric Scalar
Numeric scalar variables names consist of an identifier. Some valid numeric scalar
variable names are:

A D2 X4 Apple
TimeOfDay DAY_OF_WEEK
APPLE window Stalag 17 uP_aNd _DoWn

Cost_Of Building When_Renovations_Are_Complete Not Including Tax

Alpha Scalar
Alpha scalar variable names consist of an identifier followed by a dollar sign ($).
Some valid alpha scalar variable names are:

AS$ D2$ X4$ Apple$
TimeOfDay$ DAY_OF_WEEKS$
APPLE$ window$ Stalag _17$ uP_aNd_DoWn$

Name_Of That_Singer Who_Looks_Like Julio_Iglesias_But_Isnt_Actually Him$

Constant Scalars
Constant scalar names consist of an underline (_) followed immediately by a scalar
variable name. Some valid constant scalar names are:

_A _D2 _X4 _Apple$
_TimeOfDay _DAY_OF_WEEK
_APPLE _window _Stalag 17 _uP_aNd DoWn

_Cost_Of_Building When_Renovations_Are_Complete Not Including Tax

NOTE: The variable _x is not the same as x._x is defined as a constant variable, where x is a
numeric scalar and NPL treats them as such.

Numeric Array
Numeric array variable names consist of an identifier followed by a set of parenthe-
ses. Some valid numeric array variable names are:

A() D2() X4() Apple()
TimeOfDay() DAY_OF_WEEK()
APPLE() window() Stalag 17() uP_aNd_DoWn()

LongNumericArrayExample()

1-10 NPL Statements Guide

INTRODUCTION Notational Conventions

NOTE: Array names are distinct from scalar names. For example, A() and A are distinct
variable names.

Exceptions:
Several MAT statements allow reference to an entire array by designation of the root
name with no parentheses. For example:

MATA=C+B
refers to numeric arrays A(), B(), and C().

Several listing or debugging type statements allow reference to numeric arrays by
specification of the root variable name followed by a single open parenthesis. For ex-
ample:

LIST V A(

will list all references to numeric array A().

Numeric Array Elements
A numeric array element consist of an identifier followed by one or more subscripts
in parentheses. If a one dimensional array is used, only a single subscript may be pre-
sent. If a two dimensional array is used, two subscripts must be present separated by
a comma. Some valid numeric array elements are:

A(l) D2(2.3) X4(5) Apple(2,4)
TimeOfDay(2,2) ~ DAY_OF_WEEK(7)
APPLE(6) window(3) Stalag_17(6,2)

uP_aNd DoWn(4) LongNumericArrayExample(6,6)

Alpha Array
Alpha array variable names consist of an identifier followed by a dollar sign, fol-
lowed by a set of parenthesis "()". Some valid alpha array variable names are:

AS() D2$() X4%() Apple$()
TimeOfDay$() DAY_OF_WEEK$()
APPLES$() window$() Stalag_17$() uP_aNd_DoWn$()

Names_Of_All_The_Crew_Who_Are_Of_Scottish_Ancestry$()

NPL Statements Guide 1-11

Notational Conventions INTRODUCTION

NOTE: Array names are distinct from scalar names. For example, A$() and AS are distinct
variable names.

Exceptions:
Several MAT statements allow reference to an entire array by designation of the root
name with no parentheses. For example:

MAT PRINT A$,BS
refers to alpha array A$(), and BS().

Several listing or debugging type statements allow reference to alpha arrays by speci-
fication of the root variable name followed by a single open parenthesis. For exam-
ple:

LIST V A$(

will list all references to alpha array A$().

Alpha Array Elements
An alpha array element consists of an identifier, followed by a dollar sign ($) fol-
lowed one or more subscripts (numeric expressions) in parentheses. If a one-dimen-
sional array is used, only a single subscript may be present. If a two-dimensional
array is used, two subscripts must be present, separated by a comma. Some valid al-
pha array elements are:

AS(1) D2$(2,3) X48(5)

Apple$(X+Y) TimeOfDay$(Local)
DAY_OF_WEEK$(Index) APPLES$(10) window$(pane)
Stalag_17$(William,Holden) uP_aNd_DoWn$(sLiNky(Toy)*SQR(5))

Spread_Sheet_ With_All My_Personal Information$(Row,Column)

Constant Array

Constant array variable names consist of an underline (_) followed by an identifier
and set of parentheses. Some valid constant array names are:

_AQ _D2() _X40) _Apple$()
_TimeOfDay() _DAY_OF_WEEK()
_APPLE() _window() _Stalag _17() _uP_aNd_DoWn()_

Coordinates_ Where_The ENTERPRISE_Completed_Its_5_Year_Mission()

NPL Statements Guide

INTRODUCTION Notational Conventions

Constant Array Elements
A constant array element consists of an underline (_), followed by an identifier and
one or more subscripts (numeric expressions) in parentheses. If a one-dimensional ar-
ray is used, only a single subscript may be present. If a two-dimensional array is
used, two subscripts must be present, separated by a comma. Some valid constant ar-
ray elements are:

_A(D) _D2(2,3) _X4(5)
_Apple$(X+Y) _TimeOfDay(Local)
_DAY_OF_WEEK(Index) _APPLE$(10) _window(pane)
_Stalag_17\(William,Holden) _uP_aNd_DoWn(sLiNky(Toy)*SQR(5))

_Spread_Sheet_With_All_My_Personal_Information(Row,Column)

Numeric field-expression
A string field identifier consists of a "." followed by either a numeric or numeric ar-
ray element. A numeric field-expression consists of an alpha-variable followed by a
numeric field identifier. Some valid numeric field-expressions are:

Employee_Record$.Number_Of_Children
Employee_Record$.YTD_Misc_Deduction(1)

Employee Record$.Department Number
Deduction_Table$(X).Limit
STR(Buffer$,P).Header_Extension$.Header Extension_Length

String field-expression
A string field identifier consists of a "." followed by either an alpha scalar or alpha ar-
ray element. A string field-expression consists of an alpha-variable followed by a
string field identifier. Some valid string field-expressions are:

Employee_Record$.Employee_Name$
Employee_Record$.Address1$
Employee_Record$.Child_name$(1)
Deduction_Table$(X).Description$
STR(Buffer$,P).Header_Extension$.Header_Extension_ID$

NPL Statements Guide 1-13

Organization of the Statements Guide INTRODUCTION

1.3 Organization of the Statements Guide

This Statements Guide is divided into the following chapters:
» Chapter 1 explains how information has been presented in this guide.

» Chapter 2 contains detailed information and instructions on using NPL state-
ments.

e Chapter 3 describes the operation of the library functions available in the NPL.
In addition, to the sections listed above, this Statements Guide contains two appendices .

Appendix A lists reserved words and Appendix B describes NPL/Basic-2 statement com-
patibility.

1-14 NPL Statements Guide

LANGUAGE STATENREYSW

CHAPTER 2

LANGUAGE STATEMENTS

2.1 Overview

This chapter contains descriptions, examples and other detailed information pertaining to
the NPL statements. Individual discussions of NPL statements, listed in alphabetical or-
der, begin on the following page.

2-1 NPL Statements Guide

LANGUAGE STATEMENTS ABS Function

ABS Function

General Form:

ABS(numeric-expression)

Discussion:
The ABS function computes the absolute value of a numeric-expression. This is valid
wherever a numeric function is legal.

Examples:

:0010 PRINT "RESULT=";ABS(-4.75)
‘RUN
RESULT=4.75

:0010 X=-10
:0020 PRINT "RESULT=";5*ABS(X)

‘RUN
RESULT= 50

Compatibility Issues:

References:

2-2

NPL Statements Guide

ADDIC] Alpha-operator LANGUAGE STATEMENTS

ADDI[C] Alpha-operator

General Form:
alpha-receiver = [...] ADDIC] alpha-operand [...]
Where:
alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }
Discussion:

The ADD alpha-operator is used to add the binary value of an alpha-operand to the bi-
nary value of an alpha-variable. ADD may only be used in an alpha-expression in an al-
pha-assignment statement.

Each byte of alpha-operand is ADDed to each corresponding byte of the receiving alpha-
variable. The ADD operation is performed from right to left, starting with the right-most
byte. If "C" immediately follows the ADD alpha-operator, then carry propagation is ef-
fected between bytes to yield full multi-byte binary number addition.

If the value of alpha-operand and the receiving alpha-variable are of different lengths,
then the ADD algorithm implicitly extends the shorter value with leading zeroes prior to
ADDing. If the ADD resultant is larger than the receiving alpha-variable, then the extra-
neous high-order bytes of the resultant are truncated before assignment.

NOTE: Contrary to conventional alpha-variable operations, the ADD alpha-operator oper-
ates on all bytes of an alpha-variable (either as a receiver or alpha-operand), includ-

ing trailing spaces.

The ADD[C] alpha-operator is often used in conjunction with SUB[C], BIN and VAL.

2-3 NPL Statements Guide

LANGUAGE STATEMENTS

ADDIC] Alpha-operator

ADDI|C] (cont.)

Examples:

0010 A$=ADD B$

0010 A$=ADD ALL(01)

0010 A$=B$ ADD C$

0010 STR(A$,3,2)=ADD X$
0010 X$=ADDC HEX(OOFF)
0010 Myrec$.Field$=ADD ALL(OF)
:0010 DIM A$2

:0020 A$=HEX(0121)

:0030 A$=ADD HEX(0OFF)
:0040 PRINT "A$=";HEXOF(A$)
‘RUN

A$=0120

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

BIN
SUBIC]
VAL

NPL Statements Guide

2-4

+=numeric expression LANGUAGE STATEMENTS

=numeric expression Add to Variable Statement
General Form:

numeric-var ~ += numeric-expression
Where:

numeric-var = avalid numeric variable (i.e., sca-

lar or array element)
numeric-expression = avalid numeric expression
Discussion:

The add to variable statement avoids the repetition of long variable names in common in-
crement uses (it is not intended to be faster than the common add).

This is not a numeric operator. It can only appear as a statement by itself.

NOTE: Only one variable is permitted on the left-hand side of the +=, but it may be either a
scalar or an array element.

Examples:

0010 I+=1
0010 I+=Array(X,Y)

Compatibility Issues:
This statement is supported only with Release IV or greater.
References:

LET Numeric Assignment

2-5 NPL Statements Guide

LANGUAGE STATEMENTS $SALERT

SALERT

General Form:

SALERT partition-number

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
No operation is performed when this statement is encountered at execution time.

The compiler generates a warning when this statement is encountered.

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 M VP, signals the specified partition to
execute the subroutine specified by its programmable interrupt table for the ALERT con-
dition, provided such a subroutine has been defined, and interrupts are enabled in the tar-
get partition. The subroutine is performed at the next breakpoint in the partition’s
execution.

Interrupts are not supported by NPL.

References:

NPL Statements Guide 2-6

ALL Alpha-operand

LANGUAGE STATEMENTS

ALL Alpha-operand

General Form:

ALL ({literal-string })
{alpha-variable }
{two-hexdigits }

Discussion:

The ALL function creates a temporary character string of unlimited length with each char-
acter of the string equal to the character specified in the function. The ALL function may
be used as an alpha-operand to any alpha-operator and it is legal only in an alpha-expres-
sion in an alpha-assignment statement and in no other statement in the language.

The character to be used by the ALL function can be specified as a literal-string, an alpha-
variable or as a pair of hex digits (0-9 or A-F). If an alpha-literal or alpha-variable is

specified, only the first character is used by the ALL function.

The ALL function is useful for initializing alpha-variables (scalars and arrays).

Examples:

0010 A$=ALL(B$)

0010 A$=ALL(STR(B$,4,1))
0010 A$=ALL(" ")

0010 A$=C$ AND ALL(FO0)

:0010 DIM A$5
:0020 A$=ALL(40)
:0030 PRINT A$
‘RUN

@ee@@

:0010 DIM A$16

:0020 A$="AND SO ON" & ALL(".")
:0030 PRINT A$

‘RUN

AND SO ON.......

0010 MyRec$.field1$ = ALL(20)

Compatibility Issues:

This statement is supported only with Release IV or greater.

2-7

NPL Statements Guide

LANGUAGE STATEMENTS ALL Alpha-operand

References:

NPL Statements Guide 2-8

AND Alpha-operator LANGUAGE STATEMENTS

AND Alpha-operator

General Form:
alpha-receiver = [.] AND alpha-operand [..]
Where:
alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }
Discussion:

The AND logical alpha-operator performs a logical AND operation on the alpha-operand
and the contents of the alpha-receiver, the result of which is then assigned to the alpha-re-
ceiver. The AND alpha-operator is legal only in an alpha-expression in an alpha-assign-
ment statement.

The AND operation is performed on a byte-by-byte basis, moving from left to right in
each field, for a number of bytes equal to the shorter of:

* The defined length of the alpha-receiver.

e The defined length of the alpha-operand (if the alpha-operand is an alpha-vari-
able or system-variable, trailing spaces are included in the operation).

If the defined length of the alpha-operand is shorter than the defined length of the alpha-
receiver, then the remaining bytes of the alpha-receiver remain unchanged (i.e., padding
with spaces is not performed).

NOTE: In regard to the "AND" syntactic unit, this may also appear in conditional-expres-
sions (e.g., IF A=1 AND B=2 THEN ...). However, the similarity is syntactical only
and its use in a conditional-expression has a completely different meaning.

2-9 NPL Statements Guide

LANGUAGE STATEMENTS AND Alpha-operator

AND Alpha-operator (cont.)

Examples:

0010 MyRec$.Field2$=AND B$
0010 STR(A$,4,5)=AND B$
0010 A$=C$ AND "0"

:0010 DIM A$5

:0020 A$=ALL(FF)

:0030 A$=AND HEX(7F)
:0040 PRINT HEXOF(A$)
‘RUN

7FFFFFFFFF

In statement 30 of the above example, the defined length of A$ is 5, the length of the op-
erand (HEX(7F)) is one; therefore, only the first byte of A$ is ANDed and all remaining
bytes are unchanged.

:0010 DIM A$5

:0020 A$=ALL(FF)

:0030 A$=AND ALL(7F)

:0040 PRINT HEXOF(A$)

‘RUN

TFTFTF7FTF
In statement 30 of this example, the defined length of A$ is 5, but the length of the oper-
and (ALL(7F)) is unlimited; therefore, all bytes of A$ are ANDed.

Compatibility Issues:
This statement is supported only with Release IV or greater.
References

BOOL

NPL Statements Guide 2-10

ARC COS Function LANGUAGE STATEMENTS

ARC COS Function

General Form:

ARC COSnumeric-expression)

Discussion:

The ARC COS function computes the value of the arccosine of a numeric-expression.
This is valid wherever a numeric function is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

:0010 A=.25

:0020 B=ARC COS(A)*10
:0030 PRINT "RESULT="; B
‘RUN

RESULT= 13.181160716528

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

2-11 NPL Statements Guide

LANGUAGE STATEMENTS ARC SIN Function

ARC SIN Function

General Form:

ARC SIN (numeric-expression)

Discussion:

The ARC SIN function computes the value of the arcsine of a numeric-expression. This
is valid wherever a numeric function is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

:0010 A=.25

:0020 B=ARC SIN(A*.25)*2
:0030 PRINT "RESULT="; B
‘RUN
RESULT=.12508152359299

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

NPL Statements Guide 2-12

ATN Function - ARC TANGENT LANGUAGE STATEMENTS

ATN Function - ARC TANGENT

General Form:

ATN(numeric-expression)

Discussion:

The ATN function computes the value of the arctangent of a numeric-expression. This is
valid wherever a numeric function is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

:0010 A=.125

:0020 B=ATN(A*.25)+1.5
:0030 PRINT "RESULT="; B
‘RUN

RESULT= 1.5312398334303

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

2-13 NPL Statements Guide

LANGUAGE STATEMENTS BIN Function/Alpha-operand

BIN Function/Alpha-operand

General Form:
BIN (numeric-expression[,range-expression])
Where:

range-expression = a numeric-expression with a result be-
tween -6 and +5.

Discussion:

The BIN function is used to convert the integer result of a numeric-expression into char-
acter string format, binary representation. The resulting character string may then be used
as an alpha-operand to any alpha-operator in an alpha-expression. The BIN function may
only be used in an alpha-expression in an alpha-assignment statement and cannot be used
in any other statement in NPL. The BIN function is most useful for conversion of num-
bers stored in internal numeric format to binary for special manipulation or use.

The range-expression of the BIN function is used to specify both the length and content
of the resultant character string. The range-expression must evaluate to a number from -6
to +5, otherwise an error results. If the range-expression is omitted, a value of 1 is as-
sumed.

The absolute value of the range-expression indicates the length of the resultant character
string to be generated by BIN. A length from 0 bytes up to 6 bytes is acceptable.

The sign of the range-expression value indicates the type of binary number to be gener-
ated in the character string. If the sign is positive (+), an unsigned binary integer is gener-
ated. If the sign is negative (-), a signed, two’s complement, binary integer is generated.

An error is generated if the numeric-expression cannot be fully represented within a char-
acter string of the selected length. The following table summarizes the range of numbers
which can be converted for each possible value of the range-expression.

NPL Statements Guide 2-14

BIN Function/Alpha-operand

LANGUAGE STATEMENTS

BIN Function/Alpha-operand (cont.)

Range Resultant

Expression |Length (bytes) Type |Range allowed for numeric-expression

-6 6 signed -140737488355328 140737488355327
-5 5 signed -549755813888 549755813887
-4 4 signed -2147483648 2147483647
-3 3 signed -8388608 8388607
-2 2 signed -32768 32767
-1 1 signed -128 127
0 0 unsigned 0 0
1 1 unsigned 0 255
2 2 unsigned 0 65535
3 3 unsigned 0 16777215
4 4 unsigned 0 4294967295
5 5 unsigned 0 1099511627775

Examples:

0010 A$=BIN(X/2,3)
0010 A$=BIN(X)
0010 A$=BIN(X,-(1+Y))

:0010 X$=BIN(65) : REM BINARY VALUE OF DECIMAL 65 IS ASCII "A"

:0020 PRINT X$;" ";HEXOF(X$)
‘RUN

A 41202020202020202020202020202020

:0010 B$=BIN(18505,2)
:0020 PRINT B$;" ";HEXOF(B$)
‘RUN

HI 48492020202020202020202020202020

Compatibility Issues:

On the Wang 2200, the BIN function generates up to a maximum two byte unsigned char-
acter string only. Furthermore, on the Wang 2200, the second BIN operand, if specified,
must be a ",2", numeric-expressions are not allowed in NPL.

References:

VAL

2-15

NPL Statements Guide

LANGUAGE STATEMENTS BOOL Alpha-operator

BOOL Alpha-operator

General Form:

alpha-receiver = [...] BOOLh alpha-operand [...]
Where:

h = hexadecimal digit (0-9 or A-F)

alpha-operand = {literal-string }

{alpha-variable }
{ALL function }
{BIN function }
{system-variable }

Discussion:

The BOOL logical alpha-operator performs the specified logical operation on the alpha-
operand and the contents of the alpha-receiver, the result of which is then assigned to the
alpha-receiver. The BOOL alpha-operator is legal only in an alpha-expression in an alpha-
assignment statement.

The BOOL logical operation is performed on a byte-by-byte basis, moving from left to
right in each field, for a number of bytes equal to the shorter of:

* The defined length of the alpha-receiver.

e The defined length of the alpha-operand (if the alpha-operand is an alpha-vari-
able or system-variable, trailing spaces are included in the operation).

If the defined length of the alpha-operand is shorter than the defined length of the alpha-
receiver, then the remaining bytes of the alpha-receiver remain unchanged (i.e., padding
with spaces is not performed).

The character immediately following BOOL represents the logical operation to be per-
formed. For example, BOOL7 would specify that a "not-AND" operation be performed.
The table on the following page lists the available hex digits with their corresponding
logical functions.

NPL Statements Guide 2-16

BOOL Alpha-operator LANGUAGE STATEMENTS

BOOL Alpha-operator (cont.)

BOOLhA Logical Functions

Hex Binary Logical

Digit Representation Function

0 0000 Null

1 0001 Not-OR

2 0010 Operand does not imply receiver
3 0011 Complement of receiver

4 0100 Receiver does not imply operand
5 0101 Complement of operand

6 0110 Exclusive OR

7 0111 Not-AND

8 1000 AND

9 1001 Equivalence

A 1010 Receiver = operand

B 1011 Receiver implies operand

C 1100 Operand = receiver

D 1101 Operand implies receiver

E 1110 OR

F 1111 Identity

When working with complicated boolean functions, it is not necessary to memorize the
order of the 16 BOOL functions. The appropriate function to use can be easily deter-
mined by filling in the following truth table:

Bit in receiver is a 1 1 0 0
Bit in operand is a 1 0 1 0
Required result bit = (w) x) W) (z)

The resulting bit pattern wxyz specifies the correct Hex-digit to use as a BOOL function.

2-17 NPL Statements Guide

LANGUAGE STATEMENTS BOOL Alpha-operator

BOOL Alpha-operator (cont.)

For example, to "zero each bit in the receiver where the corresponding bit is a 1 in the op-
erand", the truth table would be filled in as follows:

Bit in receiver is a 1 1 0 0
Bit in operand is a 1 0 . 0
Required result bit = 0 1 0 0
Examples:

The resulting four bits 0100 specify that BOOLA4 is the appropriate function to use. Using
this technique, it is clear that AND is equivalent to BOOLS (result 1000) and OR is
equivalent to BOOLE (result 1110).

0010 A$=BOOL7 C$

0010 X$=BOOL1 Y$

0010 L$=BOOL9 ALL(7F)
0010 STR(X$,3,2)=BOOL1 B$

:0010 DIM X$2
:0020 X$=HEX(1100) BOOL9 HEX(1010) AND HEX(1111)

:0030 PRINT HEXOF(X$)
‘RUN
1001

Compatibility Issues:

References:

AND

2-18

NPL Statements Guide

$BOXTABLE LANGUAGE STATEMENTS

$BOXTABLE

General Form:

Form 1
alpha-receiver ~ =$BOXTABLE
Form 2

$BOXTABLE=lpha-expression

Discussion:

Form 1 of the SBOXTABLE statement sets the value of the SBOXTABLE system vari-
able.

Form 2 allows examination of the current status of the SBOXTABLE system variable.

The $BOXTABLE system variable is used to enable, and select the character set to be
employed for the output of the PRINT BOX statement. Two forms of boxes are sup-
ported: "True" boxes and "Character" boxes.

True Box Graphics

"True" box graphics require a screen which has the capability of printing graphics and
text on the same screen (refer to the appropriate operating system-specific supplement for
this information). The implementation of "character" box graphics provides a method of
approximating box graphics on machines which do not have this capability.

Character Box Graphics

"Character" box graphics are built from the standard character set. That is, 16 characters
must be selected out of the standard character set to be used for the 16 possible "box"
characters (appropriate default values are provided; refer to the table which follows). The
use of character box graphics, therefore, has some significant limitations. The primary
limitation is that the horizontal lines of a box cannot be printed between rows (as they are
with "true" boxes), but rather must occupy a row themselves. The horizontal lines are
printed a half-line down from where they would print using "true" boxes. This means
that, in effect, one line above and below the text to be boxed must be left blank.

2-19 NPL Statements Guide

LANGUAGE STATEMENTS $BOXTABLE

$BOXTABLE (cont.)

Byte 4 of the SMACHINE system variable can be used by NPL application programs to
determine whether or not "true" box graphics are available. For further details, refer to
$MACHINE.

The $SBOXTABLE system variable consists of 17 bytes. Byte 1 is a switch which the
RunTime program tests to determine whether or not to print "character” boxes. A value
of HEX(00) (the default) indicates that "character" boxes are disabled. A value of
HEX(01) indicates that "character" boxes are enabled.

NOTE: If character boxes are enabled, they are printed even if "true" box graphics are
available (the "true" boxes are not printed in this case).

Construction of "Character' Boxes

Each individual character of a "character" box should consist of some combination of
four basic parts. These four parts are:

* Vertical line from center of character to north edge (N)
* Vertical line from center of character to south edge (S)
* Horizontal line from center of character to east edge (E)

* Horizontal line from center of character to west edge (W)

O

Combinations of these four basic parts (illustrated above) are required to display the com-
plete box character required. Up to 16 combinations are possible. When the RunTime pro-
gram prints a "character" box, it calculates the correct combination to use for each
character position of the box. It then determines the proper character to use by means of a
look-up table. Bytes 2 to 17 of the SBOXTABLE system variable contain the actual char-
acters to be used for each of the 16 possible combinations used to construct a box (refer

to the table below for default values).

NPL Statements Guide 2-20

$BOXTABLE

LANGUAGE STATEMENTS

$BOXTABLE (cont.)

These 16 possible values relate to byte positions in the SBOXTABLE as follows:
Byte N S E \\4
2 .

3 . X
4 X .
5 . X X
6 X .
7 X . X
8 X X .
9 . X X X
10 X .
11 X . X
12 X X .
13 X . X X
14 X X .
15 X X . X
16 X X X .
17 X X X X

For example, the character in byte 5 would be used for a horizontal line from the west
edge to the east edge of the character. The character in byte 14 would be use for a vertical
line. The character in byte 8 would be used for the upper left hand corner.

Text and character boxes may not occupy the same character position on the screen.
Therefore, printing text (except spaces) on top of a box erases that portion of the box.
Printing boxes on top of text does not overwrite that portion of text. Consequently, char-

acter boxes may be printed before or after text with the same result.

2-21

NPL Statements Guide

LANGUAGE STATEMENTS $BOXTABLE

$BOX TABLE (cont.)
Examples:
0010 DIM X$17,M$4 :; variable for table must be 17
bytes long
0020 M$=$MACHINE :; get system information
0030 X$=$BOXTABLE ;; load current values

0035 ;if not "TRUE’ graphics then modify $BOXTABLE

0040 IF STR(M$,4,1) <> "G"

0045 ; enable character boxes with default box character set
0050 $BOXTABLE=BIN(1) & STR(X$,2)

0060 END IF

0070 RETURN

HINT: Restore the value of SBOXTABLE to the original value by programs which modify it so
that use of character boxes is possible on a modularized basis. In general, some programs
can easily be modified to work with character boxes while, in other cases, it is preferable
to leave the boxes off entirely.

Compatibility Issues:

This statement is supported only with Release 1.03 or greater.
This statement is not valid in Wang 2200 Basic-2.

The default values for the characters to use for character boxes (bytes 2-17) vary depend-
ing upon the hardware version of NPL. Refer to the appropriate NPL Supplement for de-
tails.

References:

$MACHINE
PRINT BOX
Box Graphics - Section 7.3.19 of the Programmer’s Guide

NPL Statements Guide 2-22

BREAK LANGUAGE STATEMENTS

BREAK

General Form:

BREAK

Discussion:

The BREAK statement allows exiting from the body of a structured loop, which may be
either WHILE...WEND, REPEAT...UNTIL or FOR/BEGIN..NEXT type. When it oc-
curs inside nested loops, only the innermost loop is exited.

When executed, control is transferred to the statement following the WEND statement of
the current WHILE...WEND loop, to the statement following the UNTIL statement of the
current REPEAT...UNTIL loop or to the statement following the NEXT statement of an
enclosing FOR/BEGIN..NEXT loop. Stack information is cleared for a FOR/BE-
GIN..NEXT loop.

Examples:

0010;
X=1
:REPEAT
X=X+X
IF X>1000 THEN BREAK
. PRINT X;
:UNTIL FALSE

X=1

‘WHILE TRUE

s X=X+X

: IF X > 1000 THEN BREAK
: PRINT X;

‘WEND

:FOR T =1 TO 20 BEGIN

: X ="Approx(X)

. IF "Funct(X) < Epsilon THEN BREAK
INEXT T

Compatibility Issues:

This statement is only supported with Release IV or greater.

2-23 NPL Statements Guide

LANGUAGE STATEMENTS BREAK

BREAK (cont.)

References:

FOR/BEGIN ... NEXT
REPEAT/UNTIL

WHILE/WEND

Section 4.11 of the Programmers Guide.

NPL Statements Guide 2-24

$BREAK LANGUAGE STATEMENTS

$BREAK

General Form:

$BREAK [expression]

Discussion:

$BREAK provides a mechanism in a multi-user environment for relinquishing CPU
timeslices from the program in progress. The number of timeslices released is the integer
portion of the expression. The numeric-expression can be a value from 0 to 255. The de-
fault value, if no expression is specified, is one. A value of zero indicates that no break
occurs.

The $BREAK statement is primarily used to put a user partition to sleep until a given oc-
currence.

The actual effect of SBREAK [expression] is hardware and operating system-dependent.
On most single-user systems, no time is released. On multi-user systems, the amount of
time released per unit may vary. Refer to the appropriate NPL Supplement for details.

NOTE: The $BREAK statement is extremely operating system-dependent. Refer to the NPL
Supplements for details on the operation of SBREAK on different platforms.

Examples:

0010 $BREAK 5
0010 $BREAK X+Z

Compatibility Issues:

On a Wang 2200 MVP, the "!" parameter causes the partition to relinquish all timeslices
until the RESET key is pressed, or a programmable interrupt occurs. SBREAK! is de-
compiled under NPL as $END, causing immediate exit from the RunTime program. In
addition, the amount of time released on a Wang 2200 is dependent on other activity on
the system. Under NPL, a fixed amount of time per unit is released.

In a network environment, the syntax is supported but no operation is performed.

References:

2-25 NPL Statements Guide

LANGUAGE STATEMENTS CASE Default

CASE Default

General Form:

CASE

NOTE:

Discussion:

This statement declares a default condition of a numeric, string or logical SWITCH struc-
ture. Refer to SWITCH (numeric, string or logical) for an explanation of how this state-
ment may be used within a SWITCH structure to define the default action to take when
no specific CASE applies.

Examples:

0010 ;
:SWITCH Widget_Type
CASE 0
PRINT "Gizmos"
CASE 1
PRINT "Thingammies"
CASE
; this is the default
: PRINT "Whatchamacallits"
:END SWITCH

Branching to a CASE statement is not the same as reexecuting the CASE. Executing
a CASE statement terminates the previous case, and so exits to the END SWITCH
statement. This is an easy mistake to make when converting an ON X statement to a
SWITCH that still contains GOTOs used for loops.

For example, this is old code:

0000 ON X GOTO 100,200,300 :REM lookup type (assume X=1,2,3 only)
0100 INPUT "Name",A$:IF A$" " THEN 900
. GOSUB 'Doname
: GOTO 100
0200 INPUT "Address",A$:IF A$=""THEN 900
. GOSUB 'DoAddress
: GOTO 200
0300 INPUT "Zip",A$:IF A$=""THEN 900
: GOSUB 'DoZip
: GOTO 300
0900 REM end case

NPL Statements Guide 2-26

CASE Default LANGUAGE STATEMENTS

CASE Default (cont.)

This is not the same as:

0000 SWITCH X :REM lookup type (assume X=1,2,3 only)
0100 CASE 1
. INPUT "Name",A$:IF A$="" THEN 900
: GOSUB 'Doname
: GOTO 100
:CASE 2
0200 INPUT "Address",A$:IF A$=""THEN 900
: GOSUB’DoAddress
: GOTO 200
:CASE 3
0300 INPUT "Zip",A$:IF A$=""THEN 900
: GOSUB 'DoZip
: GOTO 300
0900 END SWITCH

Correct is:

0000 SWITCH X :REM lookup type (assume X=1,2,3 only)
:CASE 1
0100 INPUT "Name",A$:IF A$=""THEN 900
GOSUB 'Doname:GOTO 100
:CASE 2
0200 INPUT "Address",A$:IF A$=""THEN 900
GOSUB 'DoAddress
GOTO 200
:CASE 3
0300 INPUT "Zip",A$
. IF A$=""THEN 900
GOSUB 'DoZip
: GOTO 300
0900 END SWITCH

Compatibility Issues:

This statement is only supported with Release IV or greater.

References:

END SWITCH
SWITCH Default
Logical Constructs, Section 4.11 of the NPL Programmer’s Guide

2-27 NPL Statements Guide

LANGUAGE STATEMENTS CASE Logical

CASE Logical

General Form:

CASE logical-expression[,logical-expression]
Where:

logical-expression = {cond [logical-operator cond]...}

Discussion:

This statement may only occur within a logical SWITCH structure. Refer to SWITCH
Logical for an explanation of how this statement may be used within a logical SWITCH
structure to define the action to take for specific logical case values.

Examples:

The following is an example of valid syntax:
0010 CASE Machine$ = "I", Machine$ = "W"
0010 CASE Machine$ = "I" OR Machine$ ="W"
0010 CASE Index < Cachelndex

The following is an example for logical default CASE:
0010 number = RND(1023)
. SWITCH
. CASE number <= 0.25
PRINT "0.0 <=";number;" <= 0.25"
. CASE number <= 0.5
PRINT "0.25 < ";number;" <= 0.5"
. CASE number <=0.75
PRINT "0.5 < ";number;" <= 0.75"
. CASE
; default, always the last CASE statement
: PRINT "0.75 < ";number;" <= 1.0"
: END SWITCH

NPL Statements Guide 2-28

CASE Logical LANGUAGE STATEMENTS

CASE Logical (cont.)

0010 SWITCH
: CASE char$="a" OR char$="b",char$="c"
PRINT "a, b or c"
CASE char$> "c" AND char$<"m"
PRINT "d through I"
CASE
; this is the default
PRINT "m through z"
: END SWITCH
0020 SWITCH
: CASE Error_Code=48 OR Error_Code=37
Errtype = _RECOVERABLE :; changed our minds about these
CASE Error_Code<60
Errtype = _UNRECOVERABLE :; syntax and programming errors
CASE Error_Code<100
Errtype = _RECOVERABLE :; Range errors, I/O errors
CASE Error_Code<200
Errtype =_RESERVED ;;Future use
CASE Error_Code<300
Errtype =_UNRECOVERABLE : ;Extended errors
CASE Error_Code<500
Errtype=_RECOVERABLE : ;Extended errors
CASE Error_Code<600
Errtype=_UNRECOVERABLE : ;External errors
CASE Error_Code<800
Errtype=_RECOVERABLE : ;External errors
CASE
Errtype=_RESERVED . ;Future use
: END SWITCH

Compatibility Issues:
This statement is supported only with Release IV or greater.
References:

Logical Constructs - Section 4.11 of Programmer’s Guide
SWITCH Logical

2-29 NPL Statements Guide

LANGUAGE STATEMENTS CASE Numeric

CASE Numeric

General Form:

CASE numeric-expression[,numeric-expression]...

Discussion:

This statement may only occur within a numeric SWITCH structure. Refer to SWITCH
Numeric for an explanation of how this statement may be used within a numeric
SWITCH structure to define the action to take for specific case values.

Examples:

An example of valid syntax is shown below.

0010 CASE 0
0010 CASE 0,1,2,12,4

0010 CASE _PACK_IBMASCII_FORMAT
0010 CASE X(T),X(T2),X(T3)

0010 CASE 'LeftButton

An example of practical usage of the statement is shown below.

0010 ;
: SWITCH number
CASE 1,2,4,8,16
PRINT "powers of 2"
CASE _PACK_IBMASCII_FORMAT
PRINT "a format specification"
CASE array(T)
PRINT "an array element"
CASE 'real_random_num
PRINT "not very random"
CASE
: PRINT "try another number"
: END SWITCH

NPL Statements Guide 2-30

CASE Numeric

LANGUAGE STATEMENTS

CASE Numeric (cont.)

The following is an example of numeric default CASE:

0010 SWITCH day_of week
:CASE 1
PRINT "Monday"
: CASE 2
PRINT "Wednesday"
:CASE 4
PRINT "Thursday"
: CASE 5
: CASE 6
PRINT "Saturday"
:CASE 7
PRINT "Sunday"
: CASE
; default, always the last CASE statement
PRINT "There are only seven days in a week!"
: END SWITCH

Compatibility Issues:

This statement is only supported with Release IV or greater.

References:

SWITCH Numeric
Section 4.11 of the Programmer’s Guide

2-31

NPL Statements Guide

LANGUAGE STATEMENTS CASE String

CASE String

General Form:
CASE string-casel,string-casej...
Where:

string-case = {alpha-variable}
{literal-string}

Discussion:

This statement may only occur within a string SWITCH structure. Refer to SWITCH
String for an explanation of how this statement may be used within a string SWITCH
structure to define the action to take for specific case values.

Examples:
An example of valid syntax is shown below.

0010 CASE "Alligators"
0010 CASE Widget_Type$
0010 CASE Activity_Code$(Index)

An example of practical usage is shown below.

0010

: SWITCH Widget_Type$

: CASE "Gizmos" "GIZMOS"

: PRINT O

: CASE "Thingammies","THINGAMMIES"
PRINT 1

: CASE

: PRINT "En?"

: END SWITCH

The following is an example of default string CASE:

0010 SWITCH char$
: CASE "A", "B", "C"
PRINT "One of the first three letters of the alphabet."
: CASE
; default, always the last CASE statement
PRINT "One of the letters of the alphabet excluding A, B or C."
: END SWITCH

NPL Statements Guide 2-32

CASE String LANGUAGE STATEMENTS

Compatibility Issues:

This statement is only supported with Release IV or greater.

2-33 NPL Statements Guide

LANGUAGE STATEMENTS

CASE String

CASE String (cont.)

References:

SWITCH String
Section 4.11 of the NPL Programmer’s Guide

NPL Statements Guide

2-34

CLEAR LANGUAGE STATEMENTS

CLEAR

General Form:

CLEAR [V]
[N
[P [line-numberl][,[line-number2]]]

Discussion:

The CLEAR command is used to clear program text and variables from user memory.
A CLEAR command with no parameters:

* Resets the current LIST module to the RUN module.

* Clears all program text from the RUN module.

* Clears all static variables from the RUN module.

* Deletes any other modules which are no longer referenced and do not have com-
mon variables defined.

¢ Resets the device table to default values, and turns off STEP Mode and TRACE
Mode. In addition, it clears the screen and the system message appears.

The CLEAR function refers to program text in the current list module. This is set to the
currently executing module whenever a program HALTSs or continues, or when it is

changed using the MODULE command, and can be referenced using LIST DT.

A CLEAR N or a CLEAR V command clears all static and non-common variables from
the current LIST module only.

A CLEAR P command clears all program text from the current LIST module only.

2-35 NPL Statements Guide

LANGUAGE STATEMENTS CLEAR

CLEAR (cont.)

NOTE: Any command which can remove variable declarations or program text from a mod-
ule causes the module to deresolve.

Deresolution of a module always destroys the execution return stack and removes
all recursive variables, and PUBLIC variables declared by the module. Static vari-
ables are not removed immediately, but (non-common) static variables are removed
before the module is reresolved.

In addition, any modules which INCLUDE the deresolved module are also dere-
solved.

These range parameters operate as follows:

* Ifline-numberl is specified, all program lines starting at line-number1 up to the
end of the program are removed (e.g., CLEAR 1020).

» If ,(comma)line-number?2 is specified, all program lines starting at the beginning
of the program up to and including line-number2 are removed (e.g., CLEAR
,1060).

» Ifline-numberl,line-number?2 is specified, all program lines within the limits of
line-numberl to line-number?2 inclusive are removed (e.g., CLEAR 1020, 1060).

After executing a CLEAR statement of any kind as a programmable statement, the pro-
gram terminates and may not be CONTINUEGA.

CLEAR is executable only in the interpretive version of the RunTime. In the non-inter-
pretive version, execution of a CLEAR statement of any kind causes an exit from the
RunTime program.

NPL Statements Guide 2-36

CLEAR LANGUAGE STATEMENTS

CLEAR (cont.)

Examples:

:0010 PRINT "ABC"
:0020 PRINT "123"
:0030 PRINT "TEST"
:0040 FOR I=1 TO 10
:PRINT |
:NEXT |
:0050 J$="Y"
:0060 IF X$=J$ THEN 200
:0070 K=3
: M=2

:CLEAR P30,50 ... would remove lines 30 through 50
:CLEAR P50 ... would remove lines 50 and greater
:CLEAR P,30 ... would remove lines up to and including 30

Compatibility Issues:

With NPL Revision 4.0, a CLEAR statement, with no parameters, acts upon INCLUDEd
modules by effectively deleting them, if the modules are discardable under normal rules.

NOTE: This may cause /EXIT procedures to be executed in the affected modules.
The CLEAR statement is implemented in Revision 2.00 and greater of NPL.

The CLEAR statement is not a programmable statement in Wang 2200 Basic-2.
References:

Program Loading - Section 5.3 of the Programmer’s Guide
Modules - Section 4.10 of the Programmer’s Guide

2-37 NPL Statements Guide

LANGUAGE STATEMENTS $CLOSE

$CLOSE

General Form:

$CLOSH{file-number } [{file-number }] ...]
[{device-address} [{device-address}] ...]
[<address-var>,]

NOTE: The use of this statement is not recommended. Use the Niakwa Data Manager as a
better alternative.

Discussion:

The $SCLOSE statement releases one or more devices that may have been reserved for ex-
clusive access ("hogged") with the SOPEN statement. If no device address or file number
is specified, all devices currently "hogged" by a user are released.

Examples:

0010 $CLOSE#1,#2 #A

The result of the above is that files number 1,2,A (value of variable A) are
released for general use by other users.

0010 $CLOSE

The result of the above is that all files or devices "hogged" by user are re-
leased for general use by other users.

0010 $CLOSE/D12

The result of the above is that disk device D12 is released for general use by
other users.

0010 $CLOSE/215

The result of the above is that printer device 215 is released for general use
by other users.

0010 $CLOSE <A$>

The result of the above is that the device address stored in A$ is released for
general use by other users.

NPL Statements Guide 2-38

$CLOSE LANGUAGE STATEMENTS

$CLOSE (cont.)

Compatibility Issues:

In a multi-user environment, "device-hogging" emulates the Wang 2200 except in the
case of disk devices. In this case, "hogging" on a disk address is PLATTER-specific, not
DEVICE-specific.

For example, on a Wang 2200, assuming D20 is the removable disk on a Wang 2200
phoenix drive, SOPEN /D20 "hogs" the entire device (disks /D20 - /D25); whereas, under
NPL, SOPEN /D20 "hogs" only disk /D20.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

$OPEN
Exclusive Access - Section 7.2.4 of the Programmer’s Guide

2-39 NPL Statements Guide

LANGUAGE STATEMENTS COM

COM

General Form:
COMyvariable[,variable]...
Where:
variable = {numeric-scalar }
{numeric-array-name(subl1[,sub2]} }
{alpha-array-name(subl1[,sub2])[length]}
{alpha-scalar[length] }
diml1, dim2 = numeric-expression (1 <dim < 65535)
length = positive integer or numeric-scalar-variable
such that 1 <length < 65535
Discussion:

The COM statement is used to reserve memory for variables whose values should not be
cleared whenever new program overlays are loaded into memory. Variables defined in a
COM statement remain in memory when a program is cleared or overlayed by a new pro-
gram, unlike non-common variables (defined by DIM) which are cleared when a new pro-
gram is loaded or the current program is cleared. Common variables are useful in passing
data through multiple program overlays.

The COM statement must appear before any non-common variables are defined by DIM
statements or by reference. If a common variable is to be used by more than one program
running sequentially, the COM statement needs only to declare it in the first program. An
error is not generated if it appears in a COM statement in later programs, provided it is
given the same dimensions as in earlier programs.

Common variables are cleared by the CLEAR command and the CLEARV command,
and any time a LOAD RUN statement is executed.

Variables declared as COM are always declared as static variables which are private to
the module. They are never recursive, PUBLIC or local to a function, even if they appear
where a DIM statement would give the declared variable these attributes (i.e., in a PUB-
LIC section or within the body of a function).

NPL Statements Guide 2-40

COM LANGUAGE STATEMENTS

COM (cont.)

Use of COM variables to mark library modules as resident.

Normally, a library module (one that has been loaded as a result of an INCLUDE state-
ment) cannot perform overlays and has no need for COM type variables. Variables in a li-
brary module are not affected by programmed overlays, which affect only the RUN
module.

When a library module is no longer referenced by INCLUDE statements, both the code
and variables associated with it are removed. This occurs after the RUN module has been
resolved, but before it starts execution.

However, if the library module declares any common (COM) variables, NPL will not de-
lete the module. In this case, any COM variable serves as an indicator that the module
should be retained for future use.

A library that uses COM variables in this way should provide some public function
which will execute a COM CLEAR statement, in order that the module may be explicitly
deleted when it is no longer wanted.

Either dimension of an array may be specified as containing up to 65535 elements and

the length of any variable may be specified up to 65535 bytes. However, the maximum to-
tal number of array elements must not exceed 65535 and the total size of the array (num-
ber of elements * length) must not exceed 65535 bytes.

Dynamic Variable Dimensioning with COM

The length of variables defined by a COM statement can be specified by a numeric-sca-
lar-variable that has been defined as a COMmon variable and assigned a value in a prior
program.

The dimensions of a variable in the COM statement are permitted to be a numeric-expres-
sion. However, if variables are used in the expression, they must be declared in a pre-
vious COM statement. Useful expressions normally use as terms only constants, common
variables and, possibly, the SPACE function in some combination.

Default variable declaration is assumed by NPL when a variable reference appears with-
out any previous explicit declaration. Here, NPL takes one of two actions:

2-41 NPL Statements Guide

LANGUAGE STATEMENTS COM

COM (cont.)

a. If SOPTION byte 38 is set to HEX(01), an error occurs. All variable refer-
ences must be preceded by a declaration.

b. If SOPTION byte 38 is set to HEX(00), a variable may be declared by de-
fault in some cases, depending on the context in which the first variable ref-
erence in the program appears, according to the following table:

Location of First Variable Reference Default Allocation Types
Within a function body Not legal--error occurs
Outside all function bodies DIM/STATIC

NOTE: Constant variables must always be explicitly declared.
Examples:
0010 COM A$(SPACE-20000)1, B$((SPACE-1000)/C2)C2,C$(MAX(256,J))1

Declares variables which use, respectively, all but the last 20K of memory,
the remaining memory (after A$()) less 1K set up as elements of C2 bytes
each (assuming C2 is a common variable), and an array with either J bytes

or 256 bytes, whichever is larger (again, J is assumed to be a common vari-
able).

0010 COM X$24, Q$(4)4, X(4,4)
PROGRAML:

:0010 COM A,B,C

:0020 A=10: B=20: C=4

:0030 LOAD T"PROGRAM2"
‘RUN

PROGRAM2:

:0010 COM X$(A,B)C

This defines an array of 10 by 20 elements, each 4 bytes in length.

NPL Statements Guide 2-42

COM

LANGUAGE STATEMENTS

COM (cont.)

Compatibility Issues:

The Wang 2200 Basic-2 limitation of 124 characters on the length of a scalar has been ex-
tended to 65535. (Be aware, however, that 124 bytes is still the largest scalar variable
length which can be saved using a DATASAVE DC statement).

The memory overhead for variables is greater under NPL than on a Wang 2200:

Overhead under NPL
e.g. Variable Type Overhead on Wang 2200 One dimension Two dimension
X Numeric Scalar 4 bytes 8 bytes N/A
X() Numeric Array 6 12 bytes 14 bytes
X$ Alpha Scalar 5 10 bytes N/A
Alpha Array 7 14 bytes 16 bytes
Wang 2200 Basic-2 does not allow dimensions in a COM statement to be defined as an
expression. The Wang 2200 allows only constant and numeric-scalar common variables
to be used as variable dimensions.
References:
CLEAR[V]
COM CLEAR
DIM
LOAD RUN
2-43 NPL Statements Guide

LANGUAGE STATEMENTS COM CLEAR

COM CLEAR

General Form:

COM CLEAR|variable-name]

NOTE: The use of this statement is not recommended. Use program modules as a better al-
ternative.

Discussion:

The COM CLEAR statement is used to change the status of variables from common to
non-common or from non-common to common. The dimensions and values of the vari-
ables are not changed.

If no variable is specified in the COM CLEAR statement, all common variables are rede-
fined as non-common variables.

If a common variable name is specified in the COM CLEAR statement, that variable and
all variables that appeared in a COM statement after it are changed to non-common vari-
ables (as if they were specified in a DIM statement), while all common variables defined
before the specified variable remain common.

If a non-common variable is specified in the COM CLEAR statement, all non-common
variables defined before the specified variable become common variables.

NPL Statements Guide 2-44

COM CLEAR LANGUAGE STATEMENTS

COM CLEAR (cont.)

Examples:

0010 COM CLEAR
0010 COM CLEAR Q9%
0010 COM CLEAR X$()

:0010 COM A%$,B$

:0020 DIM C$,D$

:0030 COM CLEAR D$:REM A$, B$, and C$ are now common variables
D$ is non-common

:0040 COM CLEAR B$:REM B$,C$, and D$ are now non-common variables
AS$ is still common

‘RUN

Compatibility Issues:

References:

CcoM
DIM

2-45 NPL Statements Guide

LANGUAGE STATEMENTS & (Concatenation) Alpha-Operator

& (Concatenation) Alpha-Operator

General Form:
alpha-receiver = alpha-operand [& alpha-operand |...
Where:
alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable}
Discussion:

The concatenation alpha-operator combines the contents of the first alpha-operand with
the contents of the second alpha-operand without intervening characters into a single
character string and assigns the result to the alpha-receiver.

The concatenation alpha-operator may only be used in an alpha-expression in an alpha-as-
signment statement. Further, the concatenation alpha-operator is treated specially and
may not be combined with any other alpha-operator (except itself) in the same alpha-ex-
pression.

Examples:

:0010 A$="ONE" & "TWO"
:0020 PRINT A$

‘RUN

ONETWO

:0010 A$="ONE" & HEX(2B) & "TWQO"
:0020 PRINT A$

‘RUN

ONE+TWO

Compatibility Issues:

References:

LET Alpha-assignment

NPL Statements Guide 2-46

CONTINUE LANGUAGE STATEMENTS

CONTINUE

General Form:

CONTINUE

Discussion:

The CONTINUE command is used to resume normal execution of a program which has
temporarily been halted and is in Immediate Mode.

If a program is unresolved and the CONTINUE command is entered, an error occurs
(ERR A09 - Program Not Resolved).

When executed as a program statement, the CONTINUE statement causes STEP Mode to
be exited if in effect.

The CONTINUE statement performs no operation on the non-interpretive RunTime pro-
gram.

Examples:

:CONTINUE
:PRINT X: CONTINUE
100 CONTINUE

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

The CONTINUE statement is not a programmable statement in Wang 2200 Basic-2.
References:

STEP
Exiting Immediate Mode - Section 2.6.4 of the Programmer’s Guide

2-47 NPL Statements Guide

LANGUAGE STATEMENTS CONTINUE LOAD

CONTINUE LOAD

General Form:

CONTINUE LOAD

Discussion:

The CONTINUE LOAD command is used to resume normal execution of a program
which has temporarily been halted and is in Immediate Mode, until the next LOAD state-
ment is completed. At this point, Immediate Mode is reactivated. CONTINUE LOAD is
primarily a debugging tool which allows specific program modules to be inspected with-
out stepping through entire programs.

If a program is unresolved and the CONTINUE LOAD command is entered, an error oc-
curs (ERR A09 - Program Not Resolved).

When executed as a program statement, the CONTINUE LOAD statement causes STEP
Mode to be exited, if in effect, until the next LOAD statement is executed.

The CONTINUE LOAD statement performs no operation on the non-interpretive Run-
Time program.

Examples:

:CONTINUE LOAD
0010 PRINT A$: CONTINUE LOAD

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.
References:

LOAD
STEP
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

NPL Statements Guide 2-48

CONTINUE NEXT LANGUAGE STATEMENTS

CONTINUE NEXT

General Form:

CONTINUE NEXT

Discussion:

The CONTINUE NEXT command is used to temporarily resume normal execution of a
program which is in Immediate Mode (assuming the program was halted during normal
execution). The program continues normally until the loop associated with the most re-
cently executed FOR statement is completed. At this point, program execution again
halts, allowing for further Immediate Mode command entry. This is primarily a debug-
ging tool which allows FOR/NEXT loops to be rapidly completed while single-stepping
through a program.

If a program is unresolved and the CONTINUE NEXT command is entered, an error oc-
curs (ERR A09 - Program Not Resolved).

If program execution is not in a FOR/TO loop, CONTINUE NEXT generates an error
(P40 - No Corresponding FOR for NEXT Statement).

The FOR/TO loop may have been initialized using either the unstructured FOR/TO state-
ment or the FOR/BEGIN structured statement. It may not be used to rapidly complete
other types of structured loops, such as WHILE/WEND or REPEAT/UNTIL loops.

NOTE: The CONTINUE NEXT statement works only with the highest level of the return
stack. Therefore, execution of a CONTINUE NEXT statement is invalid when in a
subroutine called from within a loop. If subsequent NEXT statements are encoun-
tered after the CONTINUE NEXT statement is executed, program execution contin-
ues unaffected. Only completion of the corresponding FOR/TO loop causes
Immediate Mode to be invoked. The LIST STACK command can be used to exam-
ine the current status of active FOR/NEXT loops and subroutines.

The CONTINUE NEXT statement is legal wherever a NEXT statement is legal.

The CONTINUE NEXT statement performs no operation on the non-interpretive Run-
Time program.

2-49 NPL Statements Guide

LANGUAGE STATEMENTS CONTINUE NEXT

CONTINUE NEXT (cont.)

Examples:

CONTINUE NEXT

:0010 FOR X=1 TO 100

:0020 PRINT "X=";X

:0030 FOR Y=1TO 100

:0040 PRINT "Y="Y

:0050 NEXTY

:0060 PRINT "THIS IS IN THE "X" LOOP"
:0070 NEXT X

:0080 PRINT "BOTH LOOPS COMPLETE"

In this example, assume that STEP Mode has been invoked. If a CONTINUE NEXT
statement is entered before program execution of the FOR Y statement at line 30, pro-
gram execution continues until line 80 (until the FOR X loop is completed). If a CON-
TINUE NEXT statement is entered during execution of the FOR Y loop (at lines 40 or
50), program execution continues only until the FOR Y loop is completed.

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.
References:

FOR/TO

LIST STACK

NEXT

Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

NPL Statements Guide 2-50

CONTINUE RETURN LANGUAGE STATEMENTS

CONTINUE RETURN

General Form:

CONTINUE RETURN

Discussion:

The CONTINUE RETURN command is used to temporarily resume normal execution of
a program which is in Immediate Mode. The program continues normally until the RE-
TURN statement associated with the most recently executed GOSUB statement is en-
countered. At this point, program execution again halts, allowing for further Immediate
Mode command entry. This is primarily a debugging tool which allows subroutines to be
rapidly completed while single-stepping through a program.

If a program is unresolved and the CONTINUE RETURN command is entered, an error
occurs (ERR A09 - Program Not Resolved).

If program execution is not in a subroutine, CONTINUE RETURN generates an error
(P41 - RETURN without GOSUB).

NOTE: The CONTINUE RETURN command works only with the highest level of the re-
turn stack. However, execution of a CONTINUE RETURN statement is valid when
in a loop initialized in a subroutine. In addition, any subsequent subroutines which
are encountered during execution of a CONTINUE RETURN executes fully without
interruption (the RETURN statement associated with the subsequent subroutine
does not halt the program). Program operation continues until the RETURN state-
ment associated with the subroutine most recently executed at the time the CON-
TINUE RETURN command is encountered.

The CONTINUE RETURN statement is legal whenever a RETURN statement is legal.
CONTINUE RETURN may also be used to rapidly complete the current PROCEDURE
or FUNCTION call, when no additional GOSUB statements are pending since the PRO-
CEDURE/FUNCTION call was made.

In the case of a PROCEDURE, execution halts at the statement following the statement
containing the most recently called PROCEDURE.

2-51 NPL Statements Guide

LANGUAGE STATEMENTS CONTINUE RETURN

CONTINUE RETURN (cont.)

In the case of a FUNCTION, execution halts as soon as possible after returning the value
of the function, and before executing any additional statements. In the most common
case, statements will only contain one function call; in that case, execution will be halted
at the following statement.

For example:
PRINT 'get_number : PRINT "next statement"

In the above, the results from the FUNCTION ’get_number will be printed and execution
will stop before the phrase "next statement" is printed.

If the function is used as a term in a statement containing additional function calls, then
execution halts at the first statement within the body of the next function call.

For example:
PRINT STR(string$, 'start_index, 'number_chars)

If execution in the above were halted right after returning the value from the FUNCTION
’start_index, then the next statement to be executed would be the first statement encoun-
tered within the FUNCTION ’number_chars.

Examples:

:0010 GOSUB '100

:0020 PRINT "After completion of '100"
:0030 END

:0500 DEFFN'100

:0510 PRINT "In '100"

:0520 GOSUB '200

:0530 PRINT "After completion of '200"
:0540 RETURN

:0700 DEFFN’'200

:0710 PRINT "In 200"

:0720 RETURN

:RUN

NPL Statements Guide 2-52

CONTINUE RETURN

CONTINUE RETURN (cont.)

NOTE:

In this example, assume that STEP Mode has been invoked. If a CONTINUE RETURN
statement is entered (in Immediate Mode) before execution of the PRINT statement on
line 510, normal program execution continues until both subroutines *100 and *200 are
complete. Program execution halts (and Immediate Mode becomes available) before exe-
cution of the PRINT statement on line 20. If a CONTINUE RETURN statement is en-
tered before execution of the PRINT statement on line 710, normal program execution
continues only through the completion of subroutine *200. Program execution halts (and
Immediate Mode becomes available) before execution of the PRINT statement on line
530.

CONTINUE RETURN is also permitted if the top function call is a call to a PROCE-
DURE or FUNCTION. In the case of a PROCEDURE, execution halts when the proce-
dure exits using RETURN or executes END PROCEDURE. A FUNCTION call halts at
the start of the next statement following the RETURN (value).

If the FUNCTION result is a parameter to another FUNCTION, this may not be the
statement following the one in which the FUNCTION was called.

For example:

list

0010 FUNCTION ’'Stuff(X)

: RETURN (X)

: END FUNCTION

0020 FUNCTION 'Nonsense(T)
:STOP #

: RETURN (T)

: END FUNCTION

0030 PRINT 'Stuff('Nonsense(3))
0040 PRINT "Done"

run

STOP 0020

list stack

0030 PRINT 'Stuff('Nonsense(3))
'Nonsense

:continue return

'Stuff 0010 : RETURN (X): END FUNCTION

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

2-53

NPL Statements Guide

LANGUAGE STATEMENTS

LANGUAGE STATEMENTS CONTINUE RETURN

CONTINUE RETURN (cont.)

The CONTINUE RETURN statement performs no operation on the non-interpretive Run-
Time.

This statement is not valid in Wang 2200 Basic-2.
References:

END PROCEDURE

GOSUB

RETURN

STEP

Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

NPL Statements Guide 2-54

CONVERT LANGUAGE STATEMENTS

CONVERT

General Form:
CONVERTalpha-variable TO numeric-receiver
CONVERTnumeric-expression TO alpha-variable,(image)
Where:
image = A{[+] [8] [A.I]..[]#]..[""] [+]}
[F1]
[++]
-
{alpha-variable containing image '}
Discussion:

The CONVERT statement is used to convert an alpha-variable to a numeric-variable or a
numeric-expression to an alpha-variable.

Alpha-variable to Numeric-receiver:

This form of the CONVERT statement is used to convert the contents of an alpha-
variable to a numeric value. In this case, an image format to receive the numeric val-
ues is not required.

The contents of the alpha-variable specified must be an ASCII representation of a
valid numeric value. Otherwise, an error X75 (Illegal Number) generated.

Only the following characters are allowed in the alpha-variable: digits from "0" to

"9" "+" and "-" signs, decimal points (".") and spaces. Dollar signs ("$"), trailing
signs, "DB" and "CR", and commas cannot be part of the alpha-variable.

Numeric-expression to Alpha-variable:

2-55 NPL Statements Guide

LANGUAGE STATEMENTS CONVERT

This form of the CONVERT statement is used to convert the numeric value of the
specified numeric-expression to an alpha-string in a format specified by image, and
store the results in the specified alpha-variable. The alpha-variable must be dimen-

sioned large enough to hold the alpha-string, or only the first characters of the result
are stored.

NPL Statements Guide 2-56

CONVERT

LANGUAGE STATEMENTS

CONVERT (cont.)

The image specified must conform to the following rules:

1. A minimum of one "#" is required in the image.

2. Both leading and trailing signs may not occur within the same image.
3. The maximum number of characters allowed in an image is 254.

Two general formats of the image specification are supported: fixed point (###.##) and
exponential (##.###). The image controls the format of the alpha-variable based on
the numeric-expression as follows:

1. Each number sign ("#") corresponds to one digit.

2. For fixed-point images, if the number of digits to the left of the decimal point in the
numeric-expression exceeds the number of number signs ("#") to the left of the deci-
mal point in the image, an error X71 (Value Exceeds Format) occurs. If the image ex-
ceeds the expression, leading zeros are added. If the number of digits to the right of
the decimal point exceeds the number of number signs ("#") to the right of the deci-
mal point in the image, any extra digits are truncated.

3. The comma (","), and decimal point (".") are inserted at the proper location.

4. Sign ("+" or "-") may be specified as either the first or last byte of the image. If minus
("-") is used, the sign is only generated for negative values, a blank is inserted for
positive values. If a plus ("+") is used, the real sign of the value is always generated.
If no sign is specified, the absolute value of the expression is converted and no sign
byte is present in the alpha-variable.

5. The dollar sign ("$") is placed in the image at the corresponding location. It is either
the first byte or the second byte (if a leading sign is specified) of the alpha-variable.

6. Any spaces within the image are ignored.

2-57

NPL Statements Guide

LANGUAGE STATEMENTS CONVERT

CONVERT (cont.)

7. If the image format ends with a "++" or "--" sign, a "CR" or "DB", respectively, is
placed at the end of the alpha-variable string for any negative values. Positive values
end with two spaces.

8. If exponential format (") is specified, the value of the expression is converted to
the exponential format. In this case, the value is scaled to the format specification and
the exponent is set accordingly. The exponent is expressed in the form "E+nn" where
nn is the exponent.

Examples:
0010 CONVERT X$ TO X :REM ALPHA TO NUMERIC
0010 CONVERT STR(Q1$(),22,6) TO X1 :REM ALPHA TO NUMERIC
0010 CONVERT X TO X18$, (##### ##) :REM NUMERIC TO ALPHA
0010 CONVERT X(4)TO STR(Q$,14,9), (-#,###.##):REM NUMERIC TO ALPHA
0010 CONVERT A(l) TO BS,(####" M) :REM NUMERIC TO ALPHA
0010 CONVERT A(l) TO B$,(C$) :REM NUMERIC TO ALPHA

:0010 X=123.4567
:0020 CONVERT ROUND (-X,2) TO AS$, ($#, . ##++)
:0030 CONVERT X TO BS$, (###)
:0040 CONVERT X TO CS$,(##.#"")
:0050 F$="+###.1#"
: CONVERT X TO D$,(F$)
:0060 PRINT A$,B$,C$,D$
‘RUN
$0,123.46CR 123 12.3E+01 +123.45

Compatibility Issues:

References:

NPL Statements Guide 2-58

COPY LANGUAGE STATEMENTS

COPY

General Form:

COPY T [file#,] [(start-sector,end-sector)]
[disk-address, |
[<address-var>, |

TOT [file#,] [(destination-sector)]
[disk-address, |
[<address-var>, |

Where:

start-sector numeric-expression

end-sector numeric-expression

destination-sector numeric-expression

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

The COPY statement is used to copy sectors from the first diskimage to the second
diskimage. The information to be copied may be a range of sectors, specified in parenthe-
ses after the originating disk address, and may be copied starting at a certain sector on the
destination diskimage, specified in parentheses after the destination disk address. If no
destination sector is specified, the same starting sectors on both diskimages are used. If
no start-sector or end-sector is specified for the originating diskimage, all sectors up to
the current catalog end are copied.

Examples:

0010 COPY T/D20, TO T/D22,
Copy from D20 to D22 from sector 0 to the current end of catalog of D20.

0010 COPY T/D21,(10,300) TO T

2-59 NPL Statements Guide

LANGUAGE STATEMENTS COPY

Copy from D21, sectors 10 through 300 to currently selected disk address,
starting at sector 10.

NPL Statements Guide 2-60

COPY LANGUAGE STATEMENTS

COPY (cont.)

0010 COPY T(0,5000) TO T#2,(6000)

Copy from current disk address sectors 0 through 5000 to the disk specified
as file#2 in the internal device table, starting at sector 6000.

0010 COPY T#X,(300,400) TO T#Y,

Copy from the disk specified as file #X, sectors 300 through 400, to the
disk specified as file #Y in the internal device table, starting at sector 300.

0010 COPY T<A$>, TO T<B$>,

Copy from the device address stored in <A$> to the device address stored
in <B$>, from sector 0 to the current end of catalog of <A$>.

Compatibility Issues:

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

The COPY statement executes as it does on the Wang 2200, except when the results of
the COPY would cause data to be written beyond the physical end of the diskimage.

On a Wang 2200, an error 198 (Illegal Sector Address or Plotter Not Mounted)
would result.

In NPL, the destination diskimage would be extended to the size needed to accommodate
the write operation. If insufficient disk space is available, an error 198 (Illegal Sector Ad-
dress or Plotter Not Mounted) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of disk
-image files.

NOTE: The use of non-cataloged disk space is not recommended. Refer to Chapter 5 of the
appropriate NPL Supplement for details on support of non-cataloged disk space on
the hardware system.

2-61 NPL Statements Guide

LANGUAGE STATEMENTS COPY

COPY (cont.)

References:

Internal Device Table - Section 7.2.3 of the Programmer’s Guide
Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide 2-62

COS Function LANGUAGE STATEMENTS

COS Function

General Form:

COSnumeric-expression)

Discussion:

The COS function computes the value of the cosine of a numeric-expression. This is
valid wherever a numeric expression is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

0010 B = Y4+W6+32*COS(E9-10)
0010 H(K) = M3-COS(N-INT(N/90)*90)
0010 V7 = 25

0020 X8 = COS (V7 + 45)

0030 PRINT X8

‘RUN

.63331920308472

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

2-63 NPL Statements Guide

DAC Alpha-operator LANGUAGE STATEMENTS

DAC Alpha-operator

General Form:
alpha-receiver = [..] DAC alpha-operand [...]
Where:
alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }
Discussion:

The DAC (decimal add with carry) alpha-operator adds the decimal value of the alpha-op-
erand to the decimal value of the alpha-receiver. The DAC alpha-operator may only be
used in an alpha-expression in an alpha-assignment statement.

The DAC operation assumes that both operands contain valid, unsigned BCD (Binary
Coded Decimal) data, where data consists of two digits per byte, and each of those digits
is a number between 0 to 9. DAC does not check the operand contents for validity prior
to adding; consequently, the resultant is unpredictable if operands contain invalid data.

Each byte of the alpha-operand is added (in base 10 arithmetic) to each corresponding
byte of the receiving alpha-variable; carry propagation is automatically performed be-
tween bytes.

If the values of the alpha-operand and the receiving alpha-variable are of different length,
then the DAC algorithm implicitly extends the shorter value with leading zeroes prior to
the operation. If the resultant is larger than the receiving alpha-variable, then the extrane-
ous high order bytes of the resultant are truncated before assignment.

NOTE: Contrary to conventional alpha-variable operations, the DAC alpha-operator oper-
ates on all bytes of an alpha-variable (either as a receiver or an alpha-operand), in-
cluding trailing spaces.

2-60 NPL Statements Guide

LANGUAGE STATEMENTS DAC Alpha-operator

DAC Alpha-operator (cont.)

Examples:

0010 A$=DAC MyRec$.field1$
0010 A$=B$ DAC HEX(0001)
0010 A$=DAC STR(B$,5,3)

:0010 DIM A$3,C$3

:0020 PACK (######) A$ FROM 9990
:0030 C$=A%$ DAC HEX(0060)

:0040 PRINT HEXOF(C$)

‘RUN

10050

Compatibility Issues:

The Decimal Add with Carry operation accepts invalid packed decimal numbers as an al-
pha-expression in Wang 2200 Basic-2. In this case, the results are predictable but mean-
ingless.

NPL is compatible with Wang 2200 Basic-2 with respect to the DAC operator, provided
the alpha-expression contains valid packed decimal values.

References:

DSC
PACK
$PACK
UNPACK
SUNPACK
VER

NPL Statements Guide 2-61

DATA LANGUAGE STATEMENTS

DATA

General Form:

DATA ({literal-string }[{literal-string }]...
{numeric-constant}{numeric-constant }

Discussion:

The DATA statement is used to define a list of alpha or numeric constants that are used
as input to the READ and MAT READ statements.

The DATA statement provides a method of storing tables of alpha and/or numeric con-
stants within a program. The RESTORE statement allows repetitive use of the DATA
statement values by resetting DATA pointers to a specified point.

The DATA statement is not valid in Immediate Mode.

Examples:

0010 DATA 6
0010 DATA "ABC", HEX(10),HEX(20)

0010 DATA 6, 9, 8, 4, 40, 35.6, 3E06

0010 DATA "ABC", "COMPANY 7", "MARCH 25, 1983"
0010 DATA 1, "A", 2, "B", 3E06, "Z"

Compatibility Issues:

References:

MAT READ
READ
RESTORE

2-62 NPL Statements Guide

LANGUAGE STATEMENTS DATA LOAD BA

DATA LOAD BA

General Form:

DATALOAD BA T [file-number, | (exprl[return-value])
[disk-address, |
[<address-var>,]
alpha-variable

Where:
exprl = an alpha-variable or numeric-expression.
return-value = an alpha-variable or numeric-receiver.
alpha-variable = alpha-variable into which the data is to

be loaded (must be > 256 bytes).

NOTE: The use of this statement is not recommended. Refer to the Niakwa Data Manager
as a better alternative.

Discussion:

The DATA LOAD BA statement is used to load the raw, unformatted contents of a speci-
fied sector address (exprl) into the first 256 bytes of the specified alpha-variable. If the al-
pha-variable is dimensioned larger than 256 bytes, the remaining bytes are not affected

by the DATALOAD BA statement.

Exprl contains the sector-number to be loaded. If exprl is an alpha-variable, the binary
value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the sector number accessed by the operation. If return-value is an alpha-
variable, the value is contained in the first two bytes in binary.

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65535. Refer to Section 7.3.10 of the Programmer’s Guide
for additional programming considerations for use of extended diskimages.

NPL Statements Guide 2-63

DATA LOAD BA LANGUAGE STATEMENTS

DATA LOAD BA (cont.)

DATALOAD BA is a direct access instruction, as opposed to a catalog instruction. That
is, the internal device table is not used or affected by a DATALOAD BA instruction (ex-
cept to determine the diskimage address if a file-number is specified).

Use of FUNCTIONS as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter SOPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:
Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),'"FunctionResult$,array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$('Nextindex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:

0010 DATA LOAD BA T(Q$,Q$) A$()

0010 DATA LOAD BA T#1, (X-1,X) X$

0010 DATA LOAD BA T#S, (R$,R) STR(Z$(),257,256)
0010 DATA LOAD BA T/D10, (R$) Z$

0010 DATA LOAD BA T#4, (X) K$()

0010 DATA LOAD BA T/D12, (30) R$()

0010 DATA LOAD BA T<A$>, (30) R$()

Compatibility Issues:

Wang 2200 Basic-2 requires that the receiving variable be an array-variable. NPL allows
an array-variable or an alpha-scalar variable as the receiving variable.

Use of the address-var parameter is only supported by NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

DATA SAVE
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

2-64 NPL Statements Guide

LANGUAGE STATEMENTS DATA LOAD BM

DATA LOAD BM

General Form:

DATALOAD BM T [file-number, | (exprl[return-value])
[disk-address, |
[<address-var>,]
alpha-variable

Where:
exprl = an alpha-variable or numeric-expression.
return-value = an alpha-variable or numeric-receiver.
alpha-variable = alpha-variable into which data is to be

loaded.

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATALOAD BM statement is used to load the raw, unformatted contents of the
specified sector address (exprl) into the specified alpha-variable. Enough sectors are read
to fill the specified alpha-variable. A buffer of zero bytes reads zero sectors. If the opera-
tion would require that a sector beyond the physical end of the diskimage be read, an 198
error (Illegal Sector Address and Platform Not Mounted) results and the data in the speci-
fied alpha-variable is undefined.

Exprl contains the starting sector-number to be loaded. If exprl is an alpha-variable, the
binary value of the first two bytes is used.

NOTE: Use of alpha-variables for the starting sector-number is not advised for diskimage
files where the EXT=Y clause has been specified. Refer to Section 7.3.10 of the Pro-
grammer’s Guide for further details on extended diskimages.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

NPL Statements Guide 2-65

DATA LOAD BM LANGUAGE STATEMENTS

DATA LOAD BM (cont.)

NOTE: An error P51 (Variable or Value Too Short) results if an alpha-variable is specified
as the return-variable and the sector number exceeds 65535 (extended diskimage in
use). Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

DATALOAD BM is a direct access instruction as opposed to a catalog instruction; there-
fore, the internal device table is not modified by a DATALOAD BM instruction.

Use of FUNCTIONS as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter SOPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:
Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2%$(),'FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$('Nextindex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:

0010 DATA LOAD BM T(Q$,Q3) A$()

0010 DATA LOAD BM T#1, (X-1,X) X$()

0010 DATA LOAD BM T#S, (R$,R) STR(Z$(),513,512)
0010 DATA LOAD BM T<A$>, (R$) Z$()

0010 DATA LOAD BM T/D12, (30) R$()

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.
On a Wang 2200, the highest sector number that can be referenced is 65535. In NPL, if
the EXT=Y clause is specified on the $DEVICE statement, sector numbers above 65535

can be used. Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

Use of the address-var parameter is not supported on the Wang 2200.

2-66 NPL Statements Guide

LANGUAGE STATEMENTS DATA LOAD BM

DATA LOAD BM (cont.)

References:

DATA LOAD BA

DATA SAVE BM

Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide 2-67

DATA LOAD DA LANGUAGE STATEMENTS

DATA LOAD DA

General Form:

DATALOAD DAT [file-number, | (exprl[return-value])
[disk-address, |
[<address-var>,]
variable-list

Where:

exprl = an alpha-variable or numeric-expression.

return-value an alpha-variable or numeric-receiver.

variable-list {alpha-variable }[{alpha-variable }]...
{alpha-array NHalpha-array }
{numeric-receiver }{numeric-receiver }

{numeric-array }{numeric-array '}

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

DATA LOAD DA is used to load logical data records beginning at a specified sector
number into a specified variable-list. The variable-list may contain a mix of alpha and nu-
meric variables.

Exprl contains the first sector-number to be loaded. If exprl is an alpha-variable, the bi-
nary value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

If an end-of-file trailer record is encountered during a read, no additional data is read, and
the remaining variables in the variable-list retain their current values. The end-of-file con-
dition is then set (and can be tested with an IF END THEN statement), and the return-
value is set to the sector number of the end-of-file trailer record.

2-68 NPL Statements Guide

LANGUAGE STATEMENTS DATA LOAD DA

DATA LOAD DA (cont.)

HINT:

Values are assigned sequentially to variables in the list. The variable list may include ar-
ray designators such as A$() or A(). This indicates that the entire array is to be loaded ele-
ment-by-element. An attempt to load numeric data into an alpha-variable or alpha data
into a numeric-variable generates an error. If an alpha value is shorter than the variable,
the variable is padded with spaces. If an alpha value is longer than the variable, the vari-
able is filled with the truncated value.

Normally, the data have been previously saved with a DATA SAVE DC or DATA
SAVE DA statement using a variable-list with the identical types and sizes of variables
listed in the same order.

DATALOAD DA is a direct access instruction, as opposed to a catalog instruction; there-
fore, the internal device table is not used or affected by a DATALOAD DA instruction
(except to determine the diskimage address if a file-number is specified).

Use of FUNCTIONS as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter SOPEN, may result in a disk operation which is not integral.
Any implied lock that the RunTime would issue against the disk is released for the dura-
tion of the function call. If the application depends on this implied lock to maintain data
integrity, arguments should be evaluated separately from the DATALOAD/DATASAVE
statement.

For example:
Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2%$(),'FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$('Nextindex),Array2$()

Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:

0010 DATA LOAD DA T(Q$,Q3$) A$,B

0010 DATA LOAD DA T#1, (X-1,X) A$(), B$, C(), D()
0010 DATA LOAD DA T#S, (R$,R) X, Y, Z$()

0010 DATA LOAD DA T/D10, (R$) Z$(), X, A$

0010 DATA LOAD DA T#4, (X) K$(), STR(A$ 2,3), A(2)
0010 DATA LOAD DA T/D12, (30) R$, S

0010 DATA LOAD DA T<A$>, (30) RS, S$

NPL Statements Guide 2-69

DATA LOAD DA LANGUAGE STATEMENTS

DATA LOAD DA (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater and is not supported on the
Wang 2200.

References:

DATA SAVE DA, DC
IF END THEN
Cataloged Files - Section 7.3.7 of the Programmer’s Guide

2-70 NPL Statements Guide

LANGUAGE STATEMENTS DATA LOAD DC

DATA LOAD DC

General Form:
DATALOAD Ddfile-number, Jvariable-list
Where:

variable-list = {alpha-variable }[{alpha-variable }]...
{alpha-array } {alpha-array }
{numeric-receiver} {numeric-receiver}
{numeric-array } {numeric-array }

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATA LOAD DC statement is used to load logical data records from a cataloged
disk file into a specified list of variables. Each execution of the statement reads one or
more logical data records until the variable-list is filled.

Values are assigned sequentially to variables in the list. The variable-list may include ar-
ray designators such as A$() or A(). This indicates that the entire array is to be loaded ele-
ment-by-element. An attempt to load numeric data into an alpha-variable or alpha data
into a numeric-variable generates an error. If an alpha value is shorter than the variable,
the variable is padded with spaces. If an alpha value is longer than the variable, the vari-
able is filled with the truncated value.

If there is data beyond what can be contained in the variables-list, that data is disregarded.

If an end-of-file trailer record is encountered during a read, no additional data is read, and
the remaining variables in the variable-list remain at their current values. The end-of-file
condition is then set (and can be tested with an [F END THEN statement), and the cur-
rent sector pointer is set to the sector address of the end-of-file trailer record.

The file-number corresponds to a file previously opened with a DATASAVE DC OPEN
or DATALOAD DC OPEN statement.

NPL Statements Guide 2-71

DATA LOAD DC LANGUAGE STATEMENTS

DATA LOAD DC (cont.)

Normally, the data has been previously saved with a DATASAVE DC or DATASAVE
DA statement, using a data list with the identical types and sizes of variables listed in the
same order.

DATALOAD DC is a catalog instruction. That is, the starting sector to be used for the
read is determined from the "current” slot of the internal device table entry for the file #
specified. The "current” slot of the internal device table is updated to the sector# follow-
ing the last sector read by the statement.

Examples:

0010 DATA LOAD DC A$,B
0010 DATA LOAD DC #1, A$(), B$, C(), D()
0010 DATA LOAD DC #S, X, Y, Z$()

Compatibility Issues:

In Revision 4.0, if the status of open files is changed by a FUNCTION call in an argu-
ment of a DATASAVE DC or DATALOAD DC statement, this is not detected as a run-
time error. The status of the file is checked only at the start of the statement.

References:

DATA LOAD DC OPEN

DATA SAVE DA

DATA SAVE DC OPEN

IF END THEN

Catalog Access - Section 7.3.8 of the Programmer’s Guide

2-72 NPL Statements Guide

LANGUAGE STATEMENTS DATA LOAD DC OPEN

DATA LOAD DC OPEN

Where:

General Form:

DATALOAD DC OPEN T [file-number, [{file-name }
{TEMP[,]start, end}

file-name = an alpha-variable or literal-string containing the
name of the file to be opened.
TEMP =temporary work file being reopened.

start = a numeric-expression specifying the starting sector
number of the temporary work file.

end = a numeric-expression specifying the ending sector
number of the temporary work file.

NOTE:

The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATALOAD DC OPEN statement is used to open a previously cataloged file for fur-
ther processing. An error results if the file cannot be located or if it has been scratched.
Once open, data may be loaded from or saved to the file using disk catalog operations.

The file name to be opened is indicated by an alpha-variable or literal-string from one to
eight characters in length.

Upon execution of the DATALOAD DC OPEN statement, the internal device table entry
for the file # specified (file #0, if no file # is specified) is updated with the starting, cur-
rent, and ending sector numbers of the specified file. Current is initialized to be equal to
the starting sector address of the file.

NPL Statements Guide 2-73

DATA LOAD DC OPEN LANGUAGE STATEMENTS

The TEMP parameter is used to specify that a temporary working file be reopened. Tem-

porary files are not cataloged files and must have been created outside the catalog area.
The starting and ending sector addresses must be specified. The starting sector address

must be greater than the End Catalog sector.

2-74 NPL Statements Guide

LANGUAGE STATEMENTS DATA LOAD DC OPEN

DATA LOAD DC OPEN (cont.)

WARNING--The starting and ending sector numbers of temporary files are stored lo-
cally by the CPU. This means that it is possible for the same file space to be allocated si-
multaneously to more than one user within a multi-user environment. Since the system
cannot restrict this from occurring, use special care with this technique.

Examples:
0010 DATA LOAD DC OPEN T "FILE1"
0010 DATA LOAD DC OPEN T#1, "DATAFILE"

0010 DATA LOAD DC OPEN T#X, A$
0010 DATA LOAD DC OPEN TEMP 1000,2000

Compatibility Issues:

The temporary working file is supported for compatibility purposes but is not recom-
mended.

References:

Catalog Access - Section 7.3.8 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide 2-75

DATA SAVE BA LANGUAGE STATEMENTS

DATA SAVE BA

General Form:

DATASAVE BA T[$][file-number,] (exprl[return-value])
[disk-address, |
[<address-var>,]
{alpha-variable}

{literal-string}
Where:
exprl = an alpha-variable or numeric-expression.
return-value = an alpha-variable or numeric-receiver.
alpha-variable = alpha-variable containing data to be saved.

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE BA statement is used to save the contents of the first 256 bytes of an al-
pha-variable at a specified sector number.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Exprl contains the sector-number to be saved. If exprl is an alpha-variable, the binary
value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the sector number accessed by the operation. If return-value is an alpha-
variable, the value is contained in the first two bytes in binary.

2-76 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE BA

DATA SAVE BA (cont.)

HINT:

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

If the alpha-variable to be saved is longer than 256 bytes, only the first 256 bytes are
saved. If the alpha-variable is less than 256 bytes, the remainder of the sector is filled
with unpredictable values.

DATASAVE BA is a direct access instruction as opposed to a catalog instruction; there-
fore, the internal device table is not modified by a DATASAVE BA instruction.

Normally, data saved with a DATASAVE BA statement is read back using a DATA-
LOAD BA statement. No control information is saved with the DATASAVE BA state-
ment.

Use of FUNCTIONS as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter SOPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2%$(),'FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$('Nextindex),Array2$()

Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

NPL Statements Guide 2-77

DATA SAVE BA LANGUAGE STATEMENTS

DATA SAVE BA (cont.)

Examples:

0010 DATA SAVE BA T(Q$,Q$) A$()

0010 DATA SAVE BA T#1, (X-1,X) X$()

0010 DATA SAVE BA T#S, (R$,R) STR(Z$(),257,256)
0010 DATA SAVE BA T/D10, (R$) Z$()

0010 DATA SAVE BA T#4, (X) HEX(43472CFF20)
0010 DATA SAVE BA T/D12, (30) R$()

0010 DATA SAVE BA T<A$>, (30) R$()

Compatibility Issues:

The DATASAVE BA statement executes as it does on the Wang 2200, except when the
results of the DATASAVE BA would cause data to be written beyond the physical end of
the diskimage.

On a Wang 2200, an error 198 (Illegal Sector Address or Platter Not Mounted) would re-
sult.

In NPL, the diskimage would be extended to the size needed to accommodate the write
operation. If insufficient disk space is available, an error 198 (Illegal Sector Address or
Platter Not Mounted) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of disk-im-
age files.

NOTE: The use of non-cataloged disk space is not recommended. Refer to Chapter 5 of the
NPL Supplement for details on support of non-cataloged disk space on the hard-
ware system.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

DATA LOAD BA
Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide

2-78 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE BA

Extended Diskimages - Section 7.3.10 of the Programmer’s Guide
Native OS Files as Diskimage Files - Section 7.3.4 of the Programmer’s Guide

NPL Statements Guide 2-79

DATA SAVE BM LANGUAGE STATEMENTS

DATA SAVE BM

General Form:

DATASAVE BM T[$][file-number,] (exprl[return-value])
[disk-address, |
[<address-var>,]

data-value
Where:
exprl = an alpha-variable or numeric-expression.
return-value = an alpha-variable or numeric-receiver.
data-value = an alpha-variable or literal-string containing the

data to be saved.

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE BM statement is used to save the contents of the specified alpha-vari-
able or literal string starting at a specified sector number. If the data to be written exceeds
256 bytes, multiple sectors are written. If the last sector to be written is not filled by the
specified alpha-variable or literal, the remainder of the sector is filled with HEX(00). A
buffer with zero bytes writes zero sectors.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Exprl contains the starting sector-number to be saved. If exprl is an alpha-variable, the
binary value of the first two bytes is used.

NOTE: Use of alpha-variables for the starting sector-number is not advised for diskimage
files where the EXT=Y clause has been specified. Refer to Section 7.3.10 of the Pro-
grammer’s Guide for further details on extended diskimages.

2-80 NPL Statements Guide

LANGUAGE STATEMENTS

DATA SAVE BM (cont.)

NOTE:

NOTE:

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

An error P51 (Variable or Value Too Short) results if an alpha-variable is specified
as the return-variable and the sector number exceeds 65535 (extended diskimage in
use). Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

DATASAVE BM is a direct access instruction as opposed to a catalog instruction; there-
fore, the internal device table is not modified by a DATASAVE BM instruction.

Normally, data saved with a DATASAVE BM statement is read back using a DATA-
LOAD BM or DATA LOAD BA statement. No control information is saved with the
DATASAVE BM statement.

Use of DATA SAVE BM, as opposed to DATA SAVE BA, could result in significant
gains in disk efficiency of the application when:

1. The amount of data to be written is equal to or an even multiple of the host operating
system physical sector size for the disk being written to. This is typically 512 bytes
but the actual size may vary. Refer to the appropriate NPL Supplement for details.

2. The starting sector for the operation corresponds to the start of the host operating sys-
tem sector. Since sector zero of the NPL diskimage is always located at the start of a

host operating system physical sector, this can be determined.

For example, with the typical physical sector size of 512 bytes, all NPL even-numbered
sectors (0,2,4, etc.) are located at the start of a physical sector.

There are two reasons for the efficiency gain:

1. Since the entire host operating physical sector is to be modified, no pre-read is
needed.

NPL Statements Guide 2-81

DATA SAVE BM

DATA SAVE BM LANGUAGE STATEMENTS

DATA SAVE BM (cont.)

NOTE: NPL itself does not perform the pre-read. Rather, this is handled automatically by
the operating system.

2. Multiple sectors may be written in one physical operation.

For example, assume that, on an MS-DOS system where the physical sector size is 512
bytes, disk D11 begins at physical sector 1000.

NOTE: The application does not need to know the physical sector numbers-it is given here
for purposes of illustration. Further, assume that X$() is dimensioned to a length of

512. The following statements result in physical I/O as indicated:

DATA SAVE BM T/D11,(0)X$()
Writes one physical sector (sector 1000) of 512 bytes.
DATA SAVE BA T/D11,(0)STR(X$(),1,256)
DATA SAVE BA T/D11,(1)STR(X$(),257,256)
Will:
a. Reads physical sector 1000
b. Modifies the first 256 bytes of physical sector 1000.
c. Writes physical sector 1000.
d. Reads physical sector 1000.
e. Modifies the second 256 bytes of sector 1000.
f. Writes physical sector 1000.

NOTE: Some of these operations, particularly the second read, would be from buffered data.

2-82 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE BM

DATA SAVE BM (cont.)

HINT:

Use of FUNCTIONS as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter SOPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:
Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2%$(),'"FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$('Nextindex),Array2$()

Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:

0010 DATA SAVE BM T(Q$,Q$) A$()

0010 DATA SAVE BM T#1, (X-1,X) X$()

0010 DATA SAVE BM T#S, (R$,R) STR(Z$(),513,512)
0010 DATA SAVE BM T<X$>, (R$) Z$()

0010 DATA SAVE BM T<A$>, (X) HEX(43472CFF20)
0010 DATA SAVE BM T/D12, (30) R$()

Compatibility Issues:

The behavior of DATASAVE BM is different from the Wang 2200 when the results of
the DATASAVE BM would cause data to be written beyond the physical end of the
diskimage:

On a Wang 2200, an error 198 (Illegal Sector Address or Platter Not Mounted) would
result.

In NPL, the diskimage would be extended to the size needed to accommodate the
write operation. If insufficient disk space is available, an error 198 (Illegal Sector Ad-
dress) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of disk-
image files.

NPL Statements Guide 2-83

DATA SAVE BM LANGUAGE STATEMENTS

DATA SAVE BM (cont.)

NOTE: The use of non-cataloged disk space is not recommended. Refer to Chapter S of the
NPL Supplement for details on support of non-cataloged disk space on the hard-
ware system.

DATA SAVE BM is supported in Revision 3.0 and greater of NPL.

On a Wang 2200, the highest sector number that can be referenced is 65535. In NPL, if
the EXT=Y clause is specified on the $DEVICE statement, sector numbers above 65535
can be used. Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

Use of the address-var parameter is not supported on the Wang 2200.
References:

DATA LOAD BA, BM

DATA SAVE BA, BM

Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

2-84 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE DA

DATA SAVE DA

General Form:

DATASAVE DA T[$][file-number,] (exprl[return-value])
[disk-address, |
[<address-var>,]
{variable-list}

{END }
Where:
exprl = an alpha-variable or numeric-expression.
return-value = an alpha-variable or numeric-receiver.
variable-list = {alpha-variable }[{alpha-variable }]...

{literal-string } {literal-string }
{numeric-variable } {numeric-variable }
{numeric-expression} {numeric-expression}

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DA statement is used to save variables, expressions, or literals as logi-
cal data records beginning at a specified sector number.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Exprl contains the first sector-number to be saved. If exprl is an alpha-variable, the bi-
nary value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

NPL Statements Guide 2-85

DATA SAVE DA LANGUAGE STATEMENTS

DATA SAVE DA (cont.)

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use, and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

Values are saved sequentially as listed. The variable-list may include array designators
such as A$() or A(). This indicates that the entire array is to be saved element-by-ele-
ment. Alpha-values cannot exceed 124 characters.

If the "END" parameter is used, an end-of-file trailer record is written. This record can be
used to check for end-of-file with an IF END THEN statement. The "number of sectors
used" entry in the catalog is not updated, however.

DATASAVE DA is a direct access instruction as opposed to a catalog instruction. That
is, the internal device table is not affected by a DATASAVE DA instruction.

Use of FUNCTIONS as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter SOPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),'"FunctionResult$,array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$('Nextindex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

2-86 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE DA

DATA SAVE DA (cont.)

Examples:

0010 DATA SAVE DA T(Q$,Q$) A$, 2*B+1, "TEST", D$()
0010 DATA SAVE DA T#1, (X-1,X) A$(), BS$, C(), D()
0010 DATA SAVE DA T$#S, (R$,R) X, Y, Z$()

0010 DATA SAVE DA T/D10, (R$) Z$(), X, A$

0010 DATA SAVE DA T$#4, (X) K$(), STR(A$,2,3), A(2)
0010 DATA SAVE DA T/D12, (30) END

0010 DATA SAVE DA T<A$>, (30) END

Compatibility Issues:

The DATASAVE DA statement executes as it does on the Wang 2200, except when the
results of the DATASAVE DA would cause data to be written beyond the physical end
of the diskimage.

On a Wang 2200, an error 198 (Illegal Sector Address or Platter Not Mounted) would
result.

In NPL, the diskimage would be extended to the size needed to accommodate the
write operation. If insufficient disk space is available, an error (Illegal Sector Ad-
dress or Platter Not Mounted) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of
diskimage files.

Refer to Chapter 5 of the NPL Supplement for details on support of non-cataloged disk
space for the hardware system.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide 2-87

DATA SAVE DC LANGUAGE STATEMENTS

DATA SAVE DC

General Form:

DATASAVE DC [$][file-number, J{variable-list}

{END }
Where:
file-number = afile previously opened with a DATASAVE DC OPEN
or DATALOAD DC OPEN statement.
variable-list = {alpha-variable }[{alpha-variable }]...

{literal-string } {literal-string }
{numeric-variable } {numeric-variable }
{numeric-expression} {numeric-expression}

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DC statement is used to save variables, expressions, or literals as logi-
cal data records in a cataloged file. Each execution of the statement saves the next logical
data record.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Values are saved sequentially as listed. The data list may include array designators such
as AS$() or A(). This indicates that the entire array is to be saved element-by-element. Al-
pha string variables cannot exceed 124 characters.

If the "END" parameter is used, an end-of-file trailer record is written, the date/time
stamp of the file is updated with the current date and time, and the "number of sectors
used" value in the trailer record is updated.

DATASAVE DC is a disk catalog instruction, as opposed to a direct access instruction.
That is, the starting sector is read from the "current” slot of the internal device table and
the "current" slot of the internal device table is updated to the next number following the
last sector written by the statement.

2-88 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE DC

DATA SAVE DC (cont.)

Examples:

0010 DATA SAVE DC A$, 2*B+1, "TEST", D$()
0010 DATA SAVE DC #1, A$(), BS$, C(), D()
0010 DATA SAVE DC $#S, X, Y, Z$()

0010 DATA SAVE DC #X, END

Compatibility Issues:

The Date/Time stamp is implemented in Revision 2.00 and greater of NPL.
The Date/Time stamp is not implemented in Wang 2200 Basic-2.

File trailer storage of the Date/Time stamp in catalog data files is implemented in Revi-
sion 2.01 of NPL.

File trailer storage of the filename and status of catalog data files is implemented in Revi-
sion 3.00 of NPL.

Revision 3.20 of NPL implemented byte 40 of SOPTIONS to allow developers to sup-
press all trailer section information of catalog data files.

References:

Cataloged Files - Section 7.3.7 of the Programmer’s Guide
Catalog Access - Section 7.3.8 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide 2-89

DATA SAVE DC CLOSE LANGUAGE STATEMENTS

DATA SAVE DC CLOSE

General Form:

DATASAVE DC CLOSE [file-number]
ALL]

Where:

file-number = afile previously opened with a DATASAVE DC OPEN or
DATALOAD DC OPEN statement.

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DC CLOSE statement is used to close files previously opened with
DATASAVE DC OPEN or DATALOAD DC OPEN.

The DATASAVE DC CLOSE statement initializes the internal device table information
to zero but does not internally affect the closed files.

If the "ALL" parameter is specified, all open files are closed.

Examples:

0010 DATA SAVE DC CLOSE
0010 DATA SAVE DC CLOSE #1
0010 DATA SAVE DC CLOSE #X
0010 DATA SAVE DC CLOSE ALL

Compatibility Issues:

References:

DATA LOAD DC OPEN
DATA SAVE DC OPEN
Catalog Access Methods - Section 7.3.8 of the Programmer’s Guide

2-90 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE DC OPEN

DATA SAVE DC OPEN
General Form:
DATASAVE DC OPEN T$][file-number, J{(scratch-file)new-file}
{(space)new-file }
{TEMP[]Jstart.end }
Where:
scratch-file = the name of an existing scratched program or data
file in the specified diskimage.
space = a numeric-expression specifying number of sectors
required for the new file
new-file = the name of the new file being opened
temp = the temporary work file being established
start = a numeric-expression specifying the starting sec-
tor number of the temporary work file.
end = a numeric-expression specifying the ending sector
number of the temporary work file.

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DC OPEN statement is used to create a new cataloged file and open it
for further processing. An error results if the file already exists and has not been
scratched. Once open, data may be loaded from or saved to the file.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

If an already cataloged filename is specified, the previously allocated space for that file is
assigned to the new file. The old file must have been previously scratched. The old file-
name and the new filename may be the same.

NPL Statements Guide 2-91

DATA SAVE DC OPEN LANGUAGE STATEMENTS

DATA SAVE DC OPEN (cont.)

If the space parameter is specified with a new file name, a new file is created at the cur-
rent end of the catalog at the sector size specified. If there is insufficient space in the cata-
log area to create the new file, or if another file of the same name already exists, an error
results.

NOTE: The number of sectors actually available for new files is one less than the number
specified in the catalog index, since one sector is reserved for system-related infor-
mation.

The Internal Device Table entry for the file number specified is updated with starting and
ending sector locations. Current is set equal to start.

The TEMP parameter specifies creation of a temporary work file, which must be created
outside of the catalog area. Starting and ending sector numbers must be specified, with
the starting sector number greater than the current catalog END.

WARNING--The starting and ending sector numbers of temporary files are stored lo-
cally by the CPU. This means that it is possible for the same file space to be allocated si-
multaneously to more than one user within a multi-user environment. Since the system
cannot prevent this from occurring, use special care with this technique.

The file date/time stamp, filename, file type, and file status fields in the trailer sector are
updated by a DATASAVE DC OPEN statement.

Examples:

0010 DATA SAVE DC OPEN T$ (200) "FILE1"

0010 DATA SAVE DC OPEN T#1, (100) "DATAFILE"

0010 DATA SAVE DC OPEN T#X, (A) A$

0010 DATA SAVE DC OPEN T$#Q, ("OLDFILE") "NEWFILE"

2-92 NPL Statements Guide

LANGUAGE STATEMENTS DATA SAVE DC OPEN

DATA SAVE DC OPEN (cont.)

Compatibility Issues:

The Date/Time stamp is implemented in Revision 2.00 and greater of NPL.
The Date/Time stamp is not implemented in Wang 2200 Basic-2.

The Temporary working file is supported for compatibility purposes but is not recom-
mended.

Storage of file name, type, and status in the trailer sector is supported only in NPL Revi-
sion 3.0 or greater and is not supported on the Wang 2200.

References:

Catalog Access Methods - Section 7.3.8 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide
Non-cataloged Disk Space - Chapter 5, NPL Supplement(s)

NPL Statements Guide 2-93

DATE LANGUAGE STATEMENTS

DATE

General Form:

Form 1:

DATE-= alpha-expression [PASSWORD f{literal-string}]
{alpha-variable}

Form 2:

alpha-receiver = [$]DATE

Discussion:

The DATE system variable is a special system variable which can be used as a receiver
(Form 1) to set the system date or as a function (Form 2) which allows an alpha-variable
to be set to the system’s date.

When used as a function (Form 2), the date is returned as an alpha-string, six characters
in length. The first two characters are the year, the next two are the month, and the last
two are the day of the month.
A System Library function *CenturyDate$ returns today’s date in the format:

19YYMMDD
with additional logic added to ensure that this value changes to "20YYMMDD" when the
value of YY returned by the built-in DATE function is less than 90.

Refer to the System Library Functions Reference for additional information.

Examples:

0010 Q$ = DATE

0010 M$() = DATE

0010 DATE = "860620"

0010 DATE = A$

0010 date = "930322" PASSWORD "SYSTEM"

Compatibility Issues:

Form 2 of the DATE statement, which READS the date, is fully compatible with Wang
2200 Basic-2 implementation.

2-94 NPL Statements Guide

LANGUAGE STATEMENTS DATE

DATE (cont.)

The PASSWORD clause is required in Wang 2200 Basic-2. Under NPL, the PASS-
WORD clause is syntactically supported for compatibility purposes and, if specified, is
checked for validity. The system password is "SYSTEM" under NPL and may not be
modified.

Operation of this statement may vary on different hardware versions of NPL. Access
privileges may be needed to set the system date under certain operating systems. Refer to
the appropriate NPL Supplement for details.

References:

NPL Statements Guide 2-95

DBACKSPACE LANGUAGE STATEMENTS

DBACKSPACE

General Form:
DBACKSPACE [file-number, J{fnumeric-expression[S]}
{BEG }
Where:
numeric-expression = number of records to be backspaced.
S = indicates numeric-expression represents num-
ber of physical sectors as opposed to logi-
cal records.
BEG = backspace to beginning of file.
Discussion:

The DBACKSPACE statement is used with cataloged data files in order to set the "cur-
rent" value in the internal device for the file number specified to a lower value. It permits
backspacing over logical records or physical sectors within the file.

The numeric-expression specifies the number of logical records or physical sectors [S] to
be backspaced. The BEG parameter backspaces to the beginning of the file.

When not using the "S" parameter, the number of sectors to subtract from the "current"
sector address is determined by actually reading backward through the specified number
of logical records.

When using the "S" parameter, the number of sectors specified is subtracted from the cur-
rent sector address. If this precedes the beginning of the file, the starting sector address is

used. Since this operation simply decreases the Current Sector Address in the Internal De-
vice Table by the value of the specified numeric-expression, a disk access is not required.

2-96 NPL Statements Guide

LANGUAGE STATEMENTS DBACKSPACE

DBACKSPACE (cont.)

Examples:

0010 DBACKSPACE 10
0010 DBACKSPACE #2,BEG
0010 DBACKSPACE X*20
0010 DBACKSPACE #4,2S
0010 DBACKSPACE A*3

Compatibility Issues:

References:

Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide 2-97

DEFFN’ Keyboard Input LANGUAGE STATEMENTS

DEFFN’ Keyboard Input

General Form:

DEFFN'integer literal-string [literal-string]...

Discussion:

The keyboard input form of the DEFFN’ statement can be used to define commonly used
character strings which are entered during INPUT or LINPUT operations. The integer in
the DEFFN’ statement corresponds to one of the 32 function keys numbered from 0 to
31. Once a character string has been defined, the characters may be recalled by pressing
the corresponding special function key.

Character strings must be specified by a literal string inside quotes or by a HEX string, or
by a combination of the two. If multiple parts of a string are defined, each part must be
separated by a semi-colon (";").

Predefined text strings can be entered any time while using the editor (to enter or edit pro-
gram text) or during the execution of the INPUT and LINPUT statements. If the charac-
ter string contains a HEX(0D), the editor responds as if the operator had pressed the
RETURN key. Characters after the HEX(0D) are ignored. If quotes are needed in the text
string, the HEX representation for quotation marks, HEX(22), can be inserted in the
string.

NOTE: Program-defined special function keys can only be used while in DEFFN Mode (not
in Edit Mode). Refer to Section 5.4 of the Programmer’s Guide for a discussion of
Special Function keys in DEFFN Mode and Edit Mode.

WARNING--Use of DEFFN’ literals to perform program SAVEs can give unexpected
and unpleasant results if the program is currently resolved (HALTed while running),
since DEFFN’ functions are always referenced in the currently EXECUTING context.

Examples:

0010 DEFFN'0"LISTD";HEX(OD)
0010 DEFFN'30"X$=";HEX(22);"UTILITY2";HEX(22);":SCRATCH T X$:
SAVET()X$";HEX(OD)

2-98 NPL Statements Guide

LANGUAGE STATEMENTS DEFFN’ Keyboard Input

DEFFN’ Keyboard Input (cont.)

These are commonly used subroutines during program development. DEFFN’0 exe-
cutes a LISTD command. DEFFN °30 is used to SCRATCH and SAVE program in
memory to disk. Of course, the program name ("UTILITY2" in the example) has to
be specified correctly for the program being worked on.

:0010 DIM B$30

:0020 LINPUT "“Enter the Directory Path"?-A$

:0030 B$=A$ & "/PLATTER1.BS2"

:0040 $DEVICE(/D20)=B$

:0050 SELECT DISK D20

: LOAD RUN T"START"

:0100 DEFFN'15 "/BASIC2C/PROGS";HEX(0D)

‘RUN
In this example, SF’key 15 has been assigned a literal directory path and carriage return.
When prompted by the LINPUT statement in line 20, the user needs only to depress

SF’key 15 in response.
Compatibility Issues:

Refer to Appendix D of the Programmer’s Guide for details on the keyboard equiva-
lences for ’SF keys on the specific terminals.

Wang 2200 Basic-2 requires that DEFFN’ be the first statement in a program line (it must
immediately follow the line-number). This is NOT a restriction in NPL. The DEFFN’
statement may appear in the middle of a multi-statement line.

References:

INPUT

LINPUT

SAVE

SCRATCH

The Line Editor - Section 5.4 of the Programmer’s Guide

NPL Statements Guide 2-99

DEFFN’ Subroutine LANGUAGE STATEMENTS

DEFFN’ Subroutine

General Form:

DEFFN'{integer} [(variable [,variable]..)][/PUBLICJ[/FORWARD]
{identifier}

NOTE:

NOTE:

The use of this statement is not recommended. Refer to FUNCTION or PROCE-
DURE as a better alternative.

Discussion:

The DEFFN’ statement is used to define subroutines which are to be referenced by a
specified integer or identifier instead of a line number. Each subroutine is identified by a
program statement containing the DEFFN’ verb, followed by an integer value from 0 to
65535 or a valid identifier name. The subroutine is ended with a RETURN statement.
Subroutines defined with DEFFN’ are invoked with the GOSUB’ statement.

Unlike normal subroutines, the DEFFN’ subroutines support an optional argument list
which can be passed values with the GOSUB’ statement. This argument list can contain
up to 255 numeric-receivers or alpha-variables. The variable types and positions of all
variables in the GOSUB’ statement must match the types and positions of the DEFFN’
statement. When execution of a DEFFN’ subroutine is completed (by execution of a RE-
TURN statement), control is transferred to the statement following the GOSUB’ state-
ment.

Use of more than 16 parameters results in significant performance degradation.
Calling DEFFN’s from the Keyboard

DEFFN’ subroutines labelled with an integer value of 0 to 31 and 126 to 127 but with no
argument list may be invoked from the keyboard during Immediate Mode or during an
INPUT or LINPUT operation by pressing the corresponding numbered special function
key of a given DEFFN’ subroutine. When execution of the subroutine is completed (by
execution of the RETURN statement), Immediate Mode is reactivated, the INPUT state-
ment is restarted, or execution proceeds at the statement following the LINPUT statement.

If more than one definition appears for the same function, the definition which appears
first in a program listing is used.

2-100

NPL Statements Guide

LANGUAGE STATEMENTS DEFFN’ Subroutine

DEFFN’ Subroutine (cont.)

External DEFFN’s:

As of Revision 3.0 of NPL, DEFFN’s may be defined in external subroutines developed
in other languages. Whenever both an external and an internal DEFFN’ of the same num-
ber are present, the internal DEFFN’ is executed rather than the external DEFFN’. (Refer
to Chapter 16 of the Programmer’s Guide for further details on external DEFFN’s.)

Attributes:

If the keyword PUBLIC is used, the marked subroutine is callable from any module, not
just the one in which it’s defined. A PUBLIC declaration of the marked subroutine may
also appear in the PUBLIC section of the defining module. The FORWARD keyword
may be used on PUBLIC declarations to indicate that the body of the function appears
later in the module, rather than immediately following the DEFFN’ statement. Only one
PUBLIC DEFFN’ declaration for a given function number (other than FORWARD refer-
ences) is permitted within the workspace (all modules). A module that declares a PUB-
LIC DEFFN’ may not also declare the DEFFN’ as non-PUBLIC.

A DEFFN’ [[FORWARD] statement that occurs within a PUBLIC section is implicitly
/PUBLIC. In this case, the /PUBLIC keyword is not required but may be entered for clar-

ity.

If both the FORWARD declaration and the definition specify a parameter list, the num-
ber and types of all parameters must match, and the variable names in the definition are
used (in preference to those in the FORWARD declaration).

Named DEFFN’ subroutines and access to these from GOSUB’ are supported. Currently,
access and duplication rules of named subroutines are identical to those of numbered sub-
routines. In particular, you may not have DEFFN’ inside a FUNCTION body. In addi-
tion, if multiple declarations of DEFFN’s occur in a program, all but the first are
effectively ignored.

NPL Statements Guide 2-101

DEFFN’ Subroutine LANGUAGE STATEMENTS

DEFFN’ Subroutine (cont.)

NOTE: This may change in a later version to a more strict rule (e.g., duplicate declarations

would be flagged as errors unless due to a/[FORWARD or /BEGINS).

A DEFFN’ statement is not permitted in the body of a FUNCTION or PROCE-
DURE.

Examples:

0010 DEFFN'250
0010 DEFFN'251(Q,Q1,Q%)

0010 DEFFN'252(STR(A$(),10,200))

0010 DEFFN'1043(A,B,C,D,E,F,G,H,1.J K.L,M,N,0,P,Q,R,S,T,UV,W X,Y,Z)
0010 DEFFN'100 /PUBLIC

0010 DEFFN'32768 /PUBLIC/FORWARD

0010 DEFFN'17032(X,X$,Y$)/FORWARD

0010 DEFFN'17032(B,A$(B),STR(R$(B),2))/PUBLIC

0010 DEFFN’'MySub(A$,B%)

Compatibility Issues:

Use of more than 16 parameters is supported only in NPL Revision 3.0 or greater.
Use of DEFFN’s above ’255 is supported only in NPL Revision 3.0 or greater.
Use of DEFFN’s above 255 is not supported on the Wang 2200.

In Wang 2200 Basic-2, if a DEFFN’ subroutine is accessed using the keyboard and has
parameters, the parameters are requested by a "?" on the screen. In NPL, DEFFN’ subrou-
tines which have parameters may not be accessed from the keyboard. No runtime error is
generated. The subroutine simply is not executed.

Wang 2200 Basic-2 requires that a DEFFN’ be the first statement in a program line (it
must immediately follow the line-number). This is not a restriction in NPL. The DEFFN’
statement may appear anywhere in a multi-statement program line.

Named DEFFIN’s, PUBLIC, FOWARD, and BEGINS attributes are supported only in
NPL Release IV or later.

2-102

NPL Statements Guide

LANGUAGE STATEMENTS DEFFN’ Subroutine

DEFFN’ Subroutine (cont.)

References:

GOSUB
INPUT
LINPUT
RETURN

NPL Statements Guide 2-103

DEFFN Function Definition LANGUAGE STATEMENTS

DEFFN Function Definition

General Form:

DEF FN f{letter} (numeric-scalar) = numeric-expression
{digit }

NOTE: The use of this statement is not recommended. Refer to FUNCTION as a better al-
ternative.

Discussion:

The DEFFN statement is used to define a numeric function within a program which can
be later called by use of the FN instruction in numeric-expressions.

Each function is identified by a single letter or digit for a total of 36 possible functions
within a program. Each function must include a single numeric-expression which is per-
formed when the function is invoked by an FN function call. The numeric-scalar speci-
fied is used only as a value in the expression when the function is invoked. The contents
of the numeric-scalar are not modified.

The DEFFN statement is not executed if encountered during normal program sequence.
The expression in the DEFFN statement is evaluated only when referenced from an FN
function call. When the expression is evaluated, the value of the parameter of the FN
function is used whenever the numeric-scalar appears in the DEFFN numeric-expression.
The value of the numeric-scalar is not changed by the FN function call (the numeric-sca-
lar is a "dummy" variable). Therefore, a DEFFN statement can appear anywhere in a pro-
gram without affecting normal execution of the program.

If more than one definition appears for the same function, the definition which appears
first in the program listing is used.

2-104 NPL Statements Guide

LANGUAGE STATEMENTS

DEFFN Function Definition

DEFFN Function Definition (cont.)

Examples:

0010 DEFFNA(X)=(X*1.05)+(X-255)

0010 DEFFNO(Y)=Y+2*(Y-9)

0010 DEFFNB(W)=VAL(STR(WS(),W))+T*2
:0010 INPUT Y

:0020 X=FNB(Y)

:0030 PRINT Y, X

:0040 DEF FNB(A)=(A-3)/2

‘RUN

29

9 3

Compatibility Issues:

References:

Function-name Defined Function

NPL Statements Guide

2-105

DEFFN@PART LANGUAGE STATEMENTS

DEFFN@PART

General Form:

DEFFN@PARTalpha-variable}
{literal-string}

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
No operation is performed when this statement is encountered at execution time.

Replacing Global Partitions

The use of global partitions to support shared program code and variables is not sup-
ported by NPL. Where the primary purpose of the global partitions is simply to share
code, it may be possible to place the global partition’s code into an NPL library module
instead. Some program changes are required, such as adding an appropriately designed
PUBLIC section to define the publicly accessible DEFFN’ entry points and global vari-
ables, and replacing SELECT@PART statements in programs that use the global parti-
tion with an INCLUDE statement to make the library module available. Also, any
variable initialization which is done before the DEFFN@PART statement may be placed
in a /MAIN procedure to ensure it is executed before library functions are called.

Where the primary purpose of global partitions is to share variables (e.g., for record lock-
ing), the application must be rewritten to be compatible with networked environments,
where the sharing of information is done only through commonly accessed files.

In the Wang 2200 MVP/CS environment, application software (e.g., KFAM) that uses
global partitions for sharing variables usually also supports some alternative method
which uses disk files. These alternative methods are often provided to allow for use with
larger systems that involve multiple CPU’s and multiplexed disk drives, since, in these
environments, the use of "system-wide" shared variables is not possible. Configuring the
application to use this alternative disk-based method may allow NPL applications to run
without involving substantial changes.

2-106 NPL Statements Guide

LANGUAGE STATEMENTS DEFFN@PART

DEFFN@PART (cont.)

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, signals the specified partition as
a "global" partition. Global partitions are not supported under NPL.

On a Wang 2200, variable names which are previously undeclared and appear after a
DEFFN@PART statement in a program are assumed to be variables of another partition,
are not allocated space in the partition, and need not be declared (if arrays) in a DIM or
COM statement. All array-variables must be declared under NPL and all variable space
must be allocated. DEFFN@PART has no effect on program resolution of variables.

On a Wang 2200, an optional FOR terminal# [,terminal#] clause is permitted to restrict
access to a global partition. This syntax is not supported by NPL.

References:

SELECT @PART
GOSUB’

NPL Statements Guide 2-107

DELETE LANGUAGE STATEMENTS

DELETE

General Form:

DELETE T [file-number,] file-name [file-namej...
[disk-address,]
[<alpha-variable>,]

Where:

file-name = an alpha-variable or literal-string containing the
name of the existing cataloged file to be scratched.

Discussion:

The DELETE statement is used to remove the index entry of a file or files. The purpose
of this statement is to provide a convenient method of eliminating file names which are
no longer used.

All file-names specified must be present and scratched. DELETE does not remove a non-
scratched file-name.

The actual contents of the file are not affected by DELETE. However, once a file has
been removed, the index entry for the file cannot be reconstructed by any NPL statement.
Therefore, the contents of the file are effectively lost.

In most cases, the space that was used by the files deleted does not become available for
reuse until a MOVE operation or equivalent utility is executed. However, when the file
deleted is the last file on the diskimage (end sector of the file is equal to Current End for
the diskimage), Current End is set to the start sector of the file minus one.

NOTE: Where multiple files are to be deleted, they are processed one by one in the order
specified. For example, where the first file specified is the second from last file on
the diskimage and the second file specified is the last file on the diskimage, Current
End is decremented only for the second file specified. When the first file is proc-
essed, it is not the last file on the diskimage.

2-108 NPL Statements Guide

LANGUAGE STATEMENTS

DELETE

DELETE (cont.)

Examples:

0010 DELETE T"START",Q$

0010 DELETE T X$,X1$,X2$

0010 DELETE T#Y,"SP MENU"

:DELETE T"START"

:DELETE T/D32,"START","SP START","SECURITY"
:DELETE T<A$>,"PROGRAM"

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

DELETE is not supported on the Wang 2200.
References:

SAVE

DATA SAVE DC OPEN
SCRATCH
UNSCRATCH

NPL Statements Guide

2-109

$DEMO LANGUAGE STATEMENTS

$SDEMO

General Form:

Form 1:
$DEMO = alpha-expression
Form 2:

alpha-receiver = $DEMO

Discussion:

$DEMO is a system variable which allows for the generation of "self demonstrating" soft-
ware. With this technique, live software is operated by using keystrokes and informa-
tional text from an ASCII text file, as opposed to the keyboard.

Form 1:

When a value is assigned to SDEMO, the value must be a valid native operating system
file specification or blank spaces. If not blank, all keyboard input is redirected from the
specified file. No keyboard keys function, with the following exceptions:

* SPACE BAR - this is used to continue with the Demo script when it has been
halted by a special screen display.

* CANCEL - pressing CANCEL when a BOX is displayed and the non-interpre-
tive RTP is running exits the Runtime. This is an intended result, designed to al-
low a user who is unfamiliar with the software’s structure to exit from a software
demonstration at any time. The interpretive RTI returns the keyboard to normal
use, to allow testing and correction of SDEMO files.

* ARROW Keys - may be used to interactively reposition special screen displays
at execution time.

* PLUS and MINUS Keys - May be used to speed up or slow down the rate of key-
stroke entry from the demo script file.

2-110 NPL Statements Guide

LANGUAGE STATEMENTS $DEMO

$DEMO (cont.)

When the end of the demo script file is reached, the value of the $DEMO variable is not
removed, but keystrokes and text are no longer read from the file. If the demo script file
specified by the SDEMO system variable does not exist, or is invalid, or is blank, the key-
board input returns to normal.

As of Revision 4.0 of NPL, SOPTIONS byte 42 may be set to aid in the debugging of se-
quencing problems encountered by a $DEMO script. Refer to SOPTIONS for details.

Form 2:

The current status of the SDEMO system variable may be examined by using Form 2 of
the SDEMO statement. In addition, byte 19 of SMACHINE may be examined to deter-
mine whether or not the next keystroke is generated from a SDEMO script.

As of Revision 3.0 of NPL, keyboard logging may be used to generate files suitable for
use with $DEMO. Refer to $DEMO, Chapter 12 of the Programmer’s Guide. for details
on the structure of the demo script file. Refer to SELECT LOG for further details on key-
board logging.

Examples:
0010 $DEMO="/BASIC2C/SCRIPT1.DAT"

In this example, the /BASIC2C/SCRIPT1.DAT file would be redirected for keyboard in-
put as the Demo script file.

Compatibility Issues:
This statement is supported only with Release 2.0 or greater.

This statement is not valid in Wang 2200 Basic-2.

Use of SMACHINE to determine the status of $DEMO redirection and generation of
demo script files by keyboard logging are both supported only on NPL Revision 3.0 or
greater.

NPL Statements Guide 2-111

$DEMO LANGUAGE STATEMENTS

References:

$MACHINE

$OPTIONS

SELECT LOG

$DEMO - Chapter 12 of the Programmer’s Guide

2-112 NPL Statements Guide

LANGUAGE STATEMENTS $DET

SDET

General Form:

alpha-receiver = $DET (numeric-expression)

Discussion:

The $DET function allows program inspection of the device addresses currently defined
in the Device Equivalences Table (DET). The numeric-expression is used to specify
which entry in the DET is accessed. The number of DET entries may range from 16 to
255, as established by the /D RunTime option. Attempting to access a DET entry greater
than 65535 results in a P34 (Illegal Value) error.

The value returned by $DET is a three-byte, alpha-numeric value representing the device-
address defined by a prior SDEVICE Statement. If a given slot in the DET is currently
not used, spaces are returned.

NOTE: The device-class byte of the device-address returned by SDET is subject to the same
translation as shown by LISTDT. For instance, print class addresses yzz are always
returned as 0zz, disk addresses 3x0 are always returned as Dx0, and disk addresses
Bx0 are always returned as Dx1.

The actual host operating system device equivalence for the device-address returned may
then be accessed by use of the SDEVICE statement.

For example, the following program displays all devices currently defined in the DET:

0010 DIM A$3,B$50,M$64
0020 M$=$MACHINE
0030 M=VAL(STR(M$,16,1)

:REM Number of DET entries is in SMACHINE
0040 PRINT "DEVICE ADDRESS";TAB(20);"DEVICE EQUIVALENCE"
0050 FOR X=1TO M
0060 A$=$DET(X)

0070 IF A$<>""

0080 B$=$DEVICE(A$)
0090 PRINT A$;TAB(20);B$
0100 END IF

0110 NEXT X

NPL Statements Guide 2-113

$DET (cont.) LANGUAGE STATEMENTS

$SDET (cont.)

NOTE: The order of entries returned by $SDET() has no special significance and may be
changed when new values are assigned to DET entries. If there are n valid $DE-
VICE values currently defined, all valid addresses correspond to SDET(1) through
$DET(n).

Examples:

0010 A$=$DET(1)
0010 STR(A$,4,3)=$DET(X)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

$DET is not supported on the Wang 2200.

References:

$DEVICE
Device Equivalence Table - Section 7.2.2 of the Programmer’s Guide

2-114 NPL Statements Guide

LANGUAGE STATEMENTS $DEVICE

SDEVICE

General Form:

Form 1:

$DEVICE({device-address})=alpha-expression
{file-number }
{alpha-variable }

Form 2:

alpha-receiver= $DEVICE({device-address})
{file-number }
{alpha-variable}

Where:

alpha-variable = contains a valid NPL device-address or file-number (with no
preceding slash).

alpha-expression = an alpha-expression which evaluates to a native operating sys-
tem file-specification or device-specification followed by one
or more optional clauses. The total resultant value of the al-
pha-expression should not exceed 50 characters in length. One
blank space separates the file or device-name and each optional
clause.

clause = [1.2={N,Y}]
[1.4={N, Y}]
[2.8=(N,Y]]
[360={(N,Y}]
[720={N, Y}]
[ALF={N,Y}]
[ERR={N, Y}]
[EXT={N,Y}]
[LCL={N,Y}]

[PES=numeric-constant]
[SES=numeric-constant]
[TMO={N, Y}]
[XLA={N,Y}]

NPL Statements Guide 2-115

$DEVICE

LANGUAGE STATEMENTS

$DEVICE (cont.)

Discussion:

The $DEVICE assignment statement provides a method of changing or inspecting a spe-
cific entry in the Device Equivalence Table. The Device Equivalence Table establishes

an equivalence between NPL device addresses and the native operating system files or de-
vices. The number of Device Equivalence Table entries is set to 16 by default but may be
set higher (up to a maximum of 255) by use of the /D startup option. Refer to Section
7.2.2 of the Programmer’s Guide for details on the Device Equivalence Table.

Form 1: Changing the Device Equivalence Table
Form 1 can be used to modify the device equivalence table of the SDEVICE statement.

If the result of the alpha-expression used in the assignment is blank, the specified device-
address is removed from the table. Otherwise, it replaces the current native name that the
NPL device address is currently mapped to, and all subsequent I/O is performed to the
new device. The alpha-expression should equate to a valid native operating system file or
device specification. No checking is done for validity of the specification until an attempt
is made to access the device, at which time a P48, Invalid Device Specification, occurs if
the device is not available.

For example:

0010 $DEVICE(/D11)="/other/platterl.bs2"
: $DEVICE(/D12)="/data/platterl.bs2"
: SELECT DISK /D11
: LOAD RUN

This changes the device equivalents so that subsequent references to the disk addresses
/D11 and /D12 refer to the diskimage files "/other/platter].bs2" and "/data/platter1.bs2"
respectively. It subsequently loads and runs the "START" program from the "/other/plat-
terl.bs2" diskimage.

Execution of a $DEVICE statement (Form 1) which specifies a file or device which has
already been opened by prior access causes that file or device to be closed. Whether the
file was previously open or not, the first actual I/O statement following execution of the
$DEVICE statement which is directed to the NPL address causes the file to be opened.

2-116

NPL Statements Guide

LANGUAGE STATEMENTS $DEVICE

$DEVICE (cont.)

Form 2: Inspecting the Device Equivalence Table

The current state of the device equivalence table may be inspected by using Form 2 of the
$DEVICE statement.

An alpha-receiver can be set equal to the current entry in the Device Equivalence Table
for the specified device-address or file-number. This can be a useful programming tool
when inspecting and retaining the current device equivalence table for later restoration.

As of Revision 3.0 of NPL, additional statements may be used to examine the status of
the Device Equivalence Table:

* $MACHINE contains information about the maximum size of the DET and the
number of entries currently in use.

* $DET may be used to examine the DET in physical order to determine which de-
vice-addresses are assigned.

Refer to SMACHINE and $DET for details.

For example, the following is executed immediately after startup (using default device
equivalences established by the RunTime Program):

:0010 DIM A$50,B$50
: A$=$DEVICE(/D11)
: B$=$DEVICE(/215)
: PRINT "/D11=";A$
: PRINT "/215=";B$
:RUN
/D11=platterl.bs2
/215=/DEV/PRN

NOTE: The start-up device equivalences are dependent on the native operating system. Re-
fer to the appropriate NPL Supplement for details.

If the device-address specified is not currently defined in the device equivalence table,
the alpha-receiver is set equal to blank spaces.

NPL Statements Guide 2-117

$DEVICE LANGUAGE STATEMENTS

$DEVICE (cont.)

Optional Clauses:

One or more optional clauses may be specified in the SDEVICE statement. These op-
tional clauses are used to set specific I/O options (each option is discussed below) for ac-
cessing the native operating system file or device.

NOTE: Most options are specific to only one device class (print or disk). Use of device class
specific options with the incorrect device class is typically ignored. Also, some op-
tions are mutually exclusive. Use of mutually exclusive options in the same $DE-
VICE statement may result in ambiguous results.

The effect of many options is highly operating system-dependent. In addition, it is possi-
ble that new options are defined for new ports of NPL. Please refer to the NPL Supple-
ments for complete details on the actual options available and their effect for the
operating system.

"Raw" Diskette Clauses:
The five "raw" diskette clauses, 1.2=Y, 1.4=Y, 2.8=Y, 360=Y, and 720=Y, instruct the

RunTime program to treat the associated native operating system device name as a "raw’
device with a particular format:

1.2=Y 5-1/4" high density diskette (1.2 MB capacity)
1.4=Y 3-1/2" high density diskette (1.44 MB capacity)
2.8=Y 3-1/2" diskette (2.88 MB capacity)

360=Y 5-1/4" diskette (360K capacity)

720=Y 3-1/2" diskette (720K capacity)

For example, refer to the following statement under MS-DOS:
$DEVICE(/D20)="A: 1.2=Y"

This instructs the RunTime program to treat drive A as a "raw" 1.2 MB diskette.

2-118 NPL Statements Guide

LANGUAGE STATEMENTS $DEVICE

Support of "raw" diskette access is extremely hardware and operating system-dependent.
On some operating systems, various "raw" diskette formats are accessed by use of special
device names rather than the SDEVICE clauses described above. Refer to Section 5.2 of
the NPL Supplement for details on "raw" diskette support and naming conventions on the
operating system.

NPL Statements Guide 2-119

$DEVICE LANGUAGE STATEMENTS

$DEVICE (cont.)

The ALF Clause

The ALF option when specified as part of a SDEVICE statement controls output options
for print type devices. The form of the ALF option may be set to "Y" or "N". "Y" indi-
cates that the special output options are to be used. "N" indicates that the special output
options are not to be used. The ALF option is added on to the end of the alpha-expres-
sion.

For example:
0010 $DEVICE(/215)="/dev/prn ALF=N"
Special output options generally control end of line sequences for printers.
For example, under the MS-DOS versions of NPL, a linefeed (HEX(0A)) is automat-
ically generated by the RunTime whenever a carriage return (HEX(0D)) is encountered

in print output. Setting ALF=N in a $DEVICE statement suppresses the generation of
automatic line-feeds under MS-DOS.

NOTE: The operator cannot override the ALF specification by using the Auto Linefeed
function of the PRINT CONTROL screen in the HELP processor. However, execu-
tion of a subsequent SDEVICE statement with the ALF option resets ALF to the
value specified.

If ALF is not specified, the initial default value of "Y" is used.
The ALF=N clause is commonly used when sending binary sequences (graphics, for ex-
ample) which may contain HEX(0D)’s (which are not end-of-line markers), or when per-

forming overstrike printing on the same line.

Refer to Section 5.5 of the appropriate NPL Supplement for hardware or operating sys-
tem-specific details regarding $DEVICE and the ALF printer option.

The ERR Clause:

The $DEVICE clause, ERR=[Y,N], controls whether or not NPL errors are generated if
the host operating system reports an error when writing print class output to a disk file.

2-120 NPL Statements Guide

LANGUAGE STATEMENTS $DEVICE

$DEVICE (cont.)

The default value of "N" means that a NPL error is never generated during a print class
output operation. A value of "Y" means that NPL generates disk class errors for print
class output when the print address is defined using $DEVICE as a disk file and the host
operating system reports an error. All possible disk type errors are reported, but error
code D81 (File Full) is the only error code used. Such errors are recoverable and may be
trapped by an ERROR statement.

NOTE: The ERR clause is meaningful only for print class devices, assigned to direct output
to a disk file.

For example:

0010 $DEVICE(/215)="TEXT.DAT ERR=Y" :REM Enable error detection
0020 SELECT PRINT 215
0030 PRINT "THIS IS A TEST"<

:ERROR E=ERR

If an error occurs during a $GIO statement, any character count or LRC registers in the
arg-2 variable may contain invalid values.

The EXT Clause:

The EXT clause is meaningful only for disk class devices. EXT=Y indicates that the
diskimage file is to be treated as an extended diskimage file. The default value of EXT=N in-
dicates that the diskimage is to be treated as a non-extended diskimage. An extended
diskimage is a diskimage file that may exceed 16 MB. In accessing extended diskimage files,
RTP uses bytes 7&8 of each index entry as the high-order byte of the sector address. In ac-
cessing non-extended diskimage files (EXT=N), bytes 7&8 of index entries are ignored and
all sector addresses are treated as two byte addresses. Use of extended diskimages has serious
implications for the application program. These implications are discussed in greater detail in
Section 7.3.10 of the Programmer’s Guide.

For example:
$DEVICE(/D11)="PLATTER1.BS2 EXT=Y"

defines D11 as an extended diskimage file named PLATTER1.BS2.

NPL Statements Guide 2-121

$DEVICE

LANGUAGE STATEMENTS

$DEVICE (cont.)

NOTE:

The LCL Clause:

The LCL clause is valid only for print class device. "Y" is used to specify that a local
printer attached to the terminal in use is to be used for print output directed to the device
address specified. The default value of "N" indicates that the printer is not a local printer.
Local printers are supported on most serial terminals which have local printer capability.
Refer to Appendix D of the Programmer’s Guide for details on local printer support for
the terminals being used.

When a local printer is accessed by use of the LCL clause, operation of the local printer
is transparent to the native operating system. The RunTime Program automatically sends
required control codes to the terminal to switch between screen and printer output as re-
quired by the application.

An $OPEN directed to device address defined as a local printer does not ""hog" that
address on a system wide basis (as it would for non-local printers). Thus, multiple
terminals may use the same device address for local printers. Any valid print class
device address may be defined as a local printer.

For example:
$DEVICE(/204)=">1 LCL=Y"

This defines address 204 as a local printer on the terminal in use under SuperDOS. Refer
to Section 5.5 of the NPL Supplements for further details on the device-name to use for
the operating system.

The PES and SES clauses:

The PES= and SES= clauses are used to specify the primary and secondary extent sizes,
in units of 256 byte blocks, to be used when a file is created. The PES= and SES= clauses
are valid for both disk class devices and print class devices. This clause is meaningful
only on operating systems where disk space is allocated in fixed size extents and the size
of primary and secondary extents can be set under program control. On these operating
systems, the numeric-value specified by the PES and SES clauses overrides built in logic
for determining the extent size to use. On other operating systems, this clause is syntacti-
cally supported but has no effect. Refer to Section 5.3 of the appropriate NPL Supple-
ments for information about fixed disk allocation for the operating system and the default
method used to determine extent sizes where applicable.

2-122

NPL Statements Guide

LANGUAGE STATEMENTS $DEVICE

$DEVICE (cont.)

NOTE: The extent size for a file can only be set at the time of file creation. For disk class de-
vices, files are created by SCRATCH DISK and MOVE. Also, for disk class devices,
if the file already exists, existing extent sizes are used and any PES or SES clause
specified is not used. For print class devices, files are created when output is di-
rected to a disk file that does not previously exist.

In the event that the specified primary or secondary extent size cannot be allocated, the
RunTime automatically attempts to use built in defaults before aborting the operation. If
built in defaults also cannot be allocated, a NPL error results.

For example, refer to the following under SuperDOS:

$DEVICE(/D11)="PLATTER1.BS2 PES=10000 SES=1000"
SCRATCH DISK T/D11,LS=10,END=12000

This specifies that the primary extent size for PLATTER1.BS2 equals 10000 256 byte
blocks (or 2,560,000 bytes) and that the secondary extent size equals 1000 256 byte
blocks (or 256,000 bytes).

The TMO Clause:

The TMO clause is valid only for print class devices. This clause controls whether or not
a multi-character input operation ($GIO microcommand C620) returns with zero bytes
read if there are no bytes present at the specified device. This is useful for communica-
tions applications which use the C620 microcommand to read data from a serial port. A
value of "Y" indicates that time-out is to occur and that the C620 microcommand returns
with zero bytes if no bytes are present at the specified port. The default value of "N" indi-
cates that no time-out is to occur and that the C620 microcommand waits for bytes to be
present, thus "hanging" the application if no bytes are present.

Limited serial communications support is operating system-dependent and may not be
suitable for all communications requirements. On some operating systems, enhanced
asynchronous communications support is available with use of the Niakwa Science and
Communications Drivers (SCD) Package. Refer to Section 5.7 of the NPL Supplements
for details on limited serial communications support and the availability of the SCD Pack-
age on the operating system. In addition, refer to Section 7.8 of the Programmer’s Guide
for further information on limited serial communications techniques.

NPL Statements Guide 2-123

$DEVICE LANGUAGE STATEMENTS

$DEVICE (cont.)

For example:
$DEVICE(/219)="com1 TMO=Y"

This defines address 219 as the com1 port on an IBM PC and specify that time-outs are to
occur on input operations from this device.

The XLA Clause:

The XLA clause is valid only for print class devices. A value of "Y" indicates that printer
translation is to take place for output directed to the specified device address. The default
value of "N" indicates that no printer translation is to take place. Refer to Section 7.7.7 of
the Programmer’s Guide for further details on printer translation.

For example:
$DEVICE(/215)="/dev/prn XLA=Y"

This indicates that printer translation is to take place for output directed to address 215.

Examples:

0010 $DEVICE(/D32)="/niakwa/progs/platterl.bs2"
0010 $DEVICE(A$)="/basic2c/data/platterl.bs2"
0010 $DEVICE(X$)=Y$
0010 $DEVICE(#1)="/usr/BASIC2C/platterl.bs2 EXT=Y"
0010 $DEVICE(/217)="/basic2c/spool.dat SES=500 ERR=Y XLA=Y"
0010 A$=$DEVICE(B$)
0010 A$=$DEVICE(/D32)
0010 A$=$DEVICE(/217)
0010 FOR I=1 TO 5
: J$(1)=$DEVICE(KS$(1))
S NEXT |

0010 $DEVICE(/D11)="/progs/platterl.bs2 EXT=Y"
: $DEVICE(/D12)="/data/platterl.bs2"
: $DEVICE(/215)="/dev/prn ALF=N"
: $DEVICE(/216)="spool.dat ERR=Y"
: SELECT DISK /D11
: LOAD RUN

2-124 NPL Statements Guide

LANGUAGE STATEMENTS $DEVICE

DEVICE (cont.)

This example specifies disk address D11 as extended diskimage /progs/platterl.bs2, disk
address D12 as non-extended diskimage /data/platterl.bs2, printer address 215 as
/dev/prn (with optional ALF clause equal to N), and printer address 216 as a native oper-
ating system file named spool.dat with error detection enabled. Information sent to
printer address 216 is redirected to this data file.

Compatibility Issues:
$DEVICE is not supported in Wang 2200 Basic-2.

Use of optional clauses is supported on NPL revisions as follows:

1.2 2.01 or greater
1.4 3.00 or greater
2.8 4.00 or greater
360 2.01 or greater
720 3.00 or greater
ALF 2.00 or greater
ERR 3.00 or greater
EXT 2.01 or greater
LCL 2.01 or greater
PES/SES 3.00 or greater
T™O 2.01 or greater
XLA 2.01 or greater

Use and functionality of many optional clauses is operating system-dependent. Refer to
Chapter 5 of the NPL Supplements for details.

References:

$DET

$MACHINE

The Device Equivalence Table - Section 7.2.2 of the Programmer’s Guide
The /D option - Section 2.4.2 of the Programmer’s Guide

"Raw" diskette handling - Section 5.2 of the NPL Supplements

Printer Devices - Section 5.5 of the NPL Supplements

Serial Port - Section 5.7 of the NPL Supplements

NPL Statements Guide 2-125

DIM

LANGUAGE STATEMENTS

DIM
General Form:
DIM dim-element|,dim-element]
Where:
dim-element = []
{numeric-id =initial-num-value] '}
{numeric-array-id (sub1[,sub2]) }
{alpha-id$[length][=initial-str-value] }
{alpha-array-id$(subl[,sub2])[length] }
subl, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.
length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.
Discussion:

The DIM statement is used to declare variables within NPL programs, and possibly also
to assign an initial value to the variable.

If the DIM statement does not occur within a PUBLIC section or within a FUNCTION or
PROCEDURE body, the variables are declared as module private non-common vari-

ables.

If the DIM statement occurs within a PUBLIC section, the variables are declared as PUB-
LIC variables (see DIM/PUBLIC).

If the DIM statement occurs within a FUNCTION or PROCEDURE body, the variables
are declared as RECURSIVE variables (see DIM/RECURSIVE).

Non-common variables are cleared by execution of:
¢ The CLEAR command,

¢ The CLEAR V command,

2-126

NPL Statements Guide

LANGUAGE STATEMENTS DIM

DIM (cont.)

¢ The CLEAR N command,

¢ The LOAD RUN command,

* A program overlay,

e The RUN command (or statement).

Either dimension of an array may be specified as containing up to 65535 elements and

the length of any variable may be specified up to 65535 bytes. However, the maximum to-
tal number of array elements must not exceed 65535 and the total size of the array (num-
ber of elements * length) must not exceed 65535 bytes.

On 32-bit hardware platforms, NPL supports access to larger arrays, and on these dimen-
sions of arrays and string lengths may be permitted to be larger than 65535 (up to
4294967295, or the value imposed by the operating system due to real or virtual memory
limits).

If a numeric-expression is used in dimensioning variables, any variables contained in the
numeric-expression must be declared prior to being used in the DIM statement. Useful
numeric-expressions normally used as terms only constants, common variables, pre-
viously declared scalar variables which have been assigned an initial value, function val-
ues for FUNCTION:S in previously INCLUDEd modules and built-in functions such as
SPACE in some combination.

For syntactical reasons, if an expression is used for the length of an alpha-scalar, it may
not begin with "(".

Dimensioning of arrays to zero elements is supported. This is a useful programming tool
for dynamically establishing array size based on available memory.

For example:

0010 DIM Table$(2)20,0K$32,SizeWas
0020 FUNCTION 'Try To Expand(/POINTER RefToArray$,Newsize
: DIM Oldsize
: Oldsize=LEN(STR(Table$()))/LEN(STR(Table$()))
: MAT REDIM Table$(Newsize)20
- RefToArray$=ALL("X") 5

NPL Statements Guide 2-127

DIM LANGUAGE STATEMENTS

DIM (cont.)

Initial Values for Scalar Variables

DIM statements are extended to permit initial value assignment to scalars when the vari-
able is created. If no initial value is defined, the default value is 0 for numerics, blank for
strings.

NOTE: Initial values are only assigned when a variable is created. If the variable already ex-
ists (i.e., is COMmon, or the program was RUN with line numbers to avoid clearing
non-common variables), no initial value is assigned.

The allocation of variables in a DIM statement is implicitly /STATIC if the DIM
statement is not within a function body or PUBLIC section. The allocation of vari-
ables in a DIM statement is implicitly /RECURSIVE if the DIM statement is within
a function body. The allocation of variables in a DIM statement is implicitly /PUB-
LIC if the DIM statement is within a PUBLIC section. Refer to DIM /STATIC, DIM
/RECURSIVE and DIM /PUBLIC for details and restrictions of each allocation type.

As with all expressions which are evaluated at resolve time, the initial values may
only reference previously declared values, or FUNCTIONs which are declared in
other, previously INCLUDEd modules.

Default variable declaration is assumed by NPL when a variable reference appears with-
out any previous explicit declaration. Here, NPL takes one of two actions:

a. If SOPTION byte 38 is set to HEX(01), an error occurs. All variable refer-
ences must be preceded by a declaration.

b. If SOPTION byte 38 is set to HEX(00), a variable may be declared by de-
fault in some cases, depending on the context in which the first variable ref-
erence in the program appears, according to the following table:

Location of First Variable Reference Default Allocation Type
Within a function body Not legal; error occurs
Outside all function bodies DIM/STATIC

2-128 NPL Statements Guide

LANGUAGE STATEMENTS DIM

DIM (cont.)

NOTE: Constant variables must always be explicitly declared.

Examples:

0010 DIM Ratio,E=EXP(1)

0010 DIM FileName$8,Default_City$30="Moose Jaw"

0010 DIM CornYields(NUMBER_OF_MONTHS_KEPT_ON_RECORD)
0010 DIM Buffer$(_MAX_OPEN_FILES)512

0010 DIM A$(SPACE-20000)1,B$((SPACE-1000)/C2)C2,C$(MAX(256,J))1

This declares variables which use, respectively, all but the last 20K of memory, the re-
maining memory (after A$()) less 1K set up as elements of C2 bytes each (assuming C2
is a common variable) and an array with either J bytes or 256 bytes, whichever is larger
(again, J is assumed to be a common variable).

0010 DIM X$24, Q$(4)4, X(4,4)

This will define one variable X$ to 24 bytes, and two arrays: Q$() - four elements, four
bytes each and X() - a numeric two dimensional array four by four.

Compatibility Issues:

The Wang 2200 Basic-2 limitation of 124 characters on the length of a scalar has been ex-
tended to 65535 (larger on 32-bit platforms). (Be aware, however, that 124 bytes is still
the largest scalar variable length which can be saved using a DATASAVE DC statement).

The memory overhead for variables is greater under NPL than in a Wang 2200 Basic-2:

Variable Overhead on Overhead
Type Wang 2200 under NPL
One dimension | Two dimensions
Numeric Scalar |4 8 (10) N/A
Numeric Array 6 12 (16) 14 (18)
Alpha Scalar 5 10 (12) N/A
Alpha Array 7 14 (18) 16 (20)

NPL Statements Guide 2-129

DIM

LANGUAGE STATEMENTS

DIM (cont.)

NOTE: Numbers in parentheses () are for 32-bit platforms. NPL always allocates variable

memory in units of 16 bytes. Consequently, in addition to the indicated overhead
and the defined variable size, up to 15 bytes of overhead may be required to allocate
the variable. The above figures are for statically allocated (not /' RECURSIVE) vari-
ables.

Variables which are designated by long identifiers require some additional overhead,
which is deducted at program load time.

Wang 2200 Basic-2 does not allow expressions to be used as dimension sizes. Wang
2200 Basic-2 allows only constant and numeric-scalar common variables to be used as
variable dimensions.

Wang 2200 Basic-2 does not allow array-variables to be dimensioned with 0 elements.

Constant variables and initial values are only supported by NPL Release 4.0 or later.
References:

CcoM

DIM /PUBLIC
DIM /RECURSIVE
DIM /STATIC
FUNCTION
$OPTIONS
PROCEDURE
PUBLIC

2-130

NPL Statements Guide

LANGUAGE STATEMENTS DIM Constant Variable Declarations

DIM Constant Variable Declarations

General Form:

DIM [/PUBLIC] const-variable [,const-variable]...

NOTE:

NOTE:

[/STATIC]
Where:
const-variable = { numeric-id =initial-num-value }
{_alpha-id$[length] =initial-str-value }

length = numeric-expression which evaluates to a value
in the range from 1 to 65535. If length not
specified, default to 16.

Discussion:

DIM constant declarations allow for declarations of scalar and numeric variables which
are evaluated at resolve time. Identifiers which are constant class are always preceded by
an underscore ("_").

As with all expressions which are evaluated at resolve time, the initial values may
only reference previously declared values, or FUNCTIONs which are declared in
other, previously INCLUDEd modules.

The compiler attempts to detect syntax which could modify the value of variables de-
clared as constants, and flags such syntax as an error.

There may be some syntax which could result in modifying a constant that cannot be de-
tected at compile time (e.g., passing a constant variable as argument to FUNCTION
where /POINTER parameter is required) and these are flagged at resolve time.

There may be some syntax which could result in modifying a constant that cannot be de-
tected at resolve time (e.g., passing a constant variable as argument to indirectly named
FUNCTION where /POINTER parameter is required) and these are flagged at execution
time.

A constant identifier which occurs within a PUBLIC section is PUBLIC by default.

NPL Statements Guide 2-131

DIM Constant Variable Declarations LANGUAGE STATEMENTS

DIM Constant Variable Declarations (cont.)

CONSTANTSs may also be used as part of numeric expressions used to specify the num-
ber of array elements and the length (for alphanumerics).
For example:
10 DIM _NumberOfElements=100
20 DIM _ElementLength=4
30 DIM Array$(_NumberOfElements)_ElementLength*2
: RUN
: LIST DIM Array$(
DIM Array$(100)8
NOTE: Constants can also be used with the COM statement under Release IV.
In addition, a DIM statement can contain a mix of constant and non-constant vari-
ables, for example:

0010 DIM X, _Y, Z, _Apples
: DIM /PUBLIC Buffer$512, _Systemld$ = "Windows"

Examples:

0010 DIM _CGA_RED=4, CGA_GREEN=2, CGA_BLUE=1
0010 DIM _BRIGHT$5=HEX(020400020E), NORMALS$1=HEX(OF)

Compatibility Issues:
This statement is supported only with Release IV or greater.
References:

DIM
CcoM

2-132 NPL Statements Guide

LANGUAGE STATEMENTS DIM /PUBLIC

DIM /PUBLIC
General Form:
DIM /PUBLIC dim-element][,dim-element]...
Where:
dim-element = {numeric-id [Finitial-num-value] }
{numeric-array-id (sub1[,sub2]) }
{alpha-id$[length][=initial-str-value] }
{alpha-array-id$(subl[,sub2])[length] }
subl, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.
length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.
Discussion:

This statement declares a list of variables that are added to the workspace PUBLIC vari-
able space (if they do not already exist).

Variables in the PUBLIC variable space may be referenced by name in all modules. A
PUBLIC variable may be referenced by name in a module provided:

* The variable appears in a DIM PUBLIC statement located in the module or in a
PUBLIC section which the module USES.

All declarations of string and array variables in the PUBLIC variable space must agree as
to length and number of elements.

* When the reference occurs within the body of a function or procedure, no RE-
CURSIVE or STATIC variable or parameter of the same name has been declared
in the current function.

* When the reference does not occur within the body of a function or procedure, no
STATIC variable of the same name has been declared in the module.

NPL Statements Guide 2-133

DIM /PUBLIC

LANGUAGE STATEMENTS

DIM / PUBLIC (cont.)

NOTE:

The declaration of the variable must always appear before the reference to the variable.

DIM statements which occur within a PUBLIC section are implicitly DIM /PUBLIC. In
this case, the /PUBLIC keyword is optional but may be entered for clarity.

Values assigned to /PUBLIC variables survive only as long as the defining module
remains resolved.

Examples:

0010 DIM /PUBLIC Inited,FishName$16,B,A(VectorSize)
0010 DIM /PUBLIC NameList$(20)45
:DIM /PUBLIC Temporary,Access$256

Compatibility Issues:

This statement is supported only with Release IV or greater.

LIN’s are supported in Release IV or greater.

References:

2-134

NPL Statements Guide

LANGUAGE STATEMENTS DIM /RECURSIVE

DIM /RECURSIVE

General Form:
DIM /RECURSIVE dim-element][,dim-element]...
Where:

dim-element = {numeric-id [Finitial-num-value] }
{numeric-array-id (subl1[,sub2]) }
{alpha-id$[lengthj[=initial-str-value] }
{alpha-array-id$(sublf,sub2])flength] }

subl, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.

length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.

Discussion:

This statement declares a list of scalar variables that are added to the current function’s
RECURSIVE variable space. The variables may not already be declared as function pri-
vate variables or parameters. Variables in the RECURSIVE variable space may be refer-
enced by name only in the function body in which the declaration appears. Multiple
declarations of variables in the function’s private variable space are not permitted.

A new copy of a function’s RECURSIVE variables is allocated and initialized each time
the function is called and is released when the function RETURNS. The initial value of
RECURSIVE variables is evaluated once only, at resolve time.

NOTE: Parameters of functions passed by value are always RECURSIVE variables.

Variables declared inside the body of any function without the STATIC or PUBLIC key-
words are also by default RECURSIVE variables.

RECURSIVE variables explicitly declared outside the body of a function are not permit-
ted.

NPL Statements Guide 2-135

DIM /RECURSIVE LANGUAGE STATEMENTS

DIM / RECURSIVE (cont.)

NOTE: All variables declared inside a function without the STATIC or PUBLIC keywords

are RECURSIVE, and it is illegal to declare a RECURSIVE variable outside of all
functions. Consequently, the RECURSIVE keyword is always optional and is usu-
ally only entered for clarity.

A DIM /RECURSIVE statement may not be executed in immediate mode.

The total allocated data for a function’s recursive variables may not exceed 64K.

Examples:
0010 DIM /RECURSIVE Inited,FishName$16
0010 DIM /RECURSIVE names$(10)32, numbers(100)
0030 PROCEDURE 'do_nothing
. ; local variables EXPLICITLY declared /RECURSIVE

: DIM count, char$1, matrix(2,2), asciiCodes$(10)1
ENDPROCEDURE

Compatibility Issues:

This statement is supported only with Release IV or greater
LINSs are supported on Release IV or greater.

References:

2-136

NPL Statements Guide

LANGUAGE STATEMENTS DIM /STATIC

DIM /STATIC
General Form:
DIM /STATIC dim-element[,dim-element]...
Where:
dim-element = {numeric-id [Finitial-num-value] }
{numeric-array-id (sub1[,sub2]) }
{alpha-id$[length][=initial-str-value] }
{alpha-array-id$(subl[,sub2])[length] }
subl, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.
length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.
Discussion:

The STATIC keyword at the start of a DIM statement indicates that all variables speci-
fied in the statement are private to a module or to the current function (if the statement is
in the body of a function). Private variables may only be referenced by name from the
same module (or function) in which the DIM statement declares them.

DIM /STATIC Within a Function Body

Each function may declare its own list of private variables. Each function private variable
may be declared as either /STATIC or /RECURSIVE. A single copy of a function’s
/STATIC variables is allocated and initialized at resolve time. (By contrast, a function’s
/RECURSIVE variables are allocated and initialized each time the function is called).
The initial value (if any) is computed only once, at resolve time.

Multiple declarations of variables in the function’s private variable space are not permit-
ted.

NPL Statements Guide 2-137

DIM /STATIC LANGUAGE STATEMENTS

DIM / STATIC (cont.)

Variables in the function’s private variable space may be referenced by name only in the
function body in which the declaration appears. A function’s private variable may be ref-
erenced by name anywhere in a function, provided the variable appears in a DIM
STATIC statement previously in the function.

Variables declared inside the body of any function in a DIM statement without the
STATIC or PUBLIC keywords are by default in the module’s RECURSIVE variable list.
In this case, the STATIC keyword is necessary if the same allocation must be used for it-
erative calls to the function.

DIM /STATIC Outside a Function Body
Each module may also declare its own list of private variables.

When a DIM STATIC occurs outside the body of all functions, the defined variables are
private to the module.

If the variables are already declared in the module’s private variable list, all attributes of
the variable must agree with the previous declaration. In particular, strings must have the
same length, arrays must have the same dimensions.

Variables in the module’s private variable space may be referenced by name only in the
module in which the declaration appears. A module’s private variable may be referenced
by name anywhere in a module, provided:

* The variable appears in a DIM STATIC statement previously in the module.

* When the reference occurs within the body of a function or procedure, no RE-
CURSIVE or STATIC variable or parameter of the same name has been declared
in the body of the current function (in which case it cannot be referenced in that
function).

Variables declared outside the body of any function in a DIM statement without the
STATIC or PUBLIC keywords are also by default in the module’s private variable list. In
this case, the STATIC keyword is not necessary but may be entered for clarity.

Memory for only one copy of a module’s STATIC variables is allocated at resolve time.

2-138 NPL Statements Guide

LANGUAGE STATEMENTS DIM /STATIC

DIM / STATIC (cont.)

Variable Reference Conflicts

If a variable identifier is declared in a module in a DIM /STATIC statement, and also in a
DIM /PUBLIC statement (either explicitly or in a referenced PUBLIC section), this is not
considered an error. Instead, separate variables are allocated in the private variable list
and in the public variable list. A program reference to the variable refers to either the
STATIC or PUBLIC variable, depending on which declaration occurred most recently in
the program before the reference. To avoid confusion in such cases, it is advisable to
place DIM /STATIC declarations as early as possible in the module, preferably immedi-
ately after any INCLUDE and USES declarations.

Similarly, if a variable identifier is declared outside all functions in a DIM /STATIC or
/PUBLIC statement, and also inside a function with a DIM /STATIC or /RECURSIVE
statement, this is not considered an error. Instead, separate variables are allocated in the
module private or public variable list and in the function private variable list. A program
reference in the function body to the variable refers to either the function variable or the
non-function variable, depending on which declaration occurred most recently in the pro-
gram before the reference. To avoid confusion in such cases, it is advisable to place DIM
/STATIC declarations as early as possible in the function body, preferably immediately
after the function header.

The result of a DIM /STATIC statements executed in Immediate Mode depends on the lo-
cation of the next executable statement. If that statement is in the body of a function, the
variable is private to the function. Otherwise, it is private to the module.

Examples:

0010 DIM /STATIC Inited,FishName$16,A(VectorSize)
0010 DIM /STATIC NameList$(20)45
0010 DIM /STATIC Ratio,E=EXP(1)
0010 DIM /STATIC FileName$8,Default_City$30="Moose Jaw"
0010 DIM /STATIC CornYields(NUMBER_OF_MONTHS_KEPT_ON_RECORD)
0010 DIM /STATIC Buffer$(_MAX_OPEN_FILES)512
:DIM /STATIC Temporary,Access$256

Compatibility Issues:

This statement is supported only with Release IV or greater

LIN’s are supported on Release IV or greater.

References:

NPL Statements Guide 2-139

$DISCONNECT LANGUAGE STATEMENTS

$DISCONNECT

General Form:

$DISCONNECT{ON [numeric-expression]}
{OFF }

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

The compiler generates a warning when this statement is encountered.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
An error 0 (not implemented) is returned if SDISCONNECT ON is executed. No opera-
tion is performed if SDISCONNECT OFF is encountered at execution time.

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, enables (ON) or disables (OFF)
terminal disconnect detection.

Under NPL, terminal disconnect is not detectable.

This statement is syntactically recognized only by NPL Revision 3.0 or greater.

References:

2-140 NPL Statements Guide

LANGUAGE STATEMENTS DO/ENDDO

DO/ENDDO

General Form:

DO [:statement] ... : ENDDO

NOTE: The use of this statement is not recommended. Refer to structured IF/ELSE/END IF
as a better alternative.

Discussion:

The DO/ENDDO statements are used to specify a group of statements to be executed con-
ditionally following an IF, ELSE, or ERROR statement. When the condition preceding
the DO statement is true, all statements between DO and ENDDO are executed. If the
condition preceding DO is false, then the statements between DO and ENDDO are not
executed and program operation resumes with the statement following ENDDO.

DO/ENDDO statements must always be paired with ENDDO sequentially following DO
in statement order. Improperly paired DO/ENDDO statements result in a P31 (Do not
matched with ENDDO) error at execution time.

Examples:

0010 IF A=B THEN DO<
: C=D<
E=F<
: ENDDO<
. ELSE DO<
: G=H<
1=J<
: ENDDO<
0020 PRINT A

In this case, if A=B, then only the statements C=D and E=F are executed. If A is not
equal to B, then only the statements G=H and I=J are executed. In either case, the state-
ments at line 20 are executed.

NPL Statements Guide 2-141

DO/ENDDO LANGUAGE STATEMENTS

DO/ENDDO (cont.)

Nested DO Groups:
Nested DO/ENDDO groups are supported.

For example:

0010 IF A=B THEN DO<
: C=D<
IF X=Y THEN DO<
GOSUB 100<
M=N<
ENDDO<
E=F<
ENDDO<
. ELSE DO<
- G=H<
1=J<
. ENDDO<
0020 PRINT A

In this case, the statements GOSUB 100 and M=N are executed only if both A=B and
X=Y are true. The statements C=D and E=F are executed whenever A=B, regardless of
whether or not X=Y. As in the above example, the statements G=H and I=J are executed
only when A is not equal to B.

Statements following DO, including ENDDO, may be on separate lines. During program
execution, execution of an ENDDO when no DO has been executed does not cause an er-
ror. ENDDO actually performs no operation as a statement. Rather, it is used only at reso-
lution time to determine the address of the next statement to execute when a condition
preceding a DO statement is executed and evaluated as false.

For example:

0010 IF A=B THEN DO
0020 C=D

0030 GOSUB 100
0040 ENDDO

0050 X=C+1

0060 IF C<80 THEN 30

2-142 NPL Statements Guide

LANGUAGE STATEMENTS DO/ENDDO

DO/ENDDO (cont.)

In this example, program operation may be transferred from line 60 to line 30 based on
the value of C. Whenever this transfer takes place, the GOSUB 100 statement on line 30
are always executed and the ENDDO statement at line 40 performs no operation. It is
only on the initial execution of this program, when line 10 is executed, and the evaluation
A=B is false that the statements on line 20 and 30 are not executed.

NOTE: The programming technique demonstrated by this program, though valid, is not rec-
ommended. Programs which branch into or out of DO/ENDDO groups prove very
difficult to maintain.

Use of DO/ENDDO in Nested Conditionals:

When a condition preceding a DO statement is not evaluated, statements following the
DO statement are always executed.

For example:

0010 FOR X=0TO 1<
:FORY=0TO 1<
CPRINT "X="X;"Y="}Y;<
1 IF X=1 THEN PRINT "A";<
ELSE IF Y=1 THEN DO<

PRINT "B";<
: ENDDO<
: ELSE PRINT "C";<
: PRINT<
:NEXT Y, X
‘RUN
X=0Y=0C
X=0Y=1B
X=1Y=0AB
X=1Y=1AB

In this example, whenever X=1, the condition Y=1 is not evaluated. Therefore, the DO
statement is not executed. Therefore, the statement PRINT B is executed whenever X=1,
regardless of the value of Y. Without the DO/ENDDO statements, "B" would not be
printed when X=1 and Y=0. Because of the potential for confusion, use of DO/ENDDO
in nested [F/THEN/ELSE constructs is not recommended.

NPL Statements Guide 2-143

DO/ENDDO LANGUAGE STATEMENTS

DO/ENDDO (cont.)

Ambiguous Situations:

Placing ELSE clauses at the start of a new line can lead to ambiguous situations and is
not recommended.

When ELSE is on a separate line from the IF statement it follows, in general, the ELSE
statement is not executed even if the result of the IF statement is false. However, if the
ELSE statement immediately follows an ENDDO statement, ELSE is executed (if the re-
sult of IF is false) even when ELSE is on a separate line.

For example:

0010 IF A=B THEN DO
0020 C=D

0030 E=F

0040 ENDDO

0050 ELSE X=Y

In this case, the statement X=Y is executed whenever A is not equal to B.

0010 IF A=B THEN C=D
0020 ELSE X=Y

In this case, the statement X=Y is never executed even when A does not equal B.

Another ambiguous situation occurs when DO/ENDDO is used in conjunction with the
ERROR statement.

For example:

0010 DATA LOAD BAT/D11,(X)X$<
: ERROR DO<
: E=ERR
0020 PRINT "ERROR ";E;" OCCURRED"<
:ENDDO
0030 A=B

If DO/ENDDO was not used and an error did not occur on the DATA LOAD statement,
program operation would resume at line 20 (the next line number following the ERROR
statement). However, the use of DO/ENDDO changes this logic so that if no error occurs,
program operation resumes at line 30 (following the ENDDO statement).

2-144 NPL Statements Guide

LANGUAGE STATEMENTS DO/ENDDO

DO/ENDDO (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.
Nesting of DO/ENDDO is not supported in Wang 2200 Basic-2.

In Wang 2200 Basic-2 Revision 3.0 or higher, ELSE may be on a different line from IF,
regardless of whether or not ELSE follows a DO Group (although, in prior releases, of
Wang Basic-2, ELSE is always invalid if it is on a separate line from IF). In NPL, ELSE
on a separate line from IF is only valid when it follows a DO Group. Refer to ELSE for
further details.

References:

ELSE

ERROR
IF/THEN
IF/ELSE/END IF

NPL Statements Guide 2-145

DSC Alpha-operator LANGUAGE STATEMENTS

DSC Alpha-operator

General Form:
alpha-receiver = [.] DSC alpha-operand [...]
Where:
alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }
Discussion:

The DSC (decimal subtract with carry) alpha-operator subtracts the decimal value of the
alpha-operand from the decimal value of the alpha-receiver. The DSC alpha-operator
may only be used in an alpha-expression in an alpha-assignment statement.

The DSC operation assumes that both operands contain valid, unsigned BCD (Binary
Coded Decimal) data, where data consists of two digits per byte, and each digit is a num-
ber between 0 and 9. DSC does not check the operand contents for validity prior to sub-
tracting; consequently, the resultant is unpredictable if operands contain invalid data.

Each byte of alpha-operand is subtracted (base 10 arithmetic) from each corresponding
byte of the receiving alpha-variable; borrow propagation is automatically performed be-
tween bytes. The DSC operation is performed from right to left.

If the values of the alpha-operand and the receiving alpha-variable are of different length,
then the DSC algorithm implicitly extends the shorter value with leading zeroes prior to
the operation. If the resultant is larger than the receiving alpha-variable, then the extrane-
ous high order bytes of the resultant are truncated before assignment.

NOTE: Contrary to conventional alpha-variable operations, the DSC alpha-operator oper-
ates on all bytes of an alpha-variable (either as a receiver or an alpha-operand), in-
cluding trailing spaces.

2-146 NPL Statements Guide

LANGUAGE STATEMENTS DSC Alpha-operator

DSC Alpha-Operator (cont.)

Example:

0010 A$=B$ DSC HEX(0001)
0010 A$=DSC STR(B$,5,3)

:0010 DIM A$3,C$3

:0020 PACK (#####) A$ FROM 9990
:0030 C$=A%$ DSC HEX(1298)

:0040 PRINT HEXOF(C$)

‘RUN

008692

Compatibility Issues:

The Decimal Subtract with Carry operation accepts invalid packed decimal numbers as
an alpha-expression in Wang 2200 Basic-2. In this case, the results are predictable but
meaningless.

NPL is compatible with Wang 2200 Basic-2 with respect to the DSC function, provided
the alpha-expression contains valid, packed decimal values.

References:

PACK
UNPACK
$PACK
SUNPACK
DAC

VER

NPL Statements Guide 2-147

DSKIP LANGUAGE STATEMENTS

DSKIP

General Form:
DSKIP [file-number, [{numeric-expression[S]}
{END }
Where:
numeric-expression = number of sectors or logical records to be
skipped.
S = indicates that numeric-expression represents
physical sectors as opposed to logical re-
cords.
END = skip to end of file.

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DSKIP statement is used with cataloged data files in order to set the "current" value
in the Internal Device Table (for the file number specified) to a higher value. It permits
skipping over logical records or physical sectors within the file.

If the END keyword is used, the new position of the "current" pointer is set to the end of
the file. The offset of the end of file is stored in the file trailer sector each time a DATA
SAVE DC END instruction is performed on the file. A DKSIP END statement also
checks to ensure that the current pointer points to a valid end of file block.

If the END keyword is not used, the numeric expression indicates how far forward the
current pointer should be advanced. If the letter "S" follows the expression, the value of
the expression is a number of sectors which should be skipped. If the letter "S" does not
follow the expression, the value of the expression is a number of logical records which
should be skipped.

2-148 NPL Statements Guide

LANGUAGE STATEMENTS DSKIP

DSKIP (cont.)

When using the "S" parameter, the number of sectors specified is added to the current sec-
tor address. If this sector number would exceed the end of file, the current sector is set to
the end of file sector address.

When not using the "S" parameter, the number of sectors to add to the "current" sector ad-
dress is determined by actually reading forward through the specified number of logical
records.

If an end-of-file record is encountered while skipping records, the skip operation termi-
nates with the current sector pointing to the end-of-file record. The IF END condition in-
dicates whether an end-of-file record was found.

Examples:

0010 DSKIP #1,5
0010 DSKIP 10
0010 DSKIP END
0010 DSKIP #Z,10S
0010 DSKIP #3,X*3

Compatibility Issues:

References:

IF END
Catalog Access Methods - Section 7.3.8 of the Programmer’s Guide

NPL Statements Guide 2-149

LANGUAGE STATEMENTS ELSE

ELSE

General Form:

ELSE {simple-statement }
{DO [:statement].... ENDDO}

NOTE: The use of this statement is not recommended. Refer to the structured
IF/ELSE/END IF as a better alternative.

Discussion:
The ELSE statement is used to conditionally execute a simple-statement or DO Group
which immediately follows an IF/THEN statement.

The ELSE statement can also be used following an ON x GOSUB or an ON x SELECT
statement. In these cases, if evaluation of the ON x statement results in no action, the
ELSE clause is executed. If evaluation of the ON x statement results in execution of one
of the GOSUBs (or SELECTs), the ELSE clause is not executed.

When a single statement is executed when the IF/THEN condition is true, ELSE must be
on the same line as the corresponding IF/THEN, otherwise a syntax error occurs.

HINT: As of Release IV, use of ELSE simple-statement is only permitted immediately following
IF xxx THEN simple-statement or ON xxx GOSUB/GOTO/SELECT statements on the
same program line. Other uses are flagged as a syntax error.

Examples:

0010 IF A=X THEN PRINT "A=X"
: ELSE PRINT "A DOES NOT = X"
0010 IF A=X THEN GOSUB 1020
: ELSE DO
GOSUB 1030
GOSUB 2000
: ENDDO
0010 IF A$=STR(B$,1,5) THEN PRINT "YES"
: LSE PRINT "NO"
0010 ON X GOSUB 100,200,300,400
: ELSE PRINT "ENTRY NOT ALLOWED"

NPL Statements Guide 2-146

ELSE LANGUAGE STATEMENTS

ELSE (cont.)

Compatibility Issues:

Prior to Release 1V, use of ELSE simple-statement was permitted in contexts other than
immediately following IF xxx THEN, or ON xxx GOSUB/GOTO/SELECT statements,
and resulted in the statement being ignored.

In Wang 2200 Basic-2 Revision 3.0 or higher, ELSE may be on a different line from IF,
regardless of whether or not ELSE follows a DO Group (although, in prior releases of
Wang Basic-2, ELSE is always invalid if it is on a separate line from IF). In NPL, ELSE
on a separate line from IF is only valid when it follows a DO Group.

DO Groups are supported only in NPL Revision 3.0 or greater.

Programmers are advised to avoid the use of the ELSEDO/ENDDO constructs with the
new IF/ELSE/ENDIF constructs of Release IV or greater.

NOTE: Future releases of NPL may restrict the use of ELSE DO entirely, with the new IF
constructs. DO/ENDDO is still permitted.

References:
DO/ENDDO
IF/THEN
ON/GOSUB
ON/SELECT
IF/ELSE/END IF

2-147 NPL Statements Guide

LANGUAGE STATEMENTS ELSE Structured

ELSE Structured

General Form:

ELSE

Discussion:

The structured ELSE statement defines the start of the statements in an IF...ELSE...END
IF structure which are executed only if the condition in the structured IF statement was
false. It must be followed by an END IF statement, which indicates the end of the
IF...ELSE...END IF structure.

It is possible to branch into the range of an IF...ELSE...END IF structure, although this is
poor programming practice. If a structured ELSE statement of any kind is encountered
during execution, control is transferred to the statement following the matching END IF
statement.

Examples:

AFE X=Y
. PRINT "SAME";
:ELSE

CIE ‘Fuzzy E%uaI(X,Y =0
: IELRINT 'PRETTY MUCH THE SAME";X

: SE

: PRINT "DIFFERENT ENOUGH";X;Y
: END IF

:END IF

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
IF Structured
END IF Structured

NPL Statements Guide 2-148

END LANGUAGE STATEMENTS

END

General Form:

END

Discussion:
The END statement is used to indicate the end of a program. END is an optional state-
ment and may appear more than once in a program.

When END is executed, an "END PROGRAM" message and the amount of free space is
displayed (program or variable space, the smaller of the two).

When END is executed under the interpretive RunTime, Immediate Mode is activated
with the program and variables remaining in memory. If running under the non-interpre-
tive RunTime, a colon appears on the screen. Press the EXECUTE key to exit NPL.

If an END statement is executed, program execution cannot be continued.

Examples:

1000 IF A=B THEN END
1000 END

Compatibility Issues:
To exit RTP or RTI, use $END.

References:
$END

2-149 NPL Statements Guide

LANGUAGE STATEMENTS $END

SEND

General Form:

$END [numeric-expression]

Discussion:

The $END statement causes an exit from the RunTime program. Unlike the END state-
ment, no colon or free space listing appears. Program control is returned to the native op-
erating system.

If a numeric-expression is specified, the termination code for the RunTime program is set
to the value of the expression. Otherwise, the termination code is set to a value indicating
normal completion (usually 0). Termination codes may be used to indicate why the Run-
Time program ended, or to indicate a failure to the calling program of the native operat-
ing system.

Examples:
0010 IF A$="Y" THEN $END
0010 SEND
0010 $END X
Compatibility Issues:

This statement is supported only with Release 1.03 or greater.
This statement is not valid in Wang 2200 Basic-2.

Native operating system detection and legal values for SEND termination codes vary, as
does the value used to indicate normal completion. Refer to the appropriate NPL Supple-
ment for specific details.

As of Revision 4.0 of NPL, a SEND acts upon INCLUDEd modules by effectively delet-
ing all discardable and non-discardable modules (i.e., even if the module has been modi-
fied and not saved or has common variables defined), to ensure /EXIT procedures are
always executed to allow cleanup.

NPL Statements Guide 2-150

$END LANGUAGE STATEMENTS

$END (cont.)

NOTE: Future releases of NPL may include an option to treat "non-discardable” modules
differently at SEND (i.e., automatic save of modified modules or a warning and op-
tion to save).

References:
END

2-151 NPL Statements Guide

LANGUAGE STATEMENTS END FUNCTION

END FUNCTION

General Form:

END FUNCTION [identifier/$]]

Discussion:
This statement declares the end of the body of a function.

The optional identifier may be used for documentation purposes, and must match the cor-
responding FUNCTION name.

If execution "falls into" an END FUNCTION statement (i.e., no RETURN (value) state-
ment is executed before the END FUNCTION is reached), an error is generated.

Examples:

0010 END FUNCTION 'Bessel

0010 END FUNCTION 'PrintableTime$

0010 END FUNCTION ’'SubString$

0010 END FUNCTION . ;current

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
FUNCTION

NPL Statements Guide 2-152

END IF

LANGUAGE STATEMENTS

END IF

General Form:

END IF

Discussion:

The END IF statement defines the end of the statements in an IF... ELSE...END IF struc-
ture. Refer to IF (structured) for an explanation of how this statement may be used in an
IF...ELSE...END IF structure.

Examples:

IF X=Y
PRINT "SAME";
ELSE

IF 'FUZ’Z\?/ Equal(X,Y)=0
LEEI T"PRETTY MUCH THE SAME";X
PRI’INT "DIFFERENT ENOUGH";X;Y

: ENDIF
END IF

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
IF/ELSE/END IF

2-153

NPL Statements Guide

LANGUAGE STATEMENTS END PROCEDURE

END PROCEDURE

General Form:

END PROCEDURF identifier]

Discussion:
This statement declares the end of the body of a procedure.

The optional identifier may be used for documentation purposes and must match the cor-
responding PROCEDURE name.

If execution "falls into" an END PROCEDURE statement (i.e., no RETURN statement is
executed before the END PROCEDURE is reached), a RETURN is implied.

Examples:

0010 END PROCEDURE 'ProcessRecord

0010 END PROCEDURE 'Initialize

0010 END PROCEDURE 'Shutdown

0010 END PROCEDURE 'MoveWindow

0010 END PROCEDURE eurrent
Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
PROCEDURE

NPL Statements Guide 2-154

END PUBLIC LANGUAGE STATEMENTS

END PUBLIC

General Form:

END PUBLIC [Packageldentifier]

Discussion:

The END PUBLIC defines the end of a PUBLIC section of a module. There must be a
matching END PUBLIC statement for each PUBLIC statement of a module. The Pack-
ageldentifier (if any) of this statement must match the Packageldentifier (if any) of the
corresponding PUBLIC statement.

Examples:

0010 END PUBLIC
0010 END PUBLIC StringFunctions
0010 END PUBLIC StandardColorNames

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
PUBLIC

2-155 NPL Statements Guide

LANGUAGE STATEMENTS END RECORD

END RECORD

General Form:

END RECORDJrecord-identifier]

Discussion:
The END RECORD statement marks the end of the RECORD declaration for the indi-
cated identifier. If no record-identifier is specified, the current record is assumed.

Once a complete record is declared, the user may declare instances of the record as string
variables in DIM statements in which the length is specified by #fRECORDLENGTH (re-
cord-identifier).

Examples:

0010 END RECORD Payroll
0010 END RECORD Employee
0010 END RECORD Passwords
0010 END RECORD

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
RECORD
#RECORDLENGTH
FIELD

NPL Statements Guide 2-156

END SWITCH LANGUAGE STATEMENTS

END SWITCH

General Form:

END SWITCH

Discussion:

This statement declares the exit point of a numeric, string or logical CASE structure. Con-
trol is transferred to the statement following the END SWITCH statement when either

the code of a matching CASE has finished executing, or no matching CASE was found.

Examples:
:SWITCH Widget_Type
. CASEO gellyp
PRINT "Gizmos"
CASE 1

: PRINT "Thingammies"
:END SWITCH

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
CASE

2-157 NPL Statements Guide

LANGUAGE STATEMENTS ERR Function

ERR Function

General Form:

ERR

NOTE:

Discussion:
The ERR statement returns a unique two or three-digit error code of the most recent error
condition.

Whenever a RunTime error is detected, ERR is set to the appropriate error code. Any ref-
erence to the ERR function resets the value to zero. ERR is also reset to zero whenever a
RUN or CLEAR command is executed. Refer to Appendix B of the Programmer’s Guide
for a table of error codes.

ERR is typically used in conjunction with the ERROR statement.

ERR may also be inspected to determine if overflow or other mathematical errors have
occurred which are suppressed by the SELECT ERROR setting.

Additional information about errors may be obtained under program control by use of the
ERRS and $OSERR statements.

Examples:

0010 DATALOAD BATLX%X$: ERROR E=ERR: PRINT "ERROR";E;"OCCURRED"
0010 LIMITS T"FILE1",A,B,C,D: ERROR GOTO 100
0020 REM NO ERROR - NORMAL PROCESSING

0100 REM ERROR ROUTINE: X=ERR: IF X=48 THEN 110: IF X=93 THEN 120

0010 X=ERR : REM CLEAR ERROR
:SELECT ERROR>69
: Y=A/B+C/D
:IF ERR>0 THEN PRINT "WARNING - Error has occurred!"

NPL Statements Guide 2-158

ERR Function

LANGUAGE STATEMENTS

ERR Function (cont.)

NOTE:

Compatibility Issues:

The error codes returned by some I/O statements may be somewhat different from what
is expected when executing in Wang 2200 Basic-2. In particular, disk access errors are
commonly reported as 191 (Disk Hardware Error) or 190 (Disk Hardware Error) instead
of some of the more esoteric of the error codes in the 90-99 range.

Error trapping routines which require a specific error code to be returned in the
event of an I/O error may be unsuccessful because of the above.

Three-digit error codes are supported only in NPL Revision 3.0 or greater and are not sup-
ported on the Wang 2200.

References:
CLEAR

ERROR
$OSERR
SELECT ERROR

2-159

NPL Statements Guide

LANGUAGE STATEMENTS ERR$

ERR$

General Form:
alpha-receiver = ERR$ (error-code)
Where:
error-code = a numeric-expression representing the error
code for which to return the error descrip-
tion. The expression must be in the range of 0
to 999 or an error results.
Discussion:

The ERRS function returns a string of text which describes the specified error-code. The
specified error-code must be a two-digit integer which matches one of the valid error-
codes listed in Appendix B of the Programmer’s Guide.

NOTE: This function uses the ERR function to determine the error-code. ERR may also be
used directly as the specified error-code when using ERRS.

The text returned is identical to the literal message that appears when an untrapped error
occurs in immediate mode. Text for error messages is stored in the file ER-
RORMSG.HLP with pointers to text stored in file ERRORMSG.IDX. These files are in-
cluded with every RunTime package and should be installed in the NPL directory. Refer
to the Supplement for further details on installation procedures.

NOTE: Text returned by ERRS should be used for information only. Text is subject to
change in future releases or may be modified by the user.

If, for any reason, these files cannot be accessed, or if the specified error-code is invalid,
ERRS returns all spaces.

Examples:

0010 $FORMAT DISK T/D10,
:ERROR E=ERR
:E$=ERRS$(E)
:PRINT "Error ";&E;" - ";ES$;" occurred"

NPL Statements Guide 2-160

ERR$ LANGUAGE STATEMENTS

ERRS (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

On the Wang 2200, text for error messages is built into the operating system. It is, there-
fore, always found.

References:

ERR

ERROR

Error Codes - Appendix B of the Programmer’s Guide

2-161 NPL Statements Guide

LANGUAGE STATEMENTS

ERROR

ERROR

General Form:

simple-statement

:ERRORsimple-statementf:simple-statement]...}

{DO[:statement]....ENDDQO}

NOTE: The use of DO/ENDDO is preferred.

Discussion:

The ERROR statement is used to provide program control of recoverable errors. The fol-
lowing table lists all error-code ranges and indicates which are recoverable:

Error Code Range Recoverable or Not
0-36 Not recoverable
37 Recoverable
38-47 Not recoverable
48 Recoverable
49-59 Not recoverable
60-99 Recoverable
100-199 Reserved
200-299 Extended NPL error codes - not recoverable
300-499 Extended NPL error codes - recoverable
500-599 External error codes - not recoverable
600-799 External error codes - recoverable
800-899 Reserved

NPL Statements Guide

2-162

ERROR LANGUAGE STATEMENTS

ERROR (cont.)

When a recoverable error is detected in a simple statement which is immediately fol-
lowed by an ERROR statement, the standard system error response is suppressed and exe-
cution continues with the statement following the ERROR verb.

When using the statement format of ERROR, any simple statements on a program line
following an ERROR statement are executed only if an ERROR occurs. If a statement is
followed by ERROR and the statement executes without an error, program execution con-
tinues with the first statement on the next line. Structured statements are permitted on the
statement format of ERROR, but their use is not encouraged since breaking such a struc-
tured statement into multiple lines would mean that no error on the simple statement pre-
ceding ERROR could branch into the middle of a structured statement.

When using the DO Group format of ERROR, any statements within the DO group are
executed only if an error occurs. If an error does not occur, program execution resumes
with the first statement following the ENDDO statement.

Math errors which have been suppressed using the SELECT ERROR statement do not
generate errors (default values are returned; refer to SELECT ERROR for details) and,
therefore, are not detected by the ERROR statement.

For example, assuming a SELECT ERROR >65 has been executed, errors in the range of
60 to 65 cannot be detected by the ERROR statement.

Programs can detect the occurrence of the suppressed errors by use of the ERR function.

Examples:

0010 DATA LOAD DC OPEN T#2, "DATA"
:ERROR GOSUB 800
‘PRINT "ERROR"
0020 DATA LOAD DC #2,X
In this case any missing file or I/O errors occurring in the DATA LOAD DC OPEN state-
ment cause the subroutine at line 800 to be called, followed by the PRINT "ERROR"
statement. If no error occurs on the DATA LOAD DC OPEN statement, execution pro-

ceeds at line 20 (the next line number).
0010 Q=T/W: ERROR DO: PRINT"W CONTAINS ZERO VALUE": Q=0: ENDDO: T=T+1

In this case, assuming that error 62 has not been suppressed by SELECT ERROR, the
statement Q=0 is executed only if an error occurs on the statement Q=T/W but the state-
ment T=T+1 is always executed.

2-163 NPL Statements Guide

LANGUAGE STATEMENTS ERROR

ERROR (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

On revisions of NPL prior to 3.0 and on the Wang 2200, a P37 error (Undefined Marked
Subroutine) is non-recoverable.

Error codes of 100 or greater are generated only on NPL Revision 3.0 or greater.

References:
DO/ENDDO
ERR

ON ERROR
SELECT ERROR

NPL Statements Guide 2-164

EXEC Key

LANGUAGE STATEMENTS

EXEC Key

General Form:

EXEC (key)

NOTE:

Discussion:
The EXEC key performs two functions:

1. Ifin STEP Mode, the EXEC key executes the next program statement scheduled for
execution, after which the program is again halted. This is intended as a convenient
way of single-instruction stepping through program execution.

If a STEP # statement has been executed to limit the normal debugging range, the
halt is delayed until the program enters the specified range of lines.

2. If in Immediate Mode, but not in STEP Mode, pressing the EXEC key is the equiva-
lent of entering the CONTINUE command, causing normal program continuation.

Pressing the EXEC key from Immediate Mode when a program is not resolved generates
an error AQ9 - Program Not Resolved.

Examples:

Compatibility Issues:
The EXEC key provides an approximate equivalent to the HALT and CONTINUE keys
on a Wang 2200.

The default key sequence for EXEC varies between different hardware versions of NPL.

References:

CONTINUE

STEP

Immediate Mode - Section 2.5 of the Programmer’s Guide
Keyboard Equivalences - Appendix D of the Programmer’s Guide

2-165

NPL Statements Guide

LANGUAGE STATEMENTS EXP Function

EXP Function

General Form:

EXP(numeric-expression)

Discussion:

The EXP function returns the value of the mathematical constant "e" (value
2.718281828459...) raised to a numeric-expression. This is valid wherever a numeric-ex-
pression is legal.

Examples:

0010 T = EXP(G3- I%
0010 C5(M3) = 10*EXP

0010 Z(3,J) = EXP(A4)/§F2(K))

Compatibility Issues:

Due to the use of different algorithms, results of these functions may differ from func-
tions evaluated in Wang 2200 Basic-2. In general, however, the functions are accurate to
13 significant digits.

References:

NPL Statements Guide 2-166

FIELD LANGUAGE STATEMENTS

FIELD
General Form:
FIELD field-spec],field-spec]...
Where:
field-spec = {field-definition }
{/FILLER (fill-length)}
field-definition = feldqdentiefldmlfdmZ))] [=Honmatspec]
[$[([dim1[,dim2])] [len]]
format-spec = {HEX(tsll) }
{<alpha-variable> }
{string function-value '}
Discussion:

The FIELD statement declares a field type variable. The statement is only legal between
a RECORD and END RECORD statement.

NPL associates each field type variable with a start, length and format of data within a re-
cord. Arrays also have associated dimension information.

NPL assumes that the start of the field is the position immediately following any previous
FIELD and FIELD FILLER declarations.

The format-specification determines how NPL stores a field value in the record and the
length in bytes of the field in the record. For arrays, the length is the length of each ele-
ment). This must be a valid field format as supported by SPACK/ SUNPACK field (F=xx
type) formats. If the format specification is not given, a default value is assigned. The de-
fault value for alpha fields is HEX(Annn), where VAL(HEX(0Onnn)2) is the "len" of the
string (or array element length). The default value for numeric fields is HEX(F108) (i.e.,
NPL internal numeric format).

2-167 NPL Statements Guide

LANGUAGE STATEMENTS FIELD

FIELD (cont.)

The format-spec may also be an intrinsic string function, such as SFIELDFORMAT() or
a user-defined string FUNCTION value (the FUNCTION must be declared in a pre-
viously INCLUDEd library module).

The user may enter the format-specification explicitly as a two-byte hexadecimal value
HEX(tsll), where the "t" hexdigit specifies the field type, "s" specifies the subtype (or
number of decimals) and "VAL(HEX(11))" evaluates to the length of the field.

Alternatively, the user may enter the format-specification as an alpha-variable.

NOTE: FIELD declarations for string fields are permitted to specify an element or format-
spec, but not both. For example:

FIELD Ticket $10 ; Legal

FIELD Ticket $ = HEX(A00A) ; Legal

FIELD Ticket $10 = HEX(A00A) ; Not Legal
FIELD Ticket $(10)2 = HEX(A002) ; Not Legal

The /FILLER field specification declares an unreferenceable section of a RECORD field
type variable. The length expression indicates the number of bytes in the record that must
be skipped.

Library functions are available which allow definition of the type, subtype and length as
separate numeric expressions (which is not permitted with the hex format), using mne-

monic CONSTANT values for the field type parameter.

Library functions are also available which allow definition of the format-specification as
a data type and length using codes defined by the Niakwa Data Manager.

If the field format is to be the same as a previously defined field, the SFIELDFORMAT()
built-in function may be used to indicate the field format.

All field-identifiers must be unique within the scope (STATIC/PUBLIC) specified.

NPL Statements Guide 2-168

FIELD LANGUAGE STATEMENTS

FIELD (cont.)

Examples:

0010;

- INCLUDE T/D13, "PCKFIELD"

- INCLUDE T# NPLDEV,"PCKFIELD"
: USES PackFormats

“DIM _BIN1$ = 'FieldType$(_PACK_UNSIGNED_BINARY_FORMAT,0,1)

: RECORD Header
FIELD Self Id Message$3
FIELD /FILCER(64-1- 30) ;next field at byte 64, 30 used now
FIELD Info_Level=_BIN1$
FIELD Min_Info_Leével=_BIN1$
FIELD Number_ “Sections=_BIN1$
FIELD Screen_Size_ Lines=_BIN1$
FIELD ScreenSize” Cqumns- BIN1$
FIELD /FILLER'&lO) ;not interested in this
FIELD Cursor_Position_Row=_BIN1
FIELD Cursor_Position_Col=_BIN1$
END RECORD

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

END RECORD
#FIELDLENGTH
SFIELDFORMAT
#FIELDSTART

$PACK

RECORD
#RECORDLENGTH
$UNPACK
RECORDs/FIELDs-Section 4.12 of the Programmer’s Guide
PCKFIELDS-Section 3.4

2-169 NPL Statements Guide

LANGUAGE STATEMENTS

String FIELD-Expressions - Alpha-Variable Equivalent

String FIELD-Expressions - Alpha-Variable Equivalent

Where:

General Form:

alpha-variable-1.{field-identifier}$[(subl1[,sub2])]
{<alpha-variable-2>}

alpha-variable-1

field-identifier

alpha-variable-2

= the name of a buffer containing a
record.

= the name of a field in the record.

= an alpha-variable containing the name
of a PUBLIC string field.

sublf,sub2] = numeric expressions which are suscripts
to select an element of a string array
field.

Discussion:

String field-expressions are permitted wherever alpha-variables are allowed. The expres-
sion is equivalent to the substring of the record buffer, as defined by the string field name.

Examples:

0010 OldestChild$=Employee_Record$.Child_Name$(1)

0010 PRINT Input_Screen_Header$.Self_Id_Message$

0010 Alpha_Sort_Field$=Employee_Record$.<Selected_Field$>$
0010 IF Employee_Records$(l).<Selected_Field$>$=""

Compatibility Issues:
This statement is supported only with Release IV or greater.

NPL Statements Guide

String FIELD-Expressions - Alpha-Variable Equivalent

LANGUAGE STATEMENTS

String FIELD-Expressions (cont.)

References:

END RECORD
FIELD
$FIELDFORMAT
#FIELDLENGTH
#FIELDSTART
RECORD
#RECORDLENGTH

2-171

NPL Statements Guide

LANGUAGE STATEMENTS

Numeric FIELD-Expressions - Term in Numeric Expression

General Form:
alpha-variable-1.{field-identifier }[(subl[,subZ2])]
{<alpha-variable-2> }
Where:
alpha-variable-1 = the name of a buffer containing a
record.
field-identifier = the name of a field in the record.
alpha-variable-2 = an alpha-variable containing the name
of a PUBLIC numeric field.
sublf,sub2] = numeric expressions which are sub-
scripts to select an element of a
string array field.
Discussion:

Numeric field-expressions are permitted as terms in any numeric expression. The term is
equivalent to the unpacked value of the field in the record, as defined by the numeric
field name.

Examples:

0010 Total= Total + PayrollRecord$.Federal_Withholdi
0010 PRINT AT(InputScreenHeader$.Cursor_Position
0010 X=Employee Record$.<Deduction_Name$>

0010 Total(l)=Total(l)+Employee_Record$.Miscellaneous_Deductions(l)

nIgow,O);

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

END RECORD
RECORD

FIELD
#RECORDLENGTH

NPL Statements Guide

Numeric FIELD-Expressions - Term in Numeric Expression

2-172

$FIELDFORMAT Function LANGUAGE STATEMENTS

SFIELDFORMAT Function

General Form:

$FIELDFORMAT f{field-identifier[$][()]}
{<alpha-variable> }

Where:

alpha-variable = an alpha-variable containing the name of a
PUBLIC field.

Discussion:
The SFIELDFORMAT intrinsic function returns the two-byte field specification for a
given field identifier variable.

The $SFIELDFORMAT function permits indirect specification of a PUBLIC field name
using the same syntax as a field expression. The indirect specification <string> is permit-
ted to have "$" or "()", or both, but these are ignored. The type of the field must be indi-
cated by "$" or "()", or both, after the <string> specification.

Examples:

0010 BoxRowFormat$=$FIELDFORMAT BoxRow%
0010 BoxTitleFormat$=$FIELDFORMAT (BoxTitle %

0010 EmFIo ee_Name_Format=$FIELD ORMATS mployee_Name$)

0010 Child_Name_Format$=$FIELDFORMAT(Childrens_Names$())

0010 Miscellaneous_Format$=$FIELDFORMAT (Miscellaneous _Deductions())

0010 $UNPACK(F=$FIELDFORMAT(BoxRow))STR(Rec$,#FIELDSTART(BoxRow))TO Row

0010 RECORD /PUBLIC MouseFace
: FIELD MouseNoseColor = HEX(B0O01
FIELD MouseWhiskersLength = HEX(B002)
FIELD MouseNickName$3
: _FIELD MouseTail(20) = HEX(B004)
00:2END RECORD

0;
: DIM _MaxFieldNameLength = 20
: DIM F$2, N$_MaxFieldNameLength

: N$ = "MouseNoseColor"

: F$ = $FIELDFORMAT(<N$>)

: PRINT HEXOF(F$) :; this prints BO01
: N$ = "MouseNickName"

: F$ = $FIELDFORMAT (<N$>$)

: PRINT HEXOF (F$) :; this prints AO20
: N$ = "MouseTail"

: F$ = $FIELDFORMAT(<N$>())

: PRINT HEXOF(F$) :; this prints B004

2-173 NPL Statements Guide

LANGUAGE STATEMENTS $FIELDFORMAT Function

SFIELDFORMAT (cont.)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
FIELD
$PACK
$UNPACK

NPL Statements Guide 2-174

#FIELDLENGTH Function LANGUAGE STATEMENTS

#FIELDLENGTH Function

General Form:

#FIELDLENGTH(field-identifier[$][()]}
{<alpha-variable> }

Where:
alpha-variable = an alpha-variable containing the name of a
PUBLIC field.
Discussion:
The #FIELDLENGTH intrinsic function returns the field length in bytes for a given field
identifier variable.

The #FIELDLENGTH function permits indirect specification of a PUBLIC field name us-
ing the same syntax as a field expression. The indirect specification string is permitted to

have "$" or "()", or both, but these are ignored. The type of the field must be indicated by
"$" or "()", or both, after the <string> specification.

For example:

0010 RECORD /PUBLIC MouseFace

0020 FIELD MouseNoseColor=HEX(B001

0030 FIELD MouseWhiskersLength=HEX(B002)
0040 FIELD MouseNickName$3

0050 FIELD MouseTail(20)=HEX(B001)

0060 END RECORD MouseFace

:X$="MouseNoseColor"
:X:#FIELDLENGTHgMouseNoseCOIm) ;; returns 1

:X=#FIELDLENGTH(<X$>) ;; <-- same using indirect
:X$="MouseNickName$" ;; $ is allowed but ignored
X=#FIELDLENGTH(MouseNickName$) :; Returns 32
X=#FIELDLENGTH(<X$>$) ;; <-- same using indirect
:X$="MouseTail()" :; () are allowed but ignored
X=#FIELDLENGTH(MouseTail() ;;returns 1
X=#FIELDLENGTH(<X$>()) :; <-- same using indirect

2-175 NPL Statements Guide

LANGUAGE STATEMENTS #FIELDLENGTH Function

#FIELDLENGTH Function (cont.)

NOTE: If the field identifier is an array, the length returned is the length of an element.

Examples:

0010 BoxRowLength=#FIELDLENGTH(BoxRow

0010 BoxTitleLength=#FIELDLENGTH oxTitIeFR

0010 EmFIo ee_Name_Length=#FIELDLENGT éEmponee_NameﬂS)

0010 Child_Name Lengﬁh: FIELDLENGTH(Childrens_Names$())

0010 Deductions_Tength=#FIELDLENGTH(Miscellaneous_Deductions())

0010 G$=STR(Rec$,BoxRowStart,#FIELDLENGTH(BoxRow))
Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
RECORD

FIELD
$FIELDFORMAT
#FIELDSTART

NPL Statements Guide 2-176

#FIELDSTART Function

LANGUAGE STATEMENTS
#FIELDSTART Function
General Form:
#FIELDSTART ({field-identifier[$][()]}
{<alpha-variable> }
Where:
alpha-variable = an alpha-variable containing the name of a
PUBLIC field.
Discussion:

The #FIELDSTART intrinsic function returns the starting STR() position in a record for
a given field identifier variable (a value of 1 means start of record).

The #FIELDSTART function permits indirect specification of a PUBLIC field name us-
ing the same syntax as a field expression. The indirect specification string is permitted to
have "$" or "()" or both, but these are ignored. The type of the field must be indicated by
"$" or "()", or both, after the <string> specification. For example:

0010 RECORD /PUBLIC MouseFace

0020 FIELD MouseNoseColor=HEX(B001

0030 FIELD MouseWhiskersLength=HEX(B002)
0040 FIELD MouseNickName$3

0050 FIELD MouseTail(20)=HEX(B001)

0060 END RECORD MouseFace

:X$="MouseNoseColor"
:x:#FIELDSTARTEMouseNoseCoIor) ;;returns 1

X=#FIELDSTART(<X$> :;<-- same using indirect
:X$="MouseNickName$' 5% is allowed by i%nored
x=#FIELDSTART (MouseNickNames$) :;Returns
X=#FIELDSTART(<X$>%$) :;<--'same using indirect
:X$="MouseTail()" ;;() are allowed but ignored
X=#FIELDSTART(MouseTail(() :returns 36
X=#FIELDSTART(<X$>()) :;<--same using indirect

Examples:

0010 BoxRowsStart=#FIELDSTART BoxRow%
0010 BoxTitleStart=#FIELDSTART BoxTitIeT)
0010 EmFIo ee_Name_Start=#FIELDSTAR éEmponee_NameﬂS)

0010 Child_Name_Start=#FIELDSTART(Childrens_Names$())

0010 Deductions 'Start:#FIELDSTART(MiscelIaneous_DeductionsQF

0010 $UNPACK(F=$FIELDFORMAT(BoxRow))STR(Rec$ #FIELDSTART(BoxRow))TO Row

2-177 NPL Statements Guide

LANGUAGE STATEMENTS #FIELDSTART Function

#FIELDSTART Function (cont.)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
RECORD

FIELD
$FIELDFORMAT
#FIELDLENGTH

NPL Statements Guide 2-178

FIX Function

LANGUAGE STATEMENTS

FIX Function

General Form:

FIX (numeric-expression)

Discussion:

The FIX function returns the integer portion of the value of a numeric-expression, truncat-
ing the fractional portion of the value, if any. This is valid wherever a numeric-expres-

sion is legal.

Examples:

0010 Q=FIX(A
0010 2(10)2(3;(}-FIX(Q)

‘PRINT FIX(3.1)
PRINT FIX(3.9)
PRINT FIX(-8.1)
:-ISRINT FIX(-8.9)

Compatibility Issues:

References:
INT

2-179

NPL Statements Guide

LANGUAGE STATEMENTS FN Function

FN Function

General Form:

FN ({letter}(numeric-expression)
{digit }

NOTE:

NOTE:

The use of this statement is not recommended. Refer to FUNCTION as a better al-
ternative.

Discussion:

FN is a general-purpose function which is used to invoke functions defined by the
DEFFN function definition statement. A single, numeric argument must be passed when
the function is used. The FN function may be used in any numeric-expression. This is
valid wherever a numeric-expression is legal.

FN is used in conjunction with DEFFN. DEFFN defines the function while FN invokes
the defined function.

Other FN functions may appear in a DEF FN statement. FN() functions may be
nested in this way up to five levels deep.

For example:

0010 DEF FNA X'):ZFNB(Xg+2
: DEF ENB(Y)=FNC(Y)*
: DEF ENC(Z =FND’32E3/3
: DEF FND§T§=1+F (T)+2
This is legal, but if FNE() references other FN functions, evaluating FNA() generates an
error P39 - FN’s nested too deep.

Use of FN in Immediate Mode under NPL requires that the program be resolved in mem-
ory.

NPL Statements Guide 2-180

FN Function

LANGUAGE STATEMENTS

FN Function (cont.)

Examples:

0010 X = FNX(23)+45
0010 A,B,C=24+Y/FNR(24+FN4(W(10)))
0010 IF FNA(R) = FNA(R1) THEN 200

:0010 INPUT Y
10020 X=FNB(Y

10030 PRINT Y,

10040 DEF FNB(A)=(A-3)/2
‘RUN

?9
9 3

Compatibility Issues:

Use of an FN function is not allowed in Immediate Mode on a Wang 2200.

References:
DEF FN
FUNCTION

2-181

NPL Statements Guide

LANGUAGE STATEMENTS FOR/BEGIN Structured

FOR/BEGIN Structured

General Form:

FOR numeric-scalar=num-exp1 TO num-exp2 [STEP num-exp3]
BEGIN

Discussion:

The FOR/BEGIN statement defines the start of a FOR/BEGIN..NEXT structure. It may
be followed by any number of statements, which comprise the body of the loop. It must
then be followed by a NEXT statement with a matching numeric-scalar variable.

The FOR/BEGIN statement may be distinguished from the unstructured FOR statement
by the presence of the BEGIN keyword at the end of the statement.

The numeric-scalar variable specified becomes the index-variable of the loop.

It is assigned the initial value specified by num-exp1. Num-exp2 (the target-expression)
and num-exp3 (the step-expression) are evaluated once, at entry to the loop.

If the step-expression is positive, and the index-variable is greater than the target-expres-
sion, control is transferred to the statement following the matching NEXT statement.

If the step-expression is negative, and the index-variable is less than the target-expres-
sion, control is transferred to the statement following the matching NEXT statement.

Otherwise, the step-expression and target-expression are stored in an internal stack, and
execution proceeds with the first statement in the body of the loop.

NOTE: A step-expression of 0 always results in execution of the loop body exactly once.

NPL Statements Guide 2-182

FOR/BEGIN Structured LANGUAGE STATEMENTS

FOR/BEGIN Structured (cont.)

Repeated branching out of a FOR/BEGIN...NEXT loop body without exiting the loop in
an approved manner can result in a stack overflow. The following conditions clear the
stack information created by a FOR/BEGIN statement:

» Exiting the loop at the matching NEXT statement
* Executing a BREAK statement to exit the loop
* Executing a NEXT statement for an outer FOR loop

» Ifthe FOR loop was executed after entering a function or subroutine, executing a
RETURN statement clears the information.

Unlike the unstructured version, which is permitted to have multiple (or no) NEXT state-
ments, the end of the loop body of a FOR/BEGIN..NEXT loop is well defined. This per-
mits the loop body to be skipped if the entry conditions indicate this should be done.
Also, the LOOP statement may be used to skip to the NEXT statement of the FOR/BE-
GIN...NEXT loop, and BREAK may be used to skip past the NEXT statement of the loop
(clearing loop information on the stack).

Examples:

0010 FOR X=1 TO Y BEGIN
:;Note that if Y is less than 1, the loop is not executed at all

0010 FOR Index=1 TO N BEGIN
0010 FOR Course=Soup TO Nuts BEGIN
0010 FOR GreekLetter= ALPHA TO OMEGA BEGIN
0010 FOR Century=1000 TO 1900 STEP 100 BEGIN
0010 FOR XValue=0 TO 1.00 STEP .01 BEGIN
0010 FOR T=1 TO 20 BEGIN

: Address$=$DET_(r'I|'_?

. IF Address$=""THEN BREAK

. Device$=$DEVICE(Address$)

. PRINT Address$;Device$

CNEXT T

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
BREAK
LOOP

NEXT

2-183

NPL Statements Guide

LANGUAGE STATEMENTS FOR/TO

FOR/TO

General Form:

FOR index-variable = numeric-expression1 TO
numeric-expression2 [STEP numeric-expression3]

NOTE:

NOTE:

The use of this statement is not recommended. Refer to FOR/BEGIN as a better al-
ternative.

Discussion:

The FOR/TO statement is used in conjunction with the NEXT statement to create itera-
tive loops during program execution. Each FOR/TO statement must be paired with a
matching NEXT (or NEXT CLEAR) statement later in the program. Both FOR/TO and
NEXT statements must specify the same index-variable.

The FOR/TO statement is used when a group of statements is to be executed repeatedly,
while incrementing (or decrementing) an index-variable from an initial value (numeric-
expressionl) to a final value (numeric-expression2) by regular increments (numeric-ex-
pression3).

When first executed, the index-variable is set equal to numeric-expressionl and program
execution continues with the following statement.

Upon execution of the corresponding NEXT statement, if a positive STEP value is used,
the index-variable is tested to determine if the index-variable (+ STEP value) exceeds the
final loop value. If a negative STEP value is used, the index-variable is tested to deter-
mine if the index-variable (- STEP value) is less than the final loop value. In either case,
if the test is true, program execution continues with the program statement following the
NEXT statement and the increment (or decrement) is not performed. If not, the index-
variable is incremented (or decremented) and execution continues with the statement fol-
lowing the corresponding FOR statement.

The statements between the FOR/TO and NEXT statements are always executed at
least once, even if the initial value for the index-variable exceeds numeric-expres-
sion2.

NPL Statements Guide 2-184

FOR/TO

LANGUAGE STATEMENTS

FOR/TO (cont.)

Five rules should be considered when using FOR/TO loops:

1.

The values of numeric-expression2 and numeric-expression3 are determined only
once at the start of the loop.

No practical limit exists as to the number of loops which can be nested within a pro-
gram.

Every FOR/TO loop that is encountered is executed at least once (even those with a
STEP value of zero or those where the index-variable already meets the final value
condition).

Branching into the middle of FOR/TO loops. The FOR/TO statement must be exe-
cuted in order to enter a loop. If the FOR/TO statement has not been executed, execu-
tion of the corresponding NEXT statement generates an error P40 - No
Corresponding FOR for Next Statement.

Branching out of a FOR/TO loop is allowed, although some caution should be used in
doing so. Repeated branching from a loop without normal termination can fill the sys-
tem stack where FOR/TO loop information is kept, causing a Stack Overflow error. If
a loop is not terminated normally, the stack information is not cleared. There are sev-
eral ways of clearing the FOR/TO stack information:

» Setting the index variable equal to numeric-expression2 and then executing the
corresponding NEXT statement.

e Execution of a NEXT CLEAR statement.

» Ifin anested loop, executing the outermost NEXT statement clears inner loop
stack information.

e Ifin a subroutine, a RETURN or RETURN CLEAR command clears the
FOR/TO stack information for loops within the subroutine.

2-185

NPL Statements Guide

LANGUAGE STATEMENTS FOR/TO

FOR/TO (cont.)

6. Branching out of a FOR/TO loop with a RETURN is allowed. Execution of the RE-
TURN statement automatically clears information from the system stack regarding all
loops executed since the most recent GOSUB statement.

Examples:

0010 FOR I=1 TO 10: PRINT I: NEXT |
0010 FOR A=100 TO 10 STEP -5
0010 FOR X=N TO (T+1)*Z/R STEP S-2

0010 FOR J=1 TO 50
1 X=J*2/9
1 IF X=23.4 THEN J = 50 ;;WHEN TRUE TERMINATE LOOP
0020 NEXT J
0030 END
:0010 X=10
:FOR =1 TO X
: PRINTI
:NEXT |

‘RUN
12345678910

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

NEXT CLEAR is not supported on the Wang 2200.

References:
CONTINUE NEXT
NEXT

NEXT CLEAR

NPL Statements Guide 2-186

$FORMAT DISK LANGUAGE STATEMENTS

SFORMAT DISK

General Form:

$FORMAT DISK T [file-number, |
[disk-address, |
[<address-var>,]

Discussion:

$FORMAT DISK is used to format disk media. The SFORMAT DISK statement per-
forms differently depending on the device specified.

When a SFORMAT DISK statement is executed against a diskimage file, the file is de-
leted from the native operating system. The address still exists in the device table, but
must be scratched using the SCRATCH DISK statement before it can again be accessed.

When SFORMAT DISK is executed against a "raw" diskette, the diskette is physically
formatted in "raw" format.

Examples:

0010 $SFORMAT DISK T/D32,
0010 SFORMAT DISK T/D10,
0010 SFORMAT DISK T#1,
0010 SFORMAT DISK TAS,

Compatibility Issues:

Refer to the NPL Supplement for details on "raw" diskette devices.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

SCRATCH DISK

Native Operating System Files as diskimage files - Section 7.3.4

Native Operating System "raw" devices as diskimage files - Section 7.3.5
Diskimage Files - Section 7.3.4 of the Programmer’s Guide

"Raw" Devices - Section 7.3.5 of the Programmer’s Guide

2-187

NPL Statements Guide

LANGUAGE STATEMENTS FUNCTION

FUNCTION

General Form:
FUNCTION' name retum-type [(parameter|,parameter]...)]
[attribute I..
Where:
name = identifier
return-type = [$ Ji
parameter = [/POINTER |[]variable [length]
[Jvariable([dim1,[dim2]])
attribute = {/PUBLIC }
{/FORWARD }
{/EXTERNAL}
{/BEGINS }
Discussion:

This statement declares the entry point and type of a named function, and the parameters
to that function (if any). If the FORWARD keyword is not specified, statements follow-
ing the FUNCTION statement define the body of the function. These must be followed
by a matching END FUNCTION statement. Refer to Section 4.8 of the Programmer’s
Guide for more information.

Return Value Types of FUNCTIONs

Functions must return either a numeric or string value. A "$" after the function identifier
indicates a string return value. Absence of a "$" after the function identifier indicates a
numeric return type. Numeric function return values can be used wherever numeric con-
stants are permitted. String function return values can be used wherever string literals are
permitted.

Using FUNCTIONS s as Terms in Expressions

Functions may appear in expressions of the appropriate type using the syntax for a func-
tion term.

NPL Statements Guide 2-188

FUNCTION LANGUAGE STATEMENTS

FUNCTION (cont.)
For example,
numeric function term ’identifier [(parameters)]
string function term ’identifier§[(parameters)]

Parameters (if any) are evaluated from left to right, and all parameters are evaluated be-
fore the call is made. The parameters specified are passed to the function body, and exe-
cution proceeds with the first executable statement in the function. When the function
body executes a RETURN(value) statement, the value specified is used (as if replacing
the ’identifier[(parameters)] term), and evaluation of the expression containing the func-
tion reference term continues.

Return Value of FUNCTIONSs

Return values of string-valued functions may refer to recursive variables. Space allocated
to return values is managed internally by the RunTime and should be transparent to the
program. Return values are released (when they are no longer referenced) at a number of
points, including:

* Prior to any evaluation of SPACE functions, or

* Prior to any allocation of new memory, in particular, each time a FUNCTION is
called.

A performance penalty occurs when operating with a number of unreleased return values.

For example:

0010 FUNCTION 'Dup$(Value$1,Count)
: DIM Result$1000
: STR(Result$,,Count)=ALL(Value$)
: RETURN STRg\Il?esuIt&,Count))
:END FUNCTIO
0020 PROCEDURE 'RunsABitSlower(/POINTER _Arg1$,/POINTER _Arg2$)
: ;return values cannot be released
: END PROCEDURE
0030 'RunsABitSlower('Dup$("X",100),'Dup$("Y",100))

Calls to functions and procedures are permitted from Immediate Mode.

2-189 NPL Statements Guide

LANGUAGE STATEMENTS FUNCTION

FUNCTION (cont.)

Unlike Immediate Mode calls to subroutines using GOSUB or GOSUB’, there is no im-
plied HALT before functions or procedures are executed.

If a function is called from Immediate Mode, then, even if the function is halted or
STOPped for debugging, any Immediate Mode statements following the function are
eventually executed when the function returns.

NOTE: As a result of this change, if statements are entered after an Immediate Mode GO-
SUB(’) statement, they are also executed when the function RETURNSs. This behav-
ior is different from that of previous releases. On previous releases, statements after
an immediate GOSUB(’) were never executed when the RETURN was executed.

For example:

:PRINT "->";"WindowName$(TopWindow);"->"

->MainWindow<-

:GOSUB 'GetShorty: PRINT "Result is ";X

Resultis 22 <- immediate mode code executed after RETURN

NOTE: Unlike previous releases, an immediate mode GOSUB or GOSUB’ no longer does
an implied HALT at the first statement.

Examples:

0010 FUNCTION ’BesselﬁX%_
0010 FUNCTION 'PrintableTime$
0010 FUNCTION ’SetSubStrin};P$
0010 FUNCTION 'SubString$(

$/POINTER AnyString$)
POINTER Var$,Start, en%}h,Val$80 /FORWARD
INTER Var$,Start,Length,Val$80)/BEGINS

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
END FUNCTION
Refer to Section 4.8 of the Programmer’s Guide

NPL Statements Guide 2-190

'Function-name (...) Numeric-Expression Equivalent LANGUAGE STATEMENTS

’Function-name (...) Numeric-Expression Equivalent

General Form:
function-name [(argument[,argument]...)]
Where:
function-name = {ldentifier }
{<alpha-variable> }
argument = {numeric-expression }
{<alpha-variable> }
{literal-string }
Discussion:

FUNCTIONS declared as numeric return types (no "$" string type indicator) may appear
wherever a numeric expression is permitted by specifying the function Identifier pre-
ceded by "’" and followed by an argument list.

Refer to the general discussion of the NPL function interface in Section 4.8 of the NPL
Programmer’s Guide.

Example:

0010 YO:’BesseI(XO)

0010 Start_Size="Minimum_File_Size

0010 PRINT 'Target Sales$),’Accrued(‘Pension;ﬁEmponee_Code$))
0010 CONVERT "Id(RND(1)) TO Badges$, (###5)

0010 Y="<CallBackFunction$>(X)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
Refer to Section 4.8 of the Programmer’s Guide

2-191 NPL Statements Guide

LANGUAGE STATEMENTS 'Function-name$(...) Literal-String Equivalent

’Function-name$(...) Literal-String Equivalent

General Form:
‘function-name$ [(argument],argument]...)]
Where:
function-name = {ldentifier }
{<alpha-variable> }
argument = {numeric-expression }
{<alpha-variable> }
{literal-string }
Discussion:

FUNCTIONS declared as string return types ("$" type indicator in header) may appear
wherever alpha-variables are permitted by specifying the function Identifier preceded by
"*" and followed by "$" and an argument list.

Refer to the general discussion of function interface in Section 4.9 of the Programmer’s
Guide.

Example:

0010 YO$="Title$(X0)

0010 Start_Name='Default_File_Name$

0010 PRINT 'ColorSet$(Foreground,Background);'Surname$(Salesman$)
0010 CONVERT STR(’ld$(Password$),2,3) TO Count

0010 VerifyFunction$="<CallBackFunction$>$(2)

Compatibility Issues:

References:
Refer to Section 4.8 of the Programmer’s Guide

NPL Statements Guide 2-192

LANGUAGE STATEMENTS $GIO

$GIO

Where:

General Form:

$GIO [remark] [device-address,] (microcommand-sequence
[file-number, |
[<address-var>, |

[register-var]) [alpha-variable...]]

remark = a character string which identifies the
operation being performed. The remark is
ignored at execution time, although only
letters, digits, and spaces are legal in
a remark.

microcommand-sequence {alpha-variable}

{hex-literal '}

register-var = an alpha-variable whose individual bytes
are used as registers to store control in-
formation. Must be dimensioned length of
at least 10 bytes.

alpha-variable = an alpha-variable used for multiple char-
acter 1/0 operations, serving as a data
buffer.

Discussion:

$GIO is supported strictly for compatibility with Wang Basic-2 and is used for general in-
put and output to the specified device, which must be a printer-type device (not a disk-
type device). If no device is specified, the address used in the last SELECT TAPE
statement is used.

NPL Statements Guide 2-193

$GIO

LANGUAGE STATEMENTS

$GIO (cont.)

The operation performed by the $GIO statement is determined by the contents of the mi-
crocommand-sequence. Each two bytes of this variable (or literal) defines a microcom-
mand operation to be performed. Operations are performed sequentially, starting from the
first two bytes, unless a branch microcommand is encountered. The available operations
are detailed later in this document but, in general, consist of commands to transfer charac-
ters between the active device and either the register-var or alpha-variable buffer. Com-
mands are referred to by the four hexadecimal-digit representation of the two bytes of the
microcommand.

The alpha-variable specified as the register-var in the $GIO statement is used as a register
variable. That is, certain bytes of the register-var variable are used as register bytes. The
maximum readable length of a register variable is 15 bytes. All 15 bytes may be used, but
certain bytes (5,6,8,9,10) are used by the system for status registers. The value of these
registers may be changed by the system.

Register byte 8 is used to store error status information; register bytes 9 and 10 are used
to store information related to character count during $GIO operation. The programmer
should keep in mind that using these registers (5,6,8,9,10) is legal, but the system
changes them at different times during the $GIO operation.

Control Code Status

When using the $GIO instruction, a special flag exists in memory called the "control
code". The status of this "control code" is either "true" or "false", depending on the condi-
tion of the operation. Initially, the condition code is false.

Once the control code is set to true, $GIO operation is terminated unless the next instruc-
tion in the microcommand is one of two special branch instructions that check the control
status. The special branch statements are:
Dxxx (branch to xxx if control code true)
Exxx (branch to xxx if control code false)
where xxx is a 3 hexadecimal-digit address within the microcommand se-

quence. The address is determined by the sequential position away from
the first microcommand (which has address 000).

2-194

NPL Statements Guide

LANGUAGE STATEMENTS $GIO
$GIO (cont.)
For example, an instruction such as "D004" would cause a branch to the
fifth microcommand in the $GIO statement if the control code is true. If
control code is false, the statement is ignored.
The following conditions set the control code to true:

1000 Set condition code true

15xy If compare error bit is set

loxy If complemented status code (register 8) and HEX(xy) HEX(00)

17xy If status code (register 8) and HEX(xy) HEX(00)

1Bx If during write operation buffer is empty

1By If during read operation buffer is full

1Cxy If x=y

1Dxy If register pair x,x+1=register pair y,y+1

1Exy If register x register y

1Fxy If register pair x,x+1 register pair y,y+1

Microcommand Emulation

The following table lists the microcommands currently supported by the $GIO emulator,
and the function provided by each.

2020 End of $GIO command string.
A000, A200 | Print string from current alpha-variable buffer with no effect on TAB()

4210 Print character in register r with no effect on TAB()
40xx Print HEX(xx) with no effect on TAB()
OrHH Set register r to HEX(HH)

44xx & Send one-byte control sequence to device driver. Refer to the discussion below.
46x0
73x0 Select new 1/O channel from reg x.
71hh Select new I/O channel as HEX(hh).
870x Read single bytes. Refer to the discussion below.
Cx20 Read multiple bytes into current alpha-variable buffer. Refer to the discussion below.
12x1 Set coarse timeout on next I/O operation (ignored).
12x2 Set fine timeout on next I/O operation (ignored).
1200 Disable timeouts (ignored).
760x Status request (emulated only to screen address 05; responds appropriately for 80-column terminal).

NPL Statements Guide

2-195

$GIO LANGUAGE STATEMENTS

$GIO (cont.)

860x Wait for response (response equivalent to "ready").

Dxxx Branch to location if $GIO condition code is "true".

Exxx Branch to location if $GIO condition code is "false".

1A00 Set up next alpha-variable buffer for transmit.

18xx Select alpha-variable buffer by number.

19rc Increment decrement register (pair) #r.

1000 Set cc to TRUE.

14xx Compare registers.

15xx Compare registers.

16xx Compare registers.

17xx Compare registers.

1Cxx Compare registers.

1Dxx Compare registers.

1Exx Compare registers.

1Fxx Compare registers.

A604 Calculate and save LRC value in register 5. The LRC value is a cumulative XOR of all bytes
in the data buffer.

7600 Check for application security code. Implementation of this feature is highly operating
system-specific. Refer tothe appropriate NPL Supplements for implementation details.

Using $GIO Input (Cx20) Microcommands:

The Cx20 microcommands may be used to read bytes from a device address defined as a
serial port. The TMO clause of the $SDEVICE statement may be used to enable time-outs
on read operations using the C620 microcommand so that the statement returns with zero
bytes read if no bytes are present at the specified port. For the Cx20 series microcom-
mands, the number of bytes actually read is returned in bytes 9 and 10 of the register-var
variable of the $GIO statement. This capability provides for limited serial communica-
tions ability on systems where the complete asynchronous communications capabilities
provided by the Niakwa Scientific and Communications Drivers (SCD) Package are not
available.

2-196 NPL Statements Guide

LANGUAGE STATEMENTS $GIO

$GIO (cont.)

Refer to Section 5.7 of the NPL Supplements for details on limited serial communica-
tions support and the availability of the SCD Package on your operating system. In addi-
tion, refer to Section 7.8 of the Programmer’s Guide for further information on limited
serial communications techniques. (Refer to $SDEVICE for further information on the
TMO clause.)

Reading Bytes Using 870x and Cx20 Type Microcommands

Another important use of these microcommands is in accessing native operating system
files. These microcommands may be used to read single bytes (8§70x type, x not equal 0)
or strings of bytes (Cx20, x=2,3,6 or 7 are all treated the same) from native operating sys-
tem files. The 8700 microcommand (which, on Wang 2200 systems, means "read and dis-
card one byte") must be used to "rewind" any file before data may be read from it. For
the Cx20 series microcommands, the number of bytes actually read is returned in bytes 9
and 10 of the register-var variable of the $GIO statement. For the 870x microcommand,
the timeout (HEX(10)) bit is set in byte 8 of the register-var variable if a read of length 0
(end of file) is returned.

For example, the following program reads and prints the "/config.sys" file.

0010 $DEVICE(/21Jg="/config.Sg“
: $GIO/211,(HEXE(700)% :REM REWIND THE FILE

0020 $G10/211,(HEX(C620),G$) A$:REM READ SOME BYTES
: G=VAL(I_STR(G$,9),2) :REM GET COUNT OF BYTES READ

1 IF G=0 THEN 30 :REM CHECK END OF FILE
: %%I_IC_)éOgg,(HEX(AOOO)) A$,G :REM PRINT THE BYTES TO SCREEN

0030 $END

These microcommands may only be used for valid printer type devices (addresses /000,
/204, /210, /211, ... /21F). Attempts to direct these microcommands to other device
classes may result in a P48 (Illegal Device Specified) error or may result in no data being
read.

Program logic which reads from native operating system files in the above manner
should avoid polling the keyboard unless the HELP key has been disabled since the
HELP key closes all native operating system files. Although continuing the program
would reopen the files, the native operating system file pointer would be positioned at the
end of the file (which is suitable for output, but not for input).

NPL Statements Guide 2-197

$GIO

LANGUAGE STATEMENTS

$GIO (cont.)

HINT: Only perform $GIO to print class devices which are SOPENed, or avoid using function

calls to evaluate the alpha-variables in a $GIO statement.

For example, instead of:
0010 $GI0/01C(HEX(8700C620),L$)A$('NextRecordNumber)
use:

0010 R="NextRecordNumber
: $GIO/01C(HEX(8700C620),L$)AS(R)

Examples:

:0010 M$=HEX(40414042)

: $GIO /005,(M$) :REM register-var, alpha-variable
not required for single
character output.

‘RUN
AB (printed on screen)

:0010 X$="TEST"

'RUN: $GIO /005,(HEX(A000))X$

TEST (printed on screen)
Compatibility Issues:

The A604 microcommand performs no operation on NPL releases prior to Revision
2.01.20.

The 7600 microcommand performs no operation on NPL releases prior to Revision
2.01.17 and is not supported on the Wang 2200.

The TMO clause of $DEVICE is supported only in NPL Revision 2.01 or greater.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

Since, in general, the controllers attached to the Wang 2200 I/O bus are quite intelligent,
the task of emulating the functions provided by this statement on a non-Wang 2200 sys-
tem is formidable, to say the least.

Only a partial subset of the defined microcommands is implemented by NPL. The choice
of microcommands has been dictated by the frequency of their usage and the feasibility
of accurately reproducing their result.

2-198

NPL Statements Guide

LANGUAGE STATEMENTS $GIO

$GIO (cont.)

Despite the large number of microcommands (65536, not all defined), the large majority
of applications of $GIO use it as a patch to circumvent a few deficiencies in T-compat-
ible BASIC and some or all releases of Wang 2200 Basic-2.

Support of microcommands is limited to those stated above. Use of $GIO to perform tele-
communications is functional only if an appropriate device driver is installed. Refer to
the Niakwa SCD manual for further details.

If function calls are used to evaluate an alpha-variable value in a $GIO statement, and the
current device is not SOPENed, the current device of the $GIO is flushed before evaluat-
ing the function and reselected after evaluating. Consequently, if the $GIO is directed to
a text file, and that file is closed for any reason while evaluating the function, the new file
position is at the end of the file.

References:
SELECT TAPE

NPL Statements Guide 2-199

#GOLDKEY Function LANGUAGE STATEMENTS

#GOLDKEY Function

General Form:

#GOLDKEY

Discussion:

The #GOLDKEY function returns a value between 0 and 65535 which is generated on a
random basis for each RunTime Package diskette (Gold Key numbers are different). The
#GOLDKEY function returns the same value for the interpretive runtime and the non-in-
terpretive runtime on any one Gold Key. The intent of this function is to provide a
method of copy protection for application software authors. This is valid wherever a nu-
meric-expression is legal.

The following is a suggested procedure for implementing copy protection:

1. The application system devises an arbitrary hashing algorithm which we denote by
FNA. This function produces a unique number for each argument in the range 1-
65535, preferably in such a way that the algorithm is not obvious. In general, this
number may be up to 13 digits long.

2. The application system devises a second arbitrary hashing algorithm FNB. This func-
tion should take the 13-digit number produced by FNA and return another number,
again in such a way that the algorithm is not obvious. The vendor should reserve
space on the program diskimage (in a data file) for a single value of FNB for which
the software is authorized.

2-200 NPL Statements Guide

LANGUAGE STATEMENTS #GOLDKEY Function

#GOLDKEY Function (cont.)

3. At one or more critical points, the application software computes the value of the
FNA and FNB functions, based on the value of the #GOLDKEY function, and com-
pare this with the value on the program disk. If the numbers match, the program pro-
ceeds. Otherwise, an authorization check program should be called. The authorization
check program should:

A. Inform the user that the software is not authorized for use with the particular
Gold Key diskette being used.

B. Display the vendor’s telephone number and explicit instructions on how to
contact personnel able to authorize use of the software.

C. Display the value returned by the FNA algorithm.

D. Request an authorization number to be supplied by the vendor. At this point,
the user must contact someone at the vendor’s organization who:

a. Can determine whether the user has the right to use the software and,
if so,

b. Has access to a utility program which computes and displays the FNB
value based on the FNA number supplied by the user.

Once this number is supplied to the user, the authorizing program does
the following:

E. Saves the FNB number in the reserved area to enable future use of the soft-
ware by the same #GOLDKEY and proceed.

Additional Comments About #GOLDKEY

It is very inadvisable for programs to take any destructive actions based on what is de-
cided to be a "breach" of authorized use of the software. In particular, this is true because
the replacement Gold Key diskettes (provided as a result of upgrades or media failure)
usually has a different value for the #GOLDKEY function.

NPL Statements Guide 2-201

#GOLDKEY Function

#GOLDKEY Function (cont.)

NOTE:

HINT:

NOTE:

All programs which are capable of producing the FNB number should be compiled

with the -OBJFORMAT SCRAMBLED option, or SAVEd with the ! scramble pro-
tect option for distribution, so as to inhibit inspection or modification of the FNB al-
gorithm.

This function is provided as a convenience to licensees, to be used or not used as they see
fit. Although due care has been taken in the implementation of this function, Niakwa dis-
claims all responsibility for the integrity or reliability of any and all copy protection sys-
tems based on the #GOLDKEY function.

It is recommended that production software be set up to refuse access if #{GOLDKEY
equals zero.

The NPL demonstrator diskettes set #GOLDKEY to zero. This provides a mecha-
nism to create demo versions of application software which operates only with dem-
onstrator diskettes.

#GOLDKEY Determination

A new program, GOLDKEY.OBJ, was added to the Niakwa Development Package to al-
low developers to determine the #GOLDKEY number for any Niakwa Runtime based on
the Gold Key serial number without having to open the RunTime Package. This program
can be run as any other Niakwa program. When executed, the GOLDKEY program
prompts for the Gold Key serial number as shown below.

Enter Serial Number (1 - 65535) to convert to #GOLDKEY:

Once the serial number is entered, the program returns the correct #GOLDKEY code
number that is necessary for some application security programs.

Examples:

Compatibility Issues:
The #GOLDKEY function is supported only on RTP Revision 1.03 or later.

#GOLDKEY is not supported in the Wang 2200.

References:

2-202

NPL Statements Guide

LANGUAGE STATEMENTS

LANGUAGE STATEMENTS GOSsuB

GOSUB

General Form:

GOSUB({line-number }
{statement-label }

NOTE: Functions and Procedures are a better alternative. Statement labels should be used
as a better alternative to line numbers.

Discussion:
The GOSUB statement is used to begin a subroutine which begins at the line-number or
statement-label specified. The line number or label must exist in the current module.

If the target line-number or statement-label is located in a function body, this statement
must also be in the body of the same function.

If the GOSUB statement is located inside a function body, the target line-number or state-
ment-label must also be located in the body of the same function.

The GOSUB statement may be used within a subroutine (i.e., subroutines may be
"nested"). The maximum number of nested GOSUB calls is limited by the amount of
available memory. Typically, up to 60 nested levels are allowed. Each GOSUB encoun-
tered places information onto the stack. This information is cleared upon execution of a
RETURN, RETURN CLEAR, or LOAD statement.

Repeated execution of GOSUB without execution of a RETURN, RETURN CLEAR, or
LOAD statement can result in a stack overflow error.

Program overlays (LOAD) remove all subroutine RETURN information from the stack.

NPL Statements Guide 2-203

GOsuB

LANGUAGE STATEMENTS

GOSUB (cont.)

NOTE:

NOTE:

GOSUB is legal as an Immediate Mode command, but with the following restrictions:
* The program must be resolved.

* When the RETURN statement is executed, any statements following the GOSUB
statement are executed, unless execution HALTs due to being in STEP mode, or
due to a CONTINUE RETURN implied HALT.

If statements are entered after an immediate mode GOSUB(’) statement, they are
also executed when the function RETURN:S. This is different from previous releases.
On previous releases, statements after an immediate GOSUB(’) were never executed
when the RETURN was executed.

For example:

:PRINT "->";"WindowName$(TopWindow);"<-"
->MainWindow<-

:GOSUB 'GetShorty: PRINT "Result is ";X

Result is 22 <- immediate mode code executed after RETURN

Unlike previous releases, an immediate GOSUB or GOSUB’ no longer does an im-
plied HALT at the first statement.

Examples:

0010 GOSUB Reset

0020 GOSUB ProcessRecord
0030 GOSUB Code_1
:GOSUB InKey

Compatibility Issues:
On NPL releases prior to Revision 4.0, program execution halts at the first statement
within the subroutine. Press EXEC or enter CONTINUE to continue.

GOSUB is not a valid Immediate Mode command in Wang 2200 Basic-2.

This statement is supported only with Release IV or greater.

References:

2-204

NPL Statements Guide

LANGUAGE STATEMENTS GOSUB’

GOSUB’

General Form:

GOSUB ’ {<num-exp>}[{(argument [,argument]...)]
{integer }
{name }
{identifier }
{<alpha-variable>}

NOTE: The use of this statement is not recommended. Refer to FUNCTION or PROCE-
DURE as a better alternative.

Discussion:

The GOSUB?’ statement is used to execute a subroutine in a manner very similar to the
GOSUB statement. However, in place of a line number, an integer value or DEFFN” iden-
tifier is specified that relates to a corresponding integer value or DEFFN’ identifier on a
DEFFN’ statement. Upon executing the GOSUB’, the program branches to the related
DEFFN’ statement. When a subsequent RETURN statement is executed, the execution of
the program transfers to the statement following the GOSUB’ that invoked the subroutine.

NOTE: As of Revision 3.0 or greater, the associated DEFFN’ may be defined in an external
subroutine rather than in the NPL program. In cases where a given DEFFN’ is de-
fined both internally and externally, the internal routine is executed. When neither
an internal nor external routine is present, an error occurs. Refer to Mixed Lan-
guage Programming in Chapter 16 of the Programmer’s Guide for further details
on external subroutines.

Optionally, parameters may be passed to the specified subroutine. The parameters may
consist of constants, variables, and expressions. Upon execution of the GOSUB’ state-
ment, the parameters specified are automatically assigned to a corresponding list of vari-
ables in the related DEFFN’ statement. Care should be taken to ensure that numeric
parameters are passed to numeric-receivers and alpha parameters are passed to alpha-vari-
ables or a RunTime error occurs. The number of arguments in the GOSUB’ statement
must match the number of parameters in the corresponding DEFFN’ statement. (Refer to
DEFFN’ for further details.)

NPL Statements Guide 2-205

GOSsup’

LANGUAGE STATEMENTS

GOSUB’ (cont.)

NOTE:

NOTE:

GOSUB ’, with parameters, is legal as an Immediate Mode command, but with the fol-
lowing restrictions:

* The program must be resolved.

* When the RETURN statement is executed, any statements following the GO-
SUB’ statement are executed, unless execution HALTSs due to being in STEP
mode, or due to a CONTINUE RETURN implied HALT.

A numbered PUBLIC DEFFN’ called by a GOSUB’ statement may be indirectly speci-
fied by a numeric expression within angle brackets (< >). The expression is evaluated
and truncated to an integer, if necessary. The result must be a number in the range 0-
65535. A named PUBLIC DEFFN’ called by a GOSUB’ may be indirectly specified by
an alpha-variable within angle brackets (<>). The alpha-variable must contain a valid
identifier. To avoid any possible ambiguity, when the target marked subroutine is speci-
fied indirectly, it must be declared as a PUBLIC DEFFN’ subroutine or as an external
subroutine.

If the marked subroutine is not indirectly specified, the function must be defined either in
the same module, as PUBLIC in a PUBLIC section, or as an external subroutine.

If statements are entered after an immediate mode GOSUB(’) statement, they are
also executed when the function RETURN:S. This is different from previous releases.
On previous releases, statements after an immediate GOSUB(’) were never executed
when the RETURN was executed.

For example:

:PRINT "->";"WindowName$(TopWindow);"<-"
->MainWindow<-

:GOSUB 'GetShorty: PRINT "Result is ";X

Result is 22 <- immediate mode code executed after RETURN

Unlike previous releases, an immediate GOSUB or GOSUB’ no longer does an im-
plied HALT at the first statement.

2-206

NPL Statements Guide

LANGUAGE STATEMENTS GOSUB’

GOSUB’ (cont.)

Examples:

0010 ; declare 'MySub public so that it may be used indirectly
: DEFFN'MySub(B,C)/PUBLIC /FORWARD

0020 DIM X=100,Y=12,SubName$="MySub"

: GOSUB ’Mg/Add(X,Y) : ; call subroutine 'MyAdd directly

: CE-:-NOSUB '<SubName$>(X,Y) :; call subroutine 'MySub indirectly
0030 ;

: DEFFN'MyAdd(B,C)

: A=B+C

: PRINT A
- RETURN

0040 ;
: DEFFN'MySub(B,C)
: A=B-C
“PRINT A
 RETURN
RUN
112
88
DONE
0010 GOSUB'<X>
0010 GOSUB'<A(X)>
ommmwwwngz

>
0010 GOSUB’$NAMEO DI%FFN’ MySub)(A$,B$)
0010 GOSUB'<x$>(A$,B$)

Compatibility Issues:

On NPL releases prior to Revision 4.0, program execution halts at the first statement
within a GOSUB’ executed from immediate mode.

Use of more than 16 parameters is supported only in NPL Revision 3.0 or greater.
Use of GOSUB’s above ’255 is supported only in NPL Revision 3.0 or greater.

Use of GOSUB’s above 255 is not supported on the Wang 2200.

Use of external subroutines is supported only in NPL Revision 3.0 or greater.

Use of external subroutines is not supported on the Wang 2200.

GOSUB’ is not a valid Immediate Mode command in Wang 2200 Basic-2.

Use of named subroutines and indirect references are supported only in NPL Revision 4.0
or greater.

NPL Statements Guide 2-207

GOSsup’ LANGUAGE STATEMENTS

GOSUB’ (cont.)

References:
DEFFN’
External Calls - Chapter 16 of the Programmer’s Guide

2-208 NPL Statements Guide

LANGUAGE STATEMENTS GOTO

GOTO

General Form:

GOTO{line-number }
{statement-label }

NOTE: The use of this statement is not recommended because it is not structured. Use state-
ment labels instead of line numbers as a better alternative.

Discussion:

The GOTO statement is used to unconditionally transfer program execution to a specified
line-number or labeled statement. The line number or label must exist in the current mod-
ule.

If the target line-number or statement-label is located in a function body, this statement
must also be in the body of the same function.

If the GOTO statement is located inside a function body, the target line-number or state-
ment-label must also be located in the body of the same function.

GOTO is legal as an Immediate Mode command and causes program execution to re-
sume at the specified line-number when program execution is continued. When using
GOTO in Immediate Mode, the following restrictions should be observed:

* The program must be resolved in memory.

e The line-number specified must be an existing program line-number.

Examples:

0010 GOTO 1000

0010 GOTO 7299

0010 GOTO 3333

0010 GOTO Reset

0020 GOTO ProcessRecord
0030 GOTO Code_1
:GOTO InKey

NPL Statements Guide 2-209

GOTO LANGUAGE STATEMENTS

GOTO (cont.)

Compatibility Issues:

This statement’s statement-label option is supported only with Release IV or greater.

References:

2-210 NPL Statements Guide

LANGUAGE STATEMENTS HALT Key

HALT Key

General Form:

HALT (key sequence)

Discussion:
The HALT key is used to invoke Immediate Mode during program execution or a listing
operation.

Pressing the HALT key during program execution invokes Immediate Mode at the com-
pletion of the current statement. The program remains resolved in memory; normal pro-
gram continuation is allowed.

Pressing the HALT key during a listing operation stops the listing at the end of the cur-
rent line and terminate the list operation.

The HALT key is not operational under the non-interpretive RunTime program.

Operation of the HALT key can be suppressed under program control by setting byte 13
of SOPTIONS system variable to HEX(01) (refer to SOPTIONS for details).

Examples:

Compatibility Issues:
The HALT key under NPL only invokes Immediate Mode; on the Wang 2200 the HALT
key is also used to STEP through a program.

The HALT key is supported on NPL Revision 2.00 and higher of the Interpretive Run-
Time (RTI) program.

Refer to the NPL Supplement for the keyboard specific HALT key sequence.

References:
$OPTIONS

NPL Statements Guide 2-211

$HELP LANGUAGE STATEMENTS

SHELP

General Form:

Form 1:
$HELP=alpha-expression
Form 2:

alpha-receiver ~ =$HELP

Discussion:
Form 1

Form 1 of the SHELP statement is used to store an eight-character HELP entry name in
the SHELP pseudo variable. This HELP entry name may refer to a stand-alone HELP file
or a HELP entry in a combined, indexed HELP file (refer to SHELPINDEX below). If re-
ferring to a stand-alone file, the HELP entry name must be a valid native file system file-
name. An extension of .HLP is assumed if extensions are permitted by the native file
system.

Upon depression of the HELP key by the operator at runtime, application program execu-
tion is suspended, the contents of the screen is saved, and the current content of the
$HELP variable is inspected by the HELP processor. The HELP processor first attempts
to locate the specified HELP entry by searching the HELPINDEX file, if one exists. If
this fails, the HELP processor treats the HELP entry name as a stand-alone filename and
attempts to locate the HELP entry as a stand-alone file on disk.

Once the HELP entry is found, the information contained is displayed on the HELP
screen. If the HELP entry cannot be found by either of the above methods, the message
"NO HELP AVAILABLE" is displayed on the HELP screen.

The HELP information displayed can be varied, depending on which program of the ap-
plication system is executing. Further, the information may be varied, depending on
which portion of a program is executing. This capability allows for very specific instruc-
tions to the operator, depending on the exact circumstances.

2-212 NPL Statements Guide

LANGUAGE STATEMENTS $HELP

$SHELP (cont.)

Execution of the application program is resumed by executing the Leave Help option, at
which point the application screen contents is restored to its original state (before HELP
was invoked).

There are two components to implementing HELP screens for an application system.
First, creation of the HELP FILES and, secondly, strategic placement of SHELP state-
ments throughout the application programs. Refer to Chapter 11 of the Programmer’s
Guide for further details on $SHELP.

Form 2

Form 2 is used to inspect the current contents of the SHELP system variable. Refer to
Chapter 11 of the Programmer’s Guide for details on use of HELP and indexed Help files.

Examples:
0010 $HELP="ARINFO1"
0010 SHELP=F$&"001"
0010 A$=$HELP
0010 X$,Y$=$HELP
Compatibility Issues:

This statement is not valid in Wang 2200 Basic-2.

References:
$HELPINDEX
$HELP - Chapter 11 of the Programmer’s Guide

NPL Statements Guide 2-213

$HELPINDEX LANGUAGE STATEMENTS

SHELPINDEX

General Form:

Form 1:

$HELPINDEX=alpha-expression

Form 2:
alpha-receiver ~ =$HELPINDEX
Where:
alpha-expression = alength of 50 characters.
Discussion:

In addition to stand-alone HELP files, the RunTime program supports Indexed HELP
files. Indexed Help files are essentially combined "stand-alone" Help files and are useful
in that they are generally easier to maintain and require less disk space. In revisions of
NPL prior to Release IV, SHELP could handle indexed HELP files containing up to 256
individual HELP entries. With Release IV of NPL. $HELP is capable of handling in-
dexed help files with large number entries. There is no longer a built-in limit, but only 4K
bytes of index (256 entries) are loaded and searched at a time. Subsequently, access to
later index keys becomes progressively slower. Individual HELP entries in a Indexed
HELP file are accessed by using a special HELP INDEX file which contains a listing of
all HELP entries in the Indexed file along with a location (byte pointer) for each.

Refer to SHELP, Chapter 110f the Programmers Guide for details.
Form 1
Form 1 is used to assign the SHELPINDEX system variable the native operating system

file-specification of the Indexed HELP file. Form 2 of the SHELPINDEX statement can
be used to examine the contents of the SHELPINDEX system variable.

2-214 NPL Statements Guide

LANGUAGE STATEMENTS $HELPINDEX

SHELPINDEX (cont.)

The Indexed HELP file and its associated index must have the same filename and be lo-
cated in the same directory or equivalent native operating system file structure. If exten-
sions are supported by the native operating system, they are differentiated by their
extension: .HLP for the Indexed file, .IDX for the INDEX file.

Upon depression of the HELP key by the operator at runtime, the SHELPINDEX variable
is inspected by the HELP processor. The filename contained is used to locate both the In-
dexed HELP file and its associated INDEX file. The INDEX file is first searched for the
specific HELP entry (current contents of the SHELP system variable). If found, the In-
dexed HELP file is referenced and the text at the specified location is displayed. If an en-
try is not found in the HELPINDEX, or the HELPINDEX file is not found, the HELP
processor searches for a stand-alone HELP file in the current directory using the SHELP
filename.

Refer to SHELP, Chapter 11 of the Programmer’s Guide, for a detailed discussion of the
internal format of HELP files.

HINT: It is recommended that any program which modifies the value of SHELPINDEX save the
original value in a variable and then restore SHELPINDEX to its original value before ex-
iting the program. This ensures that the original value of SHELPINDEX is not lost.

Example:

This example illustrates how to store the value of SHELPINDEX at the beginning of a
program, set it to a new value for the duration of the program, set up different individual
HELP references, and restore SHELPINDEX to its original value before exiting the pro-
gram:

:0010 DIM X$50

:0020 X$=$HELPINDEX : REM SAVE ORIGINAL VALUE

:0030 $HELPINDEX="/HELP/AR" : REM SET COMBINED HELP FILE NAME TO FILE
AR.HLP IN DIRECTORY /HELP; INDEX TO
AR.IDX IN DIRECTORY /HELP

:0040 $HELP="CUSTNO" : REM SET HELP ENTRY TO "CUSTNO"

:0050 LINPUT "PLEASE ENTER CUSTOMER NUMBER" -A$

:0060 $HELP="CUSTNAME" : REM SET HELP ENTRY TO "CUSTNAME"

:0070 LINPUT "PLEASE ENTER CUSTOMER NAME" -B$

:0080 $HELP="" : REM BLANK $HELP BEFORE EXITING
:0090 $HELPINDEX=X$: REM RESTORE ORIGINAL $HELPINDEX
:0100 LOAD RUN"START" : REM EXIT PROGRAM

NPL Statements Guide 2-215

$HELPINDEX

LANGUAGE STATEMENTS

SHELPINDEX (cont.)

Compatibility Issues:

This statement is supported only with Release 1.03 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:

$HELP

$HELPINDEX

$HELP - Chapter 11 of the Programmer’s Guide

2-216

NPL Statements Guide

LANGUAGE STATEMENTS HEX Function

HEX Function

General Form:
HEXhh(hh..])
Where:
h = hexadecimal digit (0-9 or A-F).

Discussion:

HEX-literals are a form of literal-string. HEX-literals provide a method of expressing any
eight-bit character in a constant. This is achieved by expressing a given character or code
by its two-digit hexadecimal equivalent (digits 0-9 or A-F).

HEX literals may be used anywhere that an alpha literal may be used. Consequently,
HEX literals are often used to express literals which cannot otherwise be expressed as al-
pha literals--that is, literals which must contain a quotation mark, a carriage-return or
codes that do not have a keyboard equivalent. HEX literals are also used where the natu-
ral expression of a constant is in hexadecimal, like device control codes for printers, the
screen, etc.

For example:

510 A$=HEX(034E4941.485741E:REM ASSIGN A 7 BYTE HEX LITERAL TO A$
:ZR%EIRINT A% :REM PRINT A$ TO THE SCREEN

This example would clear the screen and print the characters "NIAKWA" on the screen.

The hexadecimal representation of the control code to clear the screen is 03, which was

assigned to the first byte of the variable AS. In the remaining bytes, the hexadecimal rep-

resentation of "NIAKWA" is stored. Consequently, when these bytes are issued to the

screen, the described action is effected.

NPL Statements Guide 2-217

HEX Function

LANGUAGE STATEMENTS

HEX Function (cont.)

NOTE:

The same result could be achieved in a different way by the use of both types of literals
and by specifying literals directly in the PRINT statement as follows:

:10 PRINT HEX(03);"NIAKWA"

‘RUN
Since no keyboard equivalent exists for HEX(03), we represented it as a HEX-literal.
Since the letters in "NIAKWA" are all represented on the keyboard, we can use an alpha
literal to represent it. The result is the same as the previous example, and the program be-
comes more readable.

Examples:

0010 PRINT HEX(03) :REM Will clear the screen
0010 PRINT HEX(01) :REM Will home the cursor
0010 PRINT HEX(OAOAOAQD) :REM Will move cursor down three lines and

then perform a carriage return.
0010 X$=HEX(418142)

Compatibility Issues:

For programs compiled with versions of the compiler prior to Release II, no distinction is
maintained between HEX literals and ASCII literals. Regardless of the original form of
the statement, literals are decompiled either as HEX literals or ASCII literals, based upon
the values contained in the literal. Literals with all characters in the range HEX(20) to
HEX(7F), except for HEX(22) (double quotes (")) are displayed as ASCII literals. All
other literals are displayed as HEX literals.

As of Release II, the original form of literals may be maintained by use of the
KEEPREMS Compiler Option or the SKEEPREMS system variable (used when en-
tering program text).

References:
$KEEPREMS

2-218

NPL Statements Guide

LANGUAGE STATEMENTS HEXPACK

HEXPACK

General Form:

HEXPACKalpha-variablel FROM alpha-variable2

Discussion:

The HEXPACK statement is used to convert ASCII character strings of hexadecimal
characters into their binary equivalent. Each pair of characters in alpha-variable2 is con-
verted to a single character in alpha-variablel. Alpha-variable2 must contain only the
characters 0-9 and A-F, or the characters HEX(3A) - HEX(3F) which are treated the

same as hexdigits "A" - "F".

Trailing spaces in alpha-variable2 are ignored.

Examples:

0010 HEXPACK A$ FROM B$
0010 HEXPACK STRS:B$,1,3) FROM STR(D$(),1,6)
0010 HEXPACK A$() ROM WI$()

:0005 DIM A$12,B$6
:0010 A$="123456789ABC"
:0020 HEXPACK B$ FROM A$
:0030 LIST DIM *
‘RUN

DIM A$12

DIM B$6

"123456789ABC" HEX(3132 3334 3536 3738 3941 4243)
"24Vx/0" HEX(1234 5678 9ABC)

Compatibility Issues:

References:
HEXUNPACK

NPL Statements Guide 2-219

HEXPRINT LANGUAGE STATEMENTS

HEXPRINT

General Form:

HEXPRINT alpha-variable [{;} alpha-variable]...[;]

’

Where:

, specifies begin printing on a new print-line.

specifies no blank spaces between alpha-variables.

A trailing semi-colon suppresses the trailing HEX(OD)(trail-
ing line-feed).

NOTE: The use of this statement is not reccommended. Refer to PRINT HEXOF() as a bet-
ter alternative.

Discussion:
The HEXPRINT statement is used to print the hexadecimal value of one or more alpha-
variables. All characters of an alpha-variable are displayed, including trailing spaces.

Examples:

0010 HEXPRINT A$,B$,C$;
0010 HEXPRINT B$;C$; L$&% L$(4)
0010 HEXPRINT R1$,R2$,R3%,R$4;

Compatibility Issues:

References:
PRINT HEXOF()

2-220 NPL Statements Guide

LANGUAGE STATEMENTS HEXUNPACK

HEXUNPACK

General Form:
HEXUNPACKalpha-variable1 TO alpha-variable2

Discussion:

The HEXUNPACK statement is used to convert the binary value of an alpha-variable to
the hexadecimal character equivalents of that value. Alpha-variable2 must be at least
twice as long as alpha-variablel. If alpha-variable2 is longer than required, the remaining

bytes are not affected.

Examples:

:0010 DIM A$2,B$4
:0020 A$=HEX(B751)

10030 HEXUNPACK A$ TO B$

:0040 PRINT "B$=",B$

‘RUN

B$=B751

:0010 DIM R$16,5$8

10020 R$=HEX(44A9B522C650D119)
10030 HEXUNPACK STR(R$,3,4) TO S$
:0040 PRINT "S$=":S$

‘RUN
S$=B522C650

Compatibility Issues:

References:
HEXPACK

NPL Statements Guide 2-221

#ID Function LANGUAGE STATEMENTS

#ID Function

General Form:

#ID

Discussion:

The #ID function is used to return the CPU identification number of the host processor if
available. The operation of #ID is extremely hardware-dependent. In the event that CPU
serialization is not supported by the host processor or operating system, #ID returns a
value of zero. #ID is typically used in multi-user networks to distinguish between users.
This is valid wherever a numeric-expression is legal.

Examples:
0010 X=#ID

Compatibility Issues:

Refer to the appropriate NPL Supplement for #ID values on particular hardware versions
of NPL.

References:

#TERM

#PART

Multi-user Capabilities - Chapter 7 of the NPL Supplements

2-222 NPL Statements Guide

LANGUAGE STATEMENTS $IF

SIF

General Form:

$IF {OFF} [{file-number }] line-number
{ON } {device-address}

Discussion:

The $IF ON/OFF statement tests the device-ready condition of the specified device and
branches to the specified line-number if the device is ready ($IF ON) or not ready ($IF
OFF). If no device is specified, the device defined by the last SELECT TAPE statement
is used. Since the sensing of device-ready information depends on the native operating
system, the accuracy of this statement under NPL is very limited. Provided the device is
configured, the default action of the instruction assumes a "device ready" status. The fol-
lowing exceptions are worth noting:

/000 Although not configured, the null address is always "ready" (used by many pro-
grams to decide whether they are running on a Wang 2200T, which returns a "not
ready" status).

/001 The keyboard address is ready only if there is a key currently buffered from the
keyboard and the partition is operating in foreground.

/005 The screen address returns a status of ’ready’ if the partition is operating in fore-
ground. If the partition is operating in background, a status of "not ready" is re-
turned.

Examples:

0010 $IF ON 100

0010 $IF ON #2,300
0010 $IF OFF #1,1000
0010 $IF OFF /001,100

NPL Statements Guide 2-223

$IF

LANGUAGE STATEMENTS

$IF (cont.)

Compatibility Issues:
Since the sensing of device-ready information depends on the native operating system,
the accuracy of this statement under NPL is very limited.

Use of $IF to determine whether or not the partition is operating in background is sup-
ported only on NPL Revisions 3.0 or greater and is highly operating system-dependent.
Refer to the NPL Supplements for further details on background partition support on
your operating system.

References:
SELECT TAPE

2-224

NPL Statements Guide

LANGUAGE STATEMENTS $IF

IF Structured

General Form:

IF logical-expression

Where:

logical-expression = {cond [logical-operator cond]...}
{true}
{false}

logical-operator = {AND}
{OR}
{XOR}

cond = {alpha-value rel-op alpha -value}

{numeric-expression rel-op numeric-expression}

alpha-value = {alpha-variable}
{string-literal}

rel-op ={=}

..\.\..\..\
vV ANV
I n

—— e

N
\Y

Discussion:

The structured IF is used to execute a conditional branch to another program location
based on either a true or false decision. The structured IF statement defines the start of an
IF..ELSE...END IF structure. It may be followed by a number of statements which are
executed if the logical condition is true. It may optionally be followed by a structured
ELSE statement, and a number of other statements, which are executed if the logical con-
dition is false. It must be followed by an END IF statement, which indicates the end of
the IF...ELSE...END IF structure.

NPL Statements Guide 2-225

$IF LANGUAGE STATEMENTS

IF Structured (cont.)

Refer to IF/THEN for a detailed discussion of evaluation of condition and use of logical
operators.

The reserved words TRUE and FALSE are permitted to replace any logical expression,
and always evaluate to a true or false condition, respectively. These expressions are typi-
cally not used in IF/END IF structured constructs, but may be useful as exit conditions
from structured WHILE...WEND, or REPEAT...UNTIL loops which is terminated by a
BREAK.

The structured IF is differentiated from the unstructured one by the absence of the THEN
keyword on the IF statement, and the absence of anything following the ELSE keyword
on the ELSE statement. The structured forms may not be mixed with unstructured forms.

Therefore, the following example is illegal:

0239 IF Nice_Long_Variable_Name = 56 THEN DO : REM unstructured
. PRINT Beta_Particle_Count;
: ELSE : REM structured stmt used in unstructured IF=not allowed.
Beta_Particle_Count = 'Get_New_Beta_Count()

Examples:

0010 IF Name$="Bobby"
0010 IF Number=666
0010 IF Number=666 AND Name$="Bobby"
0010 IF Number=666 OR Name$="Bobby
0010 IF Number=666 OR Name$="Bobby" AND Day =_THURSDAY
0010 :IF X=Y

: _PRINT "SAME";
OOZ%I\:IIg IFF Equal(X,Y)=0

'Fuzzy ual(X,Y)=
: EPRINT "PR'E'(IJTY g\/IU(%H THE SAME";X

LSE
PRINT "DIFFERENT ENOUGH";X;Y
END IF

Compatibility Issues

This statement is supported only with Release IV or greater.

2-226 NPL Statements Guide

LANGUAGE STATEMENTS $IF

IF Structured (cont.)

References
BREAK

DO

ENDDO
ELSE

END IF
REPEAT
UNTIL
WHILE
WEND
Structured Programming - Section 4.2.1 of Programmer’s Guide

NPL Statements Guide 2-227

IF/THEN LANGUAGE STATEMENTS

IF/THEN

General Form:
IF logical-expression THEN(direction:ELSE {ampesaement }
Where:
logical-expression = {cond [logical-operator cond]...}
logical-operator = {AND}

{OR }
{XOR}

cond = {alpha-value rel-op alpha -value '}
{numeric-expression rel-op numeric-expression}

alpha-value = {alpha-variable}
{string-literal}

rel-op = {=}
{ >}
{ <=}
{ >=}
{ <}
direction = {statement }
{line-number }

{DO [:statement] ENDDO}

NOTE: The use of this statement is not recommended. Refer to structured IF/ELSE/END IF
as a better alternative.

Discussion:

The IF/THEN statement is used to test conditions and conditionally execute the specified
statement, DO group, or branch to the specified line number if the overall evaluation of
the statement is true. If the statement is false, program execution continues with the next
statement unless the specified direction was a DO group. In this case, if the statement is
false, program execution continues with the statement following the ENDDO statement.

2-228 NPL Statements Guide

LANGUAGE STATEMENTS IF/THEN

IF/THEN (cont.)

The general definition of a logical-expression is defined here, and is referred to in other
statements.

Evaluation of Conditions

Operands for conditions must be of the same type (alpha or numeric). In evaluation of nu-
meric conditions, the expression on either side of the relational operator is fully calcu-
lated before comparison. In the evaluation of alpha conditions, the following rules apply:

* Comparison is performed on a binary basis, byte by byte, starting from the left-
most byte.

» Ifthe alpha values are unequal in length, the shorter value is implicitly extended
by spaces (HEX(20)) and the comparison proceeds for the full length of the
longer value.

Use of Logical Operators

Multiple conditions may be specified, separated with the logical operators AND, OR, or
XOR.

When multiple conditions are specified, evaluation of the statement is performed from
left to right. As conditions and logical operators are encountered, a net "truth” flag in
memory is updated. Once evaluation of all conditions and operators is complete, this
"truth" flag is the result of the statement.

NPL Statements Guide 2-229

IF/THEN

LANGUAGE STATEMENTS

IF/THEN (cont.)

The "truth" flag is set to true following evaluation of a logical operator under the follow-
ing conditions:

AND The net "truth" flag as established by evaluation of all conditions and
operators before the AND operator must be true, and the condition
following the AND operator must be true.

OR The net "truth" flag as established by evaluation of all conditions and
operators before the OR operator must be true, or the condition
following the OR operator must be true (or both).

XOR Either the net "truth" flag as established by evaluation of all conditions
and operators before the XOR operator must be true, or the condition
following the XOR operator must be true, but not both.

For example:

10 A=1: B=1: C=1: D=1
20 IF A=1 THEN PRINT "TRUE ON LINE 20"
30 IF A=1 AND B=2 THEN PRINT "TRUE ON LINE 30"

40 IF A=1 AND B=2 OR C=1 THEN PRINT "TRUE ON LINE 40"

50 IF A=1 AND B=2 OR C=1 AND D=2 THEN PRINT "TRUE ON LINE 50"
60 IF A=1 AND B=2 OR C=1 OR D=2 THEN PRINT "TRUE ON LINE 60"
‘RUN

TRUE ON LINE 20
TRUE ON LINE 40
TRUE ON LINE 60

On line 20, the evaluation of the condition A=1 is true so the entire statement is true.

On line 30, the evaluation of the condition A=1 is true and the net "truth" flag is set ac-
cordingly. However, since the condition following the AND (B=2) is false, the net truth
flag is set to false following evaluation of the AND operator and, therefore, the statement
is false.

On line 40, the net truth flag after evaluation of the segment:

IF A=1 AND B=2

is false. However, evaluation of the OR C=1 sets the truth flag to true since C=1 is true.

2-230

NPL Statements Guide

LANGUAGE STATEMENTS IF/THEN

IF/THEN (cont.)

On line 50, the net truth flag after evaluation of the segment:
IF A=1 AND B=2 OR C=1

is true. However, evaluation of the AND D= 2 sets the truth flag to false since both the
preceding net truth flag and the condition following the AND (D= 2) are not true.

On line 60, the net truth flag after evaluation of the segment:
IF A=1 AND B=2 OR C=1

is true. In this case, evaluation of the OR D= 2 sets the truth flag to true since, while the
condition D= 2 is false, the preceding net truth flag was true.

Non-evaluation of Conditions

When logical operators are used, all specified conditions are not necessarily evaluated. If
a determination of the overall truth of the statement can be made without evaluating a
given condition, that condition is not evaluated. For example:

10 A=1: B=1

20 IF A=2 AND B=1/0 THEN ...

30 IF A=1 OR B=1/0 THEN ...
On line 20, once the condition A= 2 is evaluated as false the entire statement must be
false. Therefore the condition B= 1/0 is not evaluated. On line 30, once the condition A=
1 is evaluated as true, the entire statement must be true and again the condition B= 1/0 is
not evaluated.

This means that conditions may contain invalid numeric-expressions. An error only oc-
curs if the condition containing the invalid expression is actually evaluated.

The ELSE Clause:

Optionally, the IF/THEN statement may also be followed by an ELSE clause. The ELSE
clause may contain one statement or a DO group which is executed only if the preceding
IF condition is false. If the IF condition is true, the ELSE clause is not executed. State-
ments subsequent to statements in the ELSE clause are not affected and are executed nor-
mally regardless of whether or not the ELSE clause is executed.

NPL Statements Guide 2-231

IF/THEN LANGUAGE STATEMENTS

IF/THEN (cont.)

NOTE: When a single statement follows ELSE, the ELSE statement must reside on the
same line as the IF/THEN statement. However, if a DO Group follows ELSE, ELSE
may be on a separate line. (Refer to ELSE and DO/ENDDO for further details on
this subject.)

Use of IF/THEN Statements in the ELSE Clause:

An ELSE clause may contain an IF/THEN statement which can be followed by another
ELSE clause. In this case, the IF statement in the ELSE clause is only executed if the pre-
ceding IF statement is false. If the IF statement in the ELSE clause is not executed be-
cause the preceding ELSE is true, the subsequent ELSE clause is not executed.
Otherwise, the subsequent ELSE clause is executed or not executed, based on the results
of the IF statement in the ELSE clause.

For example:

10 A=1:B=1

20 IF A=1 THEN PRINT "A=1"
: ELSE IF B=2 THEN PRINT "B=2"
:ELSE PRINT "NEITHER WAS TRUE"

‘RUN
A=1
The IF B=2 statement is not evaluated because the first IF statement was true. Therefore,

the ELSE statement associated with IF B=2 is not executed. The message--"NEITHER
WAS TRUE"--would be printed only if both IF statements were false.

Examples:

:0010 IF Q=79 THEN 150

:0020 GOTO 50

‘RUN
The above sample code branches to line number 150 if the value of Q is equal to 79; if
the value of Q is less than or greater than 79, the code branches to line 50.

2-232 NPL Statements Guide

LANGUAGE STATEMENTS IF/THEN

IF/THEN (cont.)

:%%1’8 IF X$="RENTAL" OR W(1)=100 THEN PRINT "ERROR"

The above example prints the word "ERROR" if EITHER the alpha-variable X$ is equal
to "RENTAL" or the value of W(1) is equal to 100.

:%%1’\10 IF AC THEN DO B=D: X=Y: ENDDO: ELSE DO B=E: A=C: ENDDO

If the value of A is greater than the value of C, then B is set equal to the value of D and X
is set equal to Y, and the ELSE clause is ignored. If A is not greater than C, then B is set
equal to E and A is set equal to C.

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

References:

DO/ENDDO
ELSE

NPL Statements Guide 2-233

IF END THEN LANGUAGE STATEMENTS

IF END THEN

General Form:

IF END THEN {statement }
{DO [:statement]...: ENDDO}
{line-number }

[:ELSE {statement }
{DO [:statement] ENDDO }

Discussion:

The IF END THEN statement is a special form of the IF/THEN statement used to test
whether an end-of-file marker in a disk file was read on a previous disk read (DATA-
LOAD) statement. Whenever an end-of-file marker is read, the end-of-file flag is turned
"on". The IF END THEN statement tests for the end-of-file flag. If it was set "on", the
END condition is evaluated as "true"; otherwise, the END condition is evaluated as
"false". Program execution then continues according to standard IF/THEN logic. Refer to
IF/THEN for details.

An end-of-file marker is created by the DATASAVE DC END statement. When this
marker is read by a DATALOAD DC or DA statement, the IF END THEN flag is set

on'.

The end-of-file flag is turned "on" when an end-of-file marker is read by a DATALOAD
DC or DA statement, and turned "off" following a subsequent DATALOAD statement or
IF END THEN statement. The CLEAR and RUN commands also reset the end-of-file
flag.

Examples:

:0010 DATALOAD DC X$,Y$,2$,J.K,L
:0020 IF END THEN 500

:0030 PRINT X$,Y$,2$,J,K,L

:0040 GOTO 200

:0500 GOSUB '123

‘RUN

If the end-of-file marker has been read, then program execution transfers to line 500; oth-
erwise, the values of the variables X$, Y$, Z$, J, K and L are printed.

2-234 NPL Statements Guide

LANGUAGE STATEMENTS IF END THEN

IF END THEN (cont.)

0010 IF END THEN 9999 : PRINT "More Information Available"
0010 IF END THEN 1000
0010 IF END THEN PRINT "File has been exhausted"
: ELSE GOTO 0120
Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

References:
DO/ENDDO
ELSE
IF/THEN

NPL Statements Guide 2-235

IMAGE (%) LANGUAGE STATEMENTS

IMAGE (%)

General Form:
%[character-string | [image-spec |]...
Where:
character-string = a string of alpha characters.
image-spec = [-ILSH#L- LI PN+]
[+] [-]
]
1]
Discussion:

The IMAGE statement is a formatted template for printing literals and variables with the
PRINTUSING statement. It consists of a line-number, followed by a percent sign (%),
followed by a format specification. A location for a formatted variable within the image
is signaled by one or more # characters, possibly with additional numeric punctuation
characters.

Any combination of printable characters may be part of the IMAGE statement, inserted
before and/or after the image-specs. Either a leading or a trailing sign may be used, but
not both.

During printing, each image-spec is paired off with the next item in the PRINTUSING
statement item-list. Alpha variables treat numeric punctuation as # characters. If the al-
pha-variable is too long, it is right-truncated. If more items are supplied than there are im-
age-specs, the image-specs are reused from the beginning.

To use an IMAGE for a PRINTUSING statement, the IMAGE statement must be the first
statement on a line (must immediately follow the line-number).

2-236 NPL Statements Guide

LANGUAGE STATEMENTS IMAGE (%)

IMAGE % (cont.)

The "$", ","(comma), "."(decimal point) characters can be changed in the PRINTUSING
output from an IMAGE statement by replacing bytes 4,5, and 6 respectively of the $OP-
TIONS system variable with the desired output characters. Replacing these characters is
primarily used for foreign currency applications. Refer to SOPTIONS system variable for
more details.

Examples:

:0010 %The balance in your account is $##,### ##
:0020 T=1234.56: R=54.39

:0030 PRINTUSING 10,T+R

:RUN

The balance in your account is $1,288.95

:0010 DIM F$50

:0020 %You will be billed for ### cartons at $##.##/1b.
:0030 C=87: P=11.97

:0040 PRINTUSING 20,C,P

:RUN
You will be billed for 87 cartons at $11.97/lb.

:0010 Q=5049.6: W=2.01

:0020 Yo#t## = SH#H# ## at +#.#4#%

%?JSNO PRINTUSING 20,"TOTAL",Q,W

TOTAL = $5049.60 at +2.01%
Compatibility Issues:
In Wang 2200 Basic-2, the IMAGE statement must occupy a statement line by itself, and
not be combined with multiple statements on the same line. This is not a restriction in

NPL.

References:
PRINTUSING
$OPTIONS

NPL Statements Guide 2-237

INCLUDE

LANGUAGE STATEMENTS

INCLUDE

Where:

General Form:

INCLUDE T [file-number,] filename [TO module-name]
[disk-address, |
[<address-var>, |

filename = { <alpha-variable> }
{ literal }

module-name = { <alpha-variable> }
{ literal }

Discussion:

The INCLUDE statement statically loads the specified filename from the specified disk-
image into a separate module at resolve time (if it is not already loaded) and resolves it (if
it is not already resolved). The filename and module-name are evaluated once only, at re-
solve time.

Once a module has been INCLUDEG, its declared PUBLIC sections become available to
the module which executed the INCLUDE statement. Named PUBLIC sections must be
referenced by the USES statement.

Nested INCLUDE operations are permitted. If the INCLUDEd module also contains fur-
ther USES and INCLUDE statements within its PUBLIC section, then these are also
available to the "main" module.

The new module may optionally be given a name specified in the TO clause. If no ex-
plicit module name is given, the filename is used. The "main" module, containing the ap-
plication’s mainline, has a blank module name (" "). Module names must be unique
within the workspace. If a module with the given name has already been loaded, it is not
reloaded. Although any string may be used to name a file, NPL requires that the module
name be a legal identifier (i.e., alphanumeric, starting with a digit).

2-238

NPL Statements Guide

LANGUAGE STATEMENTS INCLUDE

INCLUDE (cont.)

NOTE: A variable used as the address in an INCLUDE statement must be assigned a value
in a DIM statement, or must be a constant variable, or a common variable.

If such a variable is just assigned a value in the program the INCLUDE will fail be-
cause the INCLUDE is performed at resolution time, before the variable will be as-
signed during program execution.

The "TO module-name" specification is frequently used to load interchangeable compo-
nents into the same module name. For example, different modules that handle color or
monochrome displays could each be loaded into a module named "DISPLAY™".

If an INCLUDEd module declares a /MAIN procedure (for initialization purposes), then
it is executed before any referencing modules are allowed to execute.

A module remains loaded as long as the INCLUDE statement is part of the resolved pro-
gram code. If an INCLUDEd module is no longer referenced by any other module at the
end of a resolution pass, it is deleted (there are exceptions: (1) when the module has
COM variables, and (2) when the module has been modified and not saved). Values as-
signed to any /PUBLIC variables are no longer valid after the INCLUDEd module is un-
loaded.

Modules may be independently scramble-protected. The fact that one module is scramble-
protected does not prevent debugging or development in other modules.

If it is required to list or edit an INCLUDEd module it may be selected with the MOD-
ULE command.

If the INCLUDEd module has an /EXIT function, that function is executed before the
module is deleted.

Examples:

0010 INCLUDE T PlotDriver$

0010 INCLUDE T#2, "BANKFILE" TO "DataFileSpecs"
0010 INCLUDE T "SOURCEIO"

0010 INCLUDE T<NiakwalLibrariesDevice$>,"FIELDPCK"

NPL Statements Guide 2-239

INCLUDE

LANGUAGE STATEMENTS

INCLUDE (cont.)

"MAIN" Module

10 : A program that uses nested include modules
:INCLUDE T "COMBO"

: DIM G$#RECORDLENGTH(TeaTime

20 PRINT 'Funct(A) :; Public FUNCTION in COMBO1

: GOSUB 'Blob :; Public DEFFN’ in COMBO2
: PRINT Pubvar :; Public variable in COMBO3
1 G$.Milk=1

Program "COMBO":

10 PUBLIC

: INCLUDE T"COMBOL1"
INCLUDE T"COMBO2"

: INCLUDE T"COMBO3"

: END PUBLICINCLUDE (cont.)

Program "COMBO1"

10 PUBLIC]
: FUNCTION 'Funct(X)/FORWARD :;functions...
: END PUBLIC

Program "COMBO2"

10 PUBLIC
: DEFEN’Blob/FORWARD ;DEFFN's...
: END PUBLIC

Program "COMBO3"

10 PUBLIC

: DIM Pubvar ;Variables...

: RECORD TeaTime ;;including RECORDs and FIELDs
FIELD Lumps=HEX(B001
FIELD Lemon=HEX(B001
FIELD Milk=HEX(B0O01)

. FIELD TeaCosyName$10

: END RECORD

: END PUBLIC

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:

Modules - Section 4.10 of the NPL Programmer’s Guide
USES

PUBLIC

2-240

NPL Statements Guide

LANGUAGE STATEMENTS INIT

INIT
General Form:
INIT ({hh }) alpha-variable [,alpha-variable]...
{alpha-variable }
{literal }

Where:
hh = two hexdigits (0-9, or A-F).

NOTE: The use of this statement is not recommended. Refer to ALL () function as a better
alternative.

Discussion:
The INIT statement is used to set all characters in one or more alpha-variables to a char-
acter specified as the first character of a variable or as 2 hexdigits.

The INIT statement performs the same function as ALL().

Examples:

:0010 DIM A$8
:0020 INIT("?")A$
:0030 PRINT A$
‘RUN

???7?°?7?

:0010 DIM B9$4
:0020 C$="ABCDEFGH"
:0030 INIT(C$)B9$
:0040 PRINT B9$
‘RUN

AAAA

:0010 DIM D1$ 2)2,D2$%10)l
:0020 INIT FF? 1$(),D2%()
:0030 HEXPRINT D1$()
:RUN

FFFFFFFF

Compatibility Issues:

References:
ALL

NPL Statements Guide 2-241

INPUT

LANGUAGE STATEMENTS

INPUT

General Form:

INPUT [literal-string,] {alpha-variable } {alpha-variable }]...
{numeric-receiver } {numeric-receiver}

Discussion:
The INPUT statement is used to prompt the operator to enter data during program execu-
tion. An optional message is allowed in the INPUT statement to instruct operator input.

When an INPUT statement is executed, the optional message is displayed at the current
cursor position followed by a "?" prompt. The program is suspended at this point until the
requested values have been entered. Data is sequentially assigned to variables in the order
they are entered, with the "?" prompt appearing until all variables have been assigned.
When all variables have been assigned, program execution continues.

Values can be entered in one of two ways: one at a time by entering the value and press-
ing RETURN, or more than one value at a time by using a comma as the variable delim-
iter. If an operator enters RETURN with no data entered at an INPUT prompt, execution
of the INPUT statement is terminated and the remaining variable values are unchanged.

If entering string values which contain commas within the string, the string must be en-
tered within quotation marks.

For example:

:0010 INPUT A$
: PRINT A$

‘RUN

?"Chicago, lllinois"

Chicago, lllinois
DEFFN ’ subroutines numbered 0 to 31, or *126 through 127, can be executed while
the system is waiting for a response to input, by pressing the defined special function key.
However, when the RETURN statement in the subroutine is executed, the INPUT state-
ment is reexecuted from the beginning and any values previously entered in response to

the INPUT statement must be reentered.

2-242

NPL Statements Guide

LANGUAGE STATEMENTS INPUT

INPUT (cont.)

Data can also be entered in an INPUT statement by using defined special function keys.
Refer to DEFFN’ Keyboard Input statement for details on entering character strings using
special function keys.

If invalid data is entered, an error message is displayed and the "?" prompt reappears, al-
lowing data to be reentered.

The RECALL key recalls the last data typed during an input operation (useful for repeti-
tive data entry). Refer to Section 5.4 of the Programmer’s Guide for details on Line Edi-
tor features.

Pressing the HELP key during an INPUT operation generates the HELP display. The IN-
PUT operation is continued when program execution is continued (with variable values
unchanged).

All the functions of the Line Editor are available to allow entry or correction of the IN-
PUT line. Refer to Section 5.4 of the Programmer’s Guide for details.

In addition, the initial mode of the Line Editor for an INPUT statement may be set so that
entered data overstrikes or is automatically inserted into the entered line. Also, the opera-
tion of the INSERT key for an INPUT statement can be set so that it either inserts a sin-
gle space or switches between insert and overstrike modes. These choices for these
options are set using byte 44 of the SOPTIONS system variable. Refer to SOPTIONS for
more details.

Examples:

0010 INPUT AB,C$

0010 INPUT "INPUT A,B,C$",A,B,C$
0010 INPUT A$g{)

0010 INPUT STR(A$,3,3),B

0010 INPUT "Input Some Data",A,B,C
0020 PRINT "END"

‘RUN

Input Some Data? 1

?4

?12

END

‘RUN

Input Some Data? 1,4,12

END

NPL Statements Guide 2-243

INPUT LANGUAGE STATEMENTS

INPUT (cont.)

Compatibility Issues:
Execution of marked subroutines with parameters during response to INPUT is supported
by Wang 2200 Basic-2. NPL does not support this feature.

References:

DEFFN ’ Keyboard Input
DEFFN ’ Subroutine
$OPTIONS

2-244 NPL Statements Guide

LANGUAGE STATEMENTS INPUT SCREEN

INPUT SCREEN

General Form:
INPUT SCREEN alpha-variable [,AT (x,y)][,BOX (r,c)]
Where:

X = a numeric-expression specifying the starting row.
¥ = anumeric-expression specifying the starting column.

r = a numeric-expression specifying the number of rows to input.
For any value r, r+1 rows are input.

¢ = anumeric-expression specifying the number of columns per row
to input. For any value ¢, c+1 columns are input for each
row input.

Discussion:

INPUT SCREEN is used to read the specified portion of the current NPL screen mapping
area into the specified variable. The screen is read row by row, starting at the specified
x,y coordinates for the specified number of rows and columns.

If AT values are not specified, the following defaults are used:

X - starting row = 0
y - starting column = 0

If BOX values are not specified, the following defaults are used:

r - number of rows = 24-x
¢ - number of columns = (w-1)-y

where "w" is the current screen width (normally 80 but may be 132 on some termi-
nals).

NPL Statements Guide 2-245

INPUT SCREEN LANGUAGE STATEMENTS

INPUT SCREEN (cont.)

NOTE: Defaults for BOX values when AT values are not specified are (24,79) (assuming an

80-column width) which are identical to the largest possible values for a PRINT
BOX statement on an 80-column screen.

The use of the "r" and "c¢" parameters corresponds to the way PRINT BOX works. If the
"r" or "¢" parameter, in conjunction with the x and y values, would cause areas beyond
the current width or length of the screen to be accessed, a P34 (Illegal Value) error results.

INPUT SCREEN is primarily intended to be used in conjunction with PRINT SCREEN
to temporarily save and then redisplay a portion of the screen. This capability allows new
"pop-up" type features to be added to existing applications. Refer to PRINT SCREEN for
a detailed example of this functionality.

INPUT SCREEN only recognizes information which has been displayed by NPL print
class output statements directed to device address 05. Use of any other function that af-
fects the screen display may result in incorrect data being returned by INPUT SCREEN.
Such functions may include use of SSHELL, use of external routines which update the
screen, use of third-party, stay-resident programs which output to the screen, or native op-
erating system messages.

Volume of Information Returned:

The information returned by INPUT SCREEN to the specified alpha-variable consists of
an 80-byte string containing header information about the display, followed by three sec-
tions containing the actual characters, attribute and box graphic information, and color at-
tribute information, respectively. The length of each of these three sections is
((r+1)*(ct1)) bytes where "r" is the number of rows specified and "c" is the number of
columns specified. Within each section, the bytes represent the character position being
read. Characters are read from the screen row by row for the specified range and column
by column within each row for the specified range. In cases where the last row is off the
screen, the r+1 row contains useful information only for section 2. The three sections are
stored contiguously with no delimiter. If the programmer needs to know the starting byte
location for any section, it must be determined by calculation based on the specified "r"
and "c" parameters. If the specified alpha-variable is too small to contain the information
generated, no error occurs. The information generated by INPUT SCREEN is simply
truncated to the last complete section.

2-246

NPL Statements Guide

LANGUAGE STATEMENTS INPUT SCREEN

INPUT SCREEN (cont.)

NOTE:

NOTE:

No partial sections are ever returned.

For example:
INPUT SCREEN A$,B0OX(10,10)

This inputs rows 0-10, columns 0-10 into variable AS. In this case, to store all returned in-
formation, A$ must be dimensioned to:

header information 80 bytes
section 1 (r+1)*(c+1) or
11*11=121 bytes
section 2 121 bytes
section 3 121 bytes
total 443 bytes

INPUT SCREEN of a full standard-sized screen would require 6080 bytes (80 +
3*25%*80) to store all information returned. However, if an application did not require the
color attributes, 2000 bytes less would be required, and, if the application also did not re-
quire the video attributes/box-graphics, another 2000 bytes less would be required, thus
reducing the required size to 2080 bytes.

Where a screen width greater than 80 or a number of lines greater than 24 is sup-
ported, additional space is required.

Contents of the Information Returned:

As indicated above, INPUT SCREEN returns 80 bytes of header information followed by
three sections of ((r+1)*(c+1)) bytes each. The specific contents are as follows:

Header Information (Bytes 1 to 80)
Bytes 1-29 - terminal ID message. This is arbitrarily set by NPL to "2236DE R03
19200BPS 8+0 (USA)" regardless of the terminal and communications parameters

being used.

Bytes 30-78 - supplementary header information. This information is automatically
used by PRINT SCREEN. The exact contents are as follows:

NPL Statements Guide 2-247

INPUT SCREEN

LANGUAGE STATEMENTS

Byte

Contents

30-63

Reserved - all(00)

64

Information level of header. This field indicates the level of information
returned by INPUT SCREEN in the header. The value for the 3.0 revision is
HEX(00), but will increase in future releases as new information is added to the
header fields (bytes 31-80). Applications that use newer information may check
this byte to ensure that the information contained in the header corresponds
with the RunTime revision in use.

65

Minimum information level of header. This field is used internally by the
RunTime to determine whether a sufficient revision of RTP is in use for PRINT
SCREEN of a given buffer. This value is HEX(00) on the 3.0 revision but may
be modified in the future as new information is added to the header fields.

66

Binary number of valid display sections. This is determined based on the size

of the receiver-variable specified in conjunction with the "r" and "c" parameters
specified.

67

Binary screen size (lines). 24 on current revisions.

68

Binary screen size (columns). 80 or 132 on current revisions.

69

Binary value of AT row value (X).

70

Binary value of AT column value (y).

71

Binary value of BOX row value ().

72

Binary value of BOX column value (¢).

73

Current color for background/foreground:
HEX(80) bit - reserved (=0)
HEX(08) - reserved (=0)
HEX(x0) - background color (x=0 to 7)
HEX(0x) - foreground color (x=0 to 7)

74

Current color for perimeter and underline
HEX(80) bit - 0=dim perimeter, 1=bright perimeter
HEX(x0) - perimeter color (x=0to 7)
HEX(08) - reserved (=0)
HEX(0x) - underline replacement color (x=0 to 7)

75

Video modes when enhanced mode selected (by HEX(OE))
For all bits, 0=off; 1=on HEX(40)bit - reverse video
HEX(20) bit - blink HEX(10) bit - bright
HEX(08)bit - underline Other bits are 0 and reserved.

2-248

NPL Statements Guide

LANGUAGE STATEMENTS

INPUT SCREEN

Byte Contents
76 Flags for video
HEX(01) bit:
0 = current video mode turned off by HEX(0D)
1 = current video mode not turned off by HEX(0D)
HEX(02) bit:
0 = current video mode is normal (not enhanced)
= current video mode is enhanced
Other bits reserved and 0.
77 Alternate character set status
HEX(00) - normal character set in effect
HEX(02) - alternate character set in effect
Other values reserved.
78 Cursor status
HEX(00) cursor off HEX(01) cursor on steady
HEX(02) cursor on blinking Other values reserved.
Byte 79 Binary cursor position (row)
Byte 80 Binary cursor position (column)

Section 1 - Character Information

Each NPL character present within the specified AT, BOX range is placed in section 1 of
the alpha-variable. Characters are read from the screen mapping area row by row for the
specified range and column by column within each row for the specified range. The char-
acter returned by INPUT SCREEN is the NPL hexcode (not affected by $SCREEN

value).

In some cases (such as after using $SHELL), the character is "unknown" to NPL.

In these cases a value of HEX(00) is returned for the character.

If row r+1 is off the screen, this section contains all HEX(00).

NPL Statements Guide

2-249

INPUT SCREEN LANGUAGE STATEMENTS

INPUT SCREEN (cont.)

Section 2 - Video Attribute and Box-graphics Area

For each character read by INPUT SCREEN, a one-byte bit mapped code is placed
in section 2. This code represents the video attribute status, box graphic segments
present, and whether the character is from the normal or alternate character set. The
code is structured as follows:

HEX(80) bit Character is from the alternate character set
HEX(40) bit Reverse video attribute is on

HEX(20) bit Blink video attribute is on

HEX(10) bit Bright video attribute is on

HEX(08) bit Underline video attribute is on

HEX(04) bit Left horizontal box graphic segment is present
HEX(02) bit Right horizontal box graphic segment is present
HEX(01) bit Vertical box graphic segment is present

When "character" box graphics are in use, the vertical box graphic segment actually
represents the south vertical box graphic segment (character boxes use south and
north vertical segments while "true" box graphics use a single vertical segment).
When regenerating character boxes, PRINT SCREEN references the box graphic seg-
ment in the character in the row immediately above to determine whether or not a
north vertical segment is required. If the character above contains a vertical segment,
a north segment is assumed to be required.

NOTE: This technique does not guarantee 100% proper restoration of character boxes.
Some anomalies may be present.

Row r+1 is used in this section to represent horizontal box graphics segments which
appear below row "r". Other bits for row r+1 will be off.

Section 3 - Color Attribute

For each character read by INPUT SCREEN, a one-byte code is placed in section 3.
This code represents the background/foreground color attribute for the character. The
background attribute is stored in the high-order nibble and may have a value of
HEX(0x) the HEX(7x). The foreground attribute is stored in the low-order nibble
and may have a value of HEX (x0) to HEX(x7).

2-250 NPL Statements Guide

LANGUAGE STATEMENTS INPUT SCREEN

INPUT SCREEN (cont.)

NOTE:

NOTE:

The HEX(80) and HEX(08) bits are currently unused and set to zero. These bits are
reserved for future expansion and should not be used by the application.

The color attribute values are set based on the execution of the dynamic color attribute
control sequence:

HEX (02000605 Ob Of Ou Op Oi OF)

where the current value of "b" and "f" are the background and foreground color attrib-
utes. Refer to Section 7.3.18 of the Programmer’s Guide for further details on the dy-
namic color attribute selection control sequence.

Color attribute values are set only when the dynamic color attribute selection sequence is
active. Byte 22 of SOPTIONS must be set to a non-zero value for this to be true. In addi-
tion, use of color attribute selection must be supported on the monitor in use when IN-
PUT SCREEN is executed. Refer to the appropriate NPL Supplement for further details
on monitors supported for dynamic color attribute selection.

If color is generated by any other method (such as by attribute replacement on EGA
monitors), these colors are not recognized by INPUT SCREEN.

If color attributes are not in use, the contents of each byte of section 3 will be
HEX(07), black background with white foreground.

NPL Statements Guide 2-251

INPUT SCREEN LANGUAGE STATEMENTS

INPUT SCREEN (cont.)

NOTE: Applications which use INPUT SCREEN to store information for later redisplay
may find it useful to store other related information. This may include:

$SCREEN - contains current screen translation table.
SOPTIONS - several bytes in SOPTIONS affect screen output operations.

SMACHINE - contains information about the environment including terminal type
and graphics capability.

$SBOXTABLE - determines whether or not character boxes are used and the charac-
ter set to be used for character boxes.

Examples:

0010 INPUT SCREEN A$

0010 INPUT SCREEN A$, BOX(5,10%

0010 INPUT SCREEN A$, AT(3,20),BOX(5,10)
0010 INPUT SCREEN STR(AS,,80
0010 INPUT SCREEN STR(A$,24,236), AT(B-A+1,C-D+1),BOX(3,12)

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

Several features of the NPL implementation of INPUT SCREEN are not supported in
Wang Basic-2:

e The AT and BOX parameters are not supported.

* The supplemental information returned in bytes 30-78 is not returned on the
Wang 2200.

* Color attributes are not supported on the Wang 2200. Therefore, information
about color attributes is not returned by INPUT SCREEN.

* PRINT SCREEN is not supported on the Wang 2200.

On the Wang 2200, INPUT SCREEN is supported only with MXE terminal controllers.
In NPL, the INPUT SCREEN operation is supported on all systems.

2-252 NPL Statements Guide

LANGUAGE STATEMENTS INPUT SCREEN

INPUT SCREEN (cont.)

On the Wang 2200, the terminal self-ID message is actually generated by the Wang 22x6
terminal and may vary from one terminal to another. It also varies based on communica-

tions parameters in use. In NPL, the self-ID message is a constant and is the same for all

terminals and all configurations.

On the Wang 2200, INPUT SCREEN generates a status message to the terminal indicat-
ing progress of the command. In NPL, no message is generated.

References:
PRINT SCREEN
Screen Handling - Section 7.30f the Programmer’s Guide

NPL Statements Guide 2-253

INT function LANGUAGE STATEMENTS

INT function

General Form:

INT (numeric-expression)

Discussion:

The INT function returns the integer (whole number) or non-decimal portion of a nu-
meric-expression. For a non-integer value, INT returns the greatest integer which is still
less than the original value. This is valid wherever a numeric-expression is legal.

NOTE: INT is also useful for computing a "ceiling" function -INT(-x).

Examples:

0010
0010 2(10) gO INT(Q)

‘PRINT INT(3.1)
PRINT INT(3.9)
PRINT INT(-8.1)
:-I;RINT INT(-8.9)

:0010 R=5: S=6: T=4
%%2’8 IF INT((R+S)/T) THEN PRINT "ERROR": ELSE PRINT "OK"

ERROR

0010 INPUT "How many in a box",N
: INPUT "How many items",C
: PRINT "Requires";-INT(- N/C) 'boxes"
‘RUN
How many in a box? 10
How many items? 92
Requires 10 boxes

Compatibility Issues:

References:

2-254 NPL Statements Guide

LANGUAGE STATEMENTS $KEEPREMS

SKEEPREMS

General Form:

Form 1:
$KEEPREMS = alpha-expression
Form 2:

alpha-variable = $KEEPREMS

Discussion:

$KEEPREMS is a one-byte system variable which is used in the interpretive RunTime
(RTI) to control generation of p-code used to maintain REM (remark) statements, pro-
gram text indentation, and the display format of literals.

Form 1:

Values may be assigned to the SKEEPREMS system variable using Form 1. These val-
ues have the following effects:

HEX(00) - Equivalent to compiler option KEEPREMS OFF
REMs are not retained.

Program indentation is not retained. Return-graphics are generated at the end of
each statement.

The initial format of literals is not retained. In this event, literals which contain only
the characters HEX(20) to HEX(7F) (except for HEX(22)) are displayed as quote lit-
erals. Literals with any characters outside of this range are displayed as HEX literals.

NPL Statements Guide 2-255

$KEEPREMS LANGUAGE STATEMENTS

SKEEPREMS (cont.)

HEX(01) (the default) - Equivalent to compiler option KEEPREMS ON
REMs are retained.

Program indentation is retained. Return-graphics are not generated automat-
ically at the end of each statement (though return-graphics are retained where en-
tered via SHIFT/INSERT).

The format of literals is retained.
HEX(02) - Equivalent to compiler option KEEPREMS DEC
REMs are retained.

Program indentation is retained, but return-graphics are generated at the end of each
statement (as with a value of HEX(00)).

The format of literals is retained.

$KEEPREMS affects the p-code generated when lines of program text are entered in Im-
mediate Mode, or when the SOBJECT function is used. Depending on the value of
$KEEPREMS, additional information is saved which can affect only the display format
of source code generated by the de-compiler during program edit or listing operations or
during generation of SOURCE text by the compiler (B2C) when p-code files are used as
input. It does not affect p-code execution in any way. Values of SKEEPREMS may be
HEX(00), (01) (the default), or (02).

$KEEPREMS affects the generation of p-code as program lines are entered from the line
editor. It has no effect when programs are saved to disk.

2 -256 NPL Statements Guide

LANGUAGE STATEMENTS $KEEPREMS

SKEEPREMS (cont.)

The size of the p-code generated is affected by SKEEPREMS as follows:

* Retention of literal format requires up to one extra byte per literal.

Retention of program indentation requires up to two extra bytes per statement.
* Retention of REMs requires as much space as needed to store the remark.

$KEEPREMS performs no operation on the non-interpretive RunTime Program.

Form 2:

The current value of SKEEPREMS may be examined using Form 2.
Examples:

0010 X$=$KEEPREMS
0010 $KEEPREMS=BIN>£08
0010 $SKEEPREMS=HEX(02)
0010 $KEEPREMS=A$

‘$KEEPREMS=HEX(00)

:10 REM Set values to zero: FOR I=1 TO 10: A$(I)=HEX(30): NEXT |
‘$KEEPREMS=HEX(01

:11 REM Set values to zero: FOR I=1 TO 10: A$(I)=HEX(30): NEXT |
‘$KEEPREMS=HEX(02)

:&IZSLT'EM Set values to zero: FOR 1=1 TO 10: A$(I)=HEX(30): NEXT |
0010 FOR I=1 TO 10
. A$ —_nmn

CNEXT I
0011 REM Set values to zero: FOR I1=1 TO 10: A$(I)=HEX(30): NEXT |
0012 REM Set values to zero

:FORI=1TO 10

: A$(1)=HEX(30
: NEQTI (30)

NPL Statements Guide 2-257

$KEEPREMS LANGUAGE STATEMENTS

SKEEPREMS (cont.)

Compatibility Issues:
The $KEEPREMS system variable is not valid in Wang 2200 Basic-2.

The SKEEPREMS system variable is implemented in Revision 2.00 and greater of NPL.

References:
KEEPREMS Option - Section 14.15 of the Programmer’s Guide

2 -258 NPL Statements Guide

LANGUAGE STATEMENTS $KEYBOARD

SKEYBOARD

General Form:

Form 1:

$KEYBOARD = alpha-expression

Form 2:
alpha-receiver = $KEYBOARD
Where:
alpha-expression | alpha-receiver =is a length of 576 characters.
Discussion:

This statement allows a NPL application program to modify (Form 1) or examine (Form
2) the current keyboard translation table. The SKEYBOARD system variable contains the
576 byte keyboard translation table currently in effect. The keyboard translation table is
used to translate hex values for keys received from the actual keyboard to hex values ex-
pected by NPL programs.

This table translation is necessary since many keyboards do not have exact equivalences
for some NPL required keys. The RunTime program contains built-in defaults for this ta-
ble which should be adequate for most applications. Exceptions would be for the interna-
tional character set or for applications which require use of the CLEAR or CONTINUE
keys. Refer to Appendix D of the Programmer’s Guide for hardware-specific default val-
ues.

A convenient method of modifying the keyboard translation table is provided by the ED-
KEYBOA utility. This utility may be used to create a disk file with the values to be
loaded for keyboard translation. When the RunTime program is invoked, it looks for this
file and, if found, replaces the built-in default translation table values with values from
this file. Refer to Chapter 13 of the Programmer’s Guide for details on the EDKEYBOA
utility and the location of the file from which keyboard defaults are loaded.

NPL Statements Guide 2-259

$KEYBOARD LANGUAGE STATEMENTS

SKEYBOARD (cont.)

Alternatively, a program may directly access and modify the keyboard translation table
from within a NPL program by using the SKEYBOARD statement.

Organization of the Translation Table:
On all keyboards supported by NPL, the keys can be divided into two groups:

1. "Simple" keys which generate only a single code to a native operating system pro-
gram when pressed.

2. "Complex" keys which generate multiple codes to a native operating system program
when pressed.

For example, on a Wang PC, the "A", RETURN and BACKSPACE keys are simple
keys, generating HEX(41), HEX(0D), and HEX(08), respectively. The "EXECUTE" and
"CANCEL" keys are complex keys, generating HEX(1FC5) and HEX(1FEO), respec-
tively.

The keyboard translation table consists of two main parts.
e Part 1 contains the replacement values for "simple" codes sent by the keyboard.
* Part 2 contains the replacement codes for "complex" codes sent by the keyboard.
Each of these two parts of the table is further broken down into two sub-sections.

e Section 1 consists of 32 bytes which are used on a bit (32*8=256 bits) basis to de-
termine whether the replacement code is to be classified as "standard" or "spe-
cial" when passed to the NPL program. When a code is classified as "special", it
is treated as a NPL Special Function Key by the program. When a code is classi-
fied as "standard", it is treated as a standard keyboard key (e.g., A-Z, a-z, RE-
TURN, BACKSPACE, etc.). A bit value of zero indicates that the code is to be
classified as standard. A value of 1 indicates that the code is to be classified as
special.

2-260 NPL Statements Guide

LANGUAGE STATEMENTS $KEYBOARD

SKEYBOARD (cont.)

» Section 2 consists of 256 bytes which contain the actual replacement character to
be sent.

Translation Table Layout
Part I - contains replacement values for "simple" keys.
Section 1 - 32 bytes (from 1 to 32)
Section 2 - 256 bytes (from 33 to 288)
Part 2 - replacement codes for "complex" keys.
Section 1 - 32 bytes (from 289 to 320)
Section 2 - 256 bytes (from 321 to 576)
Total 576 bytes
The table operates on the basis of relative position based on the HEX code generated by
the key pressed. Key codes HEX(00) to HEX(FF) correspond to byte or bit 1 to 256, rela-
tive to the start of the relevant section. For example, if the key pressed generates a simple
code HEX(41) (the letter "A"), the replacement value is located as follows:

1. Since the key is "simple", part 1 of the table is accessed.

2. Based on the code of HEX(41), the value in byte number 66 (VAL(HEX(41))+1) of
section 2 of part 1 (byte number 98 overall) is sent to the NPL program.

3. Based on the value of bit number 66 (HEX(02) bit of byte number 9), which is zero,
the code is classified as "standard".

NPL Statements Guide 2-261

$KEYBOARD LANGUAGE STATEMENTS

SKEYBOARD (cont.)

Examples:

The following example changes the replacement value for the function key labeled "1/IN-
DENT" on the Wang PC (which produces "complex" code HEX [80]) to "special”
HEX(01) (°1) (the standard default is *0 ("special” HEX(00)).

10 DIM X$I£5E7Y6I%1

20 ><$9{=$ OARD : REM FETCH CURRENT VALUES

30 STR(X$(),449,1)=HEX(01) ~: REM SET BYTE 129 OF PART 2,
SECTION 2, TO VALUE HExgrm%

40 $KEYBOARD=X$() : REM IMPLEMENT MODIFIED TABLE

NOTE: In this example, it was not necessary to modify the bit masks in section 1 of part 2
since the key modified was previously defined as "special".

Also, the result of this example would be that both the function key labeled "1/IN-
DENT" and the function key labeled "2/PAGE" is translated to special function key
1 (’1). No key would produce special function key zero (°0).

WARNING--Incorrect modification of the keyboard table can result in "hanging" the ap-
plication because keys are no longer translated to values understood by the application.

In particular, it is possible to map the keyboard in such a way that no key available gen-
erates HELP or, even worse, that HELP can be generated but EXEC and CANCEL are
unavailable (so the system is stuck in HELP until it is rebooted).

NOTE: Keyboard mapping is done based on the values returned by the native operating sys-
tem from standard function calls. If the native operating system does not distinguish
between, for example, the shifted and unshifted states of a key, it is not be possible
for NPL applications to do this either.

Compatibility Issues:
The SKEYBOARD statement is not supported in Wang 2200 Basic-2.

2-262 NPL Statements Guide

LANGUAGE STATEMENTS $KEYBOARD

SKEYBOARD (cont.)

References:

CLEAR

CONTINUE

Keyboard - Section 7.4 of the Programmer’s Guide
Chapter 13 of the Programmer’s Guide

Appendix D of the Programmer’s Guide

NPL Statements Guide 2-263

KEYIN LANGUAGE STATEMENTS

KEYIN

General Form:

Form 1:
KEYIN alpha-variable [,,line-number]]
Form 2:

KEYIN alpha-variable,line-number,line-number

Discussion:

The KEYIN statement is used to receive a single character from the keyboard. The
KEYIN statement always examines the input keyboard buffer for any characters pre-
viously entered but not processed.

There are two forms of the KEYIN statement:
Form 1

Form 1 of the KEYIN statement causes the program to wait for a key to be entered, if no
key is present in the input buffer. The value of the key is stored in the first position of the
specified alpha-variable. If no line-number is specified, program execution always contin-
ues with the next program instruction. If, however, a line-number is specified, then pro-
gram execution continues with the next program instruction only if the key received is
what is termed a standard key. If the key received is a Special Function Key, then proc-
essing continues at the specified line-number. This allows for special handling for Stand-
ard versus Special Function keys. Refer to Section 5.4 of the Programmer’s Guide for
details on Standard versus Special Function keys. This form of the KEYIN statement is
the preferred method of accepting operator input because the use of processor time to poll
the keyboard is minimized.

2-264 NPL Statements Guide

LANGUAGE STATEMENTS KEYIN

KEYIN (cont.)

Form 2

Form 2 of the KEYIN statement is often referred to as the "polling” KEYIN. When this
form of the statement is executed, the keyboard buffer is examined for the presence of a
key. If a key is present, the value of the key is stored, program execution continues at the
first line-number, if a standard key was received, or the second line-number if a Special
Function Key was received. If no character is present, the program does not wait for a
character, but rather continues execution with the next statement. This form of the
KEYIN statement is frequently used to clear the keyboard buffer in the event of an unex-
pected error condition so that operator type ahead is not processed inappropriately.

For example:

0010 KEYIN X$,10,10 : REM Clear Buffer

0020 PRINT AT(5,10); "Enter 'Y’ or 'N™

0030 KEYIN Y$
Individual polling KEYINs may also be used by long-running processes to periodically
check for operator intervention (cancel, request for status report, HELP).
Pressing the HELP key in response to KEYIN generates the HELP display.

Examples:
0010 KEYIN R$
In the above example, program execution waits until a key is pressed. The key value is

then stored in R$ and the next program statement is executed. It is not possible to distin-
guish between standard and special keys in this case.

0010 KEYIN F$(1),,50
In the above example, program execution waits until a key is pressed and places the
keyin value in F$(1). If a special function key is pressed, program execution transfers to
line 50, otherwise, the next program statement is executed.

0010 KEYIN J$,30,40
In the above example, the presence of a standard character in the keyboard input buffer

causes the program to transfer to line 30, a special function key to line 40, and no input at
all to the next program statement.J$ receives the key value, if any.

NPL Statements Guide 2 -265

KEYIN

LANGUAGE STATEMENTS

KEYIN (cont.)

Compatibility Issues:

The Wang 2200 allows KEYIN to be directed to a device other than the keyboard. The
KEYIN statement only accepts keys from the keyboard in NPL. A syntax error is gener-
ated if a device address or file number is specified in the statement.

At runtime, if a SELECT INPUT statement has been executed to any device other than
the keyboard, the KEYIN statement is still wait for input from the keyboard in NPL.

References:

2 -266

NPL Statements Guide

LANGUAGE STATEMENTS

LEN Function

LEN Function

General Form:

LEN (alpha-variable)

NOTE:

Discussion:
LEN is a numeric function which is used to determine the number of characters in an al-
pha-variable. All characters in the string are counted, including leading and embedded
spaces, and ignoring all trailing spaces. This is valid wherever a numeric-expression is le-

If the variable contains all spaces, a value of 1 is returned.

ORI

Current dimensions of A$() are AS(M)N.

Examples:

0010 X=LEN(A$)

0010 X=LEN(AS()

0010 X=LEN(STR(A$,X))
0010 X=LEN(STR(A$())
:0010 T$="EFGHIJ "
10020 PRINT LEN(T$)
RUN

:0010 H$="EF GHIJ

10020 PRINT LEN(H$)
:RUN

:0010 B$="_ "
10020 PRINT LEN(BS$)
‘RUN

1

:0010 A$="E FGHIJ KLM "
10020 PRINT LEN(STR(A$,,16))

16

When executing a LEN function of a STR function, the LEN function returns the defined
length of the alpha-variable, e.g., trailing spaces are not ignored in this case.

To determine the dimensions of an alpha-array with one dimension under program con-

NPL Statements Guide

2-267

LEN Function LANGUAGE STATEMENTS

LEN Function (cont.)
Compatibility Issues:

References:

2-268 NPL Statements Guide

LANGUAGE STATEMENTS LET Alpha Assignment

LET Alpha Assignment

General Form:
[LET] alpha-variable [,alpha-variable]... = alpha-expression
Where:

alpha-variable = {scalar alpha-variable}
{alpha array element}
{alpha array}
{STR() function}

alpha-expression = {[alpha-operand]falpha-operator alpha-operand]...}
{alpha-operand [& alpha-operand]... }
{string field-expression }

alpha-operand = {alpha-variable }
{literal-string }
{ALL function }
{BIN function }
{ alpha function}
{string field-expression }

alpha-operator = {ADD[C] }
{ AND }
{BOOLh }
{ DAC }
{DSC }
{OR]}
{SUB[C] }
{ XOR }

& = concatenation alpha-operator

h = hexdigit, 0-9 or A-F

NPL Statements Guide 2-269

LET Alpha Assignment LANGUAGE STATEMENTS

LET Alpha Assignment (cont.)

NOTE:

Discussion:
The LET statement is used to assign the result of the evaluation of the expression on the
right-hand side of the "=" to the variable or variables on the left-hand side of the "=".

The null alpha-expression is not allowed.

There are two forms of the assignment statement: numeric assignment and alpha assign-
ment. Type conversion is not performed and, therefore, mixed-type assignment generates
an error. Refer to LET Numeric Assignment statement for details on how to assign values
to numeric-receivers.

The use of the word LET, if omitted, is assumed.
Two Types of Alpha-Expressions

From the general form, it would first be noted that there are, in fact, two types of alpha-
expressions, the sole significance of which is related to the concatenation operator (&).
This operator provides the capability for concatenation of the value of two alpha-oper-
ands to form a single character string. This alpha-operator is treated specially and may
not be combined with any other operator (except itself) in the same alpha-expression. The
concatenation operator is discussed in CONCATENATION.

Evaluation of Alpha-Expressions

As defined by the general form, an alpha-expression may contain any number of alpha-
operands and alpha-operators. Order of evaluation of an alpha-expression is always se-
quential from left to right on an operator-by-operator basis. That is, the result of the first
operation is placed in the alpha-receiver and each subsequent operation is conducted left
to right on the subsequent new values of the receiver.

For example, in the statement:
A$ = B$ AND C$ OR D$

The contents of the alpha-operand BS is first assigned to the alpha-receiver A$. Then the
contents of the next alpha-operand A$ is ANDed to the current value of A$. Then the con-
tents of the final alpha-operand D$ is ORed with the current value of A$ and the evalu-
ation is complete. Parentheses cannot be used to alter this order of operations.

2-270

NPL Statements Guide

LANGUAGE STATEMENTS LET Alpha Assignment

LET Alpha Assignment (cont.)

NOTE: The first type of an alpha-expression allows that the initial alpha-operand is op-
tional, and may be omitted. The following is an example of this:

A$=AND B$

Here, the value of alpha-operand B$ is ANDed with the current value of the alpha-re-
ceiver A$ as existed prior to execution of the statement. In effect, this statement is equiva-
lent to A$ = A$ AND BS.

This is not true of the concatenation alpha-expression where the first alpha-operand is
mandatory.

If more than one alpha-receiver is specified, assignment is done to the last receiver first.
Evaluation proceeds as if a series of LET statements were executed.

Examples:

0010 A$=B$ & "ABC" & C$
0010 STR(A$),10,16)= TR(B:};g<).2.4) & STR(B$(4),2,12)
0010 A$,C$(2 D$ $ &
0010 A$.STR(B$(4),3,4)= STR(C$ 4 ,6) AND HEX(FO)
0010 Results$=AR$.Custname$ AND ALL (‘BitStrip$)

:0005 DIM B$(5

:0010 A$="RS VWXYZ
:0020 STR B$ T) ,3, 4%

%%3’8 PRI R(B%$(1),3,4)

RSTU

0010 data_rec$.INFO$=STR(C$,1,8)
0010 A$=data_rec$.INFO$

Compatibility Issues:

There is no variance in NPL and Wang 2200 Basic-2 for the LET statement itself. How-
ever, there are some variances in what reciever and assignments are allowed. Refer to
ALL, STR, ’Function-name Numeric Expression, and ’Function-name Literal Expres-

sion for more details.

NPL Statements Guide 2-271

LET Alpha Assignment

LANGUAGE STATEMENTS

LET Alpha Assignment (cont.)

References:
CONCATENATION
ADD

AND

BOOL

DAC

DSC

ORSUB

XOR

ALL function
BIN function

2-272

NPL Statements Guide

LANGUAGE STATEMENTS

LET Numeric Assignment

LET Numeric Assignment

General Form:

Where:

numeric-expression

term

arithmetic-operator

numeric-function

[LET] numeric-variable [,numeric-variable]... = numeric-expression

term [arithmetic-operator term]...

{numeric-function }
{numeric-scalar-variable }
{numeric-array-element }
{numeric-constant }
{(numeric-expression) }
{-term

{user-defined numeric function}
{numeric-field expression }

{+}

-}

*}

7}

"}

= {INT(n) } or {LGT(n) }

{ FIX(n) } {LOG(n) }
{ABS(n) } {EXP(n) }
{SGN(n) }o{#PI }

{ MOD(n,n) } {SIN(n) }
{ROUND(n,n) } {COS(n) }
{RND(n) } {TAN(M) }
{SOR() } {ARCSIN(n) }

{ MAX Function } {ARCCOS(n) }
{ MIN Function } {ATN(n) }
{ERR } {LEN Function}

{ SPACE } { NUM Function}
{ SPACEF}
{ SPACEK } { POS Function}

{ SPACEP } { VAL Function}

{ SPACEV } { VER Function}
{SPACEW}

{#ID }

{#GOLDKEY }

{ #PART }

{#TERM }

{ #RECORDLENGTH(record-identifier) }
{ #FIELDSTART(field-identifier) }

{ #FIELDLENGTH(field-identifier) }

numeric-expression

NPL Statements Guide

2-273

LET Numeric Assignment LANGUAGE STATEMENTS

LET Numeric Assignment (cont.)

Discussion:
The LET statement is used to assign the result of the evaluation of the expression on the
right-hand side of the "=" to the variable or variables on the left-hand side of the "=".

There are two forms of the assignment statement: numeric assignment and alpha assign-
ment. Type conversion is not performed and, therefore, mixed type assignment generates
an error. Refer to LET Alpha Assignment statement for details on how to assign values to
alpha-receivers.

NOTE: The use of the word LET, if omitted, is assumed.
Evaluation of Numeric-Expressions

As defined by the general form, a numeric-expression may contain a series of terms sepa-
rated by arithmetic operators. A term may consist of numeric-scalar-variables, numeric-
array-elements, numeric-constants, numeric-functions, and numeric-expressions.

Evaluation of numeric-expressions is from left to right, except where affected by the pri-
orities. However, unlike the evaluation of alpha-expressions, the interim results are stored
in an internal work area and not placed in any of the receivers until the entire expression
is evaluated. Refer to LET Alpha Assignment statement for details on how to assign val-
ues to alpha-receivers.

Order of Arithmetic Evaluation
The order of priority for arithmetic-operators is:
1.~ (exponentiation)
2.- (negation)
3.* / (multiplication, division)
4. +,- (addition, subtraction)

NOTE: On most keyboards, the exponentiation sign ("A") is the up-arrow key.

The priority of evaluation can be modified by the use of parentheses such that portions of
an expression within parentheses are evaluated first.

2-274 NPL Statements Guide

LANGUAGE STATEMENTS LET Numeric Assignment

LET Numeric Assignment (cont.)

For example:
A=B+C/D

The expression C/D is evaluated first and then added to B.
A=(B+C)/D

The use of the parentheses changes the order of evaluation so that the expression (B+C)
is evaluated first and the result is divided by D.

Nested Expressions

The operands for numeric-functions may themselves be numeric-expressions. In this
case, the evaluation of these nested expressions starts with the innermost expression.
Where more than one expression exists at the same level of nesting, evaluation proceeds

from left to right. The evaluation of each expression follows the rules of arithmetic evalu-
ation stated above. For example, refer to the following:

X=INT(MAX(A*4.5,(B-C)/D))

This uses five numeric expressions which are evaluated as follows:
1. A*45
2. (B-O)
3. Result of (B-C) divided by D
4. MAX of the results of expressions 1 & 3

5. INT of the result of the expression 4 (the MAX Function)

NPL Statements Guide 2-275

LET Numeric Assignment LANGUAGE STATEMENTS

LET Numeric Assignment (cont.)

Examples:

T L

0010 X= AR$ Amount*’CaIcuIate Discount(Customer_Number)

:0010 LET M=4

:0020 PRINT M

‘RUN

4

:0010 W=10: P=15
:0020 J,K,L=W*(P/3)"2
:0030 PRINT J,K,L
‘RUN

250 250 250
Compatibility Issues:
Due to the use of a different algorithm, results of functions used in a LET statement may

differ from functions evaluated on a Wang 2200. In general, however, the functions are
accurate to 13 significant digits.

References:

2-276 NPL Statements Guide

LANGUAGE STATEMENTS LET Numeric Field Assignment

LET Numeric Field Assignment

General Form:

[LET] alpha-variable.{field-identifier }[(subl[,sub2])]=num-exp
{<alpha-variable> }

Discussion:
Assignment statements permit the left-hand side to be a numeric field reference if the
right-hand side is a numeric expression.

Multiple receivers on the left-hand side are not permitted.

Examples:

0010 PayrollRecord$.Federal_Withholding=Gross*Rate

0010 InputScreenHeader$.Cursor_Position_Row=0

0010 Employee_Record$.<Deduction_Name$>=0

0010 Employee_Record$.Miscellaneous_Deductions(l)=Transaction_Misc(l)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

RECORD
FIELD

NPL Statements Guide 2-277

LGT Function LANGUAGE STATEMENTS

LGT Function

General Form:

LGT (numeric-expression)

Discussion:
The LGT function is used to derive the common base 10 logarithm of a numeric-expres-
sion greater than 0. This is valid wherever a numeric-expression is legal.

Examples:

:0010 B3=500
10020 A=LGT(B3+9)
:0030 PRINT A
‘RUN
2.7067177823368

:0010 C=1000+LGT(2000)
:0020 PRINT C

‘RUN
1003.30102999566

Compatibility Issues:
Due to the use of different algorithms, results of this function may differ from the Wang
2200. In general, however, the function is accurate to 13 significant digits.

References:

2-278 NPL Statements Guide

LANGUAGE STATEMENTS LIMITS

LIMITS

General Form:

Form 1:
LIMITS T [device-address,] file-name, start, end
[file-number, |
[<address-var>, |
[[used] [status]]
Form 2:

LIMITS T [file-number,] start, end, current

Where:

start = numeric-receiver which will receive the starting sector
address.

end = numeric-receiver which will receive the ending sector
address.

used = numeric-receiver which will receive the number of sec-
tors used.

status = numeric-receiver which will receive the current status
of the file.

current = numeric-receiver which will receive the current sector

address.

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

NPL Statements Guide 2-279

LIMITS

LANGUAGE STATEMENTS

LIMITS (cont.)

Discussion:

The LIMITS statement is used to obtain sector address information about a cataloged file.
There are two forms of the LIMITS statement. Using Form 1, the file-name is specified
and access is made to the catalog to determine the requested information. Using Form 2,
the file-name is not specified and information is retrieved from the specified device slot
in the Internal Device Table.

Form 1

Form 1 of the LIMITS statement is used to determine the starting sector, ending sector,
number of sectors used, and the status for the specified file-name. The used parameter, if
specified, is obtained from the trailer sector of the specified file. Refer to Section 7.3.7 of
the Programmer’s Guide for details on the trailer sector. If a variable is not specified for
the status and the file-name does not exist, an error occurs when the LIMITS statement is
executed.

The status codes are:

-2 Scratched data file

-1 Scratched program file
0 File not found

1 Program file

2 Data file

Form 2

Form 2 of the LIMITS statement looks for the specified file-number in the Internal De-
vice Table, returning the starting, ending, and current sector addresses for that file-num-
ber. If file-number is not specified, the default slot (#0) is used. If the file number has not
been opened (using DATA LOAD DC OPEN or DATA SAVE DC OPEN), zeros are re-
turned for all values.

2-280

NPL Statements Guide

LANGUAGE STATEMENTS LIMITS

LIMITS (cont.)

Examples:

0010 LIMITS T/D10,’ EMPLOYEE" AB
0010 LIMITS T#X,A$,01,02,Q3
0010 LIMITS T#6,STR(N%.5.8),S,E,U, R
0010 LIMITS T/D30, xssg 4& R1.R2R3,R
0010 LIMITS T#2,"PAYROLL"P,P(1), P(2) P(3)
0010 LIMITS T#8.S,E,C
0010 LIMITS T<A$>,S,E,C
0010 LIMITS T A,B,C
Compatibility Issues:

The LIMITS statement has been extended in NPL as follows:

1. The diskimage address for Form 1 may be an arbitrary /xxx address (the address need
not be established in an internal device table slot using a previous SELECT state-
ment).

2. The "used" variable need not be specified. If the "used" parameter is not requested,
the LIMITS statement executes faster, since substantially less head movement of the
disk is required.

3. Ifthe "used" variable is the same as the "type" variable, the statement is executed as
though the "used" variable was not specified.

4. Previous versions of NPL allowed the syntax:

LIMITS T [device-address,]file-number,start,end, [used][,status]
[file-number,

The trailing comma is no longer supported.

5. Use of the address-var parameter is supported only on NPL Revision 3.0 or greater
and is not supported on the Wang 2200.

References:

DATA LOAD DC OPEN

DATA SAVE DC OPEN

Internal Device Table - Section 7.2.3 of the Programmer’s Guide
Disk Devices - Section 7.2 of the Programmer’s Guide

NPL Statements Guide 2-281

LIMITS INDEX

LANGUAGE STATEMENTS

LIMITS INDEX

General Form:

Where:

num-varl

num-var2

num-var3

num-var4

LIMITS INDEX T [file-number, | num-varl, num-var2, num-var3,

[disk-address, | num-var4
[<address-var>,]

= a numeric-variable that will receive the number of in-
dex sectors of the specified diskimage.

= a numeric-variable that will receive the value of the
CURRENT END of the specified diskimage +1.

= a numeric-variable that will receive the value of the
END CATALOG of the specified diskimage +1.

= a numeric-variable that will receive the hash type of
the specified diskimage. A value of 0 indicates nor-
mal hash type, a value of 1 indicates alternate hash
type as created by SCRATCH DISK "

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The LIMITS INDEX statement reads the index sector of the specified diskimage and re-
turns the number of index sectors, current end (+ 1), end catalog (+ 1), and hash type val-
ues into the specified numeric-variables. This permits program inspection of these values
without performing direct access to sector zero and converting the binary values.

LIMITS INDEX respects the EXT clause of the device equivalence definition for the
diskimage. That is, if EXT=Y is not specified, LIMITS INDEX disregards values stored
in bytes 7 and 8 of sector zero when calculating the values to return for CURRENT END
and END CATALOG. Refer to Section 7.3.10 of the Programmer’s Guide for further de-
tails on extended diskimages. Refer to Section 7.3.6 of the Programmer’s Guide for fur-
ther details on the internal structure of sector zero of a diskimage file.

2-282

NPL Statements Guide

LANGUAGE STATEMENTS

LIMITS INDEX

LIMITS INDEX (cont.)

Typical use of LIMITS INDEX is for determination of the amount of space available in a
diskimage or in determination of the END CATALOG value to specify in a MOVE END

operation or the LS and END CATALOG value to specify in a MOVE operation.

For example:

0010 X=2000 :REM I need a 2000 sector file
0020 LIMITS INDEX T#1,A,B,C,D
0030 IF C-B<X THEN 100 :REM Not enough space - try MOVE END
0040 DATA SAVE DC OPEN T#1,(X)"MYFILE"<
:ERROR GOTO 130
0050 STOP "Successful completion"
0100 MOVE END T#1,=B+X<
:ERROR GOTO 120
0110 GOTO 40 :REM Now | have enough room
0120 REM Can't do it at all - advise operator
0130 REM Error on DATA SAVE DC OPEN - advise operator

NOTE: LIMITS INDEX assumes that sector zero of the specified diskimage file contains

valid information. No attempt is made to validate the information returned.

Examples:
0010 LIMITS INDEX T/D10,A,B,C,D
0010 LIMITS INDEX T#L,AX(1),X(2),X(3)
Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

LIMITS INDEX is not supported on the Wang 2200.

References:

LIST DC

MOVE

MOVE END

$DEVICE

NPL Diskimages - Section 7.3.6 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide

2-283

LINPUT LANGUAGE STATEMENTS
LINPUT
General Form:
LINPUT [literal,] [?] [-]alpha-variable
Where:
literal = optional text to be displayed on the screen.
- = causes contents of alpha-variable to appear underlined
on the screen.
? = causes LINPUT to begin in DEFFN Mode.
Discussion:

LINPUT is used to perform field type entry of an alpha-variable.

Upon execution of the LINPUT statement, the current value of the specified alpha-vari-
able is displayed as a field of a length equal to the length of the alpha-variable with the
cursor appearing at the beginning of the value. If the optional "-" is specified, the con-
tents of the alpha-variable is displayed underlined. At this point, the operator may enter a
new value or EDIT the existing value.

The specified variable in a LINPUT statement serves in place of the EDIT buffer. That is,
all data entry/edit is performed directly on the contents of the alpha-variable.

Pressing the RETURN key terminates the LINPUT operation with the current value of
the field on the screen being stored in the specified alpha-variable.

EDIT Capabilities:
If the "?" parameter is specified, the LINPUT begins in DEFFN Mode as opposed to Edit
mode.

2-284

NPL Statements Guide

LANGUAGE STATEMENTS LINPUT

LINPUT (cont.)

In DEFFN Mode:
* Program assigned Special Function keys are enabled.
* The cursor appears steady.

* Keypad keys (EAST, WEST, NORTH, SOUTH, INSERT, DELETE) may be
used to manipulate data in the field.

In Edit Mode:

* Program assigned Special Function keys are disabled (except SF’126 and
SF’127).

e All Edit mode Special Function keys are enabled and may be used to manipulate
data in the field (except for LINE INSERT/LINE DELETE).

e The cursor appears blinking.

* Keypad keys (EAST, WEST, NORTH, SOUTH, INSERT, DELETE) may be
used to manipulate data in the field.

» [Ifall data in the field is erased by use of the LINE ERASE key, the initial value
may be recalled by use of the RECALL key.

Refer to Chapter 5 of the Programmer’s Guide for details on EDIT mode capabilities.

In both Edit and DEFFN Mode, cursor movement is limited to the specified length of the
alpha-variable.

Regardless of the initial mode (DEFFN versus Edit), the operator may change modes at
any time during execution of the statement by pressing the EDIT key.

Use of Special Function Keys to Access DEFFN’s:

Special Function keys may be used to access text definition subroutines or executable
subroutines when in DEFFN Mode.

NPL Statements Guide 2-285

LINPUT LANGUAGE STATEMENTS

LINPUT (cont.)

If a text definition subroutine is called, the specified text is placed in the alpha-receiver
starting at the current cursor position, the cursor is located at the end of the added text,

and execution of the LINPUT statement continues. If a HEX(0D) is present in the text,
the LINPUT statement is completed as if the RETURN key were pressed.

If an executable subroutine is called, execution of the LINPUT is terminated as if RE-
TURN was pressed, then the subroutine is called. Upon RETURN from the subroutine,
the statement following the LINPUT is executed.

All the functions of the Line Editor are available to allow entry or correction of the LIN-
PUT line. Refer to Section 5.4 of the Programmer’s Guide for details.

In addition, the initial mode of the Line Editor for a LINPUT statement may be set so that
entered data overstrikes or is automatically inserted into the entered line. Also, the opera-
tion of the INSERT key for a LINPUT statement can be set so that it either inserts a sin-
gle space or switches between insert and overstrike modes. These choices for these
options are set using byte 44 of the SOPTIONS system variable. Refer to SOPTIONS for
more details.

NOTE: Attempting to call subroutines which contain parameters is not permitted (an alarm
is sounded and the key is ignored).

Examples:

0010 LINPUT "ENTER THE DISK ADDRESS",B$
0010 LINPUT STR(D$(),1,20

0010 LINPUT "IS ANSWER CORRECT? ",Q9%
0010 LINPUT -A$

0010 LINPUT "Edit Programmer Name"?-Z$

Compatibility Issues:
In Wang 2200 Basic-2, the maximum length of an alpha-variable used for LINPUT opera-
tions is 480 bytes. In NPL, the maximum length is 512 bytes.

Execution of marked subroutines with parameters during response to LINPUT is sup-
ported by Wang 2200 Basic-2. NPL does not support this feature.

2-286 NPL Statements Guide

LANGUAGE STATEMENTS LINPUT

LINPUT (cont.)

References:

INPUT

KEYIN

DEFFN’

DEFFN’

Edit Mode versus DEFFN Mode - Section 5.4 of the Programmer’s Guide

NPL Statements Guide 2-287

LIST (General Parameters) LANGUAGE STATEMENTS

LIST

(General Parameters)

General Form:
LIST [title] [S]
[F]
Where:
title = an optional descriptive title; may be a literal-string or
alpha-variable.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
Discussion:

This section discusses topics that are common to all forms of the LIST statement. The
documentation for each individual LIST statement refers to this section.

General Parameters for all LIST Statements

LIST output that is directed to the screen is displayed one screen at a time. That is, a page
break is issued to prevent LIST output from rapidly scrolling up the screen. When a page
break is issued, the system halts the list operation and display the message "--MORE--"
in the lower right corner of the screen. Pressing the RETURN key at this prompt contin-
ues the LIST operation. If the page break should occur in the middle of a multi-statement
line, the multi-statement line is broken up at the correct line with the remainder of the
line being displayed after continuing from the page break. The number of lines between
page breaks can be controlled using the current SELECT LINE entry in the Internal De-
vice Table. This page break can be suppressed by specifying the F parameter.

LIST output that is directed to the printer is printed continuously. That is, the system does
not halt between pages. If the S parameter is not specified, output is printed continuously

from one page to the next. If the "S" parameter is specified, a form-feed character is auto-
matically inserted into the output stream based on the SELECT LISTLINE value (default
is 55 lines).

2-288

NPL Statements Guide

LANGUAGE STATEMENTS LIST (General Parameters)

LIST (General Parameters) (cont.)

When an optional title is specified, the title is listed with two blank lines appearing at the
beginning of the list. If the output is directed to the screen, the title is highlighted (printed
brighter than normal). If output is directed to a printer and the "S" parameter is specified,
the title prints on every page of the listing.

NOTE: When LIST is executed as a program statement on listings directed to the screen,
the "S" parameter is ignored.

Compatibility Issues:
Generation of page breaks when listing to a printer is supported only in NPL revision 3.0
or greater.

This statement is supported only with Release 3.0 or greater.

References:

NPL Statements Guide 2-289

LIST LANGUAGE STATEMENTS
LIST
General Form:
LIST [title] [S] [D] [([low-line][,[high-line]])]
[F] [line-numberl][,[line-number2]]
Where:
title = an optional descriptive title; may be a literal-
string or alpha-variable.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
D = specifies de-compressed output.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
line-number1 = lowest line-number to list.
line-number2 = highest line-number to list.
Discussion:

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

The LIST command produces a listing of the program currently in memory.

2-290

NPL Statements Guide

LANGUAGE STATEMENTS LIST

LIST (cont.)

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-
ing the MODULE command, and can be referenced using "LIST DT".

The optional "D" parameter causes the LIST output to be displayed in decompressed
form (multi-statement lines are displayed 1 statement per line). In addition to decom-
pressed form, the "D" parameter also displays line-numbers that are referenced at other
points in the program with a "-" designation in front of the line-number. The "D" parame-
ter also affects the listing of special remark statements:

* REM% statements are displayed with a blank line before and after the remark
text. If the list output is displayed to the screen, the remark text is also high-
lighted (printed brighter than normal).

* REM%" statements are displayed with a blank line before and after the remark
text. If the list output is directed to the printer, a page break is issued before the
text is printed.

The optional line-number range parameters operate as follows:

* Ifonly line-numberl is specified, only that specific program line is listed.

* Ifline-numberl, (comma) is specified, all program lines starting at line-number1
are listed in ascending sequence.

* If ,(comma)line-number?2 is specified, all program lines starting at the lowest AS-
CII sequence up to and including line-number?2 are listed.

* Ifline-numberl,line-number? is specified, all program lines within the range of
line-number1 to line-number2 inclusive are listed.

* Ifno line-numbers are specified, the entire program in memory is listed.

The optional low/high range parameters are used to specify the range of lines accessed
for determining whether or not to place a "-" before a line number listed when the "D" pa-
rameter is used. The "-" indicates that the line-number is referenced at other points in the
program within the specified low/high range. These operate as follows:

NPL Statements Guide 2-291

LIST

LANGUAGE STATEMENTS

LIST (cont.)

» Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

* If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

» Iflow-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

e Ifno line-numbers are specified, the entire program in memory is accessed.

LIST performs no operation on the non-interpretive form of the RunTime Program.

Examples:

LIST

:LISTD

:LISTD((gJ,lOO

:LIST 2000,3000
:LISTD(0,100)2000,3000

LIST
0010 FOR I=1 TO 10: PRINT I: NEXT |
0020 PRINT "THIS IS A TEST": J$="XYZ"
0030 A=1: B=2: C=3: PRINT A,B,C,J$
0040 GOSUB 200

0050 IF Q(1)=1 THEN 20

1000 DEFFN’15 "LISTDT";HEX(0D
1010 DEFFN’16 "LISTSD";HEX(0D

2-292

NPL Statements Guide

LANGUAGE STATEMENTS LIST

LIST (cont.)

:LISTD
0010 FOR I=1 TO 10
:PRINT |

: NEXT |
0020 PRINT "THIS IS A TEST"
: J$="XYZ"
0030 A=1
. B=2

. C=3

: PRINT A B,C,J$
0040 GOSUB 200
0050 IF Q(1)=1 THEN 20
1000 DEFEN’15 "LISTDT";HEX(OD
1010 DEFFN’16 "LISTSD";HEX(0D

:LIST"Lines 20 through 30"D20,30

Lines 20 through 30
0020 PRINT "Z"HIS IS ATEST"

" PRINT A,B,C,J$
A$=Lines 20 through 30"
'LIST A$ D(20,30)20,30

Lines 20 through 30
0020 PRINT "Z"HIS IS ATEST"

:PRINT A,B,C,J$

NOTE: The "D" parameter causes the output to be displayed in decompressed format with
line-numbers referenced within the low-line,high-line range displayed with the "-"
designation.

NPL Statements Guide 2-293

LIST

LANGUAGE STATEMENTS

LIST (cont.)

:0010 GOTO 20: GOTO 30
10015 GOTO 25
10020 GOTO 30
10025 GOTO 10
10030 GOTO 20
‘LISTD
-0010 GOTO 20
: GOTO 30
0015 GOTO 25
-0020 GOTO 30
-0025 GOTO 10
-0030 GOTO 20
:LISTD(10,10)
0010 GOTO 20
: GOTO 30
0015 GOTO 25
-0020 GOTO 30
0025 GOTO 10

-0030 GOTO 20

NOTE: With the low-line,high-line range of 10,10, LISTD places a "-" only at lines 20 and

30 which are the only lines referenced in the range 10,10.

Compatibility Issues:
LIST is supported on NPL Revisions 2.00 and greater.

The "F" parameter is not supported in Wang 2200 Basic-2.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

References:
Inspection of Program Text - Section 6.5 of the Programmer’s Guide

2-294

NPL Statements Guide

LANGUAGE STATEMENTS LIST #

LIST #

General Form:

LIST [title] [S] #[*] [([low-line][, [high-line]])]
[F]

[line-numberl][,[line-number2]]

Where:
title = an optional descriptive title; must be a literal-
string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program line as opposed to just line-number.
line-number1 = low range of line-numbers to be cross-referenced.

line-number2 high range of line-numbers to be cross-referenced

low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
Discussion:

The LIST # command produces a cross-reference listing of all references to specific line-
numbers within the specified range of lines of the program in memory.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-

ing the MODULE command, and can be referenced using LIST DT.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional line-number range parameters operate as follows:

NPL Statements Guide 2-295

LIST #

LANGUAGE STATEMENTS

LIST # (cont.)

If only line-numberl is specified, a cross-reference is performed only on that spe-
cific line-number.

If line-number1, (comma) is specified, all line-numbers starting at line-number1
are cross-referenced in ascending ASCII sequence.

If ,(comma)line-number?2 is specified, all line-numbers starting at the lowest AS-
CII sequence up to and including line-number2 are cross-referenced.

If line-number1,line-number? is specified, all line-numbers within the range of
line-number1 to line-number2 inclusive are cross-referenced.

If no line-numbers are specified, a cross-reference is performed on all line-num-
ber references.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

If only low-line is specified, only that specific program line is accessed.

If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

If low-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

If no line-numbers are specified, all program text for the current list module is ac-
cessed.

If a line-number is referenced by 1 or more statements within the low/high range, but is
not present in the program range being listed, the line-number are listed in the cross-refer-
ence with a "?" in front of the line-number.

2-296

NPL Statements Guide

LANGUAGE STATEMENTS LIST #

LIST # (cont.)

The default format for the LIST # command lists only the cross-referenced line-numbers.
Specifying the "*" parameter displays the statement on the line where the line number

was referenced. In addition, a number of colons (":") precede the statement to indicate
how many statements precede the referenced statement.

NOTE: This clause will change for each LIST statement noted.

LIST # performs no operation on the non-interpretive form of the RunTime program.

Examples:

LIST #

:LIST # 60,

:LIST "Referenced Program lines through line 100"# * ,100

:LIST # 50,150

:LIST # * 1000,

:LIST # (0,2000)50,150

:LIST # (8000,)

:LIST # *(100,),200

2000 REM
:REM SAMPLE PROGRAM
: REM

2010 GOSUB 100 : REM open data file

2020 GOSUB '101 : REM read a record
2030 IF END THEN 2100 : REM quit if end of file
2040 IF F$="X"THEN R1=R1+1

: ELSE R2=R2+1 : REM update R1 or R2 record

count

2050 A=MIN(A,F2,F9*2) : REM compute min of fields F2,F9
2060 B=MAX(B,F3,F8) : REM compute max of F3 and F8
2070 F2,F3,F8,F9=0 : REM reset data values
2080 GOSUB '102 : REM update data record
2090 GOTO 2020 : REM iterate until eof
2100 GOSUB '103 : REM close file
2105 PRINT "MIN OF F2,F9 IS",A : REM display results
2110 PRINT "MAX OF F3,F8 I1S",B
2120 STOP
2130 DEFFN’100 : RETURN : REM This subr opens a file
2140 DEFFN'101 : RETURN : REM this subr reads a record
2150 DEFFN’'102 : RETURN : REM this subr writes a record
2160 DEFFN’'103 : RETURN : REM this subr closes a file
LIST #
2020 - 2090
2100 - 2030
LIST#*

2020

2090 GOTO 2020
2100

2030 IF END THEN 2100

:LIST #(0,2050)
2020 - 2090

NPL Statements Guide 2-297

LIST #

LANGUAGE STATEMENTS

LIST # (cont.)

LIST

:0010 GOTO 20: GOTO 30
:0020 GOTO 30

:0025 GOTO 10

:0030 GOTO 20

LIST #
0010 - 0025

0020 - 0010 0030
0030 - 0010 0020
:LIST#(20,30)
0010 - 0025

0020 - 0030

0030 - 0020
:LIST#(20,30)20,30

0020 - 0030
0030 - 0020

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST # is supported on NPL Revisions 2.00 and greater.

In Wang 2200 Basic-2, if a line-number is referenced more than once from a program
line (multi-statement line), only 1 reference for the program line appears in the LIST #
output. In NPL, a reference is made for each reference in the program line.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

Prior to NPL Release IV, the "*" option would display all statements on the line contain-
ing the reference.

References:

LIST DT

MODULE

Inspection of Program Text - Section 6.5 of the Programmer’s Guide

2-298

NPL Statements Guide

LANGUAGE STATEMENTS LIST"

LIST”’

General Form:

LIST [ttle] [S] '[*] [([low-line][,[high-line]])]
[F]
[deffn-1][,[deffn-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program line as opposed to just line-number.
deffn-1 = low range of subroutines to be displayed.
deffn-2 = high range of subroutines to be displayed.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
Discussion:

The LIST’ command produces a cross-reference listing of all references in a program to
DEFFN’ subroutines using GOSUB’ statements.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

Refer to LIST Statement for details on general parameters for all LIST statements.

LIST’ statements are extended to include named DEFFN routines.

NPL Statements Guide 2-299

LIST’ LANGUAGE STATEMENTS

LIST ’ (cont.)

NOTE: In ranges of DEFFN’ names, numbered DEFFIN’s sort numerically but named
DEFFIN’s sort lexicographically (all numbers appear before any names).

For example:

2 appears before *12 <- numerical
’9999 appears before 65535

’Aardvark appears before *Zebra

’£10000 appears before °f9 <-lexical

A LIST’ range that ends at 65535 is equivalent to ’all ranges after start value’. It is not
possible to specify a range that ends exactly at 65535.

The optional range parameters (deffn-1,deffn-2) operate as follows:

» Ifonly deffn-1 is specified, a cross-reference is performed only on that specific
marked subroutine.

» Ifdeffn-1, (comma) is specified, all marked subroutines starting at deffn-1 are
cross-referenced in ascending ASCII sequence.

» If ,(comma)deffn-2 is specified, all marked subroutines, starting at the lowest AS-
CII sequence up to and including deftn-2, are cross-referenced.

» Ifdeffn-1,deffn-2 is specified, all marked subroutines within the range of deffn-1
to deffn-2, inclusive, are cross-referenced.

* Ifno deffn range parameters are specified, a cross-reference is performed on all
marked subroutines.

The optional low/high range parameters are used to specify the range of lines accessed
from which references (GOSUB) and definitions (DEFFN) are displayed. These oper-
ate as follows:

» Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

2-300 NPL Statements Guide

LANGUAGE STATEMENTS LIST"

LIST ’ (cont.)

* If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence, up to and including high-line, are accessed.

» Iflow-line,high-line is specified, all program lines within the range of low-line to
high-line, inclusive, are accessed.

* Ifno line-numbers are specified, the entire program in the current list module is
accessed.

In addition to listing subroutines defined by DEFFN °, LIST ’ also lists subroutines de-
fined by external subroutines. DEFFN ’s defined in external subroutines are always dis-
played by LIST ’, regardless of any low-line, high-line range specified.

NOTE: Unless the rtpdef next number field is defined in the external routines, LIST > may
respond slowly the first time executed when external subroutines are loaded. Refer
to the NPL External Subroutine Development Kit documentation for further details
on external subroutines.

If a DEFFN’ subroutine is called by one or more GOSUB’ statements but is not defined
in the low-line, high-line range being accessed, the subroutine is cross-referenced with
the line-number displayed as ("?7?7?7").

LIST ’ performs no operation on the non-interpretive form of the RunTime program.

Specifying the "*" parameter displays the statement on the line where the DEEFN’ sub-

routine was referenced. In addition, a number of colons ":" precede the statement to indi-
cate how many statements precede the referenced statement.

Examples:

:LIST’10,31
:LIST"SUBROUTINES™ *
:LIST"Subroutine '31™ 31
:LIST (100,200

:LIST ’(2000,)10,31
:LIST ' *(,4000)24,

2000 REM
: EEM SAMPLE PROGRAM
2010 GOSUB ‘fileOpen : REM open data file
2020 GOSUB '101 : REM read a record
2030 IF END THEN 2100 : REM quit if end of file

NPL Statements Guide 2-301

LIST’

LANGUAGE STATEMENTS

LIST ’ (cont.)

2040 IF F$ "X" THEN R1=R1+1
: ELSE R2=R2+1: REM update R1 or R1 rcd

. counter

2050 A=MIN(A,F2,F9*2) REM compute min of fields F2,F9
2060 B=MAX(B,F3, F8) : REM compute max of F3 and F8
2070 F2,F3.F8,F9=0 : REM reset data values

2080 GOSUB 102 : REM update data record
2090 GOTO 2020 REM iterate until eof

2100 GOSUB '103 . REM close file

2105 PRINT "MIN OF F2,F9 IS" A : REM display results

2110 PRINT "MAX OF F3,F8 I1S",B

2120 STOP

2130 DEFFN’fileOpen : RETURN REM This subr opens a file
2140 DEFFN’'101 : RETURN : REM this subr reads a record
2150 DEFFN’'102 : RETURN : REM this subr writes a record
2160 DEFFN’'103 : RETURN . REM this subr closes a file

LIST
2130 DEFFN'fileOpen
- 2010
2140 DEFFN’101
- 2020
2150 DEFFN’102
- 2080
2160 DEFFN'103
- 2100
:LIST ’(2100,)
2130 DEFFN'fileOpen
2140 DEFFN’101

2150 DEFFN’102
2160 DEFFN’103
100

:LIST ’(2100,)102,

2150 DEFFN’102

2160 DEFFN’103
100

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST ’ is supported on NPL Revisions 2.00 and greater.
Wang 2200 Basic-2 does not support the use of range parameters with LIST * output.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

Prior to NPL Release IV, the "*" option would display all statements on the line contain-
ing the reference.

2-302

NPL Statements Guide

LANGUAGE STATEMENTS LIST"

LIST ’ (cont.)

References:

DEFFN’

GOSUB’

LIST DT

Inspection of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide 2-303

LIST DC

LANGUAGE STATEMENTS

LIST DC
General Form:
LIST [title] [S] DC T[device-address,][restrict],restrict]...]JW]
[F] [file-number,]
[<address-var>,]
Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

restrict = {[FILE rel-op] alpha-mask }

{ TYPE rel-op alpha-mask }

{ START rel-op numeric-expression }
{ END rel-op numeric-expression }
{ USED rel-op numeric-expression }
{ FREE rel-op numeric-expression }
{ DATE rel-op alpha-mask }

{ TIME rel-op alpha-mask }

w = Specifies that output from LIST DC should consist
only of the names of the files selected displayed
across the screen.

rel-op = relational operator {<,=,><=,>=<>}.

alpha-mask = alpha-variable or alpha-literal.

Discussion:

The LIST DC format of the LIST command produces a listing of files in the diskimage

file specified by the device-address.

2-304 NPL Statements Guide

LANGUAGE STATEMENTS

LIST DC

LIST DC (cont.)

Any diskimage file currently defined in the device equivalence table can be specified in

the LIST DC command using the device address parameter. If no device address is speci-
fied, the diskimage address currently defined as the default diskimage (#0) in the Internal
Device Table is assumed.

Refer to LIST general parameters section for details on parameters common to all LIST

statements.

The listing is comprised of:

General information about the diskimage:

* Device Equivalence

¢ Number of Index Sectors

* End Catalog

e Current End

Information about each specified cataloged file on the disk (refer below for specifica-

tion methods):

File name

File Type Scratched or Not, Program or Data
Start Sector (Beginning sector address of the file)
End Sector (Ending sector address of the file)
Sectors Used (Number of sectors occupied by file)
Sectors Free (Number of unused sectors in the file)
Date Stamp (Date the file was last modified)
Time Stamp (Time the file was last modified)

NPL Statements Guide

2-305

LIST DC LANGUAGE STATEMENTS

LIST DC (cont.)

Refer to Section 7.3.6 of the Programmer’s Guide, (Internal Structure of Diskimages) for
additional details about these parameters.

Specifying Files

The LIST DC command allows restriction of the file listing by specification of key words
related to information about the file, followed by a relational operator, followed by a
mask. As the catalog index is read, file parameters are matched against the specified
mask as required by the relational operator. Only files meeting the specified requirements
are listed. Multiple restrictions may be specified, in which case only files meeting all re-
quirements are listed.

For keywords which represent alpha data, the mask must be a literal or alpha-variable.
For keywords which represent numeric data the mask must be a valid numeric expression
of which the integer portion is used.

For alpha masks, standard wildcard usage is supported. That is, a "?" in any position
matches any character in that position. An "*" indicates that any characters from the posi-

tion of the asterisk to the end of the field match.

The key words available for file specification are:

FILE Eight-byte alpha
TYPE Two-byte alpha. Byte 1 is "S" if the file is scratched; blank if not
scratched. Byte 2 is "P" for program files; "D" for data files.
START Numeric
END Numeric
USED Numeric
FREE Numeric
DATE Eight-byte alpha in the format yy/mm/dd
TIME Eight-byte alpha in the format hh:mm:ss

2 -306 NPL Statements Guide

LANGUAGE STATEMENTS

LIST DC (cont.)

NOTE: If no keyword is specified, the key word FILE and the relational operator "=" are

NOTE:

NOTE:

assumed.

LIST DC performs no operation on the non-interpretive form of the RunTime program.

As of Revision 3.0 of NPL, the file name, file type, and file status (scratched or not
scratched) are stored in the file trailer sector as well as the file index. LISTDCT checks
this information and displays a "?" at the end of each file name line where the informa-
tion in the trailer sector does not exist or does not match the index. This "?" is not dis-
played if the "W" option is specified.

File trailer information can be established by use of a MOVE (form 1) statement.

Examples:

:LIST DC T/D32,

$DEVIC éngZ) ="/BASIC2C/PROGS.BS2"
INDEX SECTORS = 10

END SECTORS 265

CURRENT END 265

FILE TYPE START END USED FREE DATE TIME
2CCOPY P 89 176 62 26 86/06/01 04:10:31
2CRCVR P 177 265 72 17 86/05/30 08:59:01 ?
2CBCKP P 10 88 62 17 86/06/04 15:21:54

The question mark at the end of the file name line, if present, indicates that file-

name, type, and status contained in the trailer does not match that contained in the
index.

:LIST DC T/D32,W

$DEVIC éngZ) = /BASICZC/PROGS BS2"
INDEX S 10

END SECTORS 265

CURRENT END 265

2CCOPY 2CRCVR 2CBCKP

:SELECT #1 D32 would produce the same listing as
:LIST DCT#1 LIST DCT/D32 in previous example.
:A$="D32" would produce the same listing as
:LIST DCT<A$> LIST DCT/D32 in previous example.

:LIST DCT "AR*" lists all files beginning with AR
(default key word and relational operator
if none specified is "FILE =").

NPL Statements Guide 2-307

LIST DC

LIST DC LANGUAGE STATEMENTS

LIST DC (cont.)

:LIST DCT "AR*",DATE>="86/01/01" Lists all files with a name
starting with "AR" and a date
stamp of January 1, 1986 or later.

:LIST DCT TYPE = "?P" List all programs, scratched and active.
:LIST DCT TYPE = "SP" List all scratched programs.
:LIST DCT TYPE =" P", DATE="86/09/30", START>=5000
List all active (non-scratched) programs)
with a date stamp of Sept. 30, 1986 which
start at sector 5000 or higher on the diskimage.
:LIST DCT "?2 ™*" Lists all files with a space in 3rd
position, and an apostrophe in the 4th

position (default condition if none
specified is "FILE =").

:LIST DCT TYPE="S?" Lists all scratched files.
:LIST DCT FREE >0 Lists files with non-zero free space.
:LIST DCT START>=3000 Lists all files which start at or

after sector 3000.

Compatibility Issues:

Wang Basic-2 supports a method of file selection similar to NPL. However, the Wang
syntax is different than NPL and is not fully supported. In addition, the Wang Basic-2 im-
plementation is limited to the use of a filename mask and specification of a specific file

type.
LIST DC is supported on NPL Revision 2.00 and greater.
The optional W parameter is supported on NPL Revision 3.0 or greater.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:
Inspection/Modification of Environment - Section 6.6 of the Programmer’s Guide

2-308 NPL Statements Guide

LANGUAGE STATEMENTS LIST DIM

LIST DIM

General Form:

LIST [title] [S] DIM [*] [var1][,[var2]]
[F]

Where:
titte = an optional descriptive title; must be a literal-string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = causes the contents of variables in the specified range

to be displayed.

varl = low variable in range to be displayed.
var2 = high variable in range to be displayed.
Discussion:

The LIST DIM command displays the list of variables currently defined in memory
within the specified range of variables in alphabetical order.

Variables displayed are those which can be referenced from the current context (execut-
ing module and function).

NPL Statements Guide 2-309

LIST DIM LANGUAGE STATEMENTS

LIST DIM (cont.)

The information displayed for each variable is:

* An indicator of each variable’s allocation status as:

DIM Module private non-common static variables

COM Module private common static variables

DIM /RECURSIVE | Function private recursive variables and by-value parameters

DIM /STATIC Function private static variables

DIM /PUBLIC Public variables

/POINTER Function private by-reference parameters

e Ifthe variable is a FIELD or RECORD identifier, a keyword indicating this is dis-
played

* The variable name
* Current array dimension (if array-variable)
* Element length (if alpha-variable)

* For Function private by-reference (/POINTER) parameters, the name of the vari-
able to which parameter references is displayed, if this can be determined.

* Optionally, by specifying the [*] parameter, the element value is displayed: if a
numeric-variable, the numeric value is displayed; if an alpha-variable, the string
value is displayed in both ASCII (in quotes) and HEX() representation. If a string
value is longer than 16 bytes, the value is displayed on multiple lines, with the
starting STR() index of each part at the beginning of each line. Non-displayable
HEX codes which do not have printable character representations are displayed
in string value as ".". If the variable is a FIELD identifier, the values of the
#FIELDSTART, #FIELDLENGTH and $FIELDFORMAT functions are dis-
played. If the variable is a RECORD identifier, the value of the #RE-
CORDLENGTH function is displayed.

Refer to LIST General Parameters section for details on parameters common to all LIST
statements.

2-310 NPL Statements Guide

LANGUAGE STATEMENTS LIST DIM

LIST DIM (cont.)

The optional variable range parameters operate as follows:

» Ifonly varl is specified, LIST DIM output for only that specific variable is gener-
ated.

» Ifvarl, (comma) is specified, LIST DIM output for variables starting with varl
in ascending ASCII sequence is generated.

* If ,(comma)var?2 is specified, LIST DIM output for variables starting at the low-
est ASCII sequence up to and including var2 is generated.

» Ifvarl,var2 is specified, LIST DIM output for variables within the range of varl
to var2 inclusive is generated.

e Ifno variable range parameters are specified, LIST DIM output is generated for
all variables currently defined in memory.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in varl and var2, only variables of that type are listed.

Array variables are specified in a LIST DIM statement using a special syntax. The array
designator is specified followed by an open parenthesis "(". For example, the arrays S$()
and N() would be specified by:

0010 LIST DIM S$(, N(

LIST DIM displays all variables defined in memory, even if not referenced in the current
program text. However, if the program has not yet been resolved, variables referenced in
the program text may not be defined yet. Refer to LIST V for a cross-reference of vari-
ables referenced in the program text.

LIST DIM performs no operation when executed by the non-interpretive form of the Run-
Time Program.

Some of the uses of the LIST DIM command are:
* Generate a quick dump of variables during program debugging.

* Generate diagnostic information from end-user with application problems.

NPL Statements Guide 2-311

LIST DIM

LANGUAGE STATEMENTS

LIST DIM (cont.)

» Display current dimensions of variables which have been redimensioned using

the MAT REDIM statement.

* Display current variable status, whether common or non-common variable is in

use.

Examples:

:LIST DIM A$,S$(
:LIST DIM F$,L$
:LIST DIM * A,.D

:0009 COM C$16
:0010 DIM A(llo)r B$(11)32

10020 FOR |21 70 10
: Ag)="ABC"
NEX%
:0030 C$—"TEST LIST DIM "
‘RUN
'LIST DIM *
DIM A(10)
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 %
IM B$(11§,2
"A " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(g " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(g " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(g " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(g " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(g " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(g " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(g " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) " 'HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(93 " HEX(4142 4320 2020 2020 2020 2020 2020 2020
TR(17) B0 BN (0050 2020 2090 2090 2090 2020 2020 202
(1011 'ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020
R(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020
81) ALL("") ALL(20)
OM C$16

"TEST LIST DIM " HEX(5445 5354 204C 4953 5420 4449 4D20 2020)

DIM |
10

2-312

NPL Statements Guide

LANGUAGE STATEMENTS LIST DIM

LIST DIM (cont.)

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:

COM

DIM STATIC

DIM PUBLIC

DIM RECURSIVE

LISTV

LIST STACK DIM Inspection and Modification of Program Logic - Section 6.3 of the
Programmer’s Guide

Inspection and Modification of Variables - Section 6.4 of the Programmer’s Guide
Inspection and Modification of Environment - Section 6.6 of the Programmer’s Guide

NPL Statements Guide 2-313

LIST DT LANGUAGE STATEMENTS

LIST DT

General Form:

LIST [title] [S] DT
[F]

Where:
title = an optional descriptive title; must be a literal-string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
Discussion:

The LIST DT command lists various information about the current NPL environment.
This information consists of:

¢ Device-addresses associated with current SELECT [R,G,D], ERROR, ROUND,
P (pause), LINE, CI, INPUT, PLOT, TAPE, LOG entries in the Internal Device
Table.

¢ Device-addresses associated with current SELECT PRINT, LIST, CO, and DISK
entries in the Internal Device Table.

* File slot information for any cataloged files open for processing are displayed
with the current disk address information for each file slot entry.

NOTE: Iffile slots above #15 are defined (by SELECT DISK/FILE NUMBER), the highest
file #slot is displayed even if no address is assigned. Refer to Section 7.2.3 of the Pro-
grammer’s Guide for details on the Internal Device Table.

* Device-addresses and their corresponding native operating system file or device
defined in the Device Equivalence Table as established using SDEVICE state-
ments. Refer to Section 7.2.2 of the Programmer’s Guide for details on the De-
vice Equivalence Table.

2-314 NPL Statements Guide

LANGUAGE STATEMENTS LIST DT

LIST DT (cont.)

* Program load sequence. This lists up to six NPL programs LOADed into memory
since memory was last cleared. If more than six programs have been loaded, the
program names displayed are those of the first program loaded plus the last five
programs loaded.

The SPROGRAM and "Program Load Sequence" information displayed in LIST
DT applies to the current RUN module only, and does not show modules loaded
using INCLUDE statements.

» Ifthe program is halted and can be continued, a line is displayed showing the
name of the Executing Module.

e The module name of the RUN module is displayed. On current releases, this is
always blank.

e The module name of the LIST module is displayed. On current releases, this
shows the current run module’s flag, in the same format as for INCLUDE mod-
ules.

* All modules (except the root module) which are currently loaded display a line in
the format:

INCLUDE T/xxx, "FILENAME" TO "Moduleldentifier" :status

Here the T/xxx and FILENAME fields identify the device and filename used to initially
load the module, and Moduleldentifier is the internal module name.

The "status" field shows the current modification state of the module and is one of the fol-
lowing keywords:

LOAD <-- module unchanged since loaded (using INCLUDE)
ERROR <-- was loaded by INCLUDE but could not be resolved
MERGE <-- module overlaid or otherwise modified since load
CLEAR <-- module is clear of program lines

SAVE <-- module unchanged since last saved (in full)

NPL Statements Guide 2-315

LIST DT LANGUAGE STATEMENTS

LIST DT (cont.)

The RUN indicator shows that the module is currently resolved (Public functions
may be called either indirectly, or directly, if module is currently INCLUDEA).

The COM indicator shows that the module has defined common (COM) variables,
and, so, is normally not deleted after a RUN, even when no longer referenced by IN-
CLUDE statements.

* TRACE status. This shows the current trace status in effect.

» STEP status. This shows the current STEP status in effect including the STEP #
range for the current LIST module if STEP is on. The name of the current LIST
module in quotes (if not blank) precedes the STEP information.

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

LIST DT performs no operation on the non-interpretive form of the RunTime Program.

Examples:

LIST DT
SELECT R, ERROR >60, ROUND, P, LINE 24, LISTLINE 55
SELECT CI /001, INPUT /001, PLOT /000, TAPE /000, LOG /000 OFF

SELECT PRINT /005(80), LIST /005(80), CO /005(80)

FILE ADDRESS FILE-NAME START CURRENT END
* NO OPEN FILES *

$DEVICE(/D11) = "platterl.bs2"
$DEVICE(/D12) = "platter2.bs2"
$DEVICE(/020) = "rivexp.bs2"

Program Load Sequence:START

Executing MODULE "rivfact"

RUN MODULE ""

LIST MODULE "rivfact"

INCLUDE T/020, "rivfact " TO "rivfact:MERGE :RUN
TRACE OFF

"rivfact"

STEP OFF

$DEVICE(/004) = "/dev/prn"
$DEVICE(/015) = "/dev/prn"
$DEVICE(/010) = "A:"

2-316 NPL Statements Guide

LANGUAGE STATEMENTS LIST DT

LIST DT (cont.)

Compatibility Issues:

The LIST DT statement is functionally the same in Wang 2200 Basic-2. However the
command has been extended to include the NPL Device Equivalence Table, and in addi-
tion, the format of the output has been modified extensively.

LIST DT is supported on NPL Revisions 2.00 and greater.

Display of SELECT LOG device, SELECT LISTLINE value, TRACE status, and STEP
status are new features implemented in Revision 3.0 of NPL.

Display of RUN MODULE, LIST MODULE and INCLUDEd modules are features im-
plemented in Revision 4.0 of NPL.

References:

$DEVICE

SELECT

STEP

TRACE

Internal Device Table - Section 7.2.3 of the Programmer’s Guide
Device Equivalence Table - Section 7.2.2 of the Programmer’s Guide

NPL Statements Guide 2-317

LIST FIELD LANGUAGE STATEMENTS

LIST FIELD
General Form:
LIST [title][S] FIELD[*] [([low-line][,[high-line]])]
[F]
[name-1][,[name-2]]
Where:
title = an optional descriptive title; must be a literal-
string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just line-num-
ber.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
name-1 = low range of field identifier to be displayed.
name-2 = high range of field identifier to be displayed.
Discussion:

The LIST FIELD command produces a listing of all FIELDs referenced by the program
in the current LIST module, and on which program lines they are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

The default format for the LIST FIELD command lists line-numbers where the specified
FIELD(s) appears. Specifying the "*" parameter causes the program statement which con-
tains the specified FIELD(s) to be listed in addition to the line #.

2-318 NPL Statements Guide

LANGUAGE STATEMENTS LIST FIELD

LIST FIELD (cont.)

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

» Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

* If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

» Iflow-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

* Ifno line-numbers are specified, the entire program in memory is accessed.
The optional name range parameters operate as follows:

* Ifonly name-1 is specified, LIST FIELD output for only that specific field is gen-
erated.

* Ifname-1, (comma) is specified, LIST FIELD output for fields starting with
name-1 in ascending ASCII sequence is generated.

:LIST FIELD (100,200)
:LIST FIELD(0008 Boats$.Trucks$
:LIST FIELD * (,4000),.Hats

* If, (comma)name-2 is specified, LIST FIELD output for fields starting at the low-
est ASCII sequence up to and including name-2 is generated.

* Ifname-1,name-2 is specified, LIST FIELD output for fields within the range of
name-1 to name-2 inclusive is generated.

* Ifno range parameters are specified, LIST FIELD output is generated for all
fields referenced by the program in the current LIST module.

NPL Statements Guide 2-319

LIST FIELD LANGUAGE STATEMENTS

LIST FIELD (cont.)

If exactly 1 type of field (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in name-1 and name-2, only fields of that type are listed. If different field types
are specified, all field types are listed.

Field arrays are specified in a LIST FIELD statement using a special syntax. The array
designator is specified, followed by an open parenthesis "(". For example, the arrays .Ta-
ble$() and .Counters() would be specified by:

0010 LIST FIELD .Counters(,.Table$(

The primary difference between LIST FIELD and LIST STACK DIM is that LIST
FIELD shows only fields referenced by the program in the current LIST module. LIST
STACK DIM displays all fields in memory, in stack order, even if not referenced by the
program in the current LIST module.

LIST FIELD performs no operation (NOP) on the non-interpretive form of the RunTime
Program.

Examples:

:LIST FIELD (100,200)

:LIST FIELD(2000,) .Apples$,.Oranges
:LIST FIELD *(,4000),.Pages

:LIST FIELD

:LIST FIELD .Sticks,.Firewood$

:LIST FIELD * .Sticks,.Firewood$
:LIST FIELD .Units

:LIST FIELD *, .Firewood$

SAMPLE PROGRAM
0010 RECORD /PUBLIC Area
: FIELD LeftUpperQuad=HEX(5202
FIELD LeftLowerQuad=HEX(5202
FIELD RightUpperQuad=HEX(5202
. FIELD RightLowerQuad:HEX 5202
: END RECORD
0020 DIM Buffer$#RECORDLENGTH(Area)
0030 Buffer$.LeftUpperQuad=2.6
0040 Buffer$.LeftLowerQuad=3.8

:LIST FIELD

.LeftLowerQuad
- 0010 0040

.LeftUpperQuad
- 0010 0030

.RightLowerQuad
- 0010

.RightUpperQuad
90010

2-320 NPL Statements Guide

LANGUAGE STATEMENTS LIST FIELD

LIST FIELD (cont.)

:LIST FIELD *
.LeftLowerQuad

6010 :: FIELD LeftLowerQuad=HEX(5202)
0040 Buffer$.LeftLowerQuad=3.8

.LeftUp'E)erQuad
0010 : FIELD LeftUpperQuad=HEX(5202)
0030 Buffer$.LeftUpperQuad=2.6

.RightLowerQuad-
0010 :::: FIELD RightLowerQuad=HEX(5202)

.RightUplperQuad
0010 ::: FIELD RightUpperQuad=HEX(5202)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

FIELD

RECORD

Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide 2-321

LIST FUNCTION

LANGUAGE STATEMENTS

LIST FUNCTION

General Form:

[F]

Where:
title

low-line

high-line

function-identifier1

function-identifier2

LIST [title][S] FUNCTION[] [([low-line][,[high-line]])]

[function-identifier1][,[function-identifier2]]

an optional descriptive title; must be a
literal-string.

specifies that a page break be performed.
specifies that no page break be performed.

list program statement as opposed to just
line-number.

lowest line-number for which to show refer-
ences.

highest line-number for which to show ref-
erences.

low range of function to be displayed.

high range of function to be displayed.

Discussion:

The LIST FUNCTION produces a listing of all functions referenced by the program in
the current LIST module, and on which program lines they are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

2-322

NPL Statements Guide

LANGUAGE STATEMENTS LIST FUNCTION

LIST FUNCTION (cont.)

The default format for the LIST FUNCTION command lists line-numbers where the
specified function references appear. Specifying the "*" parameter causes the program
statement containing the specified FUNCTION(s) to be listed in addition to the line num-
ber.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

» If only function-identifier! is specified, LIST FUNCTION output for only that
specific function is generated.

» If function-identifier1, (comma) is specified, LIST FUNCTION output for func-
tions starting with function-identifier2 in ascending ASCII sequence is generated.
:LIST FUNCTION 2100,200

:LIST FUNCTION 2000,&’ et_Status$,.’Current_Status$
:LIST FUNCTION *(,4000),'Count_Hats

* If, (comma)function_identifier2 is specified, LIST FUNCTION output for func-
tions starting at the lowest ASCII sequence up to and including function-identi-
fier2 is generated.

» If function-identifier],function-identifier2 is specified, LIST FUNCTION output
for functions within the range of function-identifier1 to function-identifier2 inclu-
sive is generated.

* Ifno range parameters are specified, LIST FUNCTION output is generated for
all functions referenced by the program in the current LIST module.

If exactly 1 type of function (numeric-scalar, alpha-scalar) is specified in function-identi-
fierl and function-identifier2, only functions of that type are listed. If different function
types are specified, all function types are listed.

NPL Statements Guide 2-323

LIST FUNCTION

LANGUAGE STATEMENTS

LIST FUNCTION (cont.)

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

If only low-line is specified, only that specific program line is accessed.

If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

If low-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

If no line-numbers are specified, the entire program in the current LIST module
is accessed.

Examples:

:LIST FUNCTION

:LIST FUNCTION 'Do_it,’'Did_it
:LIST FUNCTION * 'Do_it,’'Did_it$
:LIST FUNCTION 'Get_Activity,
:LIST FUNCTION *’Rain_Event

R 0010 ;SAMPLE ROUTINES

0020 ;MAINLINE
0030 INCLUDE T "FUNCTS"
0040 Y$="Get_Position$(Z$)

0010 ;FUNCTS

0100 FUNCTION 'Get_Position$(A$16) /PUBLIC
0110 RETURN (A$)

0120 END FUNCTION

0200 FUNCTION 'Do_lt(V)

0210 RETURN 9/12

0220 END FUNCTION

‘RUN
‘LIST FUNCTION
'Get_Position$

- 0040

2-324

NPL Statements Guide

LANGUAGE STATEMENTS LIST FUNCTION

LIST FUNCTION (cont.)

:LIST FUNCTION *

‘Get_Position$--------
0040 Y$="Get_Position$(Z$)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

LIST

LIST DT

MODULE

Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide 2-325

LIST PROCEDURE LANGUAGE STATEMENTS

LIST PROCEDURE
General Form:
LIST [title][S] PROCEDURE[*] [([low-line][,[high-line]])]
[F]
[procedure-identifier1][,[procedure-identifier2]]
Where:
title = an optional descriptive title; must be a
literal-string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just
line-number.
low-line = lowest line-number for which to show refer-
ences.
high-line = highest line-number for which to show ref-
erences.
procedure-identifier1 = low range of procedure to be displayed.
procedure-identifier2 = high range of procedure to be displayed.

Discussion:

The LIST PROCEDURE command produces a listing of all PROCEDURE:s referenced
by the program in the current LIST module, and on which program lines they are refer-
enced.

2-326 NPL Statements Guide

LANGUAGE STATEMENTS LIST PROCEDURE

LIST PROCEDURE (cont.)

The LIST procedure refers to program text in the current list module. This is set to the
currently executing module whenever a program HALTSs or continues, or when changed
using the MODULE command, and can be referenced using LIST DT.

The default format for the LIST PROCEDURE command lists line-numbers where the
specified PROCEDURE(s) appears. Specifying the "*" parameter causes the program
statement containing the specified PROCEDURE(s) to be listed in addition to the line
number..

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

» If only procedure-identifier! is specified, LIST PROCEDURE output for only
that specific procedure is generated.

* If procedure-identifierl, (comma) is specified, LIST PROCEDURE output for
procedures starting with procedure-identifier2 in ascending ASCII sequence is
generated.

:LIST PROCEDURE (100,200)

:LIST PROCEDURE(2000,) 'Get_Status$,.'Current_Status$
:LIST PROCEDURE *(,4000),."Count_Hats

* If, (comma)procedure-identifier2 is specified, LIST PROCEDURE output for
procedures starting at the lowest ASCII sequence up to and including procedure-
identifier2 is generated.

* If procedure-identifierl,procedure-identifier2 is specified, LIST PROCEDURE
output for procedures within the range of procedure-identifier! to procedure-iden-
tifier2 inclusive is generated.

* Ifno range parameters are specified, LIST PROCEDURE output is generated for
all procedures referenced by the program in the current LIST module.

NPL Statements Guide 2-327

LIST PROCEDURE LANGUAGE STATEMENTS

LIST PROCEDURE (cont.)

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

* Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

* If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

» Iflow-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

e Ifno line-numbers are specified, the entire program in the current list module is
accessed.

Examples:

:LIST PROCEDURE
:LIST PROCEDURE 'Did _it,’'Do_it
:LIST PROCEDURE *'Did_it,’'Do_it$
:LIST PROCEDURE UBdate Acfivity,
:LIST PROCEDURE *’Rain_Event
0010 ; Mainline
:PROCEDURE 'Set_Position CSAfiSlG) /PUBLIC /FORWARD
:PROCEDURE ’'Do_lt(n') /FORWAR
:DIM n, Z$16
? _|t(n)
’Set_Position(Z$)
0020 END
0030 PROCEDURE 'Set_Position(A$16) /BEGINS
‘RETURN

:END PROCEDURE
:PROCEDURE 'Dolt(n') /BEGINS
‘RETURN

:END PROCEDURE

:list procedure
'Do_It- 0010 0010 0030
'Sei_Position

- 0010 0010 0030

:list procedure *

'Do
001'00 PROCEDURE 'Do_It(N) /FORWARD
0010 ::::: é {J

0030 : PRO'C DURE 'Do_lIt(N) /BEGINS

2-328 NPL Statements Guide

LANGUAGE STATEMENTS LIST PROCEDURE

LIST PROCEDURE (cont.)

'Set_Position
0010 : PROCEDURE 'Set_Position(A$) /PUBLIC /FORWARD
0010 :::: 'Set_Position(Z$)

0030 PROCEDURE 'Set_Position(A$16) /BEGINS

LIST PROCEDURE (cont.)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide 2-329

LIST PUBLIC DEFFN LANGUAGE STATEMENTS

LIST PUBLIC DEFFN
General Form:
LIST PUBLIC[title][S] DEFFN[*] [([low-line][,[high-line]])]
[F]
[DEFFN-identifier1][,[DEFFN-identifier2]]
Where:
title = an optional descriptive title; must be a
literal-string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* =1 ist program statement as opposed to just
line-number.
low-line = lowest line-number for which to show refer-
ences.
high-line = highest line-number for which to show ref-
erences.
DEFFN-identifierl = low range of DEFFN to be displayed.
DEFFN-identifier2 = high range of DEFFN to be displayed
Discussion:

The LIST PUBLIC DEFFN command produces a listing of all DEFFNs declared by all
currently loaded and resolved PUBLIC sections in the workspace. This allows selection
of new public names which are not in conflict with currently loaded declarations. It also
allows a review of the declared parameter names and types as a reminder when program-
ming.

2-330 NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC DEFFN

LIST PUBLIC DEFFN (cont.)

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional variable range parameters operate as follows:

» If only DEFFN-identifier1 is specified, LIST PUBLIC DEFFN output for only
that specific DEFFN is generated.

» If DEFFN-identifierl, (comma) is specified, LIST PUBLIC DEFFN output for
DEFFNs starting starting with DEFFN-identifier] in ascending ASCII sequence
is generated.

:LIST PUBLIC DEFFN ’'Set_Length, 'Set_Width
:LIST PUBLIC DEFFN *,/’Set_Count

* If, (comma)DEFFN-identifier2 is specified, LIST PUBLIC DEFFN output for
DEFFNs starting at the lowest ASCII sequence up to and including DEFFN-iden-
tifier2 is generated.

» If DEFFN-identifier] , DEFFN-identifier2 are specified, LIST PUBLIC DEFFN
output for variables within the range of DEFFN-identifierl to DEFFN-identifier2
inclusive is generated.

* Ifno range parameters are specified, LIST PUBLIC DEFFN output is generated
for all DEFFNs currently loaded and resolved PUBLIC sections in memory.

NPL Statements Guide 2-331

LIST PUBLIC DEFFN LANGUAGE STATEMENTS

LIST PUBLIC DEFFN (cont.)

NOTE:

The F, S and * options are all permitted on this LIST statements.

The output of the statement shows the name of the indicated DEFFN, preceded by the
module name in which the DEFFN is declared. If a "*" option is used, additional informa-
tion about the DEFFN also appears in the listing. The extra information printed when the
"*" option is used consists of the statement in which the declaration occurs.

This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

No LIST PUBLIC examples should use a line number range.

Examples:

:LIST PUBLIC DEFFN

:LIST PUBLIC DEFEN 'Did_it,’Do_it
:LIST PUBLIC DEFFN * 'Did_it,’Do_it
:LIST PUBLIC DEFFEN 'Set_activity,
:LIST PUBLIC DEFFN *’Rain_Event

0010 ;SAMPLE ROUTINES
0020 ‘MAINLINE

0025 DIM /PUBLIC A,B
0030 INCLUDE T "DEFFNS"
0040 GOSUB 'Calc_lIt(X,Y,2)

0010 :DEFFNS
0020 DEFFN 'Calc ItéA,B,C) /PUBLIC

0030 B=2: C=3: A=B*C+5

0035 PRINT A,B,C; " Values in the DEFFN™
0040 RETURN

0100 DEFFN ’Nothing(G)

0110 RETURN

‘RUN

:LIST PUBLIC DEFFN
"DEFFNS" DEFFN 'Calc_|t
:LIST PUBLIC DEFFN *

"DEFFN" DEFFN 'Calc |t
0020 DEFFN ’Calc_It(A,B,C)/PUBLIC

2-332

NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC DEFFN

LIST PUBLIC DEFFN (cont.)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide
LIST”

NPL Statements Guide 2-333

LIST PUBLIC FIELD

LANGUAGE STATEMENTS

LIST PUBLIC FIELD
General Form:
LIST PUBLIC [title][S] FIELD[*] [([low-line][,[high-line]])]
[F]
[name-1][,[name-2]]
Where:
title = an optional descriptive title; must be a literal-
string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just line-num-
ber.
name-1 = low range of field to be displayed.
name-2 = high range of field to be displayed.
Discussion:

The LIST PUBLIC FIELD command produces a listing of all FIELDs declared by all cur-
rently loaded and resolved PUBLIC sections in the workspace. This allows selection of
new public names which are not in conflict with currently loaded declarations.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-

ment.

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

2-334

NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC FIELD

LIST PUBLIC FIELD (cont.)

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

* Ifonly name-1 is specified, LIST PUBLIC FIELD output for only that specific
field is generated.

* Ifname-1, (comma) is specified, LIST PUBLIC FIELD output for fields starting
with name-1 in ascending ASCII sequence is generated.

:LIST PUBLIC FIELD
:LIST PUBLIC FIELD .Boats$,.Trucks$
:LIST PUBLIC FIELD *,.Hats

* If, (comma)name-2 is specified, LIST PUBLIC FIELD output for fields starting
at the lowest ASCII sequence up to and including name-2 is generated.

* Ifname-1,name-2 is specified, LIST PUBLIC FIELD output for fields within the
range of name-1 to name-2 inclusive is generated.

* Ifno range parameters are specified, LIST PUBLIC FIELD output is generated
for all fields declared by all currently loaded and resolved public sections in the
workspace.

If exactly 1 type of field (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in name-1 and name-2, only fields of that type are listed. If different field types
are specified, all field types are listed.

Field arrays are specified in a LIST PUBLIC FIELD statement using a special syntax.
The array designator is specified, followed by an open parenthesis "(". For example, the
arrays .Table$() and .Counters() would be specified by:

0010 LIST PUBLIC FIELD .Table$(, .Counters(

LIST PUBLIC FIELD performs no operation on the non-interpretive form of the Run-
Time Program.

NPL Statements Guide 2-335

LIST PUBLIC FIELD

LANGUAGE STATEMENTS

LIST PUBLIC FIELD (cont.)

NOTE:

Examples:

:LIST PUBLIC FIELD .Apples$,.Oranges
:LIST PUBLIC FIELD *,.Pages

:LIST PUBLIC FIELD

:LIST PUBLIC FIELD .Firewood$,.Sticks
:LIST PUBLIC FIELD * .Firewood$,.Sticks,
:LIST PUBLIC FIELD .Units

: LIST PUBLIC FIELD *, .Firewood$

SAMPLE PROGRAM
0005 INCLUDE T "RECORD"
0010 RECORD /PUBLIC Area
: FIELD LeftUpperQuad=HEX(5202
FIELD LeftLowerQuad=HEX(5202
FIELD RightUpperQuad=HEX(5202
. FIELD RightLowerQuad:HEX 5202
: END RECORD

: RUN

:LIST PUBLIC FIELD

"RECORD" DIM /PUBLIC FIELD .LeftLowerQuad
"RECORD" DIM /PUBLIC FIELD .LeftUEperQuad
"RECORD" DIM /PUBLIC FIELD .RightLowerQuad
"RECORD" DIM /PUBLIC FIELD .RightUpperQuad

The F, S and * options are all permitted on this LIST statements. However, specifying a
restricted line range has no effect on the output.

The output of the statement shows the name of the field, preceded by the module name in
which the variable is declared. If a "*" option is used, additional information about the
field also appears in the listing. The extra information field consists of the #FIELD-
START, #FIELDLENGTH and $FIELDFORMAT function values.

This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

2-336

NPL Statements Guide

LANGUAGE STATEMENTS

LIST PUBLIC FIELD

LIST PUBLIC FIELD (cont.)

:LIST PUBLIC FIELD *
"RECORD" DIM /PUBLIC FIELD LeftLowerQuad

#FIELDSTART()r 3 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

"RECORD" DIM /PUBLIC FIELD LeftUpperQuad

#FIELDSTART()r 1 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

"RECORD" DIM /PUBLIC FIELD .RightLowerQuad

#FIELDSTARTQI_ 7 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

"RECORD" DIM /PUBLIC FIELD .RightLowerQuad

#FIELDSTARTQI_ 5 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

LIST RECORD
LIST FIELD

Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide

2-337

LIST PUBLIC FUNCTION LANGUAGE STATEMENTS

LIST PUBLIC FUNCTION
General Form:
LIST PUBLIC [title][S] FUNCTION[*] [([low-line][.[high-line]])]
[F]
[function-identifier1][,[function-identifier2]]
Where:
title = an optional descriptive title; must be a
literal-string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just
line-number.
function-identifier1 = low range of function to be displayed.
function-identifier2 = high range of function to be displayed.
Discussion:

The LIST PUBLIC FUNCTION command produces a listing of all FUNCTIONSs de-
clared by all currently loaded and resolved PUBLIC sections in the workspace. This al-
lows selection of new public names which are not in conflict with currently loaded
declarations. It also allows a review of the declared parameter names and types as a re-
minder when programming.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

2-338 NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC FUNCTION

LIST PUBLIC FUNCTION (cont.)

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional function name range parameters operate as follows:

* If only function-identifier! is specified, LIST PUBLIC FUNCTION output for
only that specific function is generated.

» If function-identifierl, (comma) is specified, LIST PUBLIC FUNCTION output
for functions starting starting with function-identifier! in ascending ASCII se-
quence is generated.

:LIST PUBLIC FUNCTION 'Get_Length$, 'Get_Width$
:LIST PUBLIC FUNCTION *,’Get_Box_Count

* If, (comma)function-identifier2 is specified, LIST PUBLIC FUNCTION output
for functions starting at the lowest ASCII sequence up to and including function-
identifier2 is generated.

» If function-identifier],function-identifier2 are specified, LIST PUBLIC FUNC-
TION output for variables within the range of function-identifier! to function-
identifier2 inclusive is generated.

* Ifno range parameters are specified, LIST PUBLIC FUNCTION output is gener-
ated for all variables declared by the program currently in memory.

If exactly 1 type of function (numeric-scalar, alpha-scalar) is specified in function-identi-
fierl and function-identifier2, only functions of that type are listed. If different function

types are specified, all function types are listed.

The F, S and * options are all permitted on this LIST statements.

NPL Statements Guide 2-339

LIST PUBLIC FUNCTION LANGUAGE STATEMENTS

LIST PUBLIC FUNCTION (cont.)

NOTE:

The output of the statement shows the name of the indicated variable type, preceded by
the module name in which the function is declared. If a "*" option is used, additional in-
formation about the function also appears in the listing. The extra information consists of
the statement in which the declaration occurs.

This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

When a function has both a /FORWARD and a subsequent declaration, only one is dis-
played.

The first declaration (usually /FORWARD) is displayed (including any embedded inline
comments).

Examples:

:LIST PUBLIC FUNCTION

:LIST PUBLIC FUNCTION ,'Did _it,’Do_it
:LIST PUBLIC FUNCTION *Did_it$, 'Do_it
:LIST PUBLIC FUNCTION 'Get _activity,
:LIST PUBLIC FUNCTION *,'Weather_event

0010 ;SAMPLE ROUTINES
0020 ;MAINLINE

0030 INCLUDE T "FUNCTS"
0040 Y$="Get_Position$(Z$)

0010 ;FUNCTS
0100 FUNCTION 'Get_Position$
0110 RETURN (A$)

0120 END FUNCTION

0200 FUNCTION ’'Do_lt(V)

0210 RETURN 9/12

0220 END FUNCTION

‘RUN

:LIST PUBLIC FUNCTION
"FUNCTS" 'Get_Position$
:LIST PUBLIC FUNCTION *

"FUNCTS" 'Get_Position$----
0100 FUNCTION 'Get_Position$(A$16)/PUBLIC

2-340

NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC FUNCTION

LIST PUBLIC FUNCTION (cont.)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide 2-341

LIST PUBLIC PROCEDURE LANGUAGE STATEMENTS

LIST PUBLIC PROCEDURE
General Form:
LIST PROCEDURHtitle][S] PROCEDURE[] [([low-line]f,[high-line]])]
[F]
[procedure-identifier1][,[procedure-identifier2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

identifier1 = low range of procedure to be displayed.

identifier2 = high range of procedure to be displayed.

Discussion:

The LIST PUBLIC PROCEDURE command produces a listing of all procedures de-
clared by all currently loaded and resolved PUBLIC sections in the workspace. This al-
lows selection of new public names which are not in conflict with currently loaded
declarations. It also allows a review of the declared parameter names and types as a re-
minder when programming.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

2-342 NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC PROCEDURE

LIST PUBLIC PROCEDURE (cont.)

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional variable range parameters operate as follows:

» If only procedure-identifier! is specified, LIST PUBLIC PROCEDURE output
for only that specific procedure is generated.

* If procedure-identifierl, (comma) is specified, LIST PUBLIC PROCEDURE out-
put for procedures starting starting with procedure-identifier1 in ascending AS-
CII sequence is generated.

:LIST PUBLIC PROCEDURE 'Set_Length,’Set_Width
:LIST PUBLIC PROCEDURE *,/’Set_Box_Count

* If, (comma)procedure-identifier2 is specified, LIST PUBLIC PROCEDURE out-
put for procedures starting at the lowest ASCII sequence up to and including pro-
cedure-identifier? is generated.

» If procedure-identifierl,procedure-identifier2 are specified, LIST PUBLIC PRO-
CEDURE output for variables within the range of procedure-identifier1 to proce-
dure-identifier2 inclusive is generated.

* Ifno range parameters are specified, LIST PUBLIC PROCEDURE output is gen-
erated for all variables declared by the program currently in memory.

The F, S and * options are all permitted on this LIST statement.

The output of the statement shows the name of the indicated procedure type, preceded by
the module name in which the procedure is declared. If a "*" option is used, additional in-
formation about the procedure appears in the listing. The extra information consists of the
statement in which the declaration occurs.

NPL Statements Guide 2-343

LIST PUBLIC PROCEDURE LANGUAGE STATEMENTS

LIST PUBLIC PROCEDURE (cont.)

NOTE: This public declaration statement is displayed even if the module in which it appears

is scramble-protected.

When a procedure has both a /FORWARD and a subsequent declaration, only one is dis-
played.

The first declaration (usually /[FORWARD) is displayed (including any embedded inline
comments).

Examples:

:LIST PUBLIC PROCEDURE

:LIST PUBLIC PROCEDURE 'Did_it,’'Do_it

:LIST PUBLIC PROCEDURE *'Did_it'Do_it
:LIST PUBLIC PROCEDURE 'Set_Activity,

:LIST PUBLIC PROCEDURE *,’Rain_Event

0010 ;SAMPLE ROUTINES
0020 ;MAINLINE

0030 INCLUDE T "PROCS"
0040 'Set_Position(Z$)

0010 ;PROCS

0100 PROCEDURE ’'Set_Position(A$16) /PUBLIC
0110 RETURN

0120 END PROCEDURE

0200 grocedure 'Do_lIt(V)

0210 RETURN (V

0220 END PROCEDURE

ERUN

:LIST PUBLIC PROCEDURE
"PROCS" 'Set_Paosition

:LIST PUBLIC PROCEDURE *

"PROCS" 'Set_Position
0100 PROCEDURE 'Set_Position(A$16)/PUBLIC

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide
LIST PROCEDURE

2-344

NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC RECORD

LIST PUBLIC RECORD
General Form:
LIST PUBLIC[title][S] RECORD[*] [([low-line][,[high-line]])]
[F]
[name-1][,name-2]
Where:
title = an optional descriptive title; must be a literal-
string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just line-num-
ber.
name-1 = low range of records to be displayed.
name-2 = high range of records to be displayed.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
Discussion:

The LIST PUBLIC RECORD command produces a listing of all RECORD(s) declared
by all currently loaded and resolved PUBLIC sections in the workspace. This allows se-
lection of new public names which are not in conflict with currently loaded declarations.
It also allows a review of the declared names as a reminder when programming.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

NPL Statements Guide 2-345

LIST PUBLIC RECORD LANGUAGE STATEMENTS

LIST PUBLIC RECORD (cont.)

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

e Ifonly name-1 is specified, LIST PUBLIC RECORD output for only that spe-
cific record is generated.

* Ifname-1, (comma) is specified, LIST PUBLIC RECORD output for records
starting with name-1 in ascending ASCII sequence is generated.

:LIST PUBLIC RECORD
:LIST PUBLIC RECORD Employee,Payroll
:LIST PUBLIC RECORD *,.Hats

* If, (comma)name-2 is specified, LIST PUBLIC RECORD output for records
starting at the lowest ASCII sequence up to and including name-2 is generated.

e Ifname-1,name-2 is specified, LIST PUBLIC RECORD output for records
within the range of name-1 to name-2 inclusive is generated.

* Ifno range parameters are specified, LIST PUBLIC RECORD output is gener-
ated for all records declared by all currently loaded and resolved public sections
in the workspace.

LIST PUBLIC RECORD performs no operation (NOP) on the non-interpretive form of
the RunTime Program.

The F, S and * options are all permitted on this LIST statements.

The output of the statement shows the name of the indicated record, preceded by the mod-
ule name in which the variable is declared. If a "*" option is used, additional information
about the record appears in the listing. The extra information consists of the #RE-
CORDLENGTH function value.

2-346

NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC RECORD

LIST PUBLIC RECORD (cont.)

NOTE: This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

Examples:

:LIST PUBLIC RECORD ABpIes,Oranges
:LIST PUBLIC RECORD *,Birds

:LIST PUBLIC RECORD

:LIST PUBLIC RECORD Firewood,Sticks
LIST PUBLIC RECORD * Firewood,Sticks
LIST PUBLIC RECORD Units

LIST PUBLIC RECORD *, Firewood

MODULE 1
0010 ;MYMAIN
0020 INCLUDE T "RECORD"
0030 DIM Buffer$#RECORDLENGTH(Area)
0040 Buffer$.LeftUpperQuad=3.5

MODULE 2
0010 RECORD /PUBLIC Area
: FIELD LeftUpperQuad=HEX 52022
FIELD LeftLowerQuad=HEX(520 %
FIELD RightUpperQuad=HEX(520
. FIELD RightLowerQuad:HEX 5202
: END RECORD

" RUN

:LIST PUBLIC RECORD
"RECORD" DIM /PUBLIC RECORD Area

:LIST PUBLIC RECORD *

"RECORD" DIM /PUBLIC RECORD Area:
#RECORDLENGTH()=8

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:

LIST RECORD
LIST FIELD
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide 2-347

LIST PUBLIC V LANGUAGE STATEMENTS

LIST PUBLIC V
General Form:
LIST PUBLIC [title][S] V[*] [([low-line][,[high-line]])]
[F]
[variable-1][,[variable-2]]
Where:
title = an optional descriptive title; must be a literal-
string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just line-num-
ber.
variable-1 = low range of variable to be displayed.
variable-2 = high range of variable to be displayed.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
Discussion:

The LIST PUBLIC V command produces a listing of all public variables declared by all
currently loaded and resolved PUBLIC sections in the workspace. This allows selection
of new public names which are not in conflict with currently loaded declarations. It also
allows a review of the declared variables and types as a reminder when programming.

2-348 NPL Statements Guide

LANGUAGE STATEMENTS LIST PUBLIC V

LIST PUBLIC V (cont.)

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

A line-number range, if specified, is ignored for all LIST PUBLIC statement.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

» Ifonly variable-1 is specified, LIST PUBLIC V output for only that specific vari-
able is generated.

» Ifvariable-1, (comma) is specified, LIST PUBLIC V output for variables starting
with variable-1 in ascending ASCII sequence is generated.

:LIST PUBLIC V
:LIST PUBLIC V Boats$,Trucks$
:LIST PUBLIC V * Hats

e If, (comma)variable-2 is specified, LIST PUBLIC V output for variables starting
at the lowest ASCII sequence up to and including variable-2 is generated.

» Ifvariable-1,variable-2 is specified, LIST PUBLIC V output for variables within
the range of variable-1 to variable-2 inclusive is generated.

* Ifno range parameters are specified, LIST PUBLIC V output is generated for all
variables declared by all currently loaded and resolved public sections in the
workspace.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in variable-1 and variable-2, only variables of that type are listed. If different
variable types are specified, all variables types are listed.

Arrays are specified in a LIST PUBLIC V statement using a special syntax. The array
designator is specified, followed by an open parenthesis "(". For example, the arrays Ta-
ble$() and Counters() would be specified by:

0010 LIST PUBLIC V Table$(, Counters(

NPL Statements Guide 2-349

LIST PUBLIC V LANGUAGE STATEMENTS

LIST PUBLIC V (cont.)

LIST PUBLIC V performs no operation (NOP) on the non-interpretive form of the Run-
Time Program.

The F, S and * options are all permitted on this LIST statements.

The output of the statement shows the name of the indicated variable, preceded by the
module name in which the variable is declared. If a "*" option is used, additional informa-
tion about the variable also appears in the listing. The extra information consists of the
current value of the variable.

Examples:

0020 PUBLIC
0030 X,Y,Z$10
0040 END PUBLIC

:LIST PUBLIC V

""" DIM /PUBLIC X

" " DIM /PUBLIC Y

""" DIM /PUBLIC Z$10

LIST PUBLIC V *
" " DIM /PUBLIC X

0
"" DIM /P(%JBLIC Y
" " DIM /PUBLIC Z$

" HEX(2020 2020 2020 2020 2020)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

2-350 NPL Statements Guide

LANGUAGE STATEMENTS LIST RECORD

LIST RECORD
General Form:
LIST [title][S] RECORD[*] [([low-line][,[high-line]])]
[F]
[name-1][,[name-2]]
Where:
title = an optional descriptive title; must be a literal-
string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just line-num-
ber.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
name-1 = low range of record identifier to be displayed.
name-2 = high range of record identifier to be displayed.
Discussion:

The LIST RECORD command produces a listing of all RECORD(s) declared by the pro-
gram in the current LIST module, and what program lines they are declared on.

NPL Statements Guide 2-351

LIST RECORD

LANGUAGE STATEMENTS

LIST RECORD (cont.)

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-
ing the MODULE command, and can be declared using LIST DT.

The default format for the LIST RECORD command lists line-numbers where the speci-
fied RECORD(s) appears. Specifying the "*" parameter causes the program statement
which contains the specified RECORD(s) to be listed in addition to the line #.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

» Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

* If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

» Iflow-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

* Ifno line-numbers are specified, the entire program in the current list module is
accessed.

LIST RECORD performs no operation (NOP) on the non-interpretive form of the Run-
Time Program.

The optional name range parameters operate as follows:

* Ifonly name-1 is specified, LIST RECORD output for only that specific RE-
CORD is generated.

* Ifname-1, (comma) is specified, LIST RECORD output for RECORDS starting
with name-1 in ascending ASCII sequence is generated.

2-352

NPL Statements Guide

LANGUAGE STATEMENTS LIST RECORD

LIST RECORD (cont.)

:LIST RECORD (100,200)
:LIST RECORD 2000,& Boats, Trucks
:LIST RECORD *(,4000),Hats

* If, (comma)name-2 is specified, LIST RECORD output for records starting at
the lowest ASCII sequence up to and including name-2 is generated.

e Ifname-1,name-2 is specified, LIST RECORD output for records within the
range of name-1 to name-2 inclusive is generated.

* Ifno range parameters are specified, LIST RECORD output is generated for all
records declared by the program in the current LIST module.

Examples:

:LIST RECORD Apples,Oranges
:LIST RECORD *,Birds

:LIST RECORD

:LIST RECORD Firewood,Sticks
LIST RECORD * Firewood,Sticks
LIST RECORD Units

: LIST RECORD *, Firewood

MODULE 1
0010 ;MYMAIN
0020 INCLUDE T "RECORD"
0030 DIM Buffer$#RECORDLENGTH(Area)
0040 Buffer$.LeftUpperQuad=3.5

MODULE 2
0010 RECORD /PUBLIC Area
: FIELD LeftUpperQuad=HEX(5202
FIELD LeftLowerQuad=HEX(5202
FIELD RightUpperQuad=HEX(5202
. FIELD RightLowerQuad=HEX(5202
: END RECORD

‘RUN

‘LIST RECORD
:Area - 0030

:LIST RECORD *

"Area:
0030 DIM Buffer$. #RECORDLENGTH(Area)

Compatibility Issues:
This statement is supported only with Release IV or greater.

NPL Statements Guide 2-353

LIST RECORD LANGUAGE STATEMENTS

LIST RECORD (cont.)

References:

LIST PUBLIC RECORD

LIST FIELD

Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

2-354 NPL Statements Guide

LANGUAGE STATEMENTS LIST Statement Label References

LIST Statement Label References

General Form:
LIST [title][S] =[*] [([low-line][,[high-line]])]
[F]
[name-1][,[name-2]]
Where:
title = an optional descriptive title; must be a literal-
string.
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program statement as opposed to just line-num-
ber.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
name-1 = low range of statement-label to be displayed.
name-2 = high range of statement-label to be displayed.
Discussion:

The LIST statement label references command produces a listing of all statement labels
referenced by the program in the current LIST module, and on which program lines they
are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

NPL Statements Guide 2 -355

LIST Statement Label References LANGUAGE STATEMENTS

LIST Statement Label References (cont.)
The default format for the LIST statement label references command lists line-numbers
where the specified statement label reference(s) appears. Specifying the "*" parameter
causes the program statement containing the specified statement label reference(s) to be

listed, in addition to the line number.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

* Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

* If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

» Iflow-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

* Ifno line-numbers are specified, the entire program in the current LIST module
is accessed.

The optional name range parameters operate as follows:

e Ifonly name-1 is specified, LIST statement label output for only that specific la-
bel is generated.

2 - 356 NPL Statements Guide

LANGUAGE STATEMENTS LIST Statement Label References

LIST Statement Label

* Ifname-1, (comma) is specified, LIST statement label output for labels starting
with name-1 in ascending ASCII sequence is generated References (cont.)

:LIST = (2000,)Boats, Trucks

LIST = Eloo,zoO)
:LIST = * (,4000),Hats

* If, (comma)name-2 is specified, LIST statement label output for labels starting at
the lowest ASCII sequence up to and including name-2 is generated.

e Ifname-1,name-2 is specified, LIST statement label output for labels within the
range of name-1 to name-2 inclusive is generated.

» Ifno range parameters are specified, LIST statement label output is generated for
all labels referenced by the program in the current LIST module.

Examples:

0010 =RecordCount
. IF A=20 THEN GOTO Exit
T A=A+1

: B=A+10
0020 END

LIST =
=Exit - 0010 0010
=RecordCount

- 0010 0010

LIST =+
=Exit
0010 : IF A=20 THEN GOTO Exit
0010 :::: =Exit

=RecordCount:
0010 =RecordCount
0010 ::: GOTO RecordCount

NPL Statements Guide 2-357

LIST Statement Label References LANGUAGE STATEMENTS

LIST Statement Label References (cont.)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

2-358 NPL Statements Guide

LANGUAGE STATEMENTS LIST STACK

LIST

STACK

Where:

General Form:

LIST [ftitle] [S] STACK

title an optional descriptive title; must be a literal-string.

S

specifies that a page break be performed.

F specifies that no page break be performed.

Discussion:

The LIST STACK command produces a listing of all currently active FOR/NEXT loops,
GOSUBs and function calls.

The information provided about the status of active subroutines includes:

¢ The module, line number and statement which called the subroutine

If the subroutine called is a PROCEDURE or FUNCTION, the name of the called proce-
dure or function follows the statement.

The information provided about the status of active functions includes:
¢ The module, line number and statement which called the subroutine

If the subroutine called is a PROCEDURE or FUNCTION, the name of the called proce-
dure or function follows the statement.

NPL Statements Guide 2-359

LIST STACK LANGUAGE STATEMENTS

LIST STACK (cont.)

The information provided about the status of FOR/NEXT loops includes:
* The line-number in which the loop was initially invoked.
* The name of the index-variable.
* The current value of the index-variable.
e The exit value of the loop is displayed.
e The STEP value of the loop is displayed.

The information provided about the status of active subroutines includes:
* The line-number and statement which called the subroutine.

LIST STACK has also been updated to show the immediate commands that called any
halted functions or initiated pending FOR loops. These will appear as:

SHaIted after) ::STOP - statement at which CONTINUE will execute

IMM PRINT ’Funct(X) -immediate mode statement in progress

'Funct - if procedure/function call, name of function
called

LIST STACK output is listed in stack order. That is, the FOR/NEXT loop or GOSUB
that was executed first is listed first. The most recent entry in the stack is listed last.

The LIST STACK command can be used to determine how program execution advanced
to a particular point in a program. LIST STACK also displays either where execution of a
CONTINUE RETURN statement would complete or the number of iterations remaining
in a FOR/NEXT loop.

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

2 -360 NPL Statements Guide

LANGUAGE STATEMENTS LIST STACK

LIST STACK (cont.)

LIST STACK performs no operation on the non-interpretive form of the RunTime Pro-
gram.

Examples:

LIST

0010 ;START

0030 INCLUDE T "rivfact"
0040 INPUT X

0050 PRINT 'factorial(X)

:‘MODULE "rivfact"

list
0010 ; rivfact
0020 FUNCTION ’factorial(Value)/PUBLIC : ; Declare 'Factorial as Pub-
lic Function
0030 DIM Answer : ; This is a recursive variable
0040 IF Value<0 :; test the trivial case
: RETURN (0)
:END IF
0050 IF Value<=1 :|test the second trivial case
: RETURN(1)
:END IF
0060 Answer=Value*'factorial(Value-1) : ; Recursively calling itself
0065 STOP
0070 RETURN (Answer)
0080 END FUNCTION

Executing the LIST STACK command when Immediate Mode is invoked by the STOP
statement in line 65 of the "rivfact" module (just prior to returning to the calling module)
would yield the following output.

list stack

0050 PRINT 'factorial(X)

‘factorial

"rivfact"0060 Answer=Value*'factorial(Value-1)
‘factorial

0010 FOR I=1TO 10
: LINPUT -A$
: GOSUB '100
:NEXT |
0020 DEFFN’100
. PRINT A$
: GOSUB '110
: RETURN
0030 DEFFN’110
:STOP #
: RETURN

NPL Statements Guide 2-361

LIST STACK LANGUAGE STATEMENTS

LIST STACK (cont.)

Executing the LIST STACK command when Immediate Mode is invoked by the STOP
statement in line 0030 (on the first pass-through the loop) would yield the following out-

put:
LIST STACK
0010 FOR I=1 TO 10
I=1, TO 10, STEP 1
0010 :: GOSUB '100
0020 :: GOSUB '110
Compatibility Issues:

This statement is supported only with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:

Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide
Inspection and Modification of Variables - Section 6.4 of the Programmer’s Guide
Inspection and Modification of Environment - Section 6.6 of the Programmer’s Guide

2-362 NPL Statements Guide

LANGUAGE STATEMENTS LIST STACK DIM

LIST STACK DIM
General Form:
LIST [title] [S] STACK DIM [*] [var1][,[var2]]
[F]
Where:
* = causes the contents of the specified variable range to be
displayed.
varl = low variable in range to be displayed.
var2 = high variable in range to be displayed.
Discussion:

The LIST STACK DIM command produces a list of variables currently defined in mem-
ory and in scope at time of execution of LIST STACK DIM within the specified range in
stack order (order of definition).
The information displayed is:
* An indicator of each variables status as common (COM) or non-common (DIM).
* Current array dimension (if array-variable).
* Element length (if alpha-variable).
* Optionally, by specifying the [*] parameter, the element value is displayed:
If numeric-variable, the numeric value is displayed.
If an alpha-variable, the string value is displayed in both ASCII (in quotes)
and HEX() representation. If a string value is longer than 16 bytes, the

value is displayed on multiple lines, with the starting STR() index of each
part at the beginning of the line. Non-displayable HEX codes which do not

have printable character representations are displayed in string value as ".

NPL Statements Guide 2-363

LIST STACK DIM LANGUAGE STATEMENTS

LIST STACK DIM (cont.)

If the variable is a FIELD identifier, the values of the #FIELDSTART, #FIELDLENGTH
and SFIELDFORMAT functions are displayed. If the variable is a RECORD identifier,
the value of the #RECORDLENGTH function is displayed.

Variables displayed are those which can be declared from the current context (executing
module and function). Recursive variables are preceded by a RECURSIVE keyword,
function private variables by a FUNCTION /STATIC.

The LIST STACK DIM output is listed in stack order. This can be very useful when diag-

nosing variable dimension problems (i.e., common verses non-common variables, COM
and COM CLEAR statements, etc.).

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

The optional range parameters operate as follows:

» Ifonly varl is specified, LIST STACK DIM output for only that specific variable
is generated.

» Ifvarl, (comma) is specified, LIST STACK DIM output for variables starting
with var] in stack order is generated.

* If ,(comma)var2 is specified, LIST STACK DIM output for variables starting at
the beginning of the stack up to and including var2 is generated.

» Ifvarl,var2 is specified, LIST STACK DIM output for variables within the range
of varl to var2 inclusive in the stack is generated.

* Ifno variable range parameters are specified, LIST STACK DIM output is gener-
ated for all variables currently defined in memory in stack order.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in varl and var2, only variables of that type are listed.

2-364 NPL Statements Guide

LANGUAGE STATEMENTS LIST STACK DIM

LIST STACK DIM (cont.)

Array variables are specified in a LIST STACK DIM statement using a special syntax.
The array designator is specified followed by an open parenthesis "(". For example, the
arrays S$() and N() would be specified by:

0010 LIST STACK DIM S$(, N(

The primary difference between LIST V and LIST STACK DIM is that LIST V shows
only variables declared by the program currently in memory. LIST STACK DIM dis-
plays all variables in memory in stack order even if not declared by the current program.

LIST STACK DIM performs no operation on the non-interpretive form of the RunTime
Program.

Examples:
The following is an example of valid syntax:

:LIST STACK DIM

:LIST STACK DIM *

:LIST STACK DIM * A$(,F$
:LIST STACK DIM 1$

:LIST STACK DIM * J$,

The following is a practical example of statement use:

0005 ;RIVEXPO2 - Example of simple function

0010 FUNCTION 'myfunc(/POINTER mynum, myvar$32)

0020 myvar$="abcd

0030 mynum=24

0035 STOP

0040 RETURN El%

0050 END FUNCTION

1000 A$="xyz": A=87

1010 IF 'myfunc(A,A$)=1 THEN PRINT A,A$: ELSE PRINT "error"

List STACK DIM executed while the STOP of line 35 produces:
:LIST STACK DIM

/POINTER mynum=A
DIM /RECURSIVE myvar$32
DIM A
DIM A$16
:0010 COM C$16
:0020 DIM A(lO%_,B$(10)16
:0030 FOR I=1 TO 10

: Ag):l

B Q):"ABC"

s NEXT'|
:0040 C$="Test of LIST DIM"
:RUN
:LIST STACK DIM
DIM |

NPL Statements Guide 2 -365

LIST STACK DIM LANGUAGE STATEMENTS

LIST STACK DIM (cont.)

DIM B$(10)16
DIM A(10)
COM C$16
Compatibility Issues:

This statement is supported only with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:

Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide
Inspection and Modification of Variables - Section 6.4 of the Programmer’s Guide
Inspection and Modification of Environment - Section 6.6 of the Programmer’s Guide
LISTV

LIST DIM

2 - 366 NPL Statements Guide

LANGUAGE STATEMENTS LISTT

LISTT
General Form:
LIST [title][S] T[*] [([low-line][,[high-line]])]
[F]
{literal-string} [{literal-string}] ...
{alpha-variable} [{alpha-variable}]
Where:
S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program line as opposed to just line-number.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
Discussion:

The LIST T command produces a cross-reference listing of all occurrences of one or
more specific text strings in the current LIST module.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed
with the MODULE command, and can be declared using LIST DT.

The default format for the LIST T command lists line-numbers where the specified text
string appears. Specifying the "*" parameter displays the statement on the line where the
specified text string was declared.

LIST T is useful when removing or replacing all occurrences of a given string of text. It
can also be helpful to locate any statements within a program, such as the STOP state-
ment.

NPL Statements Guide 2-367

LISTT LANGUAGE STATEMENTS

LIST T (cont.)
NOTE: In specifying NPL keywords, case may be upper or lower. However, when searching
for literals, proper case must be used. Blank spaces are ignored when entered in the

search string (i.e., the search string "REM this " ignores the spaces and find all oc-
currences of "REMthis" as well as "REM this" in the program).

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

» Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

» If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

» Iflow-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

* Ifno line-numbers are specified, the entire program in the current list module is
accessed.

LIST T performs no operation on the non-interpretive form of the RunTime Program.

2 -368 NPL Statements Guide

LANGUAGE STATEMENTS LISTT

LIST T (cont.)

Examples:

:LIST T(100 200)"MIN"
LIST T 20008 BC"
:LIST T*(,4000)"MIN"
:LIST T"ABC"

2000 REM
:REM SAMPLE PROGRAM
: REM

2010 GOSUB '100 : REM open data file
2020 GOSUB '101 :REMread a record
2030 IF END THEN 2100 : REM quit if end of file
2040 IF F$="X"THEN R1=R1+1
: ELSE R2=R2+1 :REM update R1 or R1 rcd

counter
2050 A= MIN)éA F2,F9*2) REM compute min of fields F2,F9
2060 B=MA %B F3, F8) : REM compute max of F3 and F8
2070 F2,F3,F8,F9=0 : REM reset data values

2080 GOSUB 102 : REM update data record
2090 GOTO 2020 REM iterate until eof

2100 GOSUB '103 : REM close file
2105 PRINT "MIN OF F2,F9 IS" A : REM display results
2110 PRINT "MAX OF F3,F8 I1S",B
2120 STOP
2130 DEFFN’100 : RETURN : REM This subr opens a file
2140 DEFFN’'101 : RETURN : REM this subr reads a record
2150 DEFFN’'102 : RETURN : REM this subr writes a record
2160 DEFFN’'103 : RETURN : REM this subr closes a file
:LIST T "MIN"
"MIN"
- 2050 2150
LIST T*'MIN"
"MIN"
2050 A=MIN(A,F2,F9*2) : REM compute min of fields F2,F9
2105 PRINT "MIN OF F2,F9 IS",A : REM display results
LIST T (2000,2099)"MIN"
"MIN"
- 2050

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST T is supported on NPL Revisions 2.00 and greater.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

In Wang 2200 Basic-2, if a text string appears more than once in a program line, only 1
reference for the program line appears in the LIST T output. In NPL, the reference is
made for each occurrence of the text string in the program line.

NPL Statements Guide 2-369

LISTT LANGUAGE STATEMENTS

LIST T (cont.)

References:
Inspection of Program Text - Section 6.5 of the Programmer’s Guide

2-370 NPL Statements Guide

LANGUAGE STATEMENTS LISTV

LISTV

General Form:

LIST [title][S] V[*] [([low-line][,[high-line]])]
[F]
[variable-1][,[variable-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.
F = specifies that no page break be performed.
* = list program line as opposed to just line-number.
variable-1 = low range of variable to be displayed.
variable-2 = high range of variable to be displayed.
low-line = lowest line-number for which to show references.
high-line = highest line-number for which to show references.
Discussion:

The LIST V command produces a listing of all variables referenced by the program cur-
rently in memory, and on which program lines they are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTSs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

NPL Statements Guide 2-371

LISTV LANGUAGE STATEMENTS

LIST V (cont.)

The default format for the LIST V command lists line-numbers where the specified vari-
able(s) appears. Specifying the "*" parameter displays the statement on the line(s) where

the specified variable(s) are referenced. In addition, a number of colons (":") precede the
statement to indicate how many statements precede the referenced statement.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional variable range parameters operate as follows:

» Ifonly variable-1 is specified, LIST V output for only that specific variable is
generated.

» Ifvariable-1, (comma) is specified, LIST V output for variables starting with vari-
able-1 in ascending ASCII sequence is generated.

* If, (comma)variable-2 is specified, LIST V output for variables starting at the
lowest ASCII sequence up to and including variable-2 is generated.

» Ifvariable-1,variable-2 is specified, LIST V output for variables within the range
of variable-1 to variable-2 inclusive is generated.

* Ifno range parameters are specified, LIST V output is generated for all variables
referenced by the program in the current LIST module.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in variable-1 and variable-2, only variables of that type are listed. If different
variable types are specified, all variable types are listed.

Array variables are specified in a LIST V statement using a special syntax. The array des-
ignator is specified, followed by an open parenthesis "(". For example, the arrays S$()
and N() would be specified by:

2-372 NPL Statements Guide

LANGUAGE STATEMENTS LISTV

LIST V (cont.)

0010 LIST V S$(, N(

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

» Ifonly low-line is specified, only that specific program line is accessed.

* Iflow-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

» If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

» Iflow-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

* Ifno line-numbers are specified, the entire LIST module is accessed.

The primary difference between LIST V and LIST STACK DIM is that LIST V shows
only variables referenced in the program currently in memory. LIST STACK DIM dis-
plays all variables in memory in stack order, even if not referenced by the current pro-

gram.

LIST V performs no operation on the non-interpretive form of the RunTime Program.

Examples:

LIST V
‘LISTV C,L$

'LIST V*C,L$

‘LIST VA,

‘LIST V+L$

‘LIST V+'(100,200),L$

2000 REM
: EEM SAMPLE PROGRAM
2010 GOSUB '100 : REM open data file
2020 GOSUB '101 : REM read a record
2030 IF END THEN 2100 : REM quit if end of file
2040 IF F$="X" THEN R1=R1+1
: ELSE R2=R2+1 : REM update R1 or R2 record counter

NPL Statements Guide 2-373

LISTV

LANGUAGE STATEMENTS

LIST V (cont.)

2050 A=MIN>§A,F2,F9*2)

2060 B=MA

B,F3,F8)

2070 F2,F3,F8,F9=0

: REM compute min of fields F2,F9
: REM compute max of F3 and F8
: REM reset data values

GOSUB '102 : REM update data record

2090 GOTO 2020 : REM iterate until eof
2100 GOSUB '103 : REM close file
2105 PRINT "MIN OF F2,F9 IS",A
2110 PRINT "MAX OF F3,F81S",B
2120 STOP

2130 DEFFN’100 : RETURN

2140 DEFFN’'101: RETURN

2150 DEFFN’102 : RETURN

2160 DEFFN’'103: RETURN

: REM display results

: REM This subr opens a file
: REM this subr reads a record
: REM this subr writes a record
: REM this subr closes a file

POINTER mynum, myvar$32)

87
IF 'myfunc(A,A$)=1 THEN PRINT A,A$: ELSE PRINT "error"

LISTV

A -2050 2050 2105
B -2060 2060 2110
F$ -2040

F2 -2050 2070

F3 -2060 2070

F8 -2060 2070

F9 -2050 2070

R1 -2040 2040

R2 -2040 2040

LIST V62050,2060)

A -2050 2050

B -2060 2060

F2 -2050

F3 -2060

F8 - 2060

F9 - 2050

LIST V%ZOSO,ZOGO)FZ,FS
F2 -2050

F3 -2060

F8 -2060
0005 REM Example of sim}JIe function
0010 FUNCTION 'myfunc(
0020 myvar$="abcd"
0030 mynum=24
0035 STOP
0040 RETURN E:l%
0050 END FUNCTION
1000 A$="xyz": A=
1010
LISTV

A -1000 10101010
A$ -1000 10101010

mynum - 0010 0030
myvar$- 0010 0020

2-374

NPL Statements Guide

LANGUAGE STATEMENTS LISTV

LIST V (cont.)

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST V is supported on NPL Revisions 2.00 and greater.

In Wang 2200 Basic-2, if a range of variables is specified (both start and end of range),
both variables must be the same type.

In Wang 2200 Basic-2, program syntax must be valid to execute the LIST V command.

In Wang 2200 Basic-2, if a variable is referenced more than once in a program line, only
1 reference for the program line appears in the LIST # output. In NPL, a reference is
made for each reference of the variable in the program line.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

Prior to NPL Release IV, the "*" option would display all statements on the line contain-
ing the reference.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

NPL Statements Guide 2-375

LOAD Command LANGUAGE STATEMENTS

LOAD Command

General Form:

LOAD T [file-number,] {file-name}
[disk-address, |
[<address-var>,]

Where:

file-name = name of program to be loaded into memory.

Discussion:

The LOAD command is used to load cataloged program(s) into memory. Using the
LOAD command, programs can be merged or appended with programs already existing
in memory. The LOAD command may also be used, after a CLEAR statement, to load a
new program alone in memory. An error is generated (ERR D82 - File not in Catalog) if
the program being loaded is not currently an active program file in the specified
diskimage.

Examples:

:LOAD T/D32,"2CCOPY"
‘LOAD T<A$>,"2CCOPY"
'LOAD T "SP START"
:LOAD T#1,"TESTLOG"
:LOAD T B$
:LOAD T/310,"2CBCKP"

Compatibility Issues:

Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

In NPL Revision 4.0, the LOAD command acts upon the current LIST MODULE.

References:

LOAD DC Statement

Catalog Access - Section 7.3.8 of the Programmer’s Guide
Loading Programs - Section 5.3 of the Programmer’s Guide

2-376

NPL Statements Guide

LANGUAGE STATEMENTS LOAD Statement

LOAD Statement

General Form:
LOAD T [file-number,] {file-name }linel]
[disk-address, | {<expression>alpha-variable}
[<address-var>,]
T [line2][BEG line3]
Where:
file-name = name of program to be loaded into memory.
expression = number of files to be loaded from disk.
alpha-variable = a common variable which contains the names of
the programs to be loaded, trailing spaces
should be included (if needed).
linel = the line-number of the first line to be deleted
from the program currently in memory. After
loading, program continues from this line.
line2 = the line-number of the last line to be deleted
from the program currently in memory (before
loading program).
line3 = the line-number of the program where execution
is to begin after loading program.
Discussion:

The LOAD statement is used to load a program or programs into memory and immedi-
ately execute the program(s).

NPL Statements Guide 2-377

LOAD Statement LANGUAGE STATEMENTS

LOAD Statement (cont.)

Linel and line2 can specify a range of lines currently in memory that are to be deleted be-
fore the load takes place. If only linel is specified, all program text from linel to the last
line-number in memory is deleted. If neither linel nor line?2 is specified, all program text
currently in memory is deleted before the load.

Line3 specifies the starting line for program execution after the load has taken place. If
not specified, program execution begins at linel, if specified, or the first line-number if
linel not specified.

The parameter "< expression>" is used to load more than one program. The numeric-ex-
pression specifies how many programs are to be loaded while the alpha-variable contains
the names of the programs. Each program name in the alpha-variable must use exactly
eight bytes.

Clearing Multiple Line Number Ranges on LOAD

NPL allows for multiple line number ranges to be cleared during a single load statement.
The general form of the load statement has been modified for allow multiple, optional
CLEAR P clauses. The new LOAD’ statement also supports this syntax.

In a LOAD T< > (multiple program load), the variable used to specify the names of
file(s) loaded must be a common variable defined in some module. Local variables (recur-
sive or static) and PUBLIC variables of any type are not allowed.

When present, these optional CLEAR P clauses must follow the BEG clause (if used).

Examples:

10 LOAD T#1,"PROG1" 1000,2000 BEG 10 CLEAR P 2100,200 CLEAR P 3400-3500
10 LOAD T/D11,"PROG1"1000,2000 CLEAR P 2100,2200
10 LOAD T<3> 1000,2000 BEG 10 CLEAR P 3400,3500 CLEAR P 10320,11000

The CLEAR P clause(s) are executed before any new program text is loaded from disk.

NOTE: Use of line number ranges only affects the workspace of the currently loaded mod-
ule.

The numeric expression of a multiple-program load may not start with a numeric
field expression. Use of alpha field expressions is allowed.

2-378 NPL Statements Guide

LANGUAGE STATEMENTS LOAD Statement

LOAD Statement (cont.)

If the standard range of line numbers to clear (LOAD T"XXX" linel,line2) is not speci-
fied, the default is to clear all program text. Therefore, CLEAR P cannot be used to re-
place the standard linel, line2 range, but must be used in addition to it.

For example:
10 LOAD T#1,"PROG1" CLEAR P 1000,2000 CLEAR P 2100,2200

is syntactically valid but actually clears all program text since no linel, line2 range is
specified.

Examples:

0010 LOAD T "SP LOAD"
0010 LOAD T#L,"AR EOD 1" 5000,5999 BEG 8000
0010 LOAD T#Q,"SP MENU" 5000 BEG 8000
0010 LOAD T/D10,Q$100,8000 BEG 10
0010 LOAD T<A$>,0$100,8000 BEG 10
0010 LOAD T QQ
0010 LOAD T QQ$ BEG 8000

Compatibility Issues:

Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:
LOAD Command

Catalog Access - Section 7.3.8 of the Programmer’s Guide
LOAD’

NPL Statements Guide 2-379

LOAD’

LANGUAGE STATEMENTS

LOAD’

where:

General Form:

LOAD T <expression> ‘alpha-variable [linel][,line2][BEG line3]

expression = the number of programs to be loaded from disk.

alpha-variable = acommon variable which contains the disk ad-
dresses and names of each program to be loaded.

NOTE:

Discussion:
The LOAD’ statement may be used to specify an explicit disk address with each program
name specified as part of a multi-program load statement.

Each disk address/program name combination in the alpha-variable must be exactly 11
bytes in length with the first three bytes containing the disk address. Using file numbers
or variables for the disk address is not permitted. However, $SELECT can be used to gen-
erate a standard disk address from a file number.

Use of line number ranges only affects the workspace of the currently loaded mod-
ule.

Multiple line number ranges can be cleared during a single load statement. The general
form of the LOAD’ statement allows multiple, optional CLEAR P clauses.

When present, these optional CLEAR P clauses must follow the BEG clause (if used).

For example:

%gOI_OOAD T#1, "PROG1" 1000,2000 BEG 10 CLEAR P 2100,2000 CLEAR P3400-

10 LOAD T/D11, "PROG1" 1000,2000 CLEAR P 2100,2200
10 LOAD T<3>'A$ 1000,2000 BEG 10 CLEAR P 3400,3500 CLEAR P 10320,11000

The CLEAR P clause(s) are executed before any new program text is loaded from disk.

2-380

NPL Statements Guide

LANGUAGE STATEMENTS LOAD’

LOAD’ (cont.)

NOTE: If the standard range of line numbers to clear (LOAD T"XXX" linel, line2) is not
specified, the default is to clear all program text. Therefore, CLEAR P cannot be
used to replace the standard line 1, line 2 range, but must be used in addition to it.

For example:
10 LOAD T#1,"PROG1" CLEAR P 100,200 CLEAR P 2100,2200

is syntactically valid but actually clears all program text since no linel, line2 range
is specified.

Examples:

10 COM A$(3)11

20 A$(1)="D11"&"PROGRAML"

30 A$(2)="D12"&"PROGRAM2"

40 A$(3)="$SELECT(#2)&"PROGRAM3"
50 LOAD T <3>'A$()

NOTE: A device address may be specified as part of the general form, but it is ignored. For
example:

10 LOADT/D11, <3>'A$()
The device address D11 is ignored.

Compatibility Issues:

References:

NPL Statements Guide 2-381

LOAD BOOT Command LANGUAGE STATEMENTS

LOAD BOOT Command

General Form:
LOAD BOOT [progname]
Where:

progname = an alpha-variable or literal string.

Discussion:

The LOAD BOOT command is used to load bootstrap programs from the native file sys-
tem. A bootstrap program is a NPL program which is saved as a native operating system
file and is automatically loaded and executed by the RunTime at initial start up. Refer to
the appropriate NPL Supplement for details.

When specified, progname contains the native operating system file specification used to
locate the bootstrap file.

When progname is omitted or blank, the program loaded is the last progname specified
by a LOAD BOOT or SAVE BOOT command. Initially, the "default" boot program
name is either BOOT, or the name of the boot program specified in the command line
when the RunTime Program was invoked.

If the native operating system allows extensions, a .OBJ extension is assumed if no exten-
sion is specified.

The "default" boot program name is changed any time a LOAD BOOT or SAVE BOOT
command is entered with an explicit filename.

The LOAD BOOT command is a programmable statement.

NOTE: Partial program loading options (line-number ranges) are not supported by the
LOAD BOOT command.

2-382 NPL Statements Guide

LANGUAGE STATEMENTS LOAD BOOT Command

LOAD BOOT Command (cont.)

LOAD BOOT and SAVE BOOT commands may also be used to inspect and replace pre-
boot programs. Refer to the discussion of the /P option in the RUNTIME options section
of the hardware supplement.

Examples:
Assuming a UNIX or MS-DOS based operating system:
:LOAD BOOT
:LOAD BOOT "UTILITY" :REM Loads a program named "UTILITY.OBJ"

from the currently selected native file
system directory.

Compatibility Issues:
The LOAD BOOT command is implemented in Revision 2.00 and greater of NPL.

The LOAD BOOT command is not a valid instruction in Wang 2200 Basic-2.

In NPL Revision 4.0, the LOAD command acts upon the current LIST MODULE.

References:
SAVE BOOT

NPL Statements Guide 2-383

LOAD DA Com

mand LANGUAGE STATEMENTS

LOAD DA Command

General Form:

LOAD DA'T [file-number,]| (exprl[return-value])
[device-address,]
[<address-var>, |

Where:
exprl = an alpha-variable or numeric-expression.
return-value = an alpha-variable or numeric-receiver.
NOTE: The use of this statement is not recommended. Refer to the LOAD command as a

better alternative.

Discussion:

The LOAD DA command is used to load a program into memory without accessing the

catalog index. The absolute sector-number in the diskimage of the program’s header re-

cord must be specified (exprl). If exprl is an alpha-variable, the binary value of the first
two bytes is used.

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

The LOAD DA command is used in Immediate Mode only, and is distinguished from the
LOAD DA statement which is used in program mode. The operational characteristics of
the two forms of this instruction are different.

Using the LOAD DA command, programs can be merged from disk with programs al-
ready existing in memory. A warning message (Warning: Programs merged.) is gener-
ated when two or more programs are merged using the LOAD DA command. If merged
programs have identical line-numbers, the original program lines in memory are overwrit-
ten by the newly loaded program lines.

2-384

NPL Statements Guide

LANGUAGE STATEMENTS LOAD DA Command

LOAD DA Command (cont.)

The LOAD DA command can also be used after a CLEAR statement to load a new pro-
gram alone in memory.

The return-value performs no operation in NPL. The return-value does not affect opera-
tion of the SAVE DA statement at run time. No value is returned to the return-value, if
specified.

LOAD DA is a direct access instruction as opposed to a catalog instruction. That is, the
Internal Device Table is not affected by a LOAD DA instruction.

Examples:

:LOAD DA T (100)
:LOAD DA T (100,Q)
:LOAD DA T (Q,Q)
:LOAD DA T#1, (200,Q%)
:LOAD DA T/D31, (Q3$,Q%
:LOAD DA T<A$>, (gQ$,Q ;
:LOAD DA T#Q, (500+Q°R
Compatibility Issues:
Due to the fact that NPL executable programs are stored in an object code format, pro-

grams cannot be loaded and executed in Wang 2200 format (source).

In Wang 2200 Basic-2, the return-value returns the sector immediately following the last
sector accessed by the LOAD DA operation. The return-value does not affect operation
of the SAVE DA statement in NPL. No value is returned in the return-value, if specified.
The syntax is supported for compatibility purposes only.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

In NPL Revision 4.0, the LOAD command acts upon the current LIST MODULE.LOAD

References:

LOAD DA Statement

Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

NPL Statements Guide 2-385

LOAD DA Statement LANGUAGE STATEMENTS

LOAD DA Statement
General Form:
LOAD DA T [file-number, | (exprl[return-value])
[device-address,]
[address-var,]
[linel1][[line2]][BEG line3]
Where:

exprl = a numeric-expression or alpha-variable specifying
the starting sector address of the program to be
loaded.

return-value = an alpha-variable or numeric-receiver.

linel = the line-number of the first line to be deleted
from the program currently in memory. After load-
ing, program continues from this line.

line2 = the line-number of the last line to be deleted
from the program currently in memory (before load-
ing program).

line3 = the line-number of the program where execution is
to begin after loading program.

NOTE: The use of this statement is not recommended. Refer to the LOAD statement as a

better alternative.

Discussion:

The LOAD DA statement is used to load a program into memory without accessing the

catalog index. The absolute sector-number in the diskimage of the program’s header re-
cord must be specified (exprl). If exprl is an alpha-variable, the binary value of the first
two bytes is used.

2-386

NPL Statements Guide

LANGUAGE STATEMENTS LOAD DA Statement

LOAD DA Statement (cont.)

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

Linel and line2 can specify a range of lines currently in memory that are to be deleted be-
fore the load takes place. If only linel is specified, all program text from linel to the last
line-number in memory is deleted. If neither linel nor line2 is specified, all program text
currently in memory is deleted before the load.

Line3 specifies the starting line for program execution after the load has taken place. If
not specified, program execution begins at linel, if specified, or the first line-number if
linel not specified.

The return-value performs no operation in NPL. The return-value does not affect opera-
tion of the SAVE DA statement at runtime. No value is returned to the return-value, if
specified.

LOAD DA is a direct access instruction as opposed to a catalog instruction. That is, the
Internal Device Table is not affected by a LOAD DA instruction

Examples:

0010 LOAD DA T (100)
0010 LOAD DA T (100,Q$) 5000,5999 BEG 8000
0010 LOAD DA T (Q$,0%) 5000

0010 LOAD DA T/D10,(1 3268 8000

0010 LOAD DA T<A$>,(1532 & 8000

0010 LOAD DA T#Q,(1000) 8000,8100

Compatibility Issues:

Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

NPL Statements Guide 2-387

LOAD DA Statement LANGUAGE STATEMENTS

LOAD DA Statement (cont.)

In Wang 2200 Basic-2, the return-value returns the sector immediately following the last
sector accessed by the LOAD DA operation. The return-value does not affect operation
of the LOAD DA statement in NPL. No value is returned in the return-value, if specified.
The syntax is supported for compatibility purposes only.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

LOAD DA Command

Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

2-388

NPL Statements Guide

LANGUAGE STATEMENTS LOAD RUN

LOAD RUN

General Form:

LOAD RUN [T] [file-number,]| [prog-name]
[device-address,]
[address-var,]

Where:

prog-name = a literal-string or alpha-variable specifying the
name of the program to be run. The default program
name is "START".

NOTE: The use of this statement is not recommended. Use program modules as a better al-
ternative.

Discussion:

LOAD RUN is used to clear memory and load and execute a program. The program
name is specified as a literal-string or as an alpha-variable. Before the program is loaded,
all program text and variables are removed from memory. After the program is loaded
into memory, execution begins at the first line-number of the program.

If the program name is not specified, the default program name "START" is used.

Examples:

0010 LOAD RUN

0010 LOAD RUN"BEGIN"

0010 LOAD RUN T"BEGIN2"

0010 LOAD RUN T/D10,"START"
0010 LOAD RUN TA$,"START"
0010 LOAD RUN T#2,0$

0010 LOAD RUN T#Q,"SP START"

Compatibility Issues:
Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

Use of program modules is only supported in NPL Revision 4.0 or greater and is not sup-
ported on the Wang 2200.

NPL Statements Guide 2-389

LOAD RUN LANGUAGE STATEMENTS

LOAD RUN (cont.)

In NPL Revision 4.0, programs referenced with the "LOAD RUN" command are exe-
cuted in the current run module.

References:

2-390 NPL Statements Guide

LANGUAGE STATEMENTS LOG Function

LOG Function

General Form:

LOG(nhumeric-expression)

Discussion:
The LOG function computes the natural logarithm of a numeric-expression. This is valid
wherever a numeric-expression is legal.

Examples:

0010 B(]3,9)=(LOG(K2 +10)/LOG(10)
0010 R =INT$IE_OG(D +9))
:0010 INPUT
10020 X=100+LOG(E*100)
“PRINT X
‘RUN
210
106.907755278982

Compatibility Issues:

Due to the use of different algorithms, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

NPL Statements Guide 2-391

LOOP LANGUAGE STATEMENTS

LOOP

General Form:

LOOP

Discussion:

The LOOP statement allows skipping the execution of the remainder of the body of a
structured loop, which may be either WHILE... WEND, REPEAT...UNTIL or FOR-BE-
GIN...NEXT type. When it occurs inside nested loops, only the body of the innermost
loop is skipped.

When executed, control is transferred to the WEND statement of the current
WHILE...WEND loop, to the UNTIL statement of the current REPEAT...UNTIL loop or
to the NEXT statement of an enclosing FOR/BEGIN...NEXT loop.

Examples:

0010 PRINT "All the even numbers from 1 to 10"

s cur_number =1

: REPEAT

s cur_number +=1
; 0dd so LOOP back to the top of the REPEAT/UNTIL body
IF MOD(cur_number,2) <> 0 THEN LOOP
PRINT cur_number

: UNTIL cur_number > 10

0020 num_times_LOOPed =0
: FOR row =1 TO 4 BEGIN
FOR column =1 TO 4 BEGIN
IF column > 2
;1 will execute this IF statement twice within the FOR
column loop
num_Times_LOOPED +=1
LOOP
END IF
: NEXT column
: NEXT row
: PRINT "Should HAVE looped 8 times: ";num_times_LOOPed

Compatibility Issues:

2-392 NPL Statements Guide

LANGUAGE STATEMENTS LOOP

LOOP (cont.)

References:
FOR/BEGIN
UNTIL
NEXT
WHILE
WEND
BREAK

NPL Statements Guide 2-393

$MACHINE

LANGUAGE STATEMENTS

SMACHINE

General Form:

alpha-receiver = $MACHINE

Discussion:

$MACHINE is a 64-byte system variable containing information about the environment
in which the RunTime Program is currently operating. This information may be used by a
NPL application program to implement conditional logic for option selection based upon
the current environment. As of Revision 4.0 of NPL, 29 bytes are returned by $MA-
CHINE. New bytes will likely be added in future revisions.

NOTE: New values may be added for new hardware/operating system ports of NPL; refer
to the NPL Supplements for details on specific SMACHINE values for the operating
system.
$MACHINE may not be modified by the NPL program. Placing SMACHINE on the left
side of an assignment statement results in a syntax error.

Refer to the appropriate NPL Supplement(s) for specific details of the hardware-depend-

ent features for specific machines.

Specifically, the following information is available:

Byte 1 RunTime Version
"I" for MS-DOS/Novell Netware
"N" for MS-Windows
"P" for Phar Lap
"S" for SuperDOS
"X" for Intel XENIX (286)
"A" for Intel UNIX (386 models)
"U" for Motorola 68000 UNIX
"V" for VMS
"W" for MS-DOS on Wang PC’s

2-394 NPL Statements Guide

LANGUAGE STATEMENTS $MACHINE

$MACHINE (cont.)

Byte 2 Hardware Manufacturer Code

Byte 3 Monitor Type

Byte 4 Graphics Enabled ("G" = truebox graphics available; " " = no truebox graphics
available).

Byte 5 Hardware Model Code. Refer to NPL Supplement for a list of valid values. On
SuperDOS, indicates binary # of overflow areas set up in the memory share
module.

Byte 6 Number of NPL users in the RunTime before this task executed the RunTime. On

Xenix and UNIX, indicates number of users in the Niakwa RunTime after this
task was executed.

Byte 7 RunTime type in use - "I'" = interpretive version; "P" = non-interpretive version.

Byte 8 Display width in binary. Will always be HEX(50) on 80-column screens. On
screens that support more than 80 columns, will be the width currently enabled.
Refer to Section 7.3.23 of the Programmer’s Guide for details on enabling wider

screen widths.
Byte 9 Terminal type-refer to the NPL Supplements for possible values.
Byte 10 Math co-processor present.
(00) Indicates that no co-processor is present or that use of the co-
processor is not supported on the hardware version in use.
Byte 11 HEX(00) Standard model in use. Maximum partition size is S6K. This value

is returned for NPL revisions prior to Revision 3.0 where the "S"
startup option was not used or was not available.

HEX(01) Extended model in use. A 56k program segment and 64K variable
segment are available. This value is returned by NPL revisions
prior to Revision 3.0 when the "S" option is in use.

HEX(02) Large model in use. This value is returned by NPL Revision 3.0 or

greater.
Byte 12 Number of colors available. Refer to Chapter 6 of the NPL Supplements for
details on color support in NPL.
Byte 13 Maximum number of authorized users (in binary).

Byte 14 Reserved.

NPL Statements Guide 2-395

$MACHINE

LANGUAGE STATEMENTS

$SMACHINE (cont.)
Byte 15 Reserved.
Byte 16 Maximum number of Device Equivalence Table entries available. Equal to the

number of devices specified in the "D" startup option. If the "D" option is not used,
the default value of 16 DET entries is used.

Byte 17

Number of Device Equivalence Table entries currently in use. A DET entry is
defined as being in use when a NPL address of file # is assigned. This value is
stored in binary format. Typical use of this value would be to determine if DET
entries are available for assignment.

For example:

0010 DIM A$50,M$64
0020 M$=$MACHINE
0030 A$=$DEVICE(/D20) :REM Save current DET entry for D20, if any-

thing

0040 IF A$<>"" THEN 200 :REM D20 is already in use - therefore we can

use it with no concern about overflow as long
as we restore it when done.

0050 M=VAL(STR(M$,16,1) :REM Maximum number of DET entries
0060 C=VAL(STR(M$,17,1) :REM Current number of DET entries in use
0070 IF C<M THEN 200 :REM At least one entry is available

0080 REM Routine to handle no DET entry available condition

6200 $DEVICE(/D20)="MYFILE.BS2":REM Set D20 to device required

6300 $DEVICE(/D20)=A$:REM Done with MYFILE.BS2, restore original DET

entry

This example demonstrates how to assign a temporary DET entry without risk of over-
flowing the DET table.

NOTE: Even if all DET entries are currently used, this technique still succeeds as long as

the specified

address is already defined in the DET. In this case, the same DET slot

is reused and the original value is restored after processing of the temporary entry

is complete.

2-396

NPL Statements Guide

LANGUAGE STATEMENTS

$MACHINE

SMACHINE (cont.)

Byte 18

Indicates whether or not the task in use was STARTED in a background partition.

HEX(00)

Indicates that the task was started in foreground.

HEX(01)

Indicates that the task was started in background.

Byte 19

Byte 19 of SMACHINE contains the status of SDEMO keyboard redirection and

keyboard logging. Possible values for this byte are:

HEX(01) Indicates that keyboard redirection from a $DEMO file is in effect.

bit=1 When keyboard redirection is not in effect, this bit is off. This bit is
set to 0 on all conditions which terminate a SDEMO script. This
includes cancellation by the operator and end of file conditions. End
of file conditions are detected only AFTER a keyboard input
statement is executed where there are no more keystrokes in the
specified SDEMO file. Refer to SDEMO for further detail on demo
scripts.

HEX(02) Indicates that keyboard logging is in effect. Keyboard logging is in

bit=1 effect whenever the current SELECT LOG address is anything other

than /000 (the nul device) and the SELECT LOG status is ON. This
bit is 0 whenever SELECT LOG status is OFF or the SELECT LOG
address is /000. SELECT LOG status may be set either by use of the
SELECT LOG statement or by the operator.

Applications which examine this byte should use the logical AND operation to test the
specific bit to be examined.

For example:

0010 DIM M$64,X$1
0020 M$=$MACHINE
0030 X$=STR(M$,19,1) AND HEX(01)

0040 IF X$=HEX(01) THEN PRINT "$DEMO IS IN EFFECT"

0050 X$=STR(M$,19,1) AND HEX(02)

0060 IF X$=HEX(02) THEN PRINT "KEYBOARD LOGGING IS IN EFFECT"

NPL Statements Guide

2-397

$MACHINE LANGUAGE STATEMENTS

SMACHINE (cont.)

Byte 20 Indicates if the version of NPL running is a 32-bit or non-32-bit.

HEX(00) Non-32 bit RunTime in use.

HEX(01) 32-bit RunTime in use.

Byte 21 Contains the maximum number of entries (in binary) allocated to the handle table
(in K) during a RunTime session.

Byte 22 Indicates the XMS usage as specified in the /m and /u startup options.

Byte 23 Contains the current row position of the mouse pointer when a mouse event occurs
(if it is on the screen).

Byte 24 Contains the current column position of the mouse pointer when a mouse event
occurs (if it is on the screen).

Byte 25,26 |Extended field equivalent to SMACHINE byte 6 (number of active users in the
RunTime before this task booted). For systems with 256 or more users, these bytes
must be used to get an accurate user count

Byte 27,28 |Extended field equivalent to SMACHINE byte 13 (maximum number of
authorized users). For systems with 256 or more users, these bytes must be used
to determine the max user count.

Byte 29 Indicates whether keyboard mouse events are supported

HEX(00) Default; mouse is not available.

HEX(01) Mouse available. Under DOS 3.0 and greater, HEX(01) will only
occur if the NPL /K startup option is specified and a mouse driver is
installed and detected. Under MS-Windows, HEX(01) will occur
upon detection of an installed mouse device.

Examples:

The following program sets the replacement attribute for underline on the IBM color
monitor to bright white on red background:

0010 DIM X$32,2$64

0020 X$=$MACHINE : REM STORE IN X$

0030 IF STR(X$,1,1)"I'" THEN GOTO 90 : REM IF IBM VERSION

0040 REM IBM VERSION

0050 IF STR(X$,3,1)"C" THEN 90 : REM SKIP IF NOT COLOR MONITOR

0060 Z$=$OPTIONS : REM FETCH CURRENT OPTIONS

0070 STR(Z$,1,1)=HEX(4F) : REM SET UNDERLINE AS WHITE ON
RED

0080 $OPTIONS=2$% : REM IMPLEMENT

0090 REM DONE

2-398 NPL Statements Guide

LANGUAGE STATEMENTS $MACHINE

$SMACHINE (cont.)

Compatibility Issues:

This statement is supported only with Release 1.03 or greater.

This statement is not valid in Wang 2200 Basic-2.

Specific values for SMACHINE are detailed in the appropriate NPL Supplement.
Bytes 6-13 contain valid information only on NPL Revision 2.01 or greater.
Bytes 16-20 contain valid information only on NPL Revision 3.00 or greater.
Bytes 21-28 contain valid information on on NPL Revision 3.20 or greater.

Bytes 29 contain valid information on on NPL Revision 4.00 or greater.
References:

Chapter 9 of the Programmer’s Guide.

NPL Statements Guide 2-399

MAT CON LANGUAGE STATEMENTS

MAT CON
General Form:
MAT numeric-array = CON [(dim1[,dim2])]
Where:
diml, dim2 = numeric-expressions specifying new dimensions of
the numeric-array.
Discussion:

The MAT CON statement is used to set all elements of a numeric-array to the numeric
value of 1. In addition, the specified numeric-array is optionally redimensioned according
to the new dimension parameters, if specified.

Examples:

0010 MAT Z = CON

0010 MAT X = CON(5,10)
0010 MAT P = CON(Q,S)
0010 MAT K = CON(15)

Compatibility Issues:

References:

2-400 NPL Statements Guide

LANGUAGE STATEMENTS MAT COPY

MAT COPY

General Form:

MAT COPY][-] source-alpha-variable [<[s][,[n]]>] TO[-]
receiver-alpha-variable [<[s][,[n]]>]

Where:

S = numeric-expression

n = numeric-expression

Discussion:

The MAT COPY statement is used to copy the contents of one alpha-variable or array to
another. The copy is performed character-by-character, transferring the contents of the
source-alpha-variable to the receiver-alpha-variable. The copy stops when the receiver-al-
pha-variable is completely filled. If the receiver-alpha-variable is larger than the source-
alpha-variable, blanks are used to fill the remaining characters after all characters of the
source-alpha-variable have been received.

The source-alpha-variable or receiver-alpha-variable can be modified by the STRING
function. The source-alpha-variable and receiver-alpha-variable can be the same variable.

Either alpha-variable may be modified by the "s" and "n" parameters, which specify that
a substring of the alpha-variable is used. The "s" parameter specifies the first position to
use, the "n" parameter specifies a count. These parameters are equivalent to the first and
second parameters of a STR() function, and have the same default value. The syntax is
supported only to maintain compatibility with Wang 2200 Basic-2.

The [-] option on the source-alpha-variable reverses the order in which the characters are
transferred, beginning with the last character of source-alpha-variable and ending with
the first character.

NPL Statements Guide 2-401

MAT COPY LANGUAGE STATEMENTS

MAT COPY (cont.)

The [-] option on the receiver-alpha-variable reverses the order in which the characters
are received. The first character received is stored in the last position of the receiver-al-
pha-variable. The second character received is placed in the next-to-last position. The
process continues until all characters have been received. Blanks are inserted if the re-
ceiver-alpha-variable is larger than the source-alpha-variable.

MAT COPY is useful for inserting and deleting elements of alpha-arrays which are main-
tained in order.

Examples:

0010 MAT COPY A$() TO B$()

0010 MAT COPY -B$() TO C$()

0010 MAT COPY A$ TO B$()

0010 MAT COPY A$() TO -B$

0010 MAT COPY -STR(A$,6,7) TO -B$()

This example shows how to use MAT COPY to maintain an array in sorted order while
adding new entries:

0010 DIM T$(100)32,N$32 :REM Table of names
:N=0 :REM Number of names
0020 INPUT "New Name",N$
: MAT SEARCH T$() ,N*32,=STR(N$) TO L$ STEP 32
:REM Find the first name = to the name

entered
: 1=VAL(L$,2)
:IFI=0 THEN 40 :REM I=Starting byte position
: L=N*32+1-1 :REM L=Number of bytes

MAT COPY -T$() <I,.L> TO -T$() <I+32,L>
:REM Move the array down
: GOTO 50
0040 I=N*32+1
0050 STR(T$(),1,32)=N$:REM Insert the new name
© N=N+1
:FORI=1TON
PRINT T$(1)
NEXT |
:GOTO 20

2-402 NPL Statements Guide

LANGUAGE STATEMENTS MAT COPY

MAT COPY (cont.)

READY (NIAKWA RUNTIME) PARTITION 01
:0010 DIM A$(3)10,B%$(3)10,C$31

:0020 MAT INPUT A$

:0030 MAT COPY A$() TO B$()

:0040 MAT COPY A$() TO -C$

:0050 LIST DIM *

:RUN

? Niakwa,NPL,RunTime

DIM A$(3)10

1) "Niakwa " HEX(4E69 616B 7761 2020 2020)
2) "NPL " HEX(4E50 4C20 2020 2020 2020)
3) "RunTime " HEX(5275 6E54 696D 6520 2020)
DIM B$(3)10

1) "Niakwa " HEX(4E69 616B 7761 2020 2020)
2) "NPL " HEX(4E50 4C20 2020 2020 2020)
3) "RunTime " HEX(5275 6E54 696D 6520 2020)
DIM C$31

" emiTnuR " HEX(2020 2020 656D 6954 6E75 5220 2020 2020)
STR(17) "LPN awkaiN" HEX(2020 4C50 4E20 2020 2061 776B 6169 4E)

Compatibility Issues:

References:

NPL Statements Guide 2-403

MAT IDN LANGUAGE STATEMENTS

MAT IDN
General Form:
MAT numeric-array = IDN [(dim1,dim2)]
Where:
diml,dim2 = numeric-expressions specifying new dimensions of

the numeric-array.

Discussion:

The MAT IDN statement is used to assign the specified square matrix the form of an iden-
tity matrix.

The dim1 and dim2 parameters redimension the matrix to the specified size. The new di-
mension size must be equal to or smaller than the original array. The new array must also
be a square array.

Examples:

0010 MAT A=IDN(5,5)
0010 MAT B=IDN(100,100)
0010 MAT C1=IDN

0010 MAT D=IDN(X,Y)

:0010 MAT B=IDN(4,4)

: MAT PRINT B
‘RUN
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Compatibility Issues:

References:

2-404 NPL Statements Guide

LANGUAGE STATEMENTS MAT INPUT

MAT INPUT

General

1 Form:

MAT INPUT array-variable [(dim1[,dimZ2]) [length]]
[array-variable [(dim1[,dim2]) [length]]]...

Where:
diml,dim2 = numeric expressions specifying new dimensions of the
array.
length = expression specifying the length of each element in
an alpha-array. Default length is 16.
Discussion:

The MAT INPUT statement is used to input data from the keyboard into one or more ar-
ray variables.

When a MAT INPUT statement is executed, the input prompt "?" is displayed and execu-
tion is suspended until the requested data is entered. As data is entered, elements are as-
signed row by row until the array is filled.

More than one element may be entered at a time by separating values with the comma de-
limiter. Entering no data when requested (just pressing RETURN) ends the MAT INPUT
operation. The contents of the remaining array elements is unchanged.

Data entered using the MAT INPUT statement must be compatible with the array type be-
ing assigned (e.g., numeric data must be entered into a numeric-array). Leading spaces or
commas can be entered as alpha data by enclosing them in quotation marks.

If invalid data is entered, an error is generated and the data must be reentered starting
from the element in error.

NPL Statements Guide 2-405

MAT INPUT LANGUAGE STATEMENTS

MAT INPUT (cont.)

Examples:

0010 MAT INPUT A$

0010 MAT INPUT C$(5,2)10

0010 MAT INPUT A(5,5),B$,C(2,3)
0010 MAT INPUT X$(10,10)32
0010 MAT INPUT J$(10,2),I

:10 DIM A(2,3),B$(2)8
:20 MAT INPUT A,BS$

‘RUN

When executed, this program prompts the operator for the entry of § fields. The re-
sponses to the first six fields are placed in A() and must contain valid numeric data.
The remaining two responses are placed in B$() and may contain alpha data.

Compatibility Issues:

References:

2-406 NPL Statements Guide

LANGUAGE STATEMENTS MAT INV

MAT INV
General Form:
MAT p = INV(q)[,[det][,norm-det]]
Where:
p.q = numeric-array names.
det = a numeric-receiver which is assigned the value of the
determinant of array p.
norm-det = a numeric-receiver which is assigned the value of the
normalized determinant of array q.
Discussion:

NOTE:

The MAT INV statement is used to assign matrix P the inverse of matrix Q. Array P can
be assigned the inverse of itself by placing it on both sides of the statement.

Array Q must be a square (n x n) matrix. If det is not specified and Q is a singular matrix,
an error X72 (Singular Matrix) occurs.

For internal reasons, MAT INV cannot invert a numeric matrix larger than
(2048,2048)--a 16MB array.

MAT INV is typically used to determine the solution to a system of linear equations in n
variables. Given the system:

qu1*x1+q 12*x2+...+(Q Xn=Y 1
ga1*x1+qQ 22*x2+...+(Q nXn=Yy 2
qni*X1+Qq n2*x2+...+(Q mXn =Y n

with all qij and yj known and variables xi to be determined.

In matrix notation, this set of equations may be written as QX=Y.

NPL Statements Guide 2-407

MAT INV LANGUAGE STATEMENTS

MAT INV (cont.)

In a given square matrix Q, the result of MAT P=INV(Q) can be used to determine a solu-
tion matrix for Q by computing MAT B=P*Q. The matrix P is always non-singular. The
matrix B is upper triangular. (If Q is non-singular, P=INV(Q), and B is identity matrix.)

A row of zeros in row r of B indicates that the row r of Q is linearly dependent on other
rows of Q. The elements of row r of P are the coefficients of a linear dependence of rows

of Q.

In solving linear equations, if the equation is Q*X=Y where Q and Y are given, the equa-
tion has a solution if P*Y is zero on all rows where B is all zeros.

If P is singular and meets the above zero-rows criteria, the equation is solvable, but the so-
lution is not unique. The matrix B can be used to determine a basis for the set of all solu-
tions by solving the much simpler B*X=P*Y (which can be reduced from last row up).

If Q is non-singular, the above discussion can be summarized by the fact that the equa-
tion has the unique solution X=P*Y.

Examples:

10 MAT D=INV(B),X,Y

This example illustrates the use of MAT INV is an actual problem. Three separate items
have been purchased as a group on three separate occasions:

5 nuts, 7 bolts and 8 screws - Total cost is 83 cents.
8 nuts, 2 bolts and 4 screws - Total cost is 52 cents.
10 nuts, 15 bolts and 9 screws - Total cost is $1.35.

What is the cost for each nut, bolt and screw?
Let x1 be the cost of a nut.

Let x2 be the cost of a bolt.
Let x3 be the cost of a screw.

2-408 NPL Statements Guide

LANGUAGE STATEMENTS MAT INV

MAT INV (cont.)

NOTE:

The equations to be solved are:

5x1+7x2+8x3=83
8x1+2x2+4x3=52
10x1 +15x2 +9x3=135

Following the notational conventions,we use the following NPL program:

:0010 DIM Q(3,3),P(3,3),Y(3),X(3)
:0020 MAT READ Q
:0025 DATA 5,7,8
: DATA 8,2,4
: DATA 10,15,9
:0030 MAT READ Y
:0035 DATA 83
: DATA 52
: DATA 135
:0040 MAT P=INV(Q)
:0050 MAT X=P*Y
:0055 FOR T=1TO 3
X(T)=ROUND(X(T),6) : REM ROUND OFF TO 6 DECIMALS
“NEXT T
:0060 MAT PRINT X
‘RUN
3
4
5

That is, a nut costs 3 cents, a bolt costs 4 cents and a screw costs 5 cents.

Rounding of results to a reasonable number of decimals is typical when performing
numerical analysis.

Compatibility Issues:

Due to the large number of calculations involved in computing a matrix inverse, the ef-
fect of the different internal numeric forms and rounding error may be especially notice-
able on this instruction. The usual cautions concerning the accuracy of the result when
the normalized determinant is small relative to 1 also apply.

Unlike Wang BASIC-2, where if the matrix is singular the resultant matrix P has "unde-
fined" values, the NPL resultant may be useful to determine whether there are solutions.

References:

NPL Statements Guide 2-409

MAT MERGE LANGUAGE STATEMENTS

MAT MERGE

General Form:

MAT MERGEsource-array|(f1[,f2])] TO
status-var,temp-var,pointer-array

Where:
source-array = atwo-dimensional alpha-array containing data to
be merged.
(f1,12) = optional byte range (start & length) which de-

fines a field within each source-array element:

f1 = numeric expression which specifies the
starting position of the field.

f2 = numeric expression which specifies the
length of the field.

status-var = an alpha-variable used to store merge status.
temp-var = an alpha-variable used by the system as workspace.
pointer-array = an array with elements of length two or four used

to store subscripts of the source-array.

Discussion:

The MAT MERGE statement is used to merge two or more sorted data files into a speci-
fied output file, sorted in ascending order.

The sizes of variables required by MAT MERGE and the structure of these variables de-
pends on the type of pointer-variable used. If the pointer-variable consists of two-byte ele-
ments, only small arrays (up to 255 rows, up to 254 columns) can be merged. If the
pointer-variable consists of four-byte elements, large arrays (up to 65535 rows, up to
65534 columns) can be merged. The following information refers to these two cases as
the small and large pointer cases.

2-410 NPL Statements Guide

LANGUAGE STATEMENTS MAT MERGE

MAT MERGE (cont.)

The source-array is an alpha-array which acts as a "buffer" for the data being merged.
The source-array has one row for each input file being merged. The number of columns
in the source-array is arbitrary, but should be as large as possible.

The status-variable is an alpha-variable which maintains status information about the
merge operation. It must be dimensioned to a minimum size of the number of rows in the
source-array plus one in the small pointer case, or double this amount in the large pointer
case.

The temp-variable is an alpha-variable used as a work area by the system. The temp-vari-
able must have at least twice as many bytes as the number of rows in the source-array in
the small pointer case, or at least double this amount plus 3 bytes in the large pointer case.

The pointer-array is an alpha-array whose elements are two or four bytes in length.
Operation of MAT MERGE

MAT MERGE compares elements of each row of the source-array and produces a
merged list of subscripts in the pointer-array. For each comparison, the subscripts of the
lowest element are placed in the next element of the pointer-array. When an element in
the source-array has been selected in this fashion, the status-variable (refer below) is up-
dated to point to the next element in that row and that element is used for the next com-
parison.

Use of Field Parameters

The MAT MERGE statement allows the merge operation to be performed on a substring
of the source-array elements. The substring is specified by including the (f1,f2) parame-
ters. The f1 parameter specifies the starting position of the sort substring and f2 specifies
the number of characters in the string (the default value for f2 assumes all remaining char-
acters in the element). If field parameters are used, data stored in each row must be in
sorted order based on the specified field.

NPL Statements Guide 2-411

MAT MERGE LANGUAGE STATEMENTS

MAT MERGE (cont.)

Use of the Status-Variable

As stated above, the status-variable must contain one byte for every row in the source-ar-
ray plus one extra byte (the n+1 byte) or double this for the large pointer case. It is easiest
to consider the status variable as a string array of (n+1) elements each with one byte for
the small pointer case, or two bytes for the large pointer case.

The first (n) elements are "row" status information, and determine which element in the
row should be used for the next comparison. These values must be set initially to
HEX(01) for the small pointer case, or HEX(0001) for the large pointer case. The "row"
elements are updated by the merge operation as described above. When all elements in a
row have been used up by the merge operation, the value HEX(FF) for small pointer case
or HEX(FFFF) for large pointer case is placed in the corresponding row element. As
rows are replenished by the program, it is the responsibility of the program to reset the
corresponding "row" element to HEX(01) for the small pointer case, or HEX(0001) for
the large pointer case.

The n+1 element is used by the merge operation to provide information relating to the ter-
mination of the merge operation.

If the n+1 element of the status-variable equals HEX(00) for the small pointer case, or
HEX(0000) for the large pointer case, then the merge terminated because the pointer-ar-
ray is full.

A MAT MOVE operation is then required to move the merged data from the source-array
to the output file. After the MAT MOVE operation, another MAT MERGE can then be
performed on the remaining data in the source-array.

If the n+1 element contains any other value, then the MAT MERGE terminated with an
empty row in the source-array. The value of the n+1 element (as a one-byte binary value
for the small pointer case, or as a two-byte binary value for the large pointer case) indi-
cates the empty row. The remaining status-variable elements points to the next element in
each row to be merged on the next MAT MERGE execution.

2-412 NPL Statements Guide

LANGUAGE STATEMENTS MAT MERGE

MAT MERGE (cont.)

Multiple Execution of MAT MERGE

The complete merging of several large files typically requires more than one pass of the
MAT MERGE statement.

The merge operation completes each time the locator-array becomes full or the end of a
merge-array row is encountered. At this point, a move operation is required to move the
merged data from the merge-array to the output file. The next merge operation can then
be performed on the remaining data. Each time a merge operation encounters the end of a
merge-array row, the operation is ended (even if data is available in subsequent rows).
For this reason, it may be advisable to replenish an empty merge-array row and reset the
control-variable to point to the newly entered data as indicated above.

Upon completion of a MAT MERGE execution, the application should check for one of
the following:

* Did the merge terminate because the pointer array is full?
* Did the merge terminate because of an empty row in the merge-array?

This can be determined by examining the control-variable as indicated above.

Examples:

0010 MAT MERGE B$() TO C$(), D$(), E$()
0010 MAT MERGE B$()(3,4) TO C$,D$,E$()

The following sample program illustrates the use of MAT MERGE to sort three cata-
loged data files.

NPL Statements Guide 2-413

MAT MERGE LANGUAGE STATEMENTS

MAT MERGE (cont.)

NOTE: This example assumes that the three data files are in sorted order.

0010 REM Sample use of MAT MERGE statement
0020 REM Assumes 3 data files with sorted elements are to be merged.
: REM The data records are 60 bytes long, stored 4 per logical
record.
: REM If last blocks are not full, unused records must be high-
values.
: REM The sort key is located at byte 10 of each record and is 5
bytes long.
0030 REM The names of the files are "FILE1","FILE2",and "FILE3" on
0040 REM devices #1,#2,and #3 respectively.
0050 REM The output goes to "OUTPUT" on device #4.

0060 DIM S$(3,4)60 : REM source array holds 1 L.R. per file
: DIM C$(4)1 : REM status-variable
: DIM T$(3)2 : REM temp-variable
: DIM P$(10)2 : REM pointer size is arbitrary

0080 DIM O$(4)60 : REM used to write records

0090 GOSUB 200 : REM initialization

0120 MAT MERGE S$()(10,5) TO C$(),T$(),P$()
: IF P$(1)=HEX(0000) THEN 190: REM check no more to merge

: GOSUB 300 : REM move merged keys to output
: GOSUB 400 : REM refill empty row if any
: GOTO 120 : REM continue merging
0190 DATA SAVE DC #4,END : REM merge complete, finish up
: DATA SAVE DC CLOSE ALL
: STOP

0200 DATA LOAD DC OPEN T#1,"FILE1"
: DATA LOAD DC OPEN T#2,"FILE2"
: DATA LOAD DC OPEN T#3,"FILE3" : REM open input files

:FOR X=1TO 3
: GOSUB "1(X) : REM read initial records
s NEXT X
: DATA LOAD DC OPEN T#4,"OUTPUT"
:0=1 : REM set next available output record
: RETURN
0250 DEFFN'1(F) : REM refill source array for file #F
: DATA LOAD DC #F,S$(F,1),S$(F,2),S$(F,3),S$(F,4)
. IF END THEN 260 : REM check end of file
: C$(F)=HEX(01) : REM set status variable to first in row
: GOTO 290
0260 C$(F)=HEX(FF) : REM set status variable to 'all used up’
0290 RETURN
0300 L=1
0330 D=4 : REM set counter before move
: MAT MOVE S$(),P$(L),D TO O$(0): REM move records to output buffer
:L=L+D : REM advance pointer index by number moved
: 0O=0+D : REM advance output index by number moved
1 IF O THEN 350 : REM do we have a full output block yet?
DATA SAVE DC #4,0%() : REM yes, save it
0=1 : REM reset available output record
GOTO 330 : REM repeat until all pointers are used up

0350 RETURN

MAT MERGE (cont.)

2-414 NPL Statements Guide

LANGUAGE STATEMENTS MAT MERGE

MAT MERGE (cont.)

0400 IF C$(4)=HEX(00) THEN 480 : REM are any rows used up?
: GOSUB '1(VAL(C$(4))) : REM yes, refill used up row
0480 RETURN

Compatibility Issues:

Use of 4-byte pointer arrays is supported in NPL Revision 4.0 or greater, and is not com-
patible with the Wang 2200.

References:

MAT MOVE
MAT SORT

NPL Statements Guide 2-415

MAT MOVE

LANGUAGE STATEMENTS

MAT MOVE

General Form:

Where:

pointer-array

receiver-array

receiver-

array-element

f1

2

counter-var

MAT MOVE source-array [,pointer-array] [,counter-var|

TO {receiver-array }
{receiver-array-element}

source-array = {alpha-array[(f1[,f2])]}

{numeric-array }

{alpha-array }
{alpha-array-element}

{alpha-array((f1[,f2])]}
{numeric-array }

{alpha-array-element[(f1[,f2])]}
{numeric-array-element }

numeric-expression which specifies the starting
position of a sub-field within a source-array or
receiver-array or receiver-array-element.

numeric-expression which specifies the length of
a sub-field within a source-array or receiver-ar-
ray or receiver-array-element.

numeric-scalar which contains the maximum number
of elements to be moved when the statement is
executed and contains a count of the number of
elements actually moved when execution is com-
pleted.

2-416

NPL Statements Guide

LANGUAGE STATEMENTS MAT MOVE

MAT MOVE (cont.)

Discussion:

MAT MOVE is used to transfer data from one array to another and optionally convert
data between numeric and alpha arrays. MAT MOVE is frequently used in conjunction
with MAT SORT and MAT MERGE in order to process disk-based files.

General Features

MAT MOVE transfers data on an element by element basis from the source-array to the
receiver-array.

The source-array is always processed starting at the first element.

Source and receiver arrays do not have to have the same number of dimensions or an
equal number of elements. The system automatically handles conversion between two di-
mensioned matrices and single dimension matrices as well as conversion between two di-
mension matrices of different dimensions.

If the receiver-array-element designation is used, data is transferred into the receiver-ar-
ray starting at the specified element.

The move operation terminates when either the source-array has been completely moved
or the receiver-array has been filled, unless a counter-var or pointer-array are used (refer
to the discussion below).

The Field Parameters

The data to be moved from alpha-source-arrays is defined by field parameters. The por-
tion of the element to receive data in alpha-receiver-arrays is also defined by field pa-
rameters. In both cases, if the field parameters are not specified, the entire element is the
field. If the size of the field in the receiver-array does not match the size of the field in
the source-array, data values are truncated or extended with blanks as required. Data in
elements outside of the specified field is not affected by the move operation.

Specific field sizes in alpha-source-arrays or alpha-receiver arrays may be specified by
the f1,f2 parameters. If specified, f1 indicates the starting byte number within each ele-
ment to be used. The number of bytes in the field is specified by the f2 parameter, if pre-
sent. If not specified, the number of bytes in the field is from f1 to the end of the element.

NPL Statements Guide 2-417

MAT MOVE LANGUAGE STATEMENTS
MAT MOVE (cont.)
In numeric-source-arrays, the entire value is always moved. In numeric-receiver-arrays,
the entire value of the element is always replaced.
The counter-var
The counter-var may be used to specify the maximum number of elements to move.
NOTE: The move operation may be terminated by conditions other than the counter-var. If

this occurs, the counter-var is set to the number of elements actually moved.
The pointer-array

The pointer-array can be used to reorder elements as they are moved. Ordered pointer-ar-
rays are produced by MAT SORT and MAT MERGE. Typically, pointer-arrays are used
in conjunction with one of these statements.

The pointer-array should contain a series of two-byte or four-byte subscripts used in ac-
cessing the source-array. If the source-array is a one dimensional array, the two-byte or
four-byte subscript is treated as the binary representation of a single subscript (depending
on the size of a pointer-array element). If the source-array is a two-dimensional array, a
two-byte subscript is treated as containing two single byte binary subscripts, and a four-
byte subscript is treated as containing two double-byte binary subscripts.

Pointer-arrays of this type are generated by MAT SORT and MAT MERGE statements.

When a pointer-array is specified, it is accessed to determine which element of the source-
array to move next. That is, the first element moved is the element specified by the sub-
scripts in the first element of the pointer-array. The next element to move is the element
specified by the subscripts in the next element of the pointer-array, and so on.

A given element in the source-array may be referenced more than once by the pointer-ar-
ray. If this occurs, the element is duplicated in the receiver-array.

The element location of the output of the move is not affected by the pointer-array.
If a pointer array element containing all HEX(00)’s is encountered, the move operation is

terminated. The move operation is also terminated when the end of the pointer-array is
reached.

2-418

NPL Statements Guide

LANGUAGE STATEMENTS MAT MOVE

MAT MOVE (cont.)

Pointer-array values are left unused if the move operation is terminated due to other con-
ditions.

If a pointer array element containing all HEX(00) is encountered, the move operation is
terminated.

NOTE: Some versions of NPL allow a two-dimensional array to be defined with more than
65535 rows or columns. However, subscripts greater than 65535 can not be stored in
the pointer-array when a two-dimensional array is used.

Type Conversion

If the source-array and receiver-array are of different types, automatic conversion is per-
formed between the NPL internal numeric format and an alpha format suitable for sort-
ing. The alpha representation of numeric values requires an element length of 8 bytes to
ensure that all possible values can be stored. Values are truncated or padded with spaces
as required.

Byte one is used for the sign which may have the following decimal values:

9 - The mantissa and exponent are both positive.

8 - If a pointer array element containing all HEX(00) is encountered, the move
operation is terminated. - the mantissa is positive but the exponent is negative.

1 - The mantissa and exponent are both negative.

0 - The mantissa is negative and the exponent is positive.

Byte two contains a representation of the exponent, high-order digit first. If the mantissa
and exponent are the same sign, the exponent is stored in decimal form. Otherwise, the
decimal complement form is used.

Remaining bytes are used to store the mantissa. The mantissa is stored in decimal format
if the sign of the mantissa and exponent are the same. Otherwise, decimal complement
format is used.

When converting from the alpha representation to a numeric value, an error occurs if the
alpha data does not contain a valid representation of a numeric value.

NPL Statements Guide 2-419

MAT MOVE

LANGUAGE STATEMENTS

MAT MOVE (cont.)

Examples:

0010 MAT MOVE A$(),L$(),

0010 MAT MOVE X$()(2,3)

N TO B$()
TO V$()

0010 MAT MOVE A(4,2),B$(1),100 TO C$()
0010 MAT MOVE G(),N$(5),H TO D()
0010 MAT MOVE L$(3,4)(5,8),Z$() TO S()

:0005 REM This example illustrates the field feature of MAT MOVE

:0010 DIM A$(10)10,C$(3,3)10

:0020 A$(1)="1234567890"
0030 FOR X=2 TO 10
AS(X)=AS(X-1)
ROTATEC(A$(X),8)
© NEXT X
:0040 C=3 :
:0050 C$()=ALL("2")

:0060 MAT MOVE A$()(2,3),C TO C$(2,2)(2,6): REM Move 3 byte field

:0070 LIST DIM * A$(,C$(
‘RUN
DIM A$(10)10

1) "1234567890"
2) "2345678901"
3 "3456789012"
4) "4567890123"
(5) "5678901234"
(6) "6789012345"
) "7890123456"
8) "8901234567"

(©) "9012345678"
(10) "0123456789"

DIM C$(3,3)10

(1,1) "2277777777"
1,2) "2277772777"
1,3) "2277772777"
(2,1) "22777772777"

(2,2) "z234 zz7"
(2,3) "z345 zzz7"
(3,1) "z456 zzz7"
3,2) "2277772777"
(3,3) "2277772777"

: REM Initialize source-array

REM Initialize Counter
: REM Initialize receiver-array

to a 6 byte field

HEX(3132 3334 3536 3738 3930)
HEX(3233 3435 3637 3839 3031)
HEX(3334 3536 3738 3930 3132)
HEX(3435 3637 3839 3031 3233)
HEX(3536 3738 3930 3132 3334)
HEX(3637 3839 3031 3233 3435)
HEX(3738 3930 3132 3334 3536)
HEX(3839 3031 3233 3435 3637)
HEX(3930 3132 3334 3536 3738)
HEX(3031 3233 3435 3637 3839)

HEX(7TATA TATA TATA TATA TATA)
HEX(7TATA TATA TATA TATA TATA)
HEX(7TATA TATA TATA TATA TATA)
HEX(7TATA TATA TATA TATA TATA)

HEX(7A32 3334 2020 207A 7A7A)
HEX(7A33 3435 2020 207A 7A7A)
HEX(7A34 3536 2020 207A 7A7A)

HEX(7TATA TATA TATA TATA TATA)
HEX(7TATA TATA TATA TATA TATA)

Refer to MAT SORT and MAT MERGE statements for examples of the MAT

MOVE statement as used in conjunction with these statements.

2-420

NPL Statements Guide

LANGUAGE STATEMENTS MAT MOVE

Compatibility Issues:

Use of 4-byte pointer arrays is supported in NPL Revision 4.0 or greater, and is not com-
patible with the Wang 2200.

NPL Statements Guide 2-421

MAT MOVE LANGUAGE STATEMENTS

MAT MOVE (cont.)

References:

MAT SORT
MAT MERGE

2-422 NPL Statements Guide

LANGUAGE STATEMENTS MAT* (Multiply)

MAT?* (Multiply)

General Form:
MAT arrayl = array2 * array3
Where:

arrayl,array2,array3 = numeric-array hames

Discussion:

The MAT* statement is used to multiply two arrays (array2,array3), resulting in a third ar-
ray (arrayl).

The number of columns in arrayl must equal the number of rows in array2. Array3 can
not appear on both sides of the statement, otherwise an error is generated.

If array A has dimensions (L,M), and array B has dimensions (M,N) [note common di-
mension value], the statement MAT C=A*B is equivalent to:
0010 MAT REDIM C(L,N)

0020 FOR I=1 TO L
0030 FORJ=1TON

0040 S=0
0050 FORK=1TOM
0060 S=S+A(1,K)*B(K,J)

0070 NEXTK
0080 C(1,K)=S
0090 NEXTJ
0100 NEXT |

Examples:

0010 MATA=X*Y
0010 MATC=A*B

Compatibility Issues:

References:

NPL Statements Guide 2-423

MAT PRINT LANGUAGE STATEMENTS

MAT PRINT

General Form:

MAT PRINT array-variable [{;} array-variable]...[{;}]
{1 {1

Discussion:

The MAT PRINT statement is used to display the contents of the specified array-vari-
able(s).

MAT PRINT displays the contents of the specified array-variable(s) in a row-by-row for-
mat, with each new row beginning on a new print line.

Specifying a trailing comma displays output in a column format. Specifying a trailing
semicolon displays element rows continuously, with no blank spaces between elements in
arow.

Examples:

0010 MAT PRINT A$
0010 MAT PRINT A,
0010 MAT PRINT A,A$,B
0010 MAT PRINT X$

:0010 DIM A$(3,3)16,B(3,3)

:0020 MAT INPUT A$,B

:0030 MAT PRINT A$,B

‘RUN

2 THIS,IS,AN,EXAMPLE,OF, THE,MAT,INPUT,STATEMENT
21,2,3,456,7,89

THIS IS AN

EXAMPLE OF THE

MAT INPUT STATEMENT
1 2 3

4 5 6

7 8 9

Compatibility Issues:

References:

2-424 NPL Statements Guide

LANGUAGE STATEMENTS MAT READ

MAT READ
General Form:
MAT READ array-variable [(dim1[,dimZ2]) [length]]
[.array-variable [(dim1] ,dim2]) flengthf]]...
Where:
diml,dim2 = numeric-expressions specifying new dimensions of the
array.
length = expression specifying the length of each element in
an alpha-array. Default length is 16.
Discussion:

The MAT READ statement is used to assign a list of values from a DATA statement to
the arrays specified.

Data is assigned row-by-row to each array, continuing left to right through the arrays.
The process uses the data values sequentially, beginning with the DATA statement with
the lowest line-number, using each value, then those from the next DATA statement, and
so on until the elements of all arrays have been filled or the data is exhausted. An error
occurs if the data is exhausted first. An error also occurs if the value being transferred
does not match the variable type required by the list of arrays.

Examples:

0010 MAT READ A$,B$
0010 MAT READ A$
0010 MAT READ B,C

Compatibility Issues:

References:

DATA

NPL Statements Guide 2-425

MAT REDIM LANGUAGE STATEMENTS
MAT REDIM
General Form:
MAT REDIM array-variable (dim1[,dimZ2]) [length]
,array-variable (dim1[,dim2]) [length]]...
Where:

diml,dim2 = numeric-expressions specifying new dimensions of the
array.

length = expression specifying the length of each element in
an alpha-array. Default length is 16.

Discussion:

The MAT REDIM statement is used to redimension the specified array according to the
specified dimension parameters. In addition, if the redimensioned array is an alpha-array,
the length of the element may optionally be specified.

MAT REDIM may be used to expand statically allocated arrays beyond their initially al-
located size, provided:

1. There is sufficient memory to allocate both the old variable and the new large alloca-
tion.

2. There may not be any pending /POINTER or stack references to the variable.

If either condition is not met, an error 304 (cannot expand any variable) occurs. (This is a
recoverable error.)

The following example illustrates condition (1) above:

2-426

NPL Statements Guide

LANGUAGE STATEMENTS MAT REDIM

MAT REDIM (cont.)

0010 ; SYNALLOC - Example for Dynamically Allocating Arrays
0020 DIM X,Y
0030 DIM A$(0)0
0040 FUNCTION 'GetSize(/POINTER Elements for Element";
0050 PRINT "Enter Number of elements for Array";
0060 INPUT Elements
0070 PRINT "Enter Number of Elements for Array";
0080 INPUT Size
0090 RETURN (0)
0100 END FUNCTION
0110 IF 'GetSize(X,Y)=0
: MAT REDIM A$(X)Y
:END IF
0120 LIST DIM A$(
‘RUN
Enter Number of Elements for Array ? 1024
Enter Length of each Array Element ? 32
DIM A$(1024)32

Condition 2 avoids errors caused by references to the variable at the old address. Because
the MAT REDIM statement expands the array, and it moves it to a new address, the as-
signment would reference the old copy of the array unless the /POINTER addresses are
corrected retroactively.

Newly allocated space in the variable contains either blanks, if a string, or zeroes, for nu-
merics. Previously allocated space is unchanged.

This extended capability of MAT REDIM also applies to implied or explicit array redi-
mensioning operations in the matrix math statements:

MAT = MAT + MAT - MAT *

MAT SCALAR MAT IDN MAT CON MAT ZER

The scope of statically allocated arrays may be PUBLIC, module, private or local to a
function.

NOTE: Recursive and scalar variables may not be specified in MAT REDIM statements.

NPL Statements Guide 2-427

MAT REDIM LANGUAGE STATEMENTS

MAT REDIM (cont.)

Examples:

0010 MAT REDIM Z(5,5)

0010 MAT REDIM X(9,Y),N(10,10)

0010 MAT REDIM K$(6,12)10

0010 MAT REDIM V$(4,4)12,X$(8,4)10,2$(12)8

10 DIM A$(0)20, C(0)
:READ X ;; get list size
: MAT REDIM A$(X)20, ;expand table of names
C(X :; and amounts.

Compatibility Issues:

Revisions prior to NPL Release IV do not allow MAT REDIM to redimension an array
larger than that of the original array.

References:

2-428 NPL Statements Guide

LANGUAGE STATEMENTS MAT SEARCH

MAT SEARCH

Where:

General Form:

MAT SEARCH[ELEMENT] {alpha-variable1[<[s][,[n]]>],} rel-op
{literal-string1, }

alpha-value TO receiver-variable [STEP numeric-expression]

s = numeric-expression
n = numeric-expression
rel-op = {<, <55, >, >=5,<)
alpha-value = {alpha-variable }

{literal }

receiver-variable {alpha-variable }
{numeric-array }
{numeric-variable }

{numeric-array element}

Discussion:

The MAT SEARCH statement searches alpha-variable1 for substrings which satisfy the
specified relational operator when compared to alpha-value, and places the addresses of
these substrings in the receiver-variable.

If the receiver-variable is an alpha-variable, each address is stored as a two-byte binary
value that indicates the starting position in alpha-variablel. If the receiver-variable is a

numeric-array, each address is stored as a numeric value with the first address placed in
element one of the array, the second placed in element two, and so on.

If the receiver-variable is a numeric-variable or a numeric-array element, only the first lo-
cation or element in the string which matches the search condition is placed in the vari-
able, or a zero value is placed in the variable if no match is found.

NPL Statements Guide 2-429

MAT SEARCH LANGUAGE STATEMENTS

MAT SEARCH (cont.)

The keyword ELEMENT determines the actual values returned for "address". If ELE-
MENT is not specified, the address is the first byte number in alpha-variable] that corre-
sponds to the start of a matching substring. The ELEMENT keyword is normally used
when searching an array of fixed size elements for a value that can occur at only one posi-
tion in an element. In this case, the STEP value would be the size of the array element
and the value returned in the receiver-variable is an element number rather than a byte ad-
dress. The non-zero values returned by MAT SEARCH and MAT SEARCH ELEMENT
are related by the formula:

e =(b-1)/s+1
where:
e is the element number returned by MAT SEARCH ELEMENT
b is the byte address returned by MAT SEARCH
s is the STEP value

If alpha-variablel is an array, element boundaries are ignored and the address is specified
starting from byte one of the array.

The value of zero is placed in the receiver-variable just after the address of the last valid
substring found.

When MAT SEARCH is executed, substrings of alpha-variablel are tested against the al-
pha-value for the relation specified. The length of the substring tested is the length of al-
pha-value.

NOTE: Trailing spaces in alpha-value are ignored unless alpha-value is a literal or STR()
function.

The portion of alpha-variablel SEARCHed can be modified by use of the "s" and "n" pa-
rameters. The "s" parameter is a numeric-expression which specifies the position in alpha-
variable1 to begin the SEARCH operation. The "n" parameter is a numeric-expression
which specifies the number of bytes of alpha-variablel (starting at byte 1 if "s" parameter
is not specified) to be searched.

2-430 NPL Statements Guide

LANGUAGE STATEMENTS MAT SEARCH

MAT SEARCH (cont.)

The optional "STEP" parameter is used to specify the number of bytes to skip in alpha-
variablel in determining the starting address of the next field to search. The "STEP" pa-
rameter must be a positive integer. If no "STEP" parameter is indicated, a default of "1"

is used. The STEP parameter is useful for searching alpha-variables which contain field-
oriented data. For example, if an alpha-variable contains a series of 8-byte names, and the
purpose of the search was to find a particular name, a STEP value of 8 would be appropri-
ate. Failure to specify an appropriate STEP value could result in erroneous data being se-
lected by the search operation and in more lengthy execution time.

For example, assume that an array contains elements of length 20 where each element
contains a person’s name (first name first). The purpose of this program is to extract and
print all names where the first name is some variation of the name "MARY" (MARIE,
MARIANNE, etc.).

:05 DIM A$(5)20
:10 DIM X$(5)2 :REM POINTER VARIABLE
:15 A$(1)="MARY SMITH"
- A$(2)="SUSAN JONES"
- A$(3)="MARIANNE JACKSON"
- A$(4)="SALLY MARGOLAN"
- A$(5)="JANE ADAMS"
:20 MAT SEARCH A$(),="MAR" TO X$() STEP 20 :REM SEARCH FOR NAMES
STARTING WITH "MAR"

:30 FOR X=1TO 5

IF X$(X)=HEX(0000) THEN 90 :REM NO MORE POINTERS
PRINT STR(A$(),VAL(X$(X),2),20) :REM PRINT THE NAME
BASED ON THE POINTER
VALUE

NEXT X :REM NEXT POINTER VALUE
:80 GOTO 100
:90 X=5: NEXT X :REM CLEAR THE LOOP
:100 REM DONE
‘RUN
MARY SMITH

MARIANNE JACKSON

In this case, the pointer variable contains two addresses in binary - (0001) & (0029)
which are converted to decimal byte addresses by the VAL function in line 30.

NPL Statements Guide 2-431

MAT SEARCH LANGUAGE STATEMENTS

MAT SEARCH (cont.)

NOTE: If a step value was not specified in line 20, the "MAR" in the name SALLY MAR-
GOLAN would also meet the search criterion and the program would print:

MARY SMITH
MARIANNE JACKSON
MARGOLAN JANE A

In this case, the pointer variable contains three addresses in binary - (0001), (0029) and
(0043) which are converted to decimal byte addresses by the VAL function in line 30.

The above example could be modified to use the ELEMENT keyword and a numeric-ar-
ray as the receiver-variable as follows:

:10 DIM X(5) :REM POINTER VARIABLE
:15 A$(1)="MARY SMITH"
- A$(2)="SUSAN JONES"
- A$(3)="MARIANNE JACKSON"
- A$(4)="SALLY MARGOLAN"
- A$(5)="JANE ADAMS'
:20 MAT SEARCH ELEMENT A$(),="MAR" TO X() STEP 20
:REM SEARCH FOR NAMES STARTING WITH "MAR"
:30 FOR X=1TO 5
IF X(X)0 THEN DO

PRINT AS$(X(X)) :REM PRINT THE NAME

NEXT X :REM NEXT POINTER VALUE
: ENDDO
: ELSE
© NEXT CLEAR :REM NO MORE POINTERS
:100 REM DONE
‘RUN

MARY SMITH

MARIANNE JACKSON

NOTE: Use of the ELEMENT keyword in conjunction with a numeric-array as a receiver-
variable significantly simplifies the code. In particular, note that elements of A$ ar-
ray which match can be referenced using the receiver-variable (X()) as a subscript.

2-432 NPL Statements Guide

LANGUAGE STATEMENTS MAT SEARCH

MAT SEARCH (cont.)

Examples:

0010 MAT SEARCH A$(),=B$ TO L$

0010 MAT SEARCH STR(D$(),1,100), = STR(F$,1,2) TO BS$()
0010 MAT SEARCH D$(),=M$() TO STR(P$(),30,10)

0010 MAT SEARCH A$(),<B$() TO C$()

0010 MAT SEARCH X$(),<=Y$ TO z$ STEP 20

0010 MAT SEARCH A$(),=B$ TO L$

0010 MAT SEARCH STR(D$(),1,100), = STR(F$,1,2) TO B()
0010 MAT SEARCH D$(),=M$() TO STR(P$(),30,10)

0010 MAT SEARCH A$(),<B$() TO C$()

0010 MAT SEARCH ELEMENT X$(),<=Y$ TO Z() STEP 20

Compatibility Issues:

Use of numeric-arrays to receive the results of MAT SEARCH is supported only in NPL
Revision 3.0 or greater.

Use of numeric-arrays to receive the results of MAT SEARCH is not supported on the
Wang 2200.

Use of the ELEMENT keyword is supported only in NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

NPL Statements Guide 2-433

MAT SORT LANGUAGE STATEMENTS

MAT SORT
General Form:
MAT SORT source-array|((f1[,f2])] TO temp-variable, pointer-array
Where:
source-array = alpha-array
(f1,12) = optional byte range (start & length) which de-
fines a field within each alpha-array element:
f1 = numeric expression which specifies the
starting position of the field.
f2 = numeric expression which specifies the
length of the field.
temp-variable = an alpha-variable used as a work area which must
be dimensioned with two bytes for every element
in the source-array, or four bytes per element if
the pointer-array element length is four bytes.
pointer-array = alpha-array of two or four byte elements.
Discussion:

The MAT SORT statement is used to sort the specified source-array in ascending order.
Sorting is performed on a binary basis for each element of the source-array. Sorting may
be performed on a specified field within elements of the source-array by specifying the
starting byte number and number of bytes to use as the fl and f2 parameters. If only f1 is
specified, the field is comprised of all bytes from the f1 position to the end of the element.

2-434 NPL Statements Guide

LANGUAGE STATEMENTS

MAT SORT (cont.)

NOTE:

NOTE:

Output of the MAT SORT operation consists of a pointer-array where each element of
the pointer-array contains a subscript for one element of the source-array in order of the
specified sort.

NPL allows a two-dimensional array to be defined with more than 255 rows or col-
umns (though the total elements may not exceed 65535). However, subscripts
greater than 255 cannot be stored in the pointer-array when a two-dimensional ar-
ray is used. If such an array is used, it must be redimensioned (REDIM) before sort-
ing.

The pointer-array must be dimensioned with at least as many elements as the source-ar-
ray with a length of two or four bytes. A four-byte element length is required to sort one-
dimensional arrays with more than 65535 elements, or two-dimensional arrays with more
than 255 rows or columns, but may also be used for smaller source-arrays. Two-dimen-
sional arrays with more than 65535 rows or columns cannot be sorted by MAT SORT.

For one-dimensional source-arrays, the subscript is a two or four byte binary number, de-
pending on the length of the pointer-array elements. For two dimensional source-arrays,
each subscript is stored as either a one-byte binary number within the two-byte pointer-ar-
ray element, or as a two-byte binary number within the four-byte pointer-array element.
If the number of pointer-array elements exceeds the number of source-array elements, the
first unused pointer-array element is set to a value of all HEX(00).

Some versions of NPL allow a two-dimensional array to be defined with more than
65535 rows or columns. However, subscripts greater than 65535 can not be stored in
the pointer-array when a two-dimensional array is used.

The pointer-array produced by MAT SORT can be used in several ways:

1. It can be used in conjunction with a MAT MOVE statement to MOVE the source-ar-
ray to an output array in order of the pointer-array.

NPL Statements Guide 2-435

MAT SORT

MAT SORT

LANGUAGE STATEMENTS

MAT SORT (cont.)

NOTE:

2. It can be used to directly access the source-array by use of the subscripts stored. This
permits the programmer to access the source-array in more complex ways. One such
use would be to access the source-array in descending order.

For example, refer to the following:

:10 DIM 1$(50)8, T$100, P$(50)2: REM T$=TEMP; P$(=POINTER
:20 MAT INPUT 1$
:30 MAT SORT I$() TO T$,P$()
:40 FOR X=50 TO 1 STEP -1
PRINT I$S(VAL(P$(X),2))
NEXT X

prints each element of I$() in descending sequence.

This example uses a one-dimensional source array. For a two-dimensional array, the
logic for accessing the source-array directly based on the subscripts stored in the
pointer-array is slightly different because each element of the pointer-array con-
tains subscripts for both row and column rather than a single two-byte subscript:

:10 DIM 1$(25,2)8, T$100, P$(50)2: REM T$=TEMP; P$(=POINTER
:20 MAT INPUT I$
:30 MAT SORT I$() TO T$,P$()
:40 FOR X=50 TO 1 STEP -1
PRINT I$(VAL(STR(P$(X),,1)),VAL(STR(P$(X),2,1)))
NEXT X

MAT SORT is also frequently used in conjunction with MAT MERGE to produce a
sorted output array based on multiple sorted source arrays.

Only alpha-arrays can be specified as the source-array to a MAT SORT operation. If sort-
ing of numeric arrays is required, the numeric array must first be moved to an alpha-array
with the same dimensions by use of the MAT MOVE statement. Then, after the sort, the
pointer-array indexes the numeric-array in sorted order. Example 2 below illustrates this
process. Refer to MAT MOVE for further details on conversion between numeric and al-
pha arrays.

2-436

NPL Statements Guide

LANGUAGE STATEMENTS

MAT SORT

MAT SORT (cont.)

Examples:

10 MAT SORT A$() TO T$,P$()
10 MAT SORT A$() (2,3) TO T$,P$()

:0010 DIM A$(5,3)16,T$30,P$(15)2,X$(5,3)16

:0020 MAT INPUT A$

:0030 MAT SORT A$() TO T$,P$()

:0040 LIST DIM *A$(,P$(:REM List contents of array variables in the
range of A$ to P$.

:0100 MAT MOVE A$(),P$(1) TO X$(1,1)

:0120 LIST DIM *X$(:REM List contents of resulting move-array

:0200 END

‘RUN

Results: (after MAT INPUT AS operation is performed)

DIM A$(5,3)16

(L1
(1,2)
(1,3)
(2,1)
(2,2)
(2,3)
(3.1)
(3.2)
(3.3)
(4.1)
(4.2)
(4.3)

P$(}522

"AAAAAAAA " HEX(4141 4141 4141 4141 2020 2020 2020 2020)
"CCCCCCCC " HEX(4343 4343 4343 4343 2020 2020 2020 2020)
"3333333333 " HEX(4A4A AAAA AAAA AALA 4AAA 2020 2020 2020)
"EEEEEEEEEEE " HEX(4545 4545 4545 4545 4545 4520 2020 2020)
HINE " HEX(4949 4949 4949 4949 2020 2020 2020 2020)
"QQQQQQQQQQQQQ " HEX(5151 5151 5151 5151 5151 5151 5120 2020)
"JuuUuULU " HEX(5555 5555 5555 5520 2020 2020 2020 2020)
"IN " HEX(4949 4949 4949 4949 4949 2020 2020 2020)
"MMMMMMMMMM * HEX(4D4D 4D4D 4D4D 4D4D 4D4D 2020 2020 2020)
"KKKKKKKKKK " HEX(4B4B 4B4B 4B4B 4B4B 4B4B 2020 2020 2020)
"PPPPPPPPPPPPP " HEX(5050 5050 5050 5050 5050 5050 5020 2020)
PXXXXXXXXXXX " HEX(5858 5858 5858 5858 5858 5820 2020 2020)
PXXXXXXXXXXXXX " HEX(5858 5858 5858 5858 5858 5858 5820 2020)
"J33333333) " HEX(4A4A 4AAA AAAA AALA 4AAA 2020 2020 2020)
"111111111111 " HEX(3131 3131 3131 3131 3131 3131 2020 2020)

HEX(0503)

HEX(0101)

HEX(0102)

HEX(0201)

HEX(0202)

HEX(0302)

HEX(0103)

HEX(0502)

HEX(0401)

HEX(0303)

HEX(0402)

HEX(0203)

HEX(0301)

HEX(0403)

HEX(0501)

NPL Statements Guide

2-437

MAT SORT

LANGUAGE STATEMENTS

MAT SORT (cont.)

NOTE: AS$() is the source-array

P$() is the pointer-array
TS is the temp-variable

DIM X$(5,3)16

(1,1) "1111111121111 " HEX(3131 3131 3131 3131 3131 3131 2020 2020)
1,2) "AAAAAAAA " HEX(4141 4141 4141 4141 2020 2020 2020 2020)
1,3) "CCcccccee " HEX(4343 4343 4343 4343 2020 2020 2020 2020)
(2,1) "EEEEEEEEEEE " HEX(4545 4545 4545 4545 4545 4520 2020 2020)
(2,2) "IN " HEX(4949 4949 4949 4949 2020 2020 2020 2020)
(2,3) R " HEX(4949 4949 4949 4949 4949 2020 2020 2020)
(3,1) "JJ333333IJ " HEX(4A4A 4A4A 4A4A 4A4A 4A4A 2020 2020 2020)
3,2) "JJ3333333J " HEX(4A4A 4A4A 4A4A 4A4A 4A4A 2020 2020 2020)
(3,3) "KKKKKKKKKK " HEX(4B4B 4B4B 4B4B 4B4B 4B4B 2020 2020 2020)
4,1) "MMMMMMMMMM " HEX(4D4D 4D4D 4D4D 4D4D 4D4D 2020 2020 2020)
4,2) "PPPPPPPPPPPPP " HEX(5050 5050 5050 5050 5050 5050 5020 2020)
(4,3) "QQQQQQQQQQQQQ " HEX(5151 5151 5151 5151 5151 5151 5120 2020)
(5,1) "Uuuuuuuy " HEX(5555 5555 5555 5520 2020 2020 2020 2020)
(5,2) IXXXXXXXX