
NIAKWA PROGRAMMING LANGUAGE

TECHNICAL REFERENCE GUIDE

 STATEMENTS GUIDE

1st Edition - July 1993
COPYRIGHT  1993 Niakwa, Inc.

Niakwa, Inc.
23600 N. Milwaukee Avenue
Mundelein, IL 60060

PHONE: (708) 634-8700 FAX: (708) 634-8718 TELEX: 3719965 NIAK UB

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES AND
PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa) has taken due care in preparing this manual. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution Li-
cense Agreement, the End-User Support Only License Agreement, the Niakwa Software
License Agreement and Warranty, or any other Niakwa License Agreement (collectively,
the "License Agreements") by which this software package was acquired.

This manual is to serve as a guide for use of the Niakwa software only and not as a
source of representations or additional undertakings by Niakwa. The licensee must refer
to the License Agreements for Niakwa product and service representations.

No ownership of Niakwa software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa, is prohibited.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, recording or by any information storage and retrieval system,
without prior written permission from Niakwa, Inc.

Niakwa is a registered trademark of Niakwa Management Services 1975 Ltd. and is licensed to Bluebird Sys-
tems.

Niakwa Programming Language (NPL), Bluebird, and SuperDOS are registered trademarks of Bluebird Sys-
tems.

All other trademarks are property of their respective holders.

PREFACE

The Niakwa Programming Language (NPL) Technical Reference Guide consists of two
manuals: the Programmer’s Guide and the Statements Guide. The Technical Reference
Guide is intended as a hardware-independent reference for programmers in the correct
use of the NPL and its program development and debugging facilities. It should be used
in conjunction with the NPL Supplements, which provide operating system-specific infor-
mation as it relates to NPL and its installation, and the Runtime User’s Guide, which pro-
vide platform-specific information on installing and operating the NPL Runtime.

NOTE: Refer to the Programmer’s Guide Preface for a complete overview of the NPL docu-
mentation.

PREFACE

NPL Statements Guide P - 1

Table of Contents

PREFACE

INTRODUCTION
Overview...1-1
Notational Conventions ..1-1

Form of Presentation ..1-2
Statement Description Layout..1-3
Statement Conventions...1-4
Terminology ...1-7
Variable Names ..1-9

Organization of the Statements Guide..1-14

LANGUAGE STATEMENTS
Overview...2-1

ABS Function ...2-2
ADD[C] Alpha-operator...2-3
+=numeric expression ..2-5
$ALERT ...2-6
ALL Alpha-operand ...2-7
AND Alpha-operator ..2-9
ARC COS Function..2-11
ARC SIN Function ...2-12
ATN Function - ARC TANGENT...2-13
BIN Function/Alpha-operand...2-14
BOOL Alpha-operator..2-16
$BOXTABLE...2-19
BREAK...2-23
$BREAK...2-25
CASE Default ...2-26
CASE Logical...2-28
CASE Numeric ...2-30
CASE String ...2-32

Table of Contents PREFACE

NPL Statements Guide TOC - 1

CLEAR ...2-35
$CLOSE ...2-38
COM ..2-40
COM CLEAR ..2-44
& (Concatenation) Alpha-Operator..2-46
CONTINUE..2-47
CONTINUE LOAD ...2-48
CONTINUE NEXT..2-49
CONTINUE RETURN...2-51
CONVERT ...2-55
COPY..2-59
COS Function ...2-63
DAC Alpha-operator ..2-60
DATA ...2-62
DATA LOAD BA ..2-63
DATA LOAD BM..2-65
DATA LOAD DA ..2-68
DATA LOAD DC ..2-71
DATA LOAD DC OPEN...2-73
DATA SAVE BA...2-76
DATA SAVE BM ..2-80
DATA SAVE DA...2-85
DATA SAVE DC...2-88
DATA SAVE DC CLOSE ...2-90
DATA SAVE DC OPEN ...2-91
DATE..2-94
DBACKSPACE..2-96
DEFFN’ Keyboard Input..2-98
DEFFN’ Subroutine..2-100
DEFFN Function Definition...2-104
DEFFN@PART..2-106
DELETE ...2-108
$DEMO ..2-110
$DET...2-113
$DET (cont.) ...2-114
$DEVICE..2-115
DIM...2-126
DIM Constant Variable Declarations...2-131
DIM /PUBLIC ..2-133
DIM /RECURSIVE..2-135

LANGUAGE STATEMENTS Table of Contents

TOC - 2 NPL Statements Guide

DIM /STATIC ..2-137
$DISCONNECT...2-140
DO/ENDDO ...2-141
DSC Alpha-operator...2-146
DSKIP...2-148
ELSE...2-146
ELSE Structured...2-148
END ..2-149
$END ..2-150
END FUNCTION...2-152
END IF..2-153
END PROCEDURE...2-154
END PUBLIC...2-155
END RECORD...2-156
END SWITCH..2-157
ERR Function ...2-158
ERR$...2-160
ERROR...2-162
EXEC Key ..2-165
EXP Function ...2-166
FIELD...2-167
String FIELD-Expressions - Alpha-Variable Equivalent2-170
Numeric FIELD-Expressions - Term in Numeric Expression.....................2-172
$FIELDFORMAT Function...2-173
#FIELDLENGTH Function ...2-175
#FIELDSTART Function...2-177
FIX Function...2-179
FN Function...2-180
FOR/BEGIN Structured ...2-182
FOR/TO..2-184
$FORMAT DISK ...2-187
FUNCTION..2-188

’Function-name (...) Numeric-Expression Equivalent2-191
’Function-name$(...) Literal-String Equivalent ...2-192
$GIO ...2-193
#GOLDKEY Function ...2-200
GOSUB...2-203
GOSUB’ ...2-205
GOTO ...2-209
HALT Key..2-211

Table of Contents LANGUAGE STATEMENTS

NPL Statements Guide TOC - 3

$HELP ..2-212
$HELPINDEX..2-214
HEX Function...2-217
HEXPACK ...2-219
HEXPRINT ...2-220
HEXUNPACK ...2-221
#ID Function...2-222
$IF...2-223
IF/THEN...2-228
IF END THEN..2-234
IMAGE (%) ..2-236
INCLUDE...2-238
INIT ..2-241
INPUT...2-242
INPUT SCREEN..2-245
INT function ...2-254
$KEEPREMS ...2-255
$KEYBOARD..2-259
KEYIN..2-264
LEN Function ...2-267
LET Alpha Assignment..2-269
LET Numeric Assignment..2-273
LET Numeric Field Assignment ..2-277
LGT Function ...2-278
LIMITS...2-279
LIMITS INDEX ...2-282
LINPUT..2-284
LIST (General Parameters) ..2-288
LIST..2-290
LIST #...2-295
LIST ’..2-299
LIST DC ...2-304
LIST DIM ...2-309
LIST DT..2-314
LIST FIELD ..2-318
LIST FUNCTION ..2-322
LIST PROCEDURE...2-326
LIST PUBLIC DEFFN...2-330
LIST PUBLIC FIELD ..2-334
LIST PUBLIC FUNCTION ...2-338

LANGUAGE STATEMENTS Table of Contents

TOC - 4 NPL Statements Guide

LIST PUBLIC PROCEDURE ...2-342
LIST PUBLIC RECORD ...2-345
LIST PUBLIC V...2-348
LIST RECORD ..2-351
LIST Statement Label References ...2-355
LIST STACK..2-359
LIST STACK DIM...2-363
LIST T ..2-367
LIST V..2-371
LOAD Command ...2-376
LOAD Statement ..2-377
LOAD’..2-380
LOAD BOOT Command ...2-382
LOAD DA Command ..2-384
LOAD DA Statement ...2-386
LOAD RUN..2-389
LOG Function...2-391
LOOP..2-392
$MACHINE ...2-394
MAT CON..2-400
MAT COPY..2-401
MAT IDN ...2-404
MAT INPUT...2-405
MAT INV ...2-407
MAT MERGE ..2-410
MAT MOVE ..2-416
MAT* (Multiply)..2-423
MAT PRINT...2-424
MAT READ ...2-425
MAT REDIM ...2-426
MAT SEARCH ..2-429
MAT SORT ..2-434
MAT TRN ..2-441
MAT ZER...2-442
MAT Addition ..2-443
MAT Assignment ...2-444
MAT Scalar Multiplication ..2-445
MAT Subtraction..2-446
MAX Function..2-448
MIN Function ...2-449

Table of Contents LANGUAGE STATEMENTS

NPL Statements Guide TOC - 5

MOD Function..2-450
MODULE Command ...2-451
MOVE ..2-452
MOVE END ...2-455
$MSG ...2-457
$NAMEOF() - Built-in String Function ..2-456
$NETID ..2-458
NEXT..2-459
NEXT CLEAR ...2-461
NUM Function..2-463
$NUMBERS ..2-464
$OBJECT ...2-466
ON ERROR ..2-468
ON/GOSUB ...2-471
ON/GOTO ..2-473
ON/SELECT...2-475
$OPEN..2-477
$OPTIONS ...2-479
OR Alpha-operator ...2-491
$OSERR ...2-493
PACK..2-495
$PACK..2-497
#PART Function...2-521
#PI Function ...2-522
POS Function..2-523
PRINT ..2-525
PRINT AT Function ...2-529
PRINT BOX Function..2-531
PRINT HEXOF Function...2-533
PRINT SCREEN ..2-534
PRINT TAB Function ..2-538
PRINT TO ..2-539
$PRINTER..2-542
PRINTUSING ...2-544
PRINTUSING TO ...2-548
PROCEDURE ..2-550
’Procedure-name (Call PROCEDURE) ...2-553
$PROGRAM ..2-554
$PSTAT..2-556
PUBLIC..2-558

LANGUAGE STATEMENTS Table of Contents

TOC - 6 NPL Statements Guide

READ ...2-560
READ DC...2-563
RECORD..2-566
#RECORDLENGTH Function ..2-568
$RELEASE PART ...2-569
$RELEASE TERMINAL...2-570
REM..2-572
REM $PC..2-574
RENAME ...2-576
RENAME DEFFN’ ..2-577
RENAME FIELD...2-579
RENAME FUNCTION..2-581
RENAME PROCEDURE ..2-583
RENAME RECORD..2-585
RENAME = (Statement Label) ..2-588
RENAME V ...2-590
RENUMBER..2-592
REPEAT ...2-595
RESAVE...2-596
RESET ..2-598
RESTORE ..2-600
RETURN ..2-602
RETURN CLEAR ...2-605
$REV ..2-607
RND Function ..2-609
ROTATE ..2-610
ROUND Function...2-612
RUN Command ..2-613
RUN Statement ..2-615
SAVE..2-618
SAVE BOOT Command..2-623
SAVE DA...2-625
SCRATCH..2-628
SCRATCH DISK ...2-630
$SCREEN...2-633
SELECT..2-635
$SELECT..2-637
SELECT @PART...2-640
SELECT CI...2-641
SELECT CO...2-642

Table of Contents LANGUAGE STATEMENTS

NPL Statements Guide TOC - 7

SELECT D,R,G ..2-644
SELECT DISK/FILE-NUMBER...2-646
SELECT DRIVER..2-648
SELECT ERROR ...2-649
SELECT INPUT...2-652
SELECT LINE ...2-653
SELECT LIST ..2-649
SELECT LISTLINE...2-650
SELECT LOG ..2-651
SELECT ON/OFF ..2-654
SELECT ON CLEAR ..2-655
SELECT P ..2-656
SELECT PLOT...2-657
SELECT PRINT...2-658
SELECT ROUND ..2-660
SELECT TAPE...2-661
SELECT TC ...2-662
SELECT TERMINAL..2-663
$SER...2-665
SET DATA...2-666
SET PROGRAM ..2-668
SGN Function...2-671
$SHELL..2-672
SIN Function...2-675
$SOURCE Function ..2-676
SPACE Function ..2-680
SPACEF Function ..2-683
SPACEK Function..2-684
SPACEP Function ..2-686
SPACEV Function..2-687
SPACEW Function...2-688
SQR Function ...2-689
= statement-name (Statement Labels) ..2-690
STEP...2-692
STEP # ..2-695
STEP OFF...2-697
STOP...2-698
STR() Function...2-701
SUB[C] Alpha-operator ...2-704
-= numeric-expression..2-706

LANGUAGE STATEMENTS Table of Contents

TOC - 8 NPL Statements Guide

SWITCH Logical..2-707
SWITCH Numeric..2-710
SWITCH String ..2-712
$TAB ..2-714
TAN Function...2-716
#TERM ...2-717
TIME...2-718
TRACE ...2-720
TRACE OFF...2-722
TRACE # ..2-723
TRACE ’...2-726
TRACE V ...2-729
$TRAN ...2-733
UNPACK..2-735
$UNPACK..2-737
UNSCRATCH..2-751
UNTIL ..2-754
USES...2-755
VAL Function...2-757
VER Function...2-760
VERIFY..2-762
WEND ..2-764
WHILE ...2-765
XOR Alpha-operator ..2-766

LIBRARY FUNCTIONS
Overview...3-1
Development Package Files for Library Functions..3-2
Changes to $SOURCE Functionality to Support LIN’s ..3-3

’SourceioGetTableLengths...3-3
’SourceioLoadIdentifierTable ..3-4
’SourceioReadLine...3-4
$SOURCE ..3-4
’SourceioCloseObjectFile ..3-4

$OBJECT Functionality Changes for LIN’s..3-5
 ’ObjectioCreateFile ...3-5
’ObjectioClearIdentifierTable ..3-5
’ObjectioAppendLine...3-5
’ObjectioAppendLongIdentifierTable ...3-6

Table of Contents LIBRARY FUNCTIONS

NPL Statements Guide TOC - 9

’ObjectioCloseFile..3-6
FIELD Type Specifications ..3-6

Defining Field Type Using $PACK Mnemonic Codes................................3-7
FIELD Type NDM Specifications..3-8

Defining Field Type Using NDM Mnemonic Codes3-8

APPENDIX A

RESERVED WORDS TABLE

LANGUAGE COMPATIBILITY CHART
Overview.. B-1

Table of Contents

TOC - 10 NPL Statements Guide

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter provides general information relating to this Statements Guide and its use.

Section 1.2 explains the notational conventions used in this guide.

Section 1.3 discusses the organization and presentation of material in this Statements
Guide.

1.2 Notational Conventions

The NPL Statements Guide uses the following notational conventions.

INTRODUCTION Overview

NPL Statements Guide 1 - 1

NOTE: Notes provide information of particular importance.

WARNING--Warnings are special conditions that require extra care by
the user.

Hint: Hints provide helpful comments pertaining to the use of particular features.

1.2.1 Form of Presentation

The complete set of all NPL instructions is found in Chapter 2 of this guide, in alphabeti-
cal order. If an instruction begins with a special character ($, =,or #), the special character
is ignored for ordering purposes. For example, the instruction #ID is located between
HEXUNPACK and IF.

For each instruction, the verb definition, type, and English equivalent are shown.

In the verb type area, the NPL instructions are classed as either statements, functions, or
operators. A statement is a programmable instruction. A function is used to construct nu-
meric or alpha-expressions within a statement. Operators perform operations on alpha-op-
erands and can be used only within alpha-expressions on the right side of an alpha LET
statement.

Verbs which are used as functions or operators are so indicated on the instruction defini-
tion line.

In the "Compatibility Issues" area of each statement, the following issues are discussed:

1. Compatibility with earlier revisions of NPL

If a statement is not supported on all NPL revisions (starting with 1.00.02), the revi-
sion number and release date upon which it was first supported are specified.

2. Compatibility with Wang 2200 Basic-2

All differences in syntax or functionality from the Wang 2200 Basic-2 language are
described.

Notational Conventions INTRODUCTION

1 - 2 NPL Statements Guide

3. NPL platform versions

NPL operates on many different computers under many different operating systems.
Although every effort is made to achieve complete compatibility across different plat-
forms, operating systems and environments, 100% compatibility is not possible. In-
compatibilities based on different hardware versions which do result are primarily
limited to certain I/O routines. Any statement which has even potential incompatibili-
ties across platform versions is so indicated. In all cases where incompatibilities are
noted in this section, the incompatibilities are fully described in the appropriate NPL
operating system-specific Supplement.

1.2.2 Statement Description Layout

Information pertaining to each statement is delineated in a group of specific categories.
These categories are:

• General Form. This section shows the statement format, along with variables, op-
erators or other parameters. The general form of the statement is enclosed within
a syntax box, and attributes of variables or operators are defined within this box.
Refer to the next section for conventions used to display the general form of NPL
statements.

• Discussion. This section explains the purpose and circumstances for using the
statement.

• Examples. This section provides one or more examples of how the statement may
be used in writing programs.

• Compatibility Issues. This section describes any considerations or problems with
using this statement in conjunction with Wang Basic-2 programs.

• References. This section lists any statements related to the statement being de-
scribed.

Here is an illustration of the statement description layout.

INTRODUCTION Notational Conventions

NPL Statements Guide 1 - 3

1.2.3 Statement Conventions

Format conventions are used to illustrate the various elements of NPL statements. These
conventions are described below.

• Each statement appears on a separate page, with the statement as a page header.

• The general form of each statement is enclosed within a box.

• Uppercase letters ("A" through "Z"), digits ("0" to "9"), and special characters
(such as "$", "#", ":") must always appear exactly as presented in the general for-
mat.

• All lower-case words indicate information that the user must supply. These
words appear in italic type.

ABS

 General Form:

 ABS (numeric-expression)

Discussion:

The ABS function computes the absolute value of a numeric-expression. This is valid wherever a
numeric function is legal.

Examples:
 0010 PRINT "RESULT"=";ABS(-4.75)

Compatibility Issues:

References:

Compatibility
Issues

References

Examples

General Form

Statement

Discussion

Illustration of Statement Description

Notational Conventions INTRODUCTION

1 - 4 NPL Statements Guide

For example:

LEN (alpha-variable)

The user must supply the alpha-variable.

• When braces, "{ }", enclose a vertically stacked list, or a horizontal list with
each item separated by a comma (","), the user must choose one of the options
within braces. Information within braces is shown in italic type.

For example:

ALL ({literal-string, alpha-variable, two-hexdigits})

or

ALL ({literal-string })
 {alpha-variable }
 {two-hexdigits }

Here, the ALL instruction must be followed by one and only one of the items in the list.

• Brackets, "[]", indicate that the enclosed items are optional. When brackets en-
close a vertical list or a horizontal list, the user may specify one or none of the
items. Information within brackets is shown in italic type.

For example:

 INPUT [literal-string,] variable [,variable] ...

Here, the INPUT instruction may optionally contain a literal-string fol-
lowed by an optional comma preceding the required "variable". Additional
variables may optionally be specified.

or:

CLEAR [V]
 [N]
 [P [line-number1][,[line-number2]]]

INTRODUCTION Notational Conventions

NPL Statements Guide 1 - 5

Here, either the V, N, or P parameter may be specified, but no parameter is
required.

NOTE: Here, line-number parameters may be optionally specified only if the "P" parame-
ter is specified.

• The presence of an ellipsis (...) within any format indicates that the unit immedi-
ately preceding the ellipsis can occur one or more times in succession.

For example:

 DEFFN’integer [(variable[,variable]...)]

Here, any number of "variable" may be specified, but the format ",variable"
must be used for the second and subsequent "variables".

• All other punctuation such as commas or parentheses must be included where
shown.

Here is an illustration of statement conventions.

FUNCTION

General Form:

 FUNCTION identifier return-type [(parameter[,parameter]...)]

Where:

return-type = [$]

parameter = [/POINTER][_]identifier [$[length]]

attribute = {/PUBLIC }

 {/FORWARD }

Braces in
italics--user must
choose an option

Statement page header

General form

Uppercase, digits,
special characters as
shown

Lower-case in
italics--user must supply

Include punctuation as
shown

Brackets in
italics--optional
items

Ellipsis in
italics--preceding
item can be repeated
in succession

Illustration of Statement Conventions

Notational Conventions INTRODUCTION

1 - 6 NPL Statements Guide

1.2.4 Terminology

The following terms are commonly used and are specifically related to the statements de-
scribed in Chapter 2 of this manual. Those terms not found in this section are defined by
the "Where:" clause for the individual statement.

address-var:
An alpha-variable in which the first three bytes contain an ASCII representation of a
hex-digit (0-9; A-F) which corresponds to a NPL device address must be specified.

alpha-array:
An alpha array variable must be specified.

alpha-expression:
Any valid alpha expression may be used. This includes the use of literals as well as
alpha functions. Refer to LET for further details on alpha expressions.

alpha-receiver:
A series of alpha variables delimited by commas. At least one alpha variable must be
specified. When multiple variables are specified, all are set to the value of the expres-
sion on the right side of the equivalence.

alpha-variable:
An alpha variable, either scalar or array, alpha array element, STR function, or string
field-expression must be specified.

array-variable:
A numeric or alpha array variable must be specified.

device-address:
A valid NPL device address in the format /xxx where x is a hex-digit must be speci-
fied. Refer to Chapter 7 of the NPL Programmer’s Guide for details on NPL device
addresses.

diskimage:
Refers to a NPL diskimage file or a "raw" disk device. Refer to Chapter 7 of the NPL
Programmer’s Guide for details on diskimage files and "raw" devices.

file-number:
A valid NPL file number in the format #X where 0 <= X <= 15 must be specified.
File numbers above 15 require the appearance of a SELECT #n statement in the pro-
gram. Refer to Chapter 7 of the NPL Programmer’s Guide for details on file numbers.

INTRODUCTION Notational Conventions

NPL Statements Guide 1 - 7

hex-digit:
A hexadecimal digit (0-9, A-F) must be specified.

identifier:
Any legal (long) identifier. Up to 255 alphanumeric characters (A-Z, a-z, 0-9 or _),
starting with a letter (digits, _ not permitted as first character).

line-number:
A valid NPL program line number must be specified. Valid values are in the range 0
to 32117.

literal-string:
An alpha literal string must be specified. This may be either a string (enclosed in
quotes) or a HEX literal.

logical-expression:
An conditional expression which evaluates to either true or false, used when making
decisions. Refer to the IF/THEN statement for further details on logical expressions.

numeric-array:
A numeric array variable must be specified. A specific element of a numeric-array
may not be specified.

numeric-constant:
A numeric constant must conform to the format:

[+]d...[.[d]...][E[+]d[d]]
[+] [-]

where:

d is a digit (0-9). Up to 13 digits may be specified.
+ or - are signs and may be either leading or trailing.
E is the exponent symbol (may be preceded by an optional sign and followed by one
or two digits).
. is a decimal point.

numeric-expression:
A valid numeric expression must be specified. This may include numeric constants,
functions, and variables. Refer to LET for further details on numeric expressions.

Notational Conventions INTRODUCTION

1 - 8 NPL Statements Guide

numeric field-expression:
An alpha-variable followed by a "." and a numeric field identifier. The numeric field
identifier may be either a scalar field or an array element. A numeric field-expres-
sion refers to a single numeric field of a record, using the named alpha-variable as a
buffer for the record.

numeric-receiver:
A numeric scalar or numeric array element used to receive the results of an operation.

numeric-scalar:
A valid numeric scalar variable must be specified.

numeric-variable:
A valid numeric variable, either scalar or array, must be specified.

simple-statement:
A simple statement is a statement that can stand alone as a complete program. Some
statements, in particular those used to implement structured programming constructs,
are incomplete in that they require a corresponding statement to terminate them (e.g.,
WHILE requires WEND).

statement-label:
An identifier which is appears elsewhere in the program as a statement label (=identi-
fier).

string field-expression:
An alpha-variable followed by a "." and a string field identifier. The string field iden-
tifier may be either a scalar field or an array element. A string field-expression refers
to a single string field of a record, using the named alpha-variable as a buffer for the
record.

1.2.5 Variable Names

The following variable names are used with the NPL statements defined in this manual.

NOTE: For historical reasons, short identifiers (a letter followed by 0-9 or a number in the
range 10-62 with no leading zeroes) used for numeric scalar, alpha scalar, numeric
array, and string array variables are always displayed in upper case.

INTRODUCTION Notational Conventions

NPL Statements Guide 1 - 9

Numeric Scalar
Numeric scalar variables names consist of an identifier. Some valid numeric scalar
variable names are:

A D2 X4 Apple
TimeOfDay DAY_OF_WEEK
APPLE window Stalag_17 uP_aNd_DoWn
 Cost_Of_Building_When_Renovations_Are_Complete_Not_Including_Tax

Alpha Scalar
Alpha scalar variable names consist of an identifier followed by a dollar sign ($).
Some valid alpha scalar variable names are:

A$ D2$ X4$ Apple$
TimeOfDay$ DAY_OF_WEEK$
APPLE$ window$ Stalag_17$ uP_aNd_DoWn$
 Name_Of_That_Singer_Who_Looks_Like_Julio_Iglesias_But_Isnt_Actually_Him$

Constant Scalars
Constant scalar names consist of an underline (_) followed immediately by a scalar
variable name. Some valid constant scalar names are:
_A _D2 _X4 _Apple$
_TimeOfDay _DAY_OF_WEEK
_APPLE _window _Stalag_17 _uP_aNd_DoWn
 _Cost_Of_Building_When_Renovations_Are_Complete_Not_Including_Tax

NOTE: The variable _x is not the same as x. _x is defined as a constant variable, where x is a
numeric scalar and NPL treats them as such.

Numeric Array
Numeric array variable names consist of an identifier followed by a set of parenthe-
ses. Some valid numeric array variable names are:

A() D2() X4() Apple()
TimeOfDay() DAY_OF_WEEK()
APPLE() window() Stalag_17() uP_aNd_DoWn()
LongNumericArrayExample()

Notational Conventions INTRODUCTION

1 - 10 NPL Statements Guide

NOTE: Array names are distinct from scalar names. For example, A() and A are distinct
variable names.

Exceptions:
Several MAT statements allow reference to an entire array by designation of the root
name with no parentheses. For example:

MAT A = C + B

refers to numeric arrays A(), B(), and C().

Several listing or debugging type statements allow reference to numeric arrays by
specification of the root variable name followed by a single open parenthesis. For ex-
ample:

LIST V A(

will list all references to numeric array A().

Numeric Array Elements
A numeric array element consist of an identifier followed by one or more subscripts
in parentheses. If a one dimensional array is used, only a single subscript may be pre-
sent. If a two dimensional array is used, two subscripts must be present separated by
a comma. Some valid numeric array elements are:

A(1) D2(2,3) X4(5) Apple(2,4)
TimeOfDay(2,2) DAY_OF_WEEK(7)
APPLE(6) window(3) Stalag_17(6,2)
uP_aNd_DoWn(4) LongNumericArrayExample(6,6)

Alpha Array
Alpha array variable names consist of an identifier followed by a dollar sign, fol-
lowed by a set of parenthesis "()". Some valid alpha array variable names are:

A$() D2$() X4$() Apple$()
TimeOfDay$() DAY_OF_WEEK$()
APPLE$() window$() Stalag_17$() uP_aNd_DoWn$()
Names_Of_All_The_Crew_Who_Are_Of_Scottish_Ancestry$()

INTRODUCTION Notational Conventions

NPL Statements Guide 1 - 11

NOTE: Array names are distinct from scalar names. For example, A$() and A$ are distinct
variable names.

Exceptions:
Several MAT statements allow reference to an entire array by designation of the root
name with no parentheses. For example:

MAT PRINT A$,B$

refers to alpha array A$(), and B$().

Several listing or debugging type statements allow reference to alpha arrays by speci-
fication of the root variable name followed by a single open parenthesis. For exam-
ple:

LIST V A$(

will list all references to alpha array A$().

Alpha Array Elements
An alpha array element consists of an identifier, followed by a dollar sign ($) fol-
lowed one or more subscripts (numeric expressions) in parentheses. If a one-dimen-
sional array is used, only a single subscript may be present. If a two-dimensional
array is used, two subscripts must be present, separated by a comma. Some valid al-
pha array elements are:

A$(1) D2$(2,3) X4$(5)
Apple$(X+Y) TimeOfDay$(Local)
DAY_OF_WEEK$(Index) APPLE$(I0) window$(pane)
 Stalag_17$(William,Holden) uP_aNd_DoWn$(sLiNky(Toy)*SQR(5))
 Spread_Sheet_With_All_My_Personal_Information$(Row,Column)

Constant Array
Constant array variable names consist of an underline (_) followed by an identifier
and set of parentheses. Some valid constant array names are:

_A() _D2() _X4() _Apple$()
_TimeOfDay() _DAY_OF_WEEK()
_APPLE() _window() _Stalag_17() _uP_aNd_DoWn()_
 Coordinates_Where_The_ENTERPRISE_Completed_Its_5_Year_Mission()

Notational Conventions INTRODUCTION

1 - 12 NPL Statements Guide

Constant Array Elements
A constant array element consists of an underline (_), followed by an identifier and
one or more subscripts (numeric expressions) in parentheses. If a one-dimensional ar-
ray is used, only a single subscript may be present. If a two-dimensional array is
used, two subscripts must be present, separated by a comma. Some valid constant ar-
ray elements are:

_A(1) _D2(2,3) _X4(5)
_Apple$(X+Y) _TimeOfDay(Local)
_DAY_OF_WEEK(Index) _APPLE$(I0) _window(pane)
 _Stalag_17\(William,Holden) _uP_aNd_DoWn(sLiNky(Toy)*SQR(5))
 _Spread_Sheet_With_All_My_Personal_Information(Row,Column)

Numeric field-expression
A string field identifier consists of a "." followed by either a numeric or numeric ar-
ray element. A numeric field-expression consists of an alpha-variable followed by a
numeric field identifier. Some valid numeric field-expressions are:

Employee_Record$.Number_Of_Children
Employee_Record$.YTD_Misc_Deduction(1)
Employee_Record$.Department_Number
Deduction_Table$(X).Limit
 STR(Buffer$,P).Header_Extension$.Header_Extension_Length

String field-expression
A string field identifier consists of a "." followed by either an alpha scalar or alpha ar-
ray element. A string field-expression consists of an alpha-variable followed by a
string field identifier. Some valid string field-expressions are:

Employee_Record$.Employee_Name$
Employee_Record$.Address1$
Employee_Record$.Child_name$(1)
Deduction_Table$(X).Description$
STR(Buffer$,P).Header_Extension$.Header_Extension_ID$

INTRODUCTION Notational Conventions

NPL Statements Guide 1 - 13

1.3 Organization of the Statements Guide

This Statements Guide is divided into the following chapters:

• Chapter 1 explains how information has been presented in this guide.

• Chapter 2 contains detailed information and instructions on using NPL state-
ments.

• Chapter 3 describes the operation of the library functions available in the NPL.

In addition, to the sections listed above, this Statements Guide contains two appendices .
Appendix A lists reserved words and Appendix B describes NPL/Basic-2 statement com-
patibility.

Organization of the Statements Guide INTRODUCTION

1 - 14 NPL Statements Guide

CHAPTER 2

LANGUAGE STATEMENTS

2.1 Overview

This chapter contains descriptions, examples and other detailed information pertaining to
the NPL statements. Individual discussions of NPL statements, listed in alphabetical or-
der, begin on the following page.

OverviewLANGUAGE STATEMENTS

2-1 NPL Statements Guide

ABS Function

Discussion:

The ABS function computes the absolute value of a numeric-expression. This is valid
wherever a numeric function is legal.

Examples:

:0010 PRINT "RESULT=";ABS(-4.75)
:RUN
RESULT= 4.75

:0010 X=-10
:0020 PRINT "RESULT=";5*ABS(X)
:RUN
RESULT= 50

Compatibility Issues:

References:

General Form:

ABS(numeric-expression)

LANGUAGE STATEMENTS ABS Function

NPL Statements Guide 2-2

ADD[C] Alpha-operator

Discussion:

The ADD alpha-operator is used to add the binary value of an alpha-operand to the bi-
nary value of an alpha-variable. ADD may only be used in an alpha-expression in an al-
pha-assignment statement.

Each byte of alpha-operand is ADDed to each corresponding byte of the receiving alpha-
variable. The ADD operation is performed from right to left, starting with the right-most
byte. If "C" immediately follows the ADD alpha-operator, then carry propagation is ef-
fected between bytes to yield full multi-byte binary number addition.

If the value of alpha-operand and the receiving alpha-variable are of different lengths,
then the ADD algorithm implicitly extends the shorter value with leading zeroes prior to
ADDing. If the ADD resultant is larger than the receiving alpha-variable, then the extra-
neous high-order bytes of the resultant are truncated before assignment.

NOTE: Contrary to conventional alpha-variable operations, the ADD alpha-operator oper-
ates on all bytes of an alpha-variable (either as a receiver or alpha-operand), includ-
ing trailing spaces.

The ADD[C] alpha-operator is often used in conjunction with SUB[C], BIN and VAL.

General Form:

alpha-receiver = [...] ADD[C] alpha-operand [...]

Where:

alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }

ADD[C] Alpha-operator LANGUAGE STATEMENTS

2-3 NPL Statements Guide

ADD[C] (cont.)

Examples:

0010 A$=ADD B$
0010 A$=ADD ALL(01)
0010 A$=B$ ADD C$
0010 STR(A$,3,2)=ADD X$
0010 X$=ADDC HEX(00FF)
0010 Myrec$.Field$=ADD ALL(0F)
:0010 DIM A$2
:0020 A$=HEX(0121)
:0030 A$=ADD HEX(00FF)
:0040 PRINT "A$=";HEXOF(A$)
:RUN
A$=0120

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

BIN
SUB[C]
VAL

LANGUAGE STATEMENTS ADD[C] Alpha-operator

NPL Statements Guide 2-4

+=numeric expression Add to Variable Statement

Discussion:

The add to variable statement avoids the repetition of long variable names in common in-
crement uses (it is not intended to be faster than the common add).

This is not a numeric operator. It can only appear as a statement by itself.

NOTE: Only one variable is permitted on the left-hand side of the +=, but it may be either a
scalar or an array element.

Examples:

0010 I+=1
0010 I+=Array(X,Y)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

LET Numeric Assignment
-=

General Form:

numeric-var += numeric-expression

Where:

numeric-var = a valid numeric variable (i.e., sca-
lar or array element)

numeric-expression = a valid numeric expression

+=numeric expression LANGUAGE STATEMENTS

2-5 NPL Statements Guide

$ALERT

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
No operation is performed when this statement is encountered at execution time.

The compiler generates a warning when this statement is encountered.

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, signals the specified partition to
execute the subroutine specified by its programmable interrupt table for the ALERT con-
dition, provided such a subroutine has been defined, and interrupts are enabled in the tar-
get partition. The subroutine is performed at the next breakpoint in the partition’s
execution.

Interrupts are not supported by NPL.

References:

General Form:

$ALERT partition-number

LANGUAGE STATEMENTS $ALERT

NPL Statements Guide 2-6

ALL Alpha-operand

Discussion:

The ALL function creates a temporary character string of unlimited length with each char-
acter of the string equal to the character specified in the function. The ALL function may
be used as an alpha-operand to any alpha-operator and it is legal only in an alpha-expres-
sion in an alpha-assignment statement and in no other statement in the language.

The character to be used by the ALL function can be specified as a literal-string, an alpha-
variable or as a pair of hex digits (0-9 or A-F). If an alpha-literal or alpha-variable is
specified, only the first character is used by the ALL function.

The ALL function is useful for initializing alpha-variables (scalars and arrays).

Examples:

0010 A$=ALL(B$)
0010 A$=ALL(STR(B$,4,1))
0010 A$=ALL(" ")
0010 A$=C$ AND ALL(F0)

:0010 DIM A$5
:0020 A$=ALL(40)
:0030 PRINT A$
:RUN
@@@@@

:0010 DIM A$16
:0020 A$="AND SO ON" & ALL(".")
:0030 PRINT A$
:RUN
AND SO ON.......

0010 MyRec$.field1$ = ALL(20)

Compatibility Issues:

This statement is supported only with Release IV or greater.

General Form:

ALL ({literal-string })
 {alpha-variable }
 {two-hexdigits }

ALL Alpha-operand LANGUAGE STATEMENTS

2-7 NPL Statements Guide

References:

LANGUAGE STATEMENTS ALL Alpha-operand

NPL Statements Guide 2-8

AND Alpha-operator

Discussion:

The AND logical alpha-operator performs a logical AND operation on the alpha-operand
and the contents of the alpha-receiver, the result of which is then assigned to the alpha-re-
ceiver. The AND alpha-operator is legal only in an alpha-expression in an alpha-assign-
ment statement.

The AND operation is performed on a byte-by-byte basis, moving from left to right in
each field, for a number of bytes equal to the shorter of:

• The defined length of the alpha-receiver.

• The defined length of the alpha-operand (if the alpha-operand is an alpha-vari-
able or system-variable, trailing spaces are included in the operation).

If the defined length of the alpha-operand is shorter than the defined length of the alpha-
receiver, then the remaining bytes of the alpha-receiver remain unchanged (i.e., padding
with spaces is not performed).

NOTE: In regard to the "AND" syntactic unit, this may also appear in conditional-expres-
sions (e.g., IF A=1 AND B=2 THEN ...). However, the similarity is syntactical only
and its use in a conditional-expression has a completely different meaning.

General Form:

alpha-receiver = [...] AND alpha-operand [...]

Where:

alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }

AND Alpha-operator LANGUAGE STATEMENTS

2-9 NPL Statements Guide

AND Alpha-operator (cont.)

Examples:

0010 MyRec$.Field2$=AND B$
0010 STR(A$,4,5)=AND B$
0010 A$=C$ AND "0"

:0010 DIM A$5
:0020 A$=ALL(FF)
:0030 A$=AND HEX(7F)
:0040 PRINT HEXOF(A$)
:RUN
7FFFFFFFFF

In statement 30 of the above example, the defined length of A$ is 5, the length of the op-
erand (HEX(7F)) is one; therefore, only the first byte of A$ is ANDed and all remaining
bytes are unchanged.

:0010 DIM A$5
:0020 A$=ALL(FF)
:0030 A$=AND ALL(7F)
:0040 PRINT HEXOF(A$)
:RUN
7F7F7F7F7F

In statement 30 of this example, the defined length of A$ is 5, but the length of the oper-
and (ALL(7F)) is unlimited; therefore, all bytes of A$ are ANDed.

Compatibility Issues:

This statement is supported only with Release IV or greater.

References

BOOL

LANGUAGE STATEMENTS AND Alpha-operator

NPL Statements Guide 2-10

ARC COS Function

Discussion:

The ARC COS function computes the value of the arccosine of a numeric-expression.
This is valid wherever a numeric function is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

:0010 A=.25
:0020 B=ARC COS(A)*10
:0030 PRINT "RESULT="; B
:RUN
RESULT= 13.181160716528

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

General Form:

ARC COS(numeric-expression)

ARC COS Function LANGUAGE STATEMENTS

2-11 NPL Statements Guide

ARC SIN Function

Discussion:

The ARC SIN function computes the value of the arcsine of a numeric-expression. This
is valid wherever a numeric function is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

:0010 A=.25
:0020 B=ARC SIN(A*.25)*2
:0030 PRINT "RESULT="; B
:RUN
RESULT= .12508152359299

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

General Form:

ARC SIN(numeric-expression)

LANGUAGE STATEMENTS ARC SIN Function

NPL Statements Guide 2-12

ATN Function - ARC TANGENT

Discussion:

The ATN function computes the value of the arctangent of a numeric-expression. This is
valid wherever a numeric function is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

:0010 A=.125
:0020 B=ATN(A*.25)+1.5
:0030 PRINT "RESULT="; B
:RUN
RESULT= 1.5312398334303

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

General Form:

ATN(numeric-expression)

ATN Function - ARC TANGENT LANGUAGE STATEMENTS

2-13 NPL Statements Guide

BIN Function/Alpha-operand

Discussion:

The BIN function is used to convert the integer result of a numeric-expression into char-
acter string format, binary representation. The resulting character string may then be used
as an alpha-operand to any alpha-operator in an alpha-expression. The BIN function may
only be used in an alpha-expression in an alpha-assignment statement and cannot be used
in any other statement in NPL. The BIN function is most useful for conversion of num-
bers stored in internal numeric format to binary for special manipulation or use.

The range-expression of the BIN function is used to specify both the length and content
of the resultant character string. The range-expression must evaluate to a number from -6
to +5, otherwise an error results. If the range-expression is omitted, a value of 1 is as-
sumed.

The absolute value of the range-expression indicates the length of the resultant character
string to be generated by BIN. A length from 0 bytes up to 6 bytes is acceptable.

The sign of the range-expression value indicates the type of binary number to be gener-
ated in the character string. If the sign is positive (+), an unsigned binary integer is gener-
ated. If the sign is negative (-), a signed, two’s complement, binary integer is generated.

An error is generated if the numeric-expression cannot be fully represented within a char-
acter string of the selected length. The following table summarizes the range of numbers
which can be converted for each possible value of the range-expression.

General Form:

BIN(numeric-expression[,range-expression])

Where:

range-expression = a numeric-expression with a result be-
tween -6 and +5.

LANGUAGE STATEMENTS BIN Function/Alpha-operand

NPL Statements Guide 2-14

BIN Function/Alpha-operand (cont.)

Range
Expression

Resultant
Length (bytes) Type Range allowed for numeric-expression

-6 6 signed -140737488355328 140737488355327
-5 5 signed -549755813888 549755813887
-4 4 signed -2147483648 2147483647
-3 3 signed -8388608 8388607
-2 2 signed -32768 32767
-1 1 signed -128 127
0 0 unsigned 0 0
1 1 unsigned 0 255
2 2 unsigned 0 65535
3 3 unsigned 0 16777215
4 4 unsigned 0 4294967295
5 5 unsigned 0 1099511627775

Examples:

0010 A$=BIN(X/2,3)
0010 A$=BIN(X)
0010 A$=BIN(X,-(1+Y))

:0010 X$=BIN(65) : REM BINARY VALUE OF DECIMAL 65 IS ASCII "A"
:0020 PRINT X$;" ";HEXOF(X$)
:RUN
A 41202020202020202020202020202020

:0010 B$=BIN(18505,2)
:0020 PRINT B$;" ";HEXOF(B$)
:RUN
HI 48492020202020202020202020202020

Compatibility Issues:

On the Wang 2200, the BIN function generates up to a maximum two byte unsigned char-
acter string only. Furthermore, on the Wang 2200, the second BIN operand, if specified,
must be a ",2", numeric-expressions are not allowed in NPL.

References:

VAL

BIN Function/Alpha-operand LANGUAGE STATEMENTS

2-15 NPL Statements Guide

BOOL Alpha-operator

Discussion:

The BOOL logical alpha-operator performs the specified logical operation on the alpha-
operand and the contents of the alpha-receiver, the result of which is then assigned to the
alpha-receiver. The BOOL alpha-operator is legal only in an alpha-expression in an alpha-
assignment statement.

The BOOL logical operation is performed on a byte-by-byte basis, moving from left to
right in each field, for a number of bytes equal to the shorter of:

• The defined length of the alpha-receiver.

• The defined length of the alpha-operand (if the alpha-operand is an alpha-vari-
able or system-variable, trailing spaces are included in the operation).

If the defined length of the alpha-operand is shorter than the defined length of the alpha-
receiver, then the remaining bytes of the alpha-receiver remain unchanged (i.e., padding
with spaces is not performed).

The character immediately following BOOL represents the logical operation to be per-
formed. For example, BOOL7 would specify that a "not-AND" operation be performed.
The table on the following page lists the available hex digits with their corresponding
logical functions.

General Form:

alpha-receiver = [...] BOOLh alpha-operand [...]

Where:

h = hexadecimal digit (0-9 or A-F)

alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }

LANGUAGE STATEMENTS BOOL Alpha-operator

NPL Statements Guide 2-16

BOOL Alpha-operator (cont.)

BOOLh Logical Functions
Hex
Digit

Binary
Representation

Logical
Function

0 0000 Null
1 0001 Not-OR
2 0010 Operand does not imply receiver
3 0011 Complement of receiver
4 0100 Receiver does not imply operand
5 0101 Complement of operand
6 0110 Exclusive OR
7 0111 Not-AND
8 1000 AND
9 1001 Equivalence
A 1010 Receiver = operand
B 1011 Receiver implies operand
C 1100 Operand = receiver
D 1101 Operand implies receiver
E 1110 OR
F 1111 Identity

When working with complicated boolean functions, it is not necessary to memorize the
order of the 16 BOOL functions. The appropriate function to use can be easily deter-
mined by filling in the following truth table:

Bit in receiver is a 1 1 0 0
Bit in operand is a 1 0 1 0
Required result bit = (w) (x) (y) (z)

The resulting bit pattern wxyz specifies the correct Hex-digit to use as a BOOL function.

BOOL Alpha-operator LANGUAGE STATEMENTS

2-17 NPL Statements Guide

BOOL Alpha-operator (cont.)

For example, to "zero each bit in the receiver where the corresponding bit is a 1 in the op-
erand", the truth table would be filled in as follows:

Bit in receiver is a 1 1 0 0
Bit in operand is a 1 0 1 0
Required result bit = 0 1 0 0

Examples:

The resulting four bits 0100 specify that BOOL4 is the appropriate function to use. Using
this technique, it is clear that AND is equivalent to BOOL8 (result 1000) and OR is
equivalent to BOOLE (result 1110).

0010 A$=BOOL7 C$
0010 X$=BOOL1 Y$
0010 L$=BOOL9 ALL(7F)
0010 STR(X$,3,2)=BOOL1 B$

:0010 DIM X$2
:0020 X$=HEX(1100) BOOL9 HEX(1010) AND HEX(1111)
:0030 PRINT HEXOF(X$)
:RUN
1001

Compatibility Issues:

References:

AND

LANGUAGE STATEMENTS BOOL Alpha-operator

NPL Statements Guide 2-18

$BOXTABLE

Discussion:

Form 1 of the $BOXTABLE statement sets the value of the $BOXTABLE system vari-
able.

Form 2 allows examination of the current status of the $BOXTABLE system variable.

The $BOXTABLE system variable is used to enable, and select the character set to be
employed for the output of the PRINT BOX statement. Two forms of boxes are sup-
ported: "True" boxes and "Character" boxes.

True Box Graphics

"True" box graphics require a screen which has the capability of printing graphics and
text on the same screen (refer to the appropriate operating system-specific supplement for
this information). The implementation of "character" box graphics provides a method of
approximating box graphics on machines which do not have this capability.

Character Box Graphics

"Character" box graphics are built from the standard character set. That is, 16 characters
must be selected out of the standard character set to be used for the 16 possible "box"
characters (appropriate default values are provided; refer to the table which follows). The
use of character box graphics, therefore, has some significant limitations. The primary
limitation is that the horizontal lines of a box cannot be printed between rows (as they are
with "true" boxes), but rather must occupy a row themselves. The horizontal lines are
printed a half-line down from where they would print using "true" boxes. This means
that, in effect, one line above and below the text to be boxed must be left blank.

General Form:

Form 1

alpha-receiver =$BOXTABLE

Form 2

$BOXTABLE=alpha-expression

$BOXTABLE LANGUAGE STATEMENTS

2-19 NPL Statements Guide

$BOXTABLE (cont.)

Byte 4 of the $MACHINE system variable can be used by NPL application programs to
determine whether or not "true" box graphics are available. For further details, refer to
$MACHINE.

The $BOXTABLE system variable consists of 17 bytes. Byte 1 is a switch which the
RunTime program tests to determine whether or not to print "character" boxes. A value
of HEX(00) (the default) indicates that "character" boxes are disabled. A value of
HEX(01) indicates that "character" boxes are enabled.

NOTE: If character boxes are enabled, they are printed even if "true" box graphics are
available (the "true" boxes are not printed in this case).

Construction of "Character" Boxes

Each individual character of a "character" box should consist of some combination of
four basic parts. These four parts are:

• Vertical line from center of character to north edge (N)

• Vertical line from center of character to south edge (S)

• Horizontal line from center of character to east edge (E)

• Horizontal line from center of character to west edge (W)

Combinations of these four basic parts (illustrated above) are required to display the com-
plete box character required. Up to 16 combinations are possible. When the RunTime pro-
gram prints a "character" box, it calculates the correct combination to use for each
character position of the box. It then determines the proper character to use by means of a
look-up table. Bytes 2 to 17 of the $BOXTABLE system variable contain the actual char-
acters to be used for each of the 16 possible combinations used to construct a box (refer
to the table below for default values).

E

S

W

N

LANGUAGE STATEMENTS $BOXTABLE

NPL Statements Guide 2-20

$BOXTABLE (cont.)

These 16 possible values relate to byte positions in the $BOXTABLE as follows:

Byte N S E W
2
3 . . . X
4 . . X .
5 . . X X
6 . X . .
7 . X . X
8 . X X .
9 . X X X
10 X . . .
11 X . . X
12 X . X .
13 X . X X
14 X X . .
15 X X . X
16 X X X .
17 X X X X

For example, the character in byte 5 would be used for a horizontal line from the west
edge to the east edge of the character. The character in byte 14 would be use for a vertical
line. The character in byte 8 would be used for the upper left hand corner.

Text and character boxes may not occupy the same character position on the screen.
Therefore, printing text (except spaces) on top of a box erases that portion of the box.
Printing boxes on top of text does not overwrite that portion of text. Consequently, char-
acter boxes may be printed before or after text with the same result.

$BOXTABLE LANGUAGE STATEMENTS

2-21 NPL Statements Guide

$BOX TABLE (cont.)

Examples:

0010 DIM X$17,M$4 :; variable for table must be 17
 bytes long

0020 M$=$MACHINE :; get system information
0030 X$=$BOXTABLE :; load current values
0035 ;if not ’TRUE’ graphics then modify $BOXTABLE
0040 IF STR(M$,4,1) <> "G"
0045 ; enable character boxes with default box character set
0050 $BOXTABLE=BIN(1) & STR(X$,2)
0060 END IF
0070 RETURN

HINT: Restore the value of $BOXTABLE to the original value by programs which modify it so
that use of character boxes is possible on a modularized basis. In general, some programs
can easily be modified to work with character boxes while, in other cases, it is preferable
to leave the boxes off entirely.

Compatibility Issues:

This statement is supported only with Release 1.03 or greater.

This statement is not valid in Wang 2200 Basic-2.

The default values for the characters to use for character boxes (bytes 2-17) vary depend-
ing upon the hardware version of NPL. Refer to the appropriate NPL Supplement for de-
tails.

References:

$MACHINE
PRINT BOX
Box Graphics - Section 7.3.19 of the Programmer’s Guide

LANGUAGE STATEMENTS $BOXTABLE

NPL Statements Guide 2-22

BREAK

Discussion:

The BREAK statement allows exiting from the body of a structured loop, which may be
either WHILE...WEND, REPEAT...UNTIL or FOR/BEGIN...NEXT type. When it oc-
curs inside nested loops, only the innermost loop is exited.

When executed, control is transferred to the statement following the WEND statement of
the current WHILE...WEND loop, to the statement following the UNTIL statement of the
current REPEAT...UNTIL loop or to the statement following the NEXT statement of an
enclosing FOR/BEGIN...NEXT loop. Stack information is cleared for a FOR/BE-
GIN...NEXT loop.

Examples:

0010;
 :X=1
 :REPEAT
 : X=X+X
 : IF X>1000 THEN BREAK
 : PRINT X;
 :UNTIL FALSE
 :;
 :X = 1
 :WHILE TRUE
 : X = X + X
 : IF X > 1000 THEN BREAK
 : PRINT X;
 :WEND
 :;
 :FOR T = 1 TO 20 BEGIN
 : X = ’Approx(X)
 : IF ’Funct(X) < Epsilon THEN BREAK
 :NEXT T

Compatibility Issues:

This statement is only supported with Release IV or greater.

General Form:

BREAK

BREAK LANGUAGE STATEMENTS

2-23 NPL Statements Guide

BREAK (cont.)

References:

FOR/BEGIN ... NEXT
REPEAT/UNTIL
WHILE/WEND
Section 4.11 of the Programmers Guide.

LANGUAGE STATEMENTS BREAK

NPL Statements Guide 2-24

$BREAK

Discussion:

$BREAK provides a mechanism in a multi-user environment for relinquishing CPU
timeslices from the program in progress. The number of timeslices released is the integer
portion of the expression. The numeric-expression can be a value from 0 to 255. The de-
fault value, if no expression is specified, is one. A value of zero indicates that no break
occurs.

The $BREAK statement is primarily used to put a user partition to sleep until a given oc-
currence.

The actual effect of $BREAK [expression] is hardware and operating system-dependent.
On most single-user systems, no time is released. On multi-user systems, the amount of
time released per unit may vary. Refer to the appropriate NPL Supplement for details.

NOTE: The $BREAK statement is extremely operating system-dependent. Refer to the NPL
Supplements for details on the operation of $BREAK on different platforms.

Examples:

0010 $BREAK 5
0010 $BREAK X+Z

Compatibility Issues:

On a Wang 2200 MVP, the "!" parameter causes the partition to relinquish all timeslices
until the RESET key is pressed, or a programmable interrupt occurs. $BREAK! is de-
compiled under NPL as $END, causing immediate exit from the RunTime program. In
addition, the amount of time released on a Wang 2200 is dependent on other activity on
the system. Under NPL, a fixed amount of time per unit is released.

In a network environment, the syntax is supported but no operation is performed.

References:

General Form:

$BREAK [expression]

$BREAK LANGUAGE STATEMENTS

2-25 NPL Statements Guide

CASE Default

Discussion:

This statement declares a default condition of a numeric, string or logical SWITCH struc-
ture. Refer to SWITCH (numeric, string or logical) for an explanation of how this state-
ment may be used within a SWITCH structure to define the default action to take when
no specific CASE applies.

Examples:

0010 ;
:SWITCH Widget_Type
: CASE 0
: PRINT "Gizmos"
: CASE 1
: PRINT "Thingammies"
: CASE
: ; this is the default
: PRINT "Whatchamacallits"
:END SWITCH

NOTE: Branching to a CASE statement is not the same as reexecuting the CASE. Executing
a CASE statement terminates the previous case, and so exits to the END SWITCH
statement. This is an easy mistake to make when converting an ON X statement to a
SWITCH that still contains GOTOs used for loops.

For example, this is old code:

0000 ON X GOTO 100,200,300 :REM lookup type (assume X=1,2,3 only)
0100 INPUT "Name",A$:IF A$" " THEN 900

: GOSUB ’Doname
: GOTO 100

0200 INPUT "Address",A$:IF A$=" " THEN 900
: GOSUB ’DoAddress
: GOTO 200

0300 INPUT "Zip",A$:IF A$=" " THEN 900
: GOSUB ’DoZip
: GOTO 300

0900 REM end case

General Form:

CASE

LANGUAGE STATEMENTS CASE Default

NPL Statements Guide 2-26

CASE Default (cont.)

This is not the same as:

0000 SWITCH X :REM lookup type (assume X=1,2,3 only)
0100 CASE 1

: INPUT "Name",A$:IF A$=" " THEN 900
: GOSUB ’Doname
: GOTO 100
:CASE 2

0200 INPUT "Address",A$:IF A$=" " THEN 900
 : GOSUB’DoAddress

: GOTO 200
:CASE 3

0300 INPUT "Zip",A$:IF A$=" " THEN 900
: GOSUB ’DoZip
: GOTO 300

0900 END SWITCH

Correct is:

0000 SWITCH X :REM lookup type (assume X=1,2,3 only)
 :CASE 1
0100 INPUT "Name",A$:IF A$=" "THEN 900

: GOSUB ’Doname:GOTO 100
 :CASE 2
0200 INPUT "Address",A$:IF A$=" "THEN 900

: GOSUB ’DoAddress
: GOTO 200

 :CASE 3
0300 INPUT "Zip",A$

: IF A$=" "THEN 900
: GOSUB ’DoZip
: GOTO 300

0900 END SWITCH

Compatibility Issues:

This statement is only supported with Release IV or greater.

References:

END SWITCH
SWITCH Default
Logical Constructs, Section 4.11 of the NPL Programmer’s Guide

CASE Default LANGUAGE STATEMENTS

2-27 NPL Statements Guide

CASE Logical

Discussion:

This statement may only occur within a logical SWITCH structure. Refer to SWITCH
Logical for an explanation of how this statement may be used within a logical SWITCH
structure to define the action to take for specific logical case values.

Examples:

The following is an example of valid syntax:
0010 CASE Machine$ = "I", Machine$ = "W"
0010 CASE Machine$ = "I" OR Machine$ = "W"
0010 CASE Index < CacheIndex

The following is an example for logical default CASE:
0010 number = RND(1023)
 : SWITCH
 : CASE number <= 0.25
 : PRINT "0.0 <= ";number;" <= 0.25"
 : CASE number <= 0.5
 : PRINT "0.25 < ";number;" <= 0.5"
 : CASE number <= 0.75
 : PRINT "0.5 < ";number;" <= 0.75"
 : CASE
 : ; default, always the last CASE statement
 : PRINT "0.75 < ";number;" <= 1.0"
 : END SWITCH

General Form:

CASE logical-expression[,logical-expression]

Where:

 logical-expression = {cond [logical-operator cond]...}

LANGUAGE STATEMENTS CASE Logical

NPL Statements Guide 2-28

CASE Logical (cont.)

0010 SWITCH
 : CASE char$="a" OR char$="b",char$="c"
 : PRINT "a, b or c"
 : CASE char$> "c" AND char$<"m"
 : PRINT "d through l"
 : CASE
 : ; this is the default
 : PRINT "m through z"
 : END SWITCH
0020 SWITCH
 : CASE Error_Code=48 OR Error_Code=37
 : Errtype = _RECOVERABLE :; changed our minds about these

: CASE Error_Code<60
 : Errtype = _UNRECOVERABLE :; syntax and programming errors
 : CASE Error_Code<100
 Errtype = _RECOVERABLE :; Range errors, I/O errors
 : CASE Error_Code<200
 : Errtype =_RESERVED :;Future use
 : CASE Error_Code<300

: Errtype =_UNRECOVERABLE : ;Extended errors
: CASE Error_Code<500
: Errtype=_RECOVERABLE : ;Extended errors
: CASE Error_Code<600
: Errtype=_UNRECOVERABLE : ;External errors
: CASE Error_Code<800
: Errtype=_RECOVERABLE : ;External errors
: CASE
: Errtype=_RESERVED : ;Future use
: END SWITCH

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

Logical Constructs - Section 4.11 of Programmer’s Guide
SWITCH Logical

CASE Logical LANGUAGE STATEMENTS

2-29 NPL Statements Guide

CASE Numeric

Discussion:

This statement may only occur within a numeric SWITCH structure. Refer to SWITCH
Numeric for an explanation of how this statement may be used within a numeric
SWITCH structure to define the action to take for specific case values.

Examples:

An example of valid syntax is shown below.

0010 CASE 0
0010 CASE 0,1,2,12,4
0010 CASE _PACK_IBMASCII_FORMAT
0010 CASE X(T),X(T2),X(T3)
0010 CASE ’LeftButton

An example of practical usage of the statement is shown below.

0010 ;
 : SWITCH number
 : CASE 1, 2, 4, 8, 16
 : PRINT "powers of 2"
 : CASE _PACK_IBMASCII_FORMAT
 : PRINT "a format specification"
 : CASE array(T)
 : PRINT "an array element"
 : CASE ’real_random_num
 : PRINT "not very random"
 : CASE
 : PRINT "try another number"
 : END SWITCH

General Form:

CASE numeric-expression[,numeric-expression]...

LANGUAGE STATEMENTS CASE Numeric

NPL Statements Guide 2-30

CASE Numeric (cont.)

The following is an example of numeric default CASE:

0010 SWITCH day_of_week
 : CASE 1
 : PRINT "Monday"
 : CASE 2
 : PRINT "Wednesday"
 : CASE 4
 : PRINT "Thursday"
 : CASE 5
 : CASE 6
 : PRINT "Saturday"
 : CASE 7
 : PRINT "Sunday"
 : CASE
 : ; default, always the last CASE statement
 : PRINT "There are only seven days in a week!"
 : END SWITCH

Compatibility Issues:

This statement is only supported with Release IV or greater.

References:

SWITCH Numeric
Section 4.11 of the Programmer’s Guide

CASE Numeric LANGUAGE STATEMENTS

2-31 NPL Statements Guide

CASE String

Discussion:

This statement may only occur within a string SWITCH structure. Refer to SWITCH
String for an explanation of how this statement may be used within a string SWITCH
structure to define the action to take for specific case values.

Examples:

An example of valid syntax is shown below.

0010 CASE "Alligators"
0010 CASE Widget_Type$
0010 CASE Activity_Code$(Index)

An example of practical usage is shown below.

0010
: SWITCH Widget_Type$
: CASE "Gizmos","GIZMOS"
: PRINT 0
: CASE "Thingammies","THINGAMMIES"
: PRINT 1
: CASE
: PRINT "Eh?"
: END SWITCH

The following is an example of default string CASE:

0010 SWITCH char$
 : CASE "A", "B", "C"
 : PRINT "One of the first three letters of the alphabet."
 : CASE
 : ; default, always the last CASE statement
 : PRINT "One of the letters of the alphabet excluding A, B or C."
 : END SWITCH

General Form:

CASE string-case[,string-case]...

Where:

string-case = {alpha-variable}
 {literal-string}

LANGUAGE STATEMENTS CASE String

NPL Statements Guide 2-32

Compatibility Issues:

This statement is only supported with Release IV or greater.

CASE String LANGUAGE STATEMENTS

2-33 NPL Statements Guide

CASE String (cont.)

References:

SWITCH String
Section 4.11 of the NPL Programmer’s Guide

LANGUAGE STATEMENTS CASE String

NPL Statements Guide 2-34

CLEAR

Discussion:

The CLEAR command is used to clear program text and variables from user memory.

A CLEAR command with no parameters:

• Resets the current LIST module to the RUN module.

• Clears all program text from the RUN module.

• Clears all static variables from the RUN module.

• Deletes any other modules which are no longer referenced and do not have com-
mon variables defined.

• Resets the device table to default values, and turns off STEP Mode and TRACE
Mode. In addition, it clears the screen and the system message appears.

The CLEAR function refers to program text in the current list module. This is set to the
currently executing module whenever a program HALTs or continues, or when it is
changed using the MODULE command, and can be referenced using LIST DT.

A CLEAR N or a CLEAR V command clears all static and non-common variables from
the current LIST module only.

A CLEAR P command clears all program text from the current LIST module only.

General Form:

CLEAR [V]
 [N]
 [P [line-number1][,[line-number2]]]

CLEAR LANGUAGE STATEMENTS

2-35 NPL Statements Guide

CLEAR (cont.)

NOTE: Any command which can remove variable declarations or program text from a mod-
ule causes the module to deresolve.

Deresolution of a module always destroys the execution return stack and removes
all recursive variables, and PUBLIC variables declared by the module. Static vari-
ables are not removed immediately, but (non-common) static variables are removed
before the module is reresolved.

In addition, any modules which INCLUDE the deresolved module are also dere-
solved.

These range parameters operate as follows:

• If line-number1 is specified, all program lines starting at line-number1 up to the
end of the program are removed (e.g., CLEAR 1020).

• If ,(comma)line-number2 is specified, all program lines starting at the beginning
of the program up to and including line-number2 are removed (e.g., CLEAR
,1060).

• If line-number1,line-number2 is specified, all program lines within the limits of
line-number1 to line-number2 inclusive are removed (e.g., CLEAR 1020, 1060).

After executing a CLEAR statement of any kind as a programmable statement, the pro-
gram terminates and may not be CONTINUEd.

CLEAR is executable only in the interpretive version of the RunTime. In the non-inter-
pretive version, execution of a CLEAR statement of any kind causes an exit from the
RunTime program.

LANGUAGE STATEMENTS CLEAR

NPL Statements Guide 2-36

CLEAR (cont.)

Examples:

:0010 PRINT "ABC"
:0020 PRINT "123"
:0030 PRINT "TEST"
:0040 FOR I=1 TO 10

: PRINT I
: NEXT I

:0050 J$="Y"
:0060 IF X$=J$ THEN 200
:0070 K=3

: M=2

:CLEAR P30,50 ... would remove lines 30 through 50
:CLEAR P50 ... would remove lines 50 and greater
:CLEAR P,30 ... would remove lines up to and including 30

Compatibility Issues:

With NPL Revision 4.0, a CLEAR statement, with no parameters, acts upon INCLUDEd
modules by effectively deleting them, if the modules are discardable under normal rules.

NOTE: This may cause /EXIT procedures to be executed in the affected modules.

The CLEAR statement is implemented in Revision 2.00 and greater of NPL.

The CLEAR statement is not a programmable statement in Wang 2200 Basic-2.

References:

Program Loading - Section 5.3 of the Programmer’s Guide
Modules - Section 4.10 of the Programmer’s Guide

CLEAR LANGUAGE STATEMENTS

2-37 NPL Statements Guide

$CLOSE

NOTE: The use of this statement is not recommended. Use the Niakwa Data Manager as a
better alternative.

Discussion:

The $CLOSE statement releases one or more devices that may have been reserved for ex-
clusive access ("hogged") with the $OPEN statement. If no device address or file number
is specified, all devices currently "hogged" by a user are released.

Examples:

0010 $CLOSE#1,#2,#A

The result of the above is that files number 1,2,A (value of variable A) are
released for general use by other users.

0010 $CLOSE

The result of the above is that all files or devices "hogged" by user are re-
leased for general use by other users.

0010 $CLOSE/D12

The result of the above is that disk device D12 is released for general use by
other users.

0010 $CLOSE/215

The result of the above is that printer device 215 is released for general use
by other users.

0010 $CLOSE <A$>

The result of the above is that the device address stored in A$ is released for
general use by other users.

General Form:

$CLOSE[{file-number } [,{file-number }] ...]
 [{device-address} [{device-address}] ...]
 [<address-var>,]

LANGUAGE STATEMENTS $CLOSE

NPL Statements Guide 2-38

$CLOSE (cont.)

Compatibility Issues:

In a multi-user environment, "device-hogging" emulates the Wang 2200 except in the
case of disk devices. In this case, "hogging" on a disk address is PLATTER-specific, not
DEVICE-specific.

For example, on a Wang 2200, assuming D20 is the removable disk on a Wang 2200
phoenix drive, $OPEN /D20 "hogs" the entire device (disks /D20 - /D25); whereas, under
NPL, $OPEN /D20 "hogs" only disk /D20.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

$OPEN
Exclusive Access - Section 7.2.4 of the Programmer’s Guide

$CLOSE LANGUAGE STATEMENTS

2-39 NPL Statements Guide

COM

Discussion:

The COM statement is used to reserve memory for variables whose values should not be
cleared whenever new program overlays are loaded into memory. Variables defined in a
COM statement remain in memory when a program is cleared or overlayed by a new pro-
gram, unlike non-common variables (defined by DIM) which are cleared when a new pro-
gram is loaded or the current program is cleared. Common variables are useful in passing
data through multiple program overlays.

The COM statement must appear before any non-common variables are defined by DIM
statements or by reference. If a common variable is to be used by more than one program
running sequentially, the COM statement needs only to declare it in the first program. An
error is not generated if it appears in a COM statement in later programs, provided it is
given the same dimensions as in earlier programs.

Common variables are cleared by the CLEAR command and the CLEARV command,
and any time a LOAD RUN statement is executed.

Variables declared as COM are always declared as static variables which are private to
the module. They are never recursive, PUBLIC or local to a function, even if they appear
where a DIM statement would give the declared variable these attributes (i.e., in a PUB-
LIC section or within the body of a function).

General Form:

COM variable[,variable]...

Where:

variable = {numeric-scalar }
{numeric-array-name(sub1[,sub2]} }
{alpha-array-name(sub1[,sub2])[length]}
{alpha-scalar[length] }

dim1, dim2 = numeric-expression (1 ≤ dim ≤ 65535)

length = positive integer or numeric-scalar-variable
such that 1 ≤ length ≤ 65535

LANGUAGE STATEMENTS COM

NPL Statements Guide 2-40

COM (cont.)

Use of COM variables to mark library modules as resident.

Normally, a library module (one that has been loaded as a result of an INCLUDE state-
ment) cannot perform overlays and has no need for COM type variables. Variables in a li-
brary module are not affected by programmed overlays, which affect only the RUN
module.

When a library module is no longer referenced by INCLUDE statements, both the code
and variables associated with it are removed. This occurs after the RUN module has been
resolved, but before it starts execution.

However, if the library module declares any common (COM) variables, NPL will not de-
lete the module. In this case, any COM variable serves as an indicator that the module
should be retained for future use.

A library that uses COM variables in this way should provide some public function
which will execute a COM CLEAR statement, in order that the module may be explicitly
deleted when it is no longer wanted.

Either dimension of an array may be specified as containing up to 65535 elements and
the length of any variable may be specified up to 65535 bytes. However, the maximum to-
tal number of array elements must not exceed 65535 and the total size of the array (num-
ber of elements * length) must not exceed 65535 bytes.

Dynamic Variable Dimensioning with COM

The length of variables defined by a COM statement can be specified by a numeric-sca-
lar-variable that has been defined as a COMmon variable and assigned a value in a prior
program.

The dimensions of a variable in the COM statement are permitted to be a numeric-expres-
sion. However, if variables are used in the expression, they must be declared in a pre-
vious COM statement. Useful expressions normally use as terms only constants, common
variables and, possibly, the SPACE function in some combination.

Default variable declaration is assumed by NPL when a variable reference appears with-
out any previous explicit declaration. Here, NPL takes one of two actions:

COM LANGUAGE STATEMENTS

2-41 NPL Statements Guide

COM (cont.)

a. If $OPTION byte 38 is set to HEX(01), an error occurs. All variable refer-
ences must be preceded by a declaration.

b. If $OPTION byte 38 is set to HEX(00), a variable may be declared by de-
fault in some cases, depending on the context in which the first variable ref-
erence in the program appears, according to the following table:

Location of First Variable Reference Default Allocation Types
Within a function body Not legal--error occurs
Outside all function bodies DIM/STATIC

NOTE: Constant variables must always be explicitly declared.

Examples:
0010 COM A$(SPACE-20000)1, B$((SPACE-1000)/C2)C2,C$(MAX(256,J))1

Declares variables which use, respectively, all but the last 20K of memory,
the remaining memory (after A$()) less 1K set up as elements of C2 bytes
each (assuming C2 is a common variable), and an array with either J bytes
or 256 bytes, whichever is larger (again, J is assumed to be a common vari-
able).

0010 COM X$24, Q$(4)4, X(4,4)

PROGRAM1:

 :0010 COM A,B,C
 :0020 A=10: B=20: C=4
 :0030 LOAD T"PROGRAM2"
 :RUN

PROGRAM2:

 :0010 COM X$(A,B)C

This defines an array of 10 by 20 elements, each 4 bytes in length.

LANGUAGE STATEMENTS COM

NPL Statements Guide 2-42

COM (cont.)

Compatibility Issues:

The Wang 2200 Basic-2 limitation of 124 characters on the length of a scalar has been ex-
tended to 65535. (Be aware, however, that 124 bytes is still the largest scalar variable
length which can be saved using a DATASAVE DC statement).

The memory overhead for variables is greater under NPL than on a Wang 2200:

e.g. Variable Type Overhead on Wang 2200
Overhead under NPL
One dimension Two dimension

X Numeric Scalar 4 bytes 8 bytes N/A
X() Numeric Array 6 12 bytes 14 bytes
X$ Alpha Scalar 5 10 bytes N/A

Alpha Array 7 14 bytes 16 bytes

Wang 2200 Basic-2 does not allow dimensions in a COM statement to be defined as an
expression. The Wang 2200 allows only constant and numeric-scalar common variables
to be used as variable dimensions.

References:

CLEAR[V]
COM CLEAR
DIM
LOAD RUN

COM LANGUAGE STATEMENTS

2-43 NPL Statements Guide

COM CLEAR

NOTE: The use of this statement is not recommended. Use program modules as a better al-
ternative.

Discussion:

The COM CLEAR statement is used to change the status of variables from common to
non-common or from non-common to common. The dimensions and values of the vari-
ables are not changed.

If no variable is specified in the COM CLEAR statement, all common variables are rede-
fined as non-common variables.

If a common variable name is specified in the COM CLEAR statement, that variable and
all variables that appeared in a COM statement after it are changed to non-common vari-
ables (as if they were specified in a DIM statement), while all common variables defined
before the specified variable remain common.

If a non-common variable is specified in the COM CLEAR statement, all non-common
variables defined before the specified variable become common variables.

General Form:

COM CLEAR [variable-name]

LANGUAGE STATEMENTS COM CLEAR

NPL Statements Guide 2-44

COM CLEAR (cont.)

Examples:

0010 COM CLEAR
0010 COM CLEAR Q9$
0010 COM CLEAR X$()

:0010 COM A$,B$
:0020 DIM C$,D$
:0030 COM CLEAR D$:REM A$, B$, and C$ are now common variables

 D$ is non-common
:0040 COM CLEAR B$:REM B$,C$, and D$ are now non-common variables

 A$ is still common
:RUN

Compatibility Issues:

References:

COM
DIM

COM CLEAR LANGUAGE STATEMENTS

2-45 NPL Statements Guide

& (Concatenation) Alpha-Operator

Discussion:

The concatenation alpha-operator combines the contents of the first alpha-operand with
the contents of the second alpha-operand without intervening characters into a single
character string and assigns the result to the alpha-receiver.

The concatenation alpha-operator may only be used in an alpha-expression in an alpha-as-
signment statement. Further, the concatenation alpha-operator is treated specially and
may not be combined with any other alpha-operator (except itself) in the same alpha-ex-
pression.

Examples:

:0010 A$="ONE" & "TWO"
:0020 PRINT A$
:RUN
ONETWO

:0010 A$="ONE" & HEX(2B) & "TWO"
:0020 PRINT A$
:RUN
ONE+TWO

Compatibility Issues:

References:

LET Alpha-assignment

General Form:

alpha-receiver = alpha-operand [& alpha-operand]...

Where:

alpha-operand = {literal-string }
 {alpha-variable }
 {ALL function }
 {BIN function }
 {system-variable}

LANGUAGE STATEMENTS & (Concatenation) Alpha-Operator

NPL Statements Guide 2-46

CONTINUE

Discussion:

The CONTINUE command is used to resume normal execution of a program which has
temporarily been halted and is in Immediate Mode.

If a program is unresolved and the CONTINUE command is entered, an error occurs
(ERR A09 - Program Not Resolved).

When executed as a program statement, the CONTINUE statement causes STEP Mode to
be exited if in effect.

The CONTINUE statement performs no operation on the non-interpretive RunTime pro-
gram.

Examples:

:CONTINUE
:PRINT X: CONTINUE
100 CONTINUE

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

The CONTINUE statement is not a programmable statement in Wang 2200 Basic-2.

References:

STEP
Exiting Immediate Mode - Section 2.6.4 of the Programmer’s Guide

General Form:

CONTINUE

CONTINUE LANGUAGE STATEMENTS

2-47 NPL Statements Guide

CONTINUE LOAD

Discussion:

The CONTINUE LOAD command is used to resume normal execution of a program
which has temporarily been halted and is in Immediate Mode, until the next LOAD state-
ment is completed. At this point, Immediate Mode is reactivated. CONTINUE LOAD is
primarily a debugging tool which allows specific program modules to be inspected with-
out stepping through entire programs.

If a program is unresolved and the CONTINUE LOAD command is entered, an error oc-
curs (ERR A09 - Program Not Resolved).

When executed as a program statement, the CONTINUE LOAD statement causes STEP
Mode to be exited, if in effect, until the next LOAD statement is executed.

The CONTINUE LOAD statement performs no operation on the non-interpretive Run-
Time program.

Examples:

:CONTINUE LOAD
0010 PRINT A$: CONTINUE LOAD

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:

LOAD
STEP
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

General Form:

CONTINUE LOAD

LANGUAGE STATEMENTS CONTINUE LOAD

NPL Statements Guide 2-48

CONTINUE NEXT

Discussion:

The CONTINUE NEXT command is used to temporarily resume normal execution of a
program which is in Immediate Mode (assuming the program was halted during normal
execution). The program continues normally until the loop associated with the most re-
cently executed FOR statement is completed. At this point, program execution again
halts, allowing for further Immediate Mode command entry. This is primarily a debug-
ging tool which allows FOR/NEXT loops to be rapidly completed while single-stepping
through a program.

If a program is unresolved and the CONTINUE NEXT command is entered, an error oc-
curs (ERR A09 - Program Not Resolved).

If program execution is not in a FOR/TO loop, CONTINUE NEXT generates an error
(P40 - No Corresponding FOR for NEXT Statement).

The FOR/TO loop may have been initialized using either the unstructured FOR/TO state-
ment or the FOR/BEGIN structured statement. It may not be used to rapidly complete
other types of structured loops, such as WHILE/WEND or REPEAT/UNTIL loops.

NOTE: The CONTINUE NEXT statement works only with the highest level of the return
stack. Therefore, execution of a CONTINUE NEXT statement is invalid when in a
subroutine called from within a loop. If subsequent NEXT statements are encoun-
tered after the CONTINUE NEXT statement is executed, program execution contin-
ues unaffected. Only completion of the corresponding FOR/TO loop causes
Immediate Mode to be invoked. The LIST STACK command can be used to exam-
ine the current status of active FOR/NEXT loops and subroutines.

The CONTINUE NEXT statement is legal wherever a NEXT statement is legal.

The CONTINUE NEXT statement performs no operation on the non-interpretive Run-
Time program.

General Form:

CONTINUE NEXT

CONTINUE NEXT LANGUAGE STATEMENTS

2-49 NPL Statements Guide

CONTINUE NEXT (cont.)

Examples:

CONTINUE NEXT

:0010 FOR X=1 TO 100
:0020 PRINT "X= ";X
:0030 FOR Y=1 TO 100
:0040 PRINT "Y= ";Y
:0050 NEXT Y
:0060 PRINT "THIS IS IN THE "X" LOOP"
:0070 NEXT X
:0080 PRINT "BOTH LOOPS COMPLETE"

In this example, assume that STEP Mode has been invoked. If a CONTINUE NEXT
statement is entered before program execution of the FOR Y statement at line 30, pro-
gram execution continues until line 80 (until the FOR X loop is completed). If a CON-
TINUE NEXT statement is entered during execution of the FOR Y loop (at lines 40 or
50), program execution continues only until the FOR Y loop is completed.

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:

FOR/TO
LIST STACK
NEXT
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

LANGUAGE STATEMENTS CONTINUE NEXT

NPL Statements Guide 2-50

CONTINUE RETURN

Discussion:

The CONTINUE RETURN command is used to temporarily resume normal execution of
a program which is in Immediate Mode. The program continues normally until the RE-
TURN statement associated with the most recently executed GOSUB statement is en-
countered. At this point, program execution again halts, allowing for further Immediate
Mode command entry. This is primarily a debugging tool which allows subroutines to be
rapidly completed while single-stepping through a program.

If a program is unresolved and the CONTINUE RETURN command is entered, an error
occurs (ERR A09 - Program Not Resolved).

If program execution is not in a subroutine, CONTINUE RETURN generates an error
(P41 - RETURN without GOSUB).

NOTE: The CONTINUE RETURN command works only with the highest level of the re-
turn stack. However, execution of a CONTINUE RETURN statement is valid when
in a loop initialized in a subroutine. In addition, any subsequent subroutines which
are encountered during execution of a CONTINUE RETURN executes fully without
interruption (the RETURN statement associated with the subsequent subroutine
does not halt the program). Program operation continues until the RETURN state-
ment associated with the subroutine most recently executed at the time the CON-
TINUE RETURN command is encountered.

The CONTINUE RETURN statement is legal whenever a RETURN statement is legal.
CONTINUE RETURN may also be used to rapidly complete the current PROCEDURE
or FUNCTION call, when no additional GOSUB statements are pending since the PRO-
CEDURE/FUNCTION call was made.

In the case of a PROCEDURE, execution halts at the statement following the statement
containing the most recently called PROCEDURE.

General Form:

CONTINUE RETURN

CONTINUE RETURN LANGUAGE STATEMENTS

2-51 NPL Statements Guide

CONTINUE RETURN (cont.)

In the case of a FUNCTION, execution halts as soon as possible after returning the value
of the function, and before executing any additional statements. In the most common
case, statements will only contain one function call; in that case, execution will be halted
at the following statement.

For example:

PRINT ’get_number : PRINT "next statement"

In the above, the results from the FUNCTION ’get_number will be printed and execution
will stop before the phrase "next statement" is printed.

If the function is used as a term in a statement containing additional function calls, then
execution halts at the first statement within the body of the next function call.

For example:

PRINT STR(string$, ’start_index, ’number_chars)

If execution in the above were halted right after returning the value from the FUNCTION
’start_index, then the next statement to be executed would be the first statement encoun-
tered within the FUNCTION ’number_chars.

Examples:

:0010 GOSUB ’100
:0020 PRINT "After completion of ’100"
:0030 END
:0500 DEFFN’100
:0510 PRINT "In ’100"
:0520 GOSUB ’200
:0530 PRINT "After completion of ’200"
:0540 RETURN
:0700 DEFFN’200
:0710 PRINT "In ’200"
:0720 RETURN
:RUN

LANGUAGE STATEMENTS CONTINUE RETURN

NPL Statements Guide 2-52

CONTINUE RETURN (cont.)

In this example, assume that STEP Mode has been invoked. If a CONTINUE RETURN
statement is entered (in Immediate Mode) before execution of the PRINT statement on
line 510, normal program execution continues until both subroutines ’100 and ’200 are
complete. Program execution halts (and Immediate Mode becomes available) before exe-
cution of the PRINT statement on line 20. If a CONTINUE RETURN statement is en-
tered before execution of the PRINT statement on line 710, normal program execution
continues only through the completion of subroutine ’200. Program execution halts (and
Immediate Mode becomes available) before execution of the PRINT statement on line
530.

CONTINUE RETURN is also permitted if the top function call is a call to a PROCE-
DURE or FUNCTION. In the case of a PROCEDURE, execution halts when the proce-
dure exits using RETURN or executes END PROCEDURE. A FUNCTION call halts at
the start of the next statement following the RETURN (value).

NOTE: If the FUNCTION result is a parameter to another FUNCTION, this may not be the
statement following the one in which the FUNCTION was called.

For example:

:list
0010 FUNCTION ’Stuff(X)
: RETURN (X)
: END FUNCTION
0020 FUNCTION ’Nonsense(T)
:STOP #
: RETURN (T)
: END FUNCTION
0030 PRINT ’Stuff(’Nonsense(3))
0040 PRINT "Done"
:run

STOP 0020
:list stack
0030 PRINT ’Stuff(’Nonsense(3))
’Nonsense
:continue return
’Stuff 0010 : RETURN (X): END FUNCTION

Compatibility Issues:

This statement is only supported with Release 2.00 or greater.

CONTINUE RETURN LANGUAGE STATEMENTS

2-53 NPL Statements Guide

CONTINUE RETURN (cont.)

The CONTINUE RETURN statement performs no operation on the non-interpretive Run-
Time.

This statement is not valid in Wang 2200 Basic-2.

References:

END PROCEDURE
GOSUB
RETURN
STEP
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

LANGUAGE STATEMENTS CONTINUE RETURN

NPL Statements Guide 2-54

CONVERT

Discussion:

The CONVERT statement is used to convert an alpha-variable to a numeric-variable or a
numeric-expression to an alpha-variable.

Alpha-variable to Numeric-receiver:

This form of the CONVERT statement is used to convert the contents of an alpha-
variable to a numeric value. In this case, an image format to receive the numeric val-
ues is not required.

The contents of the alpha-variable specified must be an ASCII representation of a
valid numeric value. Otherwise, an error X75 (Illegal Number) generated.

Only the following characters are allowed in the alpha-variable: digits from "0" to
"9", "+" and "-" signs, decimal points (".") and spaces. Dollar signs ("$"), trailing
signs, "DB" and "CR", and commas cannot be part of the alpha-variable.

Numeric-expression to Alpha-variable:

General Form:

CONVERT alpha-variable TO numeric-receiver

CONVERT numeric-expression TO alpha-variable,(image)

Where:

image = {[+] [$] [#[,]]...[.][#]...[^^^^] [+]}
 [-] [-]

[++]
[--]

{alpha-variable containing image }

CONVERT LANGUAGE STATEMENTS

2-55 NPL Statements Guide

This form of the CONVERT statement is used to convert the numeric value of the
specified numeric-expression to an alpha-string in a format specified by image, and
store the results in the specified alpha-variable. The alpha-variable must be dimen-
sioned large enough to hold the alpha-string, or only the first characters of the result
are stored.

LANGUAGE STATEMENTS CONVERT

NPL Statements Guide 2-56

CONVERT (cont.)

The image specified must conform to the following rules:

1. A minimum of one "#" is required in the image.

2. Both leading and trailing signs may not occur within the same image.

3. The maximum number of characters allowed in an image is 254.

Two general formats of the image specification are supported: fixed point (###.##) and
exponential (##.###^^^^). The image controls the format of the alpha-variable based on
the numeric-expression as follows:

1. Each number sign ("#") corresponds to one digit.

2. For fixed-point images, if the number of digits to the left of the decimal point in the
numeric-expression exceeds the number of number signs ("#") to the left of the deci-
mal point in the image, an error X71 (Value Exceeds Format) occurs. If the image ex-
ceeds the expression, leading zeros are added. If the number of digits to the right of
the decimal point exceeds the number of number signs ("#") to the right of the deci-
mal point in the image, any extra digits are truncated.

3. The comma (","), and decimal point (".") are inserted at the proper location.

4. Sign ("+" or "-") may be specified as either the first or last byte of the image. If minus
("-") is used, the sign is only generated for negative values, a blank is inserted for
positive values. If a plus ("+") is used, the real sign of the value is always generated.
If no sign is specified, the absolute value of the expression is converted and no sign
byte is present in the alpha-variable.

5. The dollar sign ("$") is placed in the image at the corresponding location. It is either
the first byte or the second byte (if a leading sign is specified) of the alpha-variable.

6. Any spaces within the image are ignored.

CONVERT LANGUAGE STATEMENTS

2-57 NPL Statements Guide

CONVERT (cont.)

7. If the image format ends with a "++" or "--" sign, a "CR" or "DB", respectively, is
placed at the end of the alpha-variable string for any negative values. Positive values
end with two spaces.

8. If exponential format (^^^^) is specified, the value of the expression is converted to
the exponential format. In this case, the value is scaled to the format specification and
the exponent is set accordingly. The exponent is expressed in the form "E+nn" where
nn is the exponent.

Examples:

0010 CONVERT X$ TO X :REM ALPHA TO NUMERIC
0010 CONVERT STR(Q1$(),22,6) TO X1 :REM ALPHA TO NUMERIC
0010 CONVERT X TO X1$,(#####.##) :REM NUMERIC TO ALPHA
0010 CONVERT X(4)TO STR(Q$,14,9),(-#,###.##):REM NUMERIC TO ALPHA
0010 CONVERT A(I) TO B$,(##.##^^^^) :REM NUMERIC TO ALPHA
0010 CONVERT A(I) TO B$,(C$) :REM NUMERIC TO ALPHA

:0010 X=123.4567
:0020 CONVERT ROUND (-X,2) TO A$,($#,###.##++)
:0030 CONVERT X TO B$,(###)
:0040 CONVERT X TO C$,(##.#^^^^)
:0050 F$="+###.##"

: CONVERT X TO D$,(F$)
:0060 PRINT A$,B$,C$,D$
:RUN
$0,123.46CR 123 12.3E+01 +123.45

Compatibility Issues:

References:

LANGUAGE STATEMENTS CONVERT

NPL Statements Guide 2-58

COPY

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

The COPY statement is used to copy sectors from the first diskimage to the second
diskimage. The information to be copied may be a range of sectors, specified in parenthe-
ses after the originating disk address, and may be copied starting at a certain sector on the
destination diskimage, specified in parentheses after the destination disk address. If no
destination sector is specified, the same starting sectors on both diskimages are used. If
no start-sector or end-sector is specified for the originating diskimage, all sectors up to
the current catalog end are copied.

Examples:

0010 COPY T/D20, TO T/D22,

Copy from D20 to D22 from sector 0 to the current end of catalog of D20.

0010 COPY T/D21,(10,300) TO T

General Form:

COPY T [file#,] [(start-sector,end-sector)]
 [disk-address,]
 [<address-var>,]

 TO T [file#,] [(destination-sector)]
 [disk-address,]

 [<address-var>,]

Where:

start-sector = numeric-expression

end-sector = numeric-expression

destination-sector = numeric-expression

COPY LANGUAGE STATEMENTS

2-59 NPL Statements Guide

Copy from D21, sectors 10 through 300 to currently selected disk address,
starting at sector 10.

LANGUAGE STATEMENTS COPY

NPL Statements Guide 2-60

COPY (cont.)

0010 COPY T(0,5000) TO T#2,(6000)

Copy from current disk address sectors 0 through 5000 to the disk specified
as file#2 in the internal device table, starting at sector 6000.

0010 COPY T#X,(300,400) TO T#Y,

Copy from the disk specified as file #X, sectors 300 through 400, to the
disk specified as file #Y in the internal device table, starting at sector 300.

0010 COPY T<A$>, TO T<B$>,

Copy from the device address stored in <A$> to the device address stored
in <B$>, from sector 0 to the current end of catalog of <A$>.

Compatibility Issues:

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

The COPY statement executes as it does on the Wang 2200, except when the results of
the COPY would cause data to be written beyond the physical end of the diskimage.

On a Wang 2200, an error I98 (Illegal Sector Address or Plotter Not Mounted)
would result.

In NPL, the destination diskimage would be extended to the size needed to accommodate
the write operation. If insufficient disk space is available, an error I98 (Illegal Sector Ad-
dress or Plotter Not Mounted) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of disk
-image files.

NOTE: The use of non-cataloged disk space is not recommended. Refer to Chapter 5 of the
appropriate NPL Supplement for details on support of non-cataloged disk space on
the hardware system.

COPY LANGUAGE STATEMENTS

2-61 NPL Statements Guide

COPY (cont.)

References:

Internal Device Table - Section 7.2.3 of the Programmer’s Guide
Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS COPY

NPL Statements Guide 2-62

COS Function

Discussion:

The COS function computes the value of the cosine of a numeric-expression. This is
valid wherever a numeric expression is legal.

The calculation is performed in Degrees, Radians, or Gradians, depending on last execu-
tion of SELECT [D,R,G] statement.

Examples:

0010 B = Y4+W6+32*COS(E9-10)
0010 H(K) = M3-COS(N-INT(N/90)*90)
0010 V7 = 25
0020 X8 = COS (V7 + 45)
0030 PRINT X8
:RUN
:.63331920308472

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT [D,R,G]

General Form:

COS(numeric-expression)

COS Function LANGUAGE STATEMENTS

2-63 NPL Statements Guide

DAC Alpha-operator

Discussion:

The DAC (decimal add with carry) alpha-operator adds the decimal value of the alpha-op-
erand to the decimal value of the alpha-receiver. The DAC alpha-operator may only be
used in an alpha-expression in an alpha-assignment statement.

The DAC operation assumes that both operands contain valid, unsigned BCD (Binary
Coded Decimal) data, where data consists of two digits per byte, and each of those digits
is a number between 0 to 9. DAC does not check the operand contents for validity prior
to adding; consequently, the resultant is unpredictable if operands contain invalid data.

Each byte of the alpha-operand is added (in base 10 arithmetic) to each corresponding
byte of the receiving alpha-variable; carry propagation is automatically performed be-
tween bytes.

If the values of the alpha-operand and the receiving alpha-variable are of different length,
then the DAC algorithm implicitly extends the shorter value with leading zeroes prior to
the operation. If the resultant is larger than the receiving alpha-variable, then the extrane-
ous high order bytes of the resultant are truncated before assignment.

NOTE: Contrary to conventional alpha-variable operations, the DAC alpha-operator oper-
ates on all bytes of an alpha-variable (either as a receiver or an alpha-operand), in-
cluding trailing spaces.

General Form:

alpha-receiver = [...] DAC alpha-operand [...]

Where:

alpha-operand = {literal-string }
 {alpha-variable }
 {ALL function }
 {BIN function }
 {system-variable }

DAC Alpha-operator LANGUAGE STATEMENTS

2-60 NPL Statements Guide

DAC Alpha-operator (cont.)

Examples:

0010 A$=DAC MyRec$.field1$
0010 A$=B$ DAC HEX(0001)
0010 A$=DAC STR(B$,5,3)

:0010 DIM A$3,C$3
:0020 PACK(######) A$ FROM 9990
:0030 C$=A$ DAC HEX(0060)
:0040 PRINT HEXOF(C$)
:RUN
10050

Compatibility Issues:

The Decimal Add with Carry operation accepts invalid packed decimal numbers as an al-
pha-expression in Wang 2200 Basic-2. In this case, the results are predictable but mean-
ingless.

NPL is compatible with Wang 2200 Basic-2 with respect to the DAC operator, provided
the alpha-expression contains valid packed decimal values.

References:

DSC
PACK
$PACK
UNPACK
$UNPACK
VER

LANGUAGE STATEMENTS DAC Alpha-operator

NPL Statements Guide 2-61

DATA

Discussion:

The DATA statement is used to define a list of alpha or numeric constants that are used
as input to the READ and MAT READ statements.

The DATA statement provides a method of storing tables of alpha and/or numeric con-
stants within a program. The RESTORE statement allows repetitive use of the DATA
statement values by resetting DATA pointers to a specified point.

The DATA statement is not valid in Immediate Mode.

Examples:

0010 DATA 6
0010 DATA "ABC", HEX(10),HEX(20)
0010 DATA 6, 9, 8, 4, 40, 35.6, 3E06
0010 DATA "ABC", "COMPANY 7", "MARCH 25, 1983"
0010 DATA 1, "A", 2, "B", 3E06, "Z"

Compatibility Issues:

References:

MAT READ
READ
RESTORE

General Form:

DATA {literal-string }[,{literal-string }]...
 {numeric-constant}{numeric-constant }

DATA LANGUAGE STATEMENTS

2-62 NPL Statements Guide

DATA LOAD BA

NOTE: The use of this statement is not recommended. Refer to the Niakwa Data Manager
as a better alternative.

Discussion:

The DATA LOAD BA statement is used to load the raw, unformatted contents of a speci-
fied sector address (expr1) into the first 256 bytes of the specified alpha-variable. If the al-
pha-variable is dimensioned larger than 256 bytes, the remaining bytes are not affected
by the DATALOAD BA statement.

Expr1 contains the sector-number to be loaded. If expr1 is an alpha-variable, the binary
value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the sector number accessed by the operation. If return-value is an alpha-
variable, the value is contained in the first two bytes in binary.

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65535. Refer to Section 7.3.10 of the Programmer’s Guide
for additional programming considerations for use of extended diskimages.

General Form:

DATALOAD BA T [file-number,] (expr1[,return-value])
 [disk-address,]
 [<address-var>,]

alpha-variable

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-receiver.

alpha-variable = alpha-variable into which the data is to
be loaded (must be ≥ 256 bytes).

LANGUAGE STATEMENTS DATA LOAD BA

NPL Statements Guide 2-63

DATA LOAD BA (cont.)

DATALOAD BA is a direct access instruction, as opposed to a catalog instruction. That
is, the internal device table is not used or affected by a DATALOAD BA instruction (ex-
cept to determine the diskimage address if a file-number is specified).

Use of FUNCTIONs as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter $OPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),’FunctionResult$,array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$(’NextIndex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:

0010 DATA LOAD BA T(Q$,Q$) A$()
0010 DATA LOAD BA T#1, (X-1,X) X$
0010 DATA LOAD BA T#S, (R$,R) STR(Z$(),257,256)
0010 DATA LOAD BA T/D10, (R$) Z$
0010 DATA LOAD BA T#4, (X) K$()
0010 DATA LOAD BA T/D12, (30) R$()
0010 DATA LOAD BA T<A$>, (30) R$()

Compatibility Issues:

Wang 2200 Basic-2 requires that the receiving variable be an array-variable. NPL allows
an array-variable or an alpha-scalar variable as the receiving variable.

Use of the address-var parameter is only supported by NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

DATA SAVE
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

DATA LOAD BA LANGUAGE STATEMENTS

2-64 NPL Statements Guide

DATA LOAD BM

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATALOAD BM statement is used to load the raw, unformatted contents of the
specified sector address (expr1) into the specified alpha-variable. Enough sectors are read
to fill the specified alpha-variable. A buffer of zero bytes reads zero sectors. If the opera-
tion would require that a sector beyond the physical end of the diskimage be read, an I98
error (Illegal Sector Address and Platform Not Mounted) results and the data in the speci-
fied alpha-variable is undefined.

Expr1 contains the starting sector-number to be loaded. If expr1 is an alpha-variable, the
binary value of the first two bytes is used.

NOTE: Use of alpha-variables for the starting sector-number is not advised for diskimage
files where the EXT=Y clause has been specified. Refer to Section 7.3.10 of the Pro-
grammer’s Guide for further details on extended diskimages.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

General Form:

DATALOAD BM T [file-number,] (expr1[,return-value])
 [disk-address,]
 [<address-var>,]

alpha-variable

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-receiver.

alpha-variable = alpha-variable into which data is to be
loaded.

LANGUAGE STATEMENTS DATA LOAD BM

NPL Statements Guide 2-65

DATA LOAD BM (cont.)

NOTE: An error P51 (Variable or Value Too Short) results if an alpha-variable is specified
as the return-variable and the sector number exceeds 65535 (extended diskimage in
use). Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

DATALOAD BM is a direct access instruction as opposed to a catalog instruction; there-
fore, the internal device table is not modified by a DATALOAD BM instruction.

Use of FUNCTIONs as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter $OPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),’FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$(’NextIndex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:
0010 DATA LOAD BM T(Q$,Q$) A$()
0010 DATA LOAD BM T#1, (X-1,X) X$()
0010 DATA LOAD BM T#S, (R$,R) STR(Z$(),513,512)
0010 DATA LOAD BM T<A$>, (R$) Z$()
0010 DATA LOAD BM T/D12, (30) R$()

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

On a Wang 2200, the highest sector number that can be referenced is 65535. In NPL, if
the EXT=Y clause is specified on the $DEVICE statement, sector numbers above 65535
can be used. Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

Use of the address-var parameter is not supported on the Wang 2200.

DATA LOAD BM LANGUAGE STATEMENTS

2-66 NPL Statements Guide

DATA LOAD BM (cont.)

References:

DATA LOAD BA
DATA SAVE BM
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS DATA LOAD BM

NPL Statements Guide 2-67

DATA LOAD DA

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

DATA LOAD DA is used to load logical data records beginning at a specified sector
number into a specified variable-list. The variable-list may contain a mix of alpha and nu-
meric variables.

Expr1 contains the first sector-number to be loaded. If expr1 is an alpha-variable, the bi-
nary value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

If an end-of-file trailer record is encountered during a read, no additional data is read, and
the remaining variables in the variable-list retain their current values. The end-of-file con-
dition is then set (and can be tested with an IF END THEN statement), and the return-
value is set to the sector number of the end-of-file trailer record.

General Form:

DATALOAD DA T [file-number,] (expr1[,return-value])
 [disk-address,]
 [<address-var>,]

 variable-list

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-receiver.

variable-list = {alpha-variable }[,{alpha-variable }]...
{alpha-array }{alpha-array }
{numeric-receiver }{numeric-receiver }
{numeric-array }{numeric-array }

DATA LOAD DA LANGUAGE STATEMENTS

2-68 NPL Statements Guide

DATA LOAD DA (cont.)

Values are assigned sequentially to variables in the list. The variable list may include ar-
ray designators such as A$() or A(). This indicates that the entire array is to be loaded ele-
ment-by-element. An attempt to load numeric data into an alpha-variable or alpha data
into a numeric-variable generates an error. If an alpha value is shorter than the variable,
the variable is padded with spaces. If an alpha value is longer than the variable, the vari-
able is filled with the truncated value.

Normally, the data have been previously saved with a DATA SAVE DC or DATA
SAVE DA statement using a variable-list with the identical types and sizes of variables
listed in the same order.

DATALOAD DA is a direct access instruction, as opposed to a catalog instruction; there-
fore, the internal device table is not used or affected by a DATALOAD DA instruction
(except to determine the diskimage address if a file-number is specified).

Use of FUNCTIONs as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter $OPEN, may result in a disk operation which is not integral.
Any implied lock that the RunTime would issue against the disk is released for the dura-
tion of the function call. If the application depends on this implied lock to maintain data
integrity, arguments should be evaluated separately from the DATALOAD/DATASAVE
statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),’FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$(’NextIndex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:
0010 DATA LOAD DA T(Q$,Q$) A$,B
0010 DATA LOAD DA T#1, (X-1,X) A$(), B$, C(), D()
0010 DATA LOAD DA T#S, (R$,R) X, Y, Z$()
0010 DATA LOAD DA T/D10, (R$) Z$(), X, A$
0010 DATA LOAD DA T#4, (X) K$(), STR(A$,2,3), A(2)
0010 DATA LOAD DA T/D12, (30) R$, S$
0010 DATA LOAD DA T<A$>, (30) R$, S$

LANGUAGE STATEMENTS DATA LOAD DA

NPL Statements Guide 2-69

DATA LOAD DA (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater and is not supported on the
Wang 2200.

References:

DATA SAVE DA, DC
IF END THEN
Cataloged Files - Section 7.3.7 of the Programmer’s Guide

DATA LOAD DA LANGUAGE STATEMENTS

2-70 NPL Statements Guide

DATA LOAD DC

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATA LOAD DC statement is used to load logical data records from a cataloged
disk file into a specified list of variables. Each execution of the statement reads one or
more logical data records until the variable-list is filled.

Values are assigned sequentially to variables in the list. The variable-list may include ar-
ray designators such as A$() or A(). This indicates that the entire array is to be loaded ele-
ment-by-element. An attempt to load numeric data into an alpha-variable or alpha data
into a numeric-variable generates an error. If an alpha value is shorter than the variable,
the variable is padded with spaces. If an alpha value is longer than the variable, the vari-
able is filled with the truncated value.

If there is data beyond what can be contained in the variables-list, that data is disregarded.

If an end-of-file trailer record is encountered during a read, no additional data is read, and
the remaining variables in the variable-list remain at their current values. The end-of-file
condition is then set (and can be tested with an IF END THEN statement), and the cur-
rent sector pointer is set to the sector address of the end-of-file trailer record.

The file-number corresponds to a file previously opened with a DATASAVE DC OPEN
or DATALOAD DC OPEN statement.

General Form:

DATALOAD DC[file-number,]variable-list

Where:

variable-list = {alpha-variable }[,{alpha-variable }]...
{alpha-array } {alpha-array }
{numeric-receiver} {numeric-receiver}
{numeric-array } {numeric-array }

LANGUAGE STATEMENTS DATA LOAD DC

NPL Statements Guide 2-71

DATA LOAD DC (cont.)

Normally, the data has been previously saved with a DATASAVE DC or DATASAVE
DA statement, using a data list with the identical types and sizes of variables listed in the
same order.

DATALOAD DC is a catalog instruction. That is, the starting sector to be used for the
read is determined from the "current" slot of the internal device table entry for the file #
specified. The "current" slot of the internal device table is updated to the sector# follow-
ing the last sector read by the statement.

Examples:

0010 DATA LOAD DC A$,B
0010 DATA LOAD DC #1, A$(), B$, C(), D()
0010 DATA LOAD DC #S, X, Y, Z$()

Compatibility Issues:

In Revision 4.0, if the status of open files is changed by a FUNCTION call in an argu-
ment of a DATASAVE DC or DATALOAD DC statement, this is not detected as a run-
time error. The status of the file is checked only at the start of the statement.

References:

DATA LOAD DC OPEN
DATA SAVE DA
DATA SAVE DC OPEN
IF END THEN
Catalog Access - Section 7.3.8 of the Programmer’s Guide

DATA LOAD DC LANGUAGE STATEMENTS

2-72 NPL Statements Guide

DATA LOAD DC OPEN

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATALOAD DC OPEN statement is used to open a previously cataloged file for fur-
ther processing. An error results if the file cannot be located or if it has been scratched.
Once open, data may be loaded from or saved to the file using disk catalog operations.

The file name to be opened is indicated by an alpha-variable or literal-string from one to
eight characters in length.

Upon execution of the DATALOAD DC OPEN statement, the internal device table entry
for the file # specified (file #0, if no file # is specified) is updated with the starting, cur-
rent, and ending sector numbers of the specified file. Current is initialized to be equal to
the starting sector address of the file.

General Form:

DATALOAD DC OPEN T [file-number,]{file-name }
 {TEMP[,]start, end}

Where:

file-name = an alpha-variable or literal-string containing the
 name of the file to be opened.

TEMP = temporary work file being reopened.

start = a numeric-expression specifying the starting sector
 number of the temporary work file.

end = a numeric-expression specifying the ending sector
 number of the temporary work file.

LANGUAGE STATEMENTS DATA LOAD DC OPEN

NPL Statements Guide 2-73

The TEMP parameter is used to specify that a temporary working file be reopened. Tem-

porary files are not cataloged files and must have been created outside the catalog area.
The starting and ending sector addresses must be specified. The starting sector address
must be greater than the End Catalog sector.

DATA LOAD DC OPEN LANGUAGE STATEMENTS

2-74 NPL Statements Guide

DATA LOAD DC OPEN (cont.)

WARNING--The starting and ending sector numbers of temporary files are stored lo-
cally by the CPU. This means that it is possible for the same file space to be allocated si-
multaneously to more than one user within a multi-user environment. Since the system
cannot restrict this from occurring, use special care with this technique.

Examples:
0010 DATA LOAD DC OPEN T "FILE1"
0010 DATA LOAD DC OPEN T#1, "DATAFILE"
0010 DATA LOAD DC OPEN T#X, A$
0010 DATA LOAD DC OPEN TEMP 1000,2000

Compatibility Issues:

The temporary working file is supported for compatibility purposes but is not recom-
mended.

References:

Catalog Access - Section 7.3.8 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS DATA LOAD DC OPEN

NPL Statements Guide 2-75

DATA SAVE BA

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE BA statement is used to save the contents of the first 256 bytes of an al-
pha-variable at a specified sector number.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Expr1 contains the sector-number to be saved. If expr1 is an alpha-variable, the binary
value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the sector number accessed by the operation. If return-value is an alpha-
variable, the value is contained in the first two bytes in binary.

General Form:

DATASAVE BA T[$][file-number,] (expr1[,return-value])
 [disk-address,]
 [<address-var>,]

{alpha-variable}
{literal-string}

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-receiver.

alpha-variable = alpha-variable containing data to be saved.

DATA SAVE BA LANGUAGE STATEMENTS

2-76 NPL Statements Guide

DATA SAVE BA (cont.)

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

If the alpha-variable to be saved is longer than 256 bytes, only the first 256 bytes are
saved. If the alpha-variable is less than 256 bytes, the remainder of the sector is filled
with unpredictable values.

DATASAVE BA is a direct access instruction as opposed to a catalog instruction; there-
fore, the internal device table is not modified by a DATASAVE BA instruction.

Normally, data saved with a DATASAVE BA statement is read back using a DATA-
LOAD BA statement. No control information is saved with the DATASAVE BA state-
ment.

Use of FUNCTIONs as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter $OPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),’FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$(’NextIndex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

LANGUAGE STATEMENTS DATA SAVE BA

NPL Statements Guide 2-77

DATA SAVE BA (cont.)

Examples:

0010 DATA SAVE BA T(Q$,Q$) A$()
0010 DATA SAVE BA T#1, (X-1,X) X$()
0010 DATA SAVE BA T#S, (R$,R) STR(Z$(),257,256)
0010 DATA SAVE BA T/D10, (R$) Z$()
0010 DATA SAVE BA T#4, (X) HEX(43472CFF20)
0010 DATA SAVE BA T/D12, (30) R$()
0010 DATA SAVE BA T<A$>, (30) R$()

Compatibility Issues:

The DATASAVE BA statement executes as it does on the Wang 2200, except when the
results of the DATASAVE BA would cause data to be written beyond the physical end of
the diskimage.

On a Wang 2200, an error I98 (Illegal Sector Address or Platter Not Mounted) would re-
sult.

In NPL, the diskimage would be extended to the size needed to accommodate the write
operation. If insufficient disk space is available, an error I98 (Illegal Sector Address or
Platter Not Mounted) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of disk-im-
age files.

NOTE: The use of non-cataloged disk space is not recommended. Refer to Chapter 5 of the
NPL Supplement for details on support of non-cataloged disk space on the hard-
ware system.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

DATA LOAD BA
Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide

DATA SAVE BA LANGUAGE STATEMENTS

2-78 NPL Statements Guide

Extended Diskimages - Section 7.3.10 of the Programmer’s Guide
Native OS Files as Diskimage Files - Section 7.3.4 of the Programmer’s Guide

LANGUAGE STATEMENTS DATA SAVE BA

NPL Statements Guide 2-79

DATA SAVE BM

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE BM statement is used to save the contents of the specified alpha-vari-
able or literal string starting at a specified sector number. If the data to be written exceeds
256 bytes, multiple sectors are written. If the last sector to be written is not filled by the
specified alpha-variable or literal, the remainder of the sector is filled with HEX(00). A
buffer with zero bytes writes zero sectors.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Expr1 contains the starting sector-number to be saved. If expr1 is an alpha-variable, the
binary value of the first two bytes is used.

NOTE: Use of alpha-variables for the starting sector-number is not advised for diskimage
files where the EXT=Y clause has been specified. Refer to Section 7.3.10 of the Pro-
grammer’s Guide for further details on extended diskimages.

General Form:

DATASAVE BM T[$][file-number,] (expr1[,return-value])
 [disk-address,]
 [<address-var>,]

data-value

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-receiver.

data-value = an alpha-variable or literal-string containing the
data to be saved.

DATA SAVE BM LANGUAGE STATEMENTS

2-80 NPL Statements Guide

DATA SAVE BM (cont.)

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

NOTE: An error P51 (Variable or Value Too Short) results if an alpha-variable is specified
as the return-variable and the sector number exceeds 65535 (extended diskimage in
use). Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

DATASAVE BM is a direct access instruction as opposed to a catalog instruction; there-
fore, the internal device table is not modified by a DATASAVE BM instruction.

Normally, data saved with a DATASAVE BM statement is read back using a DATA-
LOAD BM or DATA LOAD BA statement. No control information is saved with the
DATASAVE BM statement.

NOTE: Use of DATA SAVE BM, as opposed to DATA SAVE BA, could result in significant
gains in disk efficiency of the application when:

1. The amount of data to be written is equal to or an even multiple of the host operating
system physical sector size for the disk being written to. This is typically 512 bytes
but the actual size may vary. Refer to the appropriate NPL Supplement for details.

2. The starting sector for the operation corresponds to the start of the host operating sys-
tem sector. Since sector zero of the NPL diskimage is always located at the start of a
host operating system physical sector, this can be determined.

For example, with the typical physical sector size of 512 bytes, all NPL even-numbered
sectors (0,2,4, etc.) are located at the start of a physical sector.

There are two reasons for the efficiency gain:

1. Since the entire host operating physical sector is to be modified, no pre-read is
needed.

LANGUAGE STATEMENTS DATA SAVE BM

NPL Statements Guide 2-81

DATA SAVE BM (cont.)

NOTE: NPL itself does not perform the pre-read. Rather, this is handled automatically by
the operating system.

2. Multiple sectors may be written in one physical operation.

For example, assume that, on an MS-DOS system where the physical sector size is 512
bytes, disk D11 begins at physical sector 1000.

NOTE: The application does not need to know the physical sector numbers--it is given here
for purposes of illustration. Further, assume that X$() is dimensioned to a length of
512. The following statements result in physical I/O as indicated:

DATA SAVE BM T/D11,(0)X$()

Writes one physical sector (sector 1000) of 512 bytes.

DATA SAVE BA T/D11,(0)STR(X$(),1,256)

DATA SAVE BA T/D11,(1)STR(X$(),257,256)

Will:

a. Reads physical sector 1000

b. Modifies the first 256 bytes of physical sector 1000.

c. Writes physical sector 1000.

d. Reads physical sector 1000.

e. Modifies the second 256 bytes of sector 1000.

f. Writes physical sector 1000.

NOTE: Some of these operations, particularly the second read, would be from buffered data.

DATA SAVE BM LANGUAGE STATEMENTS

2-82 NPL Statements Guide

DATA SAVE BM (cont.)

Use of FUNCTIONs as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter $OPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),’FunctionResult$,Array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$(’NextIndex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

Examples:

0010 DATA SAVE BM T(Q$,Q$) A$()
0010 DATA SAVE BM T#1, (X-1,X) X$()
0010 DATA SAVE BM T#S, (R$,R) STR(Z$(),513,512)
0010 DATA SAVE BM T<X$>, (R$) Z$()
0010 DATA SAVE BM T<A$>, (X) HEX(43472CFF20)
0010 DATA SAVE BM T/D12, (30) R$()

Compatibility Issues:

The behavior of DATASAVE BM is different from the Wang 2200 when the results of
the DATASAVE BM would cause data to be written beyond the physical end of the
diskimage:

On a Wang 2200, an error I98 (Illegal Sector Address or Platter Not Mounted) would
result.

In NPL, the diskimage would be extended to the size needed to accommodate the
write operation. If insufficient disk space is available, an error I98 (Illegal Sector Ad-
dress) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of disk-
image files.

LANGUAGE STATEMENTS DATA SAVE BM

NPL Statements Guide 2-83

DATA SAVE BM (cont.)

NOTE: The use of non-cataloged disk space is not recommended. Refer to Chapter 5 of the
NPL Supplement for details on support of non-cataloged disk space on the hard-
ware system.

DATA SAVE BM is supported in Revision 3.0 and greater of NPL.

On a Wang 2200, the highest sector number that can be referenced is 65535. In NPL, if
the EXT=Y clause is specified on the $DEVICE statement, sector numbers above 65535
can be used. Refer to Section 7.3.10 of the Programmer’s Guide for further details on ex-
tended diskimages.

Use of the address-var parameter is not supported on the Wang 2200.

References:

DATA LOAD BA, BM
DATA SAVE BA, BM
Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

DATA SAVE BM LANGUAGE STATEMENTS

2-84 NPL Statements Guide

DATA SAVE DA

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DA statement is used to save variables, expressions, or literals as logi-
cal data records beginning at a specified sector number.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Expr1 contains the first sector-number to be saved. If expr1 is an alpha-variable, the bi-
nary value of the first two bytes is used.

After execution of the statement, the return-value contains the sector-number immedi-
ately following the last sector number accessed by the operation. If return-value is an al-
pha-variable, the value is contained in the first two bytes in binary.

General Form:

DATASAVE DA T[$][file-number,] (expr1[,return-value])
 [disk-address,]
 [<address-var>,]

{variable-list}
{END }

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-receiver.

variable-list = {alpha-variable }[,{alpha-variable }]...
{literal-string } {literal-string }
{numeric-variable } {numeric-variable }
{numeric-expression} {numeric-expression}

LANGUAGE STATEMENTS DATA SAVE DA

NPL Statements Guide 2-85

DATA SAVE DA (cont.)

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use, and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

Values are saved sequentially as listed. The variable-list may include array designators
such as A$() or A(). This indicates that the entire array is to be saved element-by-ele-
ment. Alpha-values cannot exceed 124 characters.

If the "END" parameter is used, an end-of-file trailer record is written. This record can be
used to check for end-of-file with an IF END THEN statement. The "number of sectors
used" entry in the catalog is not updated, however.

DATASAVE DA is a direct access instruction as opposed to a catalog instruction. That
is, the internal device table is not affected by a DATASAVE DA instruction.

Use of FUNCTIONs as arguments in a DATALOAD or DATASAVE statement, which
does not have the platter $OPEN, may result in a disk operation which is not integral.
Any implied lock that RTI would issue against the disk is released for the duration of the
function call. If the application depends on this implied lock to maintain data integrity, ar-
guments should be evaluated separately from the DATALOAD/DATASAVE statement.

For example:

Dim Array1$(22)12,Array2$(22)12

DATA SAVE DA T#1,(X,X)Array2$(),’FunctionResult$,array2$()
DATA LOAD DA T#1,(X,X)Array1$(),Key$(’NextIndex),Array2$()

HINT: Function calls should not be used when evaluating arguments in DATALOAD /
DATASAVE statements.

DATA SAVE DA LANGUAGE STATEMENTS

2-86 NPL Statements Guide

DATA SAVE DA (cont.)

Examples:
0010 DATA SAVE DA T(Q$,Q$) A$, 2*B+1, "TEST", D$()
0010 DATA SAVE DA T#1, (X-1,X) A$(), B$, C(), D()
0010 DATA SAVE DA T$#S, (R$,R) X, Y, Z$()
0010 DATA SAVE DA T/D10, (R$) Z$(), X, A$
0010 DATA SAVE DA T$#4, (X) K$(), STR(A$,2,3), A(2)
0010 DATA SAVE DA T/D12, (30) END
0010 DATA SAVE DA T<A$>, (30) END

Compatibility Issues:

The DATASAVE DA statement executes as it does on the Wang 2200, except when the
results of the DATASAVE DA would cause data to be written beyond the physical end
of the diskimage.

On a Wang 2200, an error I98 (Illegal Sector Address or Platter Not Mounted) would
result.

In NPL, the diskimage would be extended to the size needed to accommodate the
write operation. If insufficient disk space is available, an error (Illegal Sector Ad-
dress or Platter Not Mounted) would result.

Any new space allocated would be non-cataloged disk space.

Refer to Section 7.3.4 of the Programmer’s Guide for details on dynamic size of
diskimage files.

Refer to Chapter 5 of the NPL Supplement for details on support of non-cataloged disk
space for the hardware system.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

Dynamic Allocation - Section 7.3.4 of the Programmer’s Guide
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS DATA SAVE DA

NPL Statements Guide 2-87

DATA SAVE DC

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DC statement is used to save variables, expressions, or literals as logi-
cal data records in a cataloged file. Each execution of the statement saves the next logical
data record.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

Values are saved sequentially as listed. The data list may include array designators such
as A$() or A(). This indicates that the entire array is to be saved element-by-element. Al-
pha string variables cannot exceed 124 characters.

If the "END" parameter is used, an end-of-file trailer record is written, the date/time
stamp of the file is updated with the current date and time, and the "number of sectors
used" value in the trailer record is updated.

DATASAVE DC is a disk catalog instruction, as opposed to a direct access instruction.
That is, the starting sector is read from the "current" slot of the internal device table and
the "current" slot of the internal device table is updated to the next number following the
last sector written by the statement.

General Form:

DATASAVE DC [$][file-number,]{variable-list}
 {END }

Where:

file-number = a file previously opened with a DATASAVE DC OPEN
or DATALOAD DC OPEN statement.

variable-list = {alpha-variable }[,{alpha-variable }]...
{literal-string } {literal-string }
{numeric-variable } {numeric-variable }
{numeric-expression} {numeric-expression}

DATA SAVE DC LANGUAGE STATEMENTS

2-88 NPL Statements Guide

DATA SAVE DC (cont.)

Examples:
0010 DATA SAVE DC A$, 2*B+1, "TEST", D$()
0010 DATA SAVE DC #1, A$(), B$, C(), D()
0010 DATA SAVE DC $#S, X, Y, Z$()
0010 DATA SAVE DC #X, END

Compatibility Issues:

The Date/Time stamp is implemented in Revision 2.00 and greater of NPL.

The Date/Time stamp is not implemented in Wang 2200 Basic-2.

File trailer storage of the Date/Time stamp in catalog data files is implemented in Revi-
sion 2.01 of NPL.

File trailer storage of the filename and status of catalog data files is implemented in Revi-
sion 3.00 of NPL.

Revision 3.20 of NPL implemented byte 40 of $OPTIONS to allow developers to sup-
press all trailer section information of catalog data files.

References:

Cataloged Files - Section 7.3.7 of the Programmer’s Guide
Catalog Access - Section 7.3.8 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS DATA SAVE DC

NPL Statements Guide 2-89

DATA SAVE DC CLOSE

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DC CLOSE statement is used to close files previously opened with
DATASAVE DC OPEN or DATALOAD DC OPEN.
The DATASAVE DC CLOSE statement initializes the internal device table information
to zero but does not internally affect the closed files.

If the "ALL" parameter is specified, all open files are closed.

Examples:
0010 DATA SAVE DC CLOSE
0010 DATA SAVE DC CLOSE #1
0010 DATA SAVE DC CLOSE #X
0010 DATA SAVE DC CLOSE ALL

Compatibility Issues:

References:

DATA LOAD DC OPEN
DATA SAVE DC OPEN
Catalog Access Methods - Section 7.3.8 of the Programmer’s Guide

General Form:

DATASAVE DC CLOSE [file-number]
[ALL]

Where:

file-number = a file previously opened with a DATASAVE DC OPEN or
DATALOAD DC OPEN statement.

DATA SAVE DC CLOSE LANGUAGE STATEMENTS

2-90 NPL Statements Guide

DATA SAVE DC OPEN

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DATASAVE DC OPEN statement is used to create a new cataloged file and open it
for further processing. An error results if the file already exists and has not been
scratched. Once open, data may be loaded from or saved to the file.

Presence of the "$" parameter indicates that read-after-write error-checking is to be per-
formed.

If an already cataloged filename is specified, the previously allocated space for that file is
assigned to the new file. The old file must have been previously scratched. The old file-
name and the new filename may be the same.

General Form:

DATASAVE DC OPEN T[$][file-number,]{(scratch-file)new-file}
 {(space)new-file }

 {TEMP[,]start,end }

Where:

scratch-file = the name of an existing scratched program or data
file in the specified diskimage.

space = a numeric-expression specifying number of sectors
required for the new file

new-file = the name of the new file being opened

temp = the temporary work file being established

start = a numeric-expression specifying the starting sec-
tor number of the temporary work file.

end = a numeric-expression specifying the ending sector
number of the temporary work file.

LANGUAGE STATEMENTS DATA SAVE DC OPEN

NPL Statements Guide 2-91

DATA SAVE DC OPEN (cont.)

If the space parameter is specified with a new file name, a new file is created at the cur-
rent end of the catalog at the sector size specified. If there is insufficient space in the cata-
log area to create the new file, or if another file of the same name already exists, an error
results.

NOTE: The number of sectors actually available for new files is one less than the number
specified in the catalog index, since one sector is reserved for system-related infor-
mation.

The Internal Device Table entry for the file number specified is updated with starting and
ending sector locations. Current is set equal to start.

The TEMP parameter specifies creation of a temporary work file, which must be created
outside of the catalog area. Starting and ending sector numbers must be specified, with
the starting sector number greater than the current catalog END.

WARNING--The starting and ending sector numbers of temporary files are stored lo-
cally by the CPU. This means that it is possible for the same file space to be allocated si-
multaneously to more than one user within a multi-user environment. Since the system
cannot prevent this from occurring, use special care with this technique.

The file date/time stamp, filename, file type, and file status fields in the trailer sector are
updated by a DATASAVE DC OPEN statement.

Examples:

0010 DATA SAVE DC OPEN T$ (200) "FILE1"
0010 DATA SAVE DC OPEN T#1, (100) "DATAFILE"
0010 DATA SAVE DC OPEN T#X, (A) A$
0010 DATA SAVE DC OPEN T$#Q, ("OLDFILE") "NEWFILE"

DATA SAVE DC OPEN LANGUAGE STATEMENTS

2-92 NPL Statements Guide

DATA SAVE DC OPEN (cont.)

Compatibility Issues:

The Date/Time stamp is implemented in Revision 2.00 and greater of NPL.

The Date/Time stamp is not implemented in Wang 2200 Basic-2.

The Temporary working file is supported for compatibility purposes but is not recom-
mended.

Storage of file name, type, and status in the trailer sector is supported only in NPL Revi-
sion 3.0 or greater and is not supported on the Wang 2200.

References:

Catalog Access Methods - Section 7.3.8 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide
Non-cataloged Disk Space - Chapter 5, NPL Supplement(s)

LANGUAGE STATEMENTS DATA SAVE DC OPEN

NPL Statements Guide 2-93

DATE

Discussion:

The DATE system variable is a special system variable which can be used as a receiver
(Form 1) to set the system date or as a function (Form 2) which allows an alpha-variable
to be set to the system’s date.

When used as a function (Form 2), the date is returned as an alpha-string, six characters
in length. The first two characters are the year, the next two are the month, and the last
two are the day of the month.

A System Library function ’CenturyDate$ returns today’s date in the format:

19YYMMDD

with additional logic added to ensure that this value changes to "20YYMMDD" when the
value of YY returned by the built-in DATE function is less than 90.

Refer to the System Library Functions Reference for additional information.

Examples:
0010 Q$ = DATE
0010 M$() = DATE
0010 DATE = "860620"
0010 DATE = A$
0010 date = "930322" PASSWORD "SYSTEM"

Compatibility Issues:

Form 2 of the DATE statement, which READS the date, is fully compatible with Wang
2200 Basic-2 implementation.

General Form:

Form 1:

DATE= alpha-expression [PASSWORD {literal-string}]
 {alpha-variable}

Form 2:

alpha-receiver = [$]DATE

DATE LANGUAGE STATEMENTS

2-94 NPL Statements Guide

DATE (cont.)

The PASSWORD clause is required in Wang 2200 Basic-2. Under NPL, the PASS-
WORD clause is syntactically supported for compatibility purposes and, if specified, is
checked for validity. The system password is "SYSTEM" under NPL and may not be
modified.

Operation of this statement may vary on different hardware versions of NPL. Access
privileges may be needed to set the system date under certain operating systems. Refer to
the appropriate NPL Supplement for details.

References:

LANGUAGE STATEMENTS DATE

NPL Statements Guide 2-95

DBACKSPACE

Discussion:

The DBACKSPACE statement is used with cataloged data files in order to set the "cur-
rent" value in the internal device for the file number specified to a lower value. It permits
backspacing over logical records or physical sectors within the file.

The numeric-expression specifies the number of logical records or physical sectors [S] to
be backspaced. The BEG parameter backspaces to the beginning of the file.

When not using the "S" parameter, the number of sectors to subtract from the "current"
sector address is determined by actually reading backward through the specified number
of logical records.

When using the "S" parameter, the number of sectors specified is subtracted from the cur-
rent sector address. If this precedes the beginning of the file, the starting sector address is
used. Since this operation simply decreases the Current Sector Address in the Internal De-
vice Table by the value of the specified numeric-expression, a disk access is not required.

General Form:

 DBACKSPACE [file-number,]{numeric-expression[S]}
 {BEG }

Where:

numeric-expression = number of records to be backspaced.

S = indicates numeric-expression represents num-
ber of physical sectors as opposed to logi-
cal records.

BEG = backspace to beginning of file.

DBACKSPACE LANGUAGE STATEMENTS

2-96 NPL Statements Guide

DBACKSPACE (cont.)

Examples:

0010 DBACKSPACE 10
0010 DBACKSPACE #2,BEG
0010 DBACKSPACE X*20
0010 DBACKSPACE #4,2S
0010 DBACKSPACE A*3

Compatibility Issues:

References:

Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS DBACKSPACE

NPL Statements Guide 2-97

DEFFN’ Keyboard Input

Discussion:

The keyboard input form of the DEFFN’ statement can be used to define commonly used
character strings which are entered during INPUT or LINPUT operations. The integer in
the DEFFN’ statement corresponds to one of the 32 function keys numbered from 0 to
31. Once a character string has been defined, the characters may be recalled by pressing
the corresponding special function key.

Character strings must be specified by a literal string inside quotes or by a HEX string, or
by a combination of the two. If multiple parts of a string are defined, each part must be
separated by a semi-colon (";").

Predefined text strings can be entered any time while using the editor (to enter or edit pro-
gram text) or during the execution of the INPUT and LINPUT statements. If the charac-
ter string contains a HEX(0D), the editor responds as if the operator had pressed the
RETURN key. Characters after the HEX(0D) are ignored. If quotes are needed in the text
string, the HEX representation for quotation marks, HEX(22), can be inserted in the
string.

NOTE: Program-defined special function keys can only be used while in DEFFN Mode (not
in Edit Mode). Refer to Section 5.4 of the Programmer’s Guide for a discussion of
Special Function keys in DEFFN Mode and Edit Mode.

WARNING--Use of DEFFN’ literals to perform program SAVEs can give unexpected
and unpleasant results if the program is currently resolved (HALTed while running),
since DEFFN’ functions are always referenced in the currently EXECUTING context.

Examples:

0010 DEFFN’0"LISTD";HEX(0D)
0010 DEFFN’30"X$=";HEX(22);"UTILITY2";HEX(22);":SCRATCH T X$:

 SAVET()X$";HEX(0D)

General Form:

DEFFN’integer literal-string [;literal-string]...

DEFFN’ Keyboard Input LANGUAGE STATEMENTS

2-98 NPL Statements Guide

DEFFN’ Keyboard Input (cont.)

These are commonly used subroutines during program development. DEFFN’0 exe-
cutes a LISTD command. DEFFN ’30 is used to SCRATCH and SAVE program in
memory to disk. Of course, the program name ("UTILITY2" in the example) has to
be specified correctly for the program being worked on.

:0010 DIM B$30
:0020 LINPUT "Enter the Directory Path"?-A$
:0030 B$=A$ & "/PLATTER1.BS2"
:0040 $DEVICE(/D20)=B$
:0050 SELECT DISK D20

: LOAD RUN T"START"
:0100 DEFFN’15 "/BASIC2C/PROGS";HEX(0D)
:RUN

In this example, SF’key 15 has been assigned a literal directory path and carriage return.
When prompted by the LINPUT statement in line 20, the user needs only to depress
SF’key 15 in response.

Compatibility Issues:

Refer to Appendix D of the Programmer’s Guide for details on the keyboard equiva-
lences for ’SF keys on the specific terminals.

Wang 2200 Basic-2 requires that DEFFN’ be the first statement in a program line (it must
immediately follow the line-number). This is NOT a restriction in NPL. The DEFFN’
statement may appear in the middle of a multi-statement line.

References:

INPUT
LINPUT
SAVE
SCRATCH
The Line Editor - Section 5.4 of the Programmer’s Guide

LANGUAGE STATEMENTS DEFFN’ Keyboard Input

NPL Statements Guide 2-99

DEFFN’ Subroutine

NOTE: The use of this statement is not recommended. Refer to FUNCTION or PROCE-
DURE as a better alternative.

Discussion:

The DEFFN’ statement is used to define subroutines which are to be referenced by a
specified integer or identifier instead of a line number. Each subroutine is identified by a
program statement containing the DEFFN’ verb, followed by an integer value from 0 to
65535 or a valid identifier name. The subroutine is ended with a RETURN statement.
Subroutines defined with DEFFN’ are invoked with the GOSUB’ statement.

Unlike normal subroutines, the DEFFN’ subroutines support an optional argument list
which can be passed values with the GOSUB’ statement. This argument list can contain
up to 255 numeric-receivers or alpha-variables. The variable types and positions of all
variables in the GOSUB’ statement must match the types and positions of the DEFFN’
statement. When execution of a DEFFN’ subroutine is completed (by execution of a RE-
TURN statement), control is transferred to the statement following the GOSUB’ state-
ment.

NOTE: Use of more than 16 parameters results in significant performance degradation.

Calling DEFFN’s from the Keyboard

DEFFN’ subroutines labelled with an integer value of 0 to 31 and 126 to 127 but with no
argument list may be invoked from the keyboard during Immediate Mode or during an
INPUT or LINPUT operation by pressing the corresponding numbered special function
key of a given DEFFN’ subroutine. When execution of the subroutine is completed (by
execution of the RETURN statement), Immediate Mode is reactivated, the INPUT state-
ment is restarted, or execution proceeds at the statement following the LINPUT statement.

If more than one definition appears for the same function, the definition which appears
first in a program listing is used.

General Form:

DEFFN’{integer} [(variable [,variable]..)][/PUBLIC][/FORWARD]
 {identifier}

DEFFN’ Subroutine LANGUAGE STATEMENTS

2-100 NPL Statements Guide

DEFFN’ Subroutine (cont.)

External DEFFN’s:

As of Revision 3.0 of NPL, DEFFN’s may be defined in external subroutines developed
in other languages. Whenever both an external and an internal DEFFN’ of the same num-
ber are present, the internal DEFFN’ is executed rather than the external DEFFN’. (Refer
to Chapter 16 of the Programmer’s Guide for further details on external DEFFN’s.)

Attributes:

If the keyword PUBLIC is used, the marked subroutine is callable from any module, not
just the one in which it’s defined. A PUBLIC declaration of the marked subroutine may
also appear in the PUBLIC section of the defining module. The FORWARD keyword
may be used on PUBLIC declarations to indicate that the body of the function appears
later in the module, rather than immediately following the DEFFN’ statement. Only one
PUBLIC DEFFN’ declaration for a given function number (other than FORWARD refer-
ences) is permitted within the workspace (all modules). A module that declares a PUB-
LIC DEFFN’ may not also declare the DEFFN’ as non-PUBLIC.

A DEFFN’ [/FORWARD] statement that occurs within a PUBLIC section is implicitly
/PUBLIC. In this case, the /PUBLIC keyword is not required but may be entered for clar-
ity.

If both the FORWARD declaration and the definition specify a parameter list, the num-
ber and types of all parameters must match, and the variable names in the definition are
used (in preference to those in the FORWARD declaration).

Named DEFFN’ subroutines and access to these from GOSUB’ are supported. Currently,
access and duplication rules of named subroutines are identical to those of numbered sub-
routines. In particular, you may not have DEFFN’ inside a FUNCTION body. In addi-
tion, if multiple declarations of DEFFN’s occur in a program, all but the first are
effectively ignored.

LANGUAGE STATEMENTS DEFFN’ Subroutine

NPL Statements Guide 2-101

DEFFN’ Subroutine (cont.)

NOTE: This may change in a later version to a more strict rule (e.g., duplicate declarations
would be flagged as errors unless due to a /FORWARD or /BEGINS).

A DEFFN’ statement is not permitted in the body of a FUNCTION or PROCE-
DURE.

Examples:

0010 DEFFN’250
0010 DEFFN’251(Q,Q1,Q$)
0010 DEFFN’252(STR(A$(),10,200))
0010 DEFFN’1043(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z)
0010 DEFFN’100 /PUBLIC
0010 DEFFN’32768 /PUBLIC/FORWARD
0010 DEFFN’17032(X,X$,Y$)/FORWARD
0010 DEFFN’17032(B,A$(B),STR(R$(B),2))/PUBLIC
0010 DEFFN’MySub(A$,B$)

Compatibility Issues:

Use of more than 16 parameters is supported only in NPL Revision 3.0 or greater.

Use of DEFFN’s above ’255 is supported only in NPL Revision 3.0 or greater.

Use of DEFFN’s above ’255 is not supported on the Wang 2200.

In Wang 2200 Basic-2, if a DEFFN’ subroutine is accessed using the keyboard and has
parameters, the parameters are requested by a "?" on the screen. In NPL, DEFFN’ subrou-
tines which have parameters may not be accessed from the keyboard. No runtime error is
generated. The subroutine simply is not executed.

Wang 2200 Basic-2 requires that a DEFFN’ be the first statement in a program line (it
must immediately follow the line-number). This is not a restriction in NPL. The DEFFN’
statement may appear anywhere in a multi-statement program line.

Named DEFFIN’s, PUBLIC, FOWARD, and BEGINS attributes are supported only in
NPL Release IV or later.

DEFFN’ Subroutine LANGUAGE STATEMENTS

2-102 NPL Statements Guide

DEFFN’ Subroutine (cont.)

References:

GOSUB
INPUT
LINPUT
RETURN

LANGUAGE STATEMENTS DEFFN’ Subroutine

NPL Statements Guide 2-103

DEFFN Function Definition

NOTE: The use of this statement is not recommended. Refer to FUNCTION as a better al-
ternative.

Discussion:

The DEFFN statement is used to define a numeric function within a program which can
be later called by use of the FN instruction in numeric-expressions.

Each function is identified by a single letter or digit for a total of 36 possible functions
within a program. Each function must include a single numeric-expression which is per-
formed when the function is invoked by an FN function call. The numeric-scalar speci-
fied is used only as a value in the expression when the function is invoked. The contents
of the numeric-scalar are not modified.

The DEFFN statement is not executed if encountered during normal program sequence.
The expression in the DEFFN statement is evaluated only when referenced from an FN
function call. When the expression is evaluated, the value of the parameter of the FN
function is used whenever the numeric-scalar appears in the DEFFN numeric-expression.
The value of the numeric-scalar is not changed by the FN function call (the numeric-sca-
lar is a "dummy" variable). Therefore, a DEFFN statement can appear anywhere in a pro-
gram without affecting normal execution of the program.

If more than one definition appears for the same function, the definition which appears
first in the program listing is used.

General Form:

DEF FN {letter} (numeric-scalar) = numeric-expression
 {digit }

DEFFN Function Definition LANGUAGE STATEMENTS

2-104 NPL Statements Guide

DEFFN Function Definition (cont.)

Examples:

0010 DEFFNA(X)=(X*1.05)+(X-255)
0010 DEFFN9(Y)=Y+2*(Y-9)
0010 DEFFNB(W)=VAL(STR(W$(),W))+T*2
:0010 INPUT Y
:0020 X=FNB(Y)
:0030 PRINT Y,X
:0040 DEF FNB(A)=(A-3)/2
:RUN
? 9
 9 3
:

Compatibility Issues:

References:

Function-name Defined Function

LANGUAGE STATEMENTS DEFFN Function Definition

NPL Statements Guide 2-105

DEFFN@PART

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
No operation is performed when this statement is encountered at execution time.

Replacing Global Partitions

The use of global partitions to support shared program code and variables is not sup-
ported by NPL. Where the primary purpose of the global partitions is simply to share
code, it may be possible to place the global partition’s code into an NPL library module
instead. Some program changes are required, such as adding an appropriately designed
PUBLIC section to define the publicly accessible DEFFN’ entry points and global vari-
ables, and replacing SELECT@PART statements in programs that use the global parti-
tion with an INCLUDE statement to make the library module available. Also, any
variable initialization which is done before the DEFFN@PART statement may be placed
in a /MAIN procedure to ensure it is executed before library functions are called.

Where the primary purpose of global partitions is to share variables (e.g., for record lock-
ing), the application must be rewritten to be compatible with networked environments,
where the sharing of information is done only through commonly accessed files.

In the Wang 2200 MVP/CS environment, application software (e.g., KFAM) that uses
global partitions for sharing variables usually also supports some alternative method
which uses disk files. These alternative methods are often provided to allow for use with
larger systems that involve multiple CPU’s and multiplexed disk drives, since, in these
environments, the use of "system-wide" shared variables is not possible. Configuring the
application to use this alternative disk-based method may allow NPL applications to run
without involving substantial changes.

General Form:

DEFFN@PART {alpha-variable}
 {literal-string}

DEFFN@PART LANGUAGE STATEMENTS

2-106 NPL Statements Guide

DEFFN@PART (cont.)

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, signals the specified partition as
a "global" partition. Global partitions are not supported under NPL.

On a Wang 2200, variable names which are previously undeclared and appear after a
DEFFN@PART statement in a program are assumed to be variables of another partition,
are not allocated space in the partition, and need not be declared (if arrays) in a DIM or
COM statement. All array-variables must be declared under NPL and all variable space
must be allocated. DEFFN@PART has no effect on program resolution of variables.

On a Wang 2200, an optional FOR terminal# [,terminal#] clause is permitted to restrict
access to a global partition. This syntax is not supported by NPL.

References:

SELECT @PART
GOSUB’

LANGUAGE STATEMENTS DEFFN@PART

NPL Statements Guide 2-107

DELETE

Discussion:

The DELETE statement is used to remove the index entry of a file or files. The purpose
of this statement is to provide a convenient method of eliminating file names which are
no longer used.

All file-names specified must be present and scratched. DELETE does not remove a non-
scratched file-name.

The actual contents of the file are not affected by DELETE. However, once a file has
been removed, the index entry for the file cannot be reconstructed by any NPL statement.
Therefore, the contents of the file are effectively lost.

In most cases, the space that was used by the files deleted does not become available for
reuse until a MOVE operation or equivalent utility is executed. However, when the file
deleted is the last file on the diskimage (end sector of the file is equal to Current End for
the diskimage), Current End is set to the start sector of the file minus one.

NOTE: Where multiple files are to be deleted, they are processed one by one in the order
specified. For example, where the first file specified is the second from last file on
the diskimage and the second file specified is the last file on the diskimage, Current
End is decremented only for the second file specified. When the first file is proc-
essed, it is not the last file on the diskimage.

General Form:

DELETE T [file-number,] file-name [,file-name]...
 [disk-address,]
 [<alpha-variable>,]

Where:

file-name = an alpha-variable or literal-string containing the
name of the existing cataloged file to be scratched.

DELETE LANGUAGE STATEMENTS

2-108 NPL Statements Guide

DELETE (cont.)

Examples:
0010 DELETE T"START",Q$
0010 DELETE T X$,X1$,X2$
0010 DELETE T#Y,"SP MENU"
:DELETE T"START"
:DELETE T/D32,"START","SP START","SECURITY"
:DELETE T<A$>,"PROGRAM"

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

DELETE is not supported on the Wang 2200.

References:

SAVE
DATA SAVE DC OPEN
SCRATCH
UNSCRATCH

LANGUAGE STATEMENTS DELETE

NPL Statements Guide 2-109

$DEMO

Discussion:

$DEMO is a system variable which allows for the generation of "self demonstrating" soft-
ware. With this technique, live software is operated by using keystrokes and informa-
tional text from an ASCII text file, as opposed to the keyboard.

Form 1:

When a value is assigned to $DEMO, the value must be a valid native operating system
file specification or blank spaces. If not blank, all keyboard input is redirected from the
specified file. No keyboard keys function, with the following exceptions:

• SPACE BAR - this is used to continue with the Demo script when it has been
halted by a special screen display.

• CANCEL - pressing CANCEL when a BOX is displayed and the non-interpre-
tive RTP is running exits the Runtime. This is an intended result, designed to al-
low a user who is unfamiliar with the software’s structure to exit from a software
demonstration at any time. The interpretive RTI returns the keyboard to normal
use, to allow testing and correction of $DEMO files.

• ARROW Keys - may be used to interactively reposition special screen displays
at execution time.

• PLUS and MINUS Keys - May be used to speed up or slow down the rate of key-
stroke entry from the demo script file.

General Form:

Form 1:

$DEMO = alpha-expression

Form 2:

alpha-receiver = $DEMO

$DEMO LANGUAGE STATEMENTS

2-110 NPL Statements Guide

$DEMO (cont.)

When the end of the demo script file is reached, the value of the $DEMO variable is not
removed, but keystrokes and text are no longer read from the file. If the demo script file
specified by the $DEMO system variable does not exist, or is invalid, or is blank, the key-
board input returns to normal.

As of Revision 4.0 of NPL, $OPTIONS byte 42 may be set to aid in the debugging of se-
quencing problems encountered by a $DEMO script. Refer to $OPTIONS for details.

Form 2:

The current status of the $DEMO system variable may be examined by using Form 2 of
the $DEMO statement. In addition, byte 19 of $MACHINE may be examined to deter-
mine whether or not the next keystroke is generated from a $DEMO script.

As of Revision 3.0 of NPL, keyboard logging may be used to generate files suitable for
use with $DEMO. Refer to $DEMO, Chapter 12 of the Programmer’s Guide. for details
on the structure of the demo script file. Refer to SELECT LOG for further details on key-
board logging.

Examples:
0010 $DEMO="/BASIC2C/SCRIPT1.DAT"

In this example, the /BASIC2C/SCRIPT1.DAT file would be redirected for keyboard in-
put as the Demo script file.

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

This statement is not valid in Wang 2200 Basic-2.

Use of $MACHINE to determine the status of $DEMO redirection and generation of
demo script files by keyboard logging are both supported only on NPL Revision 3.0 or
greater.

LANGUAGE STATEMENTS $DEMO

NPL Statements Guide 2-111

References:

$MACHINE
$OPTIONS
SELECT LOG
$DEMO - Chapter 12 of the Programmer’s Guide

$DEMO LANGUAGE STATEMENTS

2-112 NPL Statements Guide

$DET

Discussion:

The $DET function allows program inspection of the device addresses currently defined
in the Device Equivalences Table (DET). The numeric-expression is used to specify
which entry in the DET is accessed. The number of DET entries may range from 16 to
255, as established by the /D RunTime option. Attempting to access a DET entry greater
than 65535 results in a P34 (Illegal Value) error.

The value returned by $DET is a three-byte, alpha-numeric value representing the device-
address defined by a prior $DEVICE Statement. If a given slot in the DET is currently
not used, spaces are returned.

NOTE: The device-class byte of the device-address returned by $DET is subject to the same
translation as shown by LISTDT. For instance, print class addresses yzz are always
returned as 0zz, disk addresses 3x0 are always returned as Dx0, and disk addresses
Bx0 are always returned as Dx1.

The actual host operating system device equivalence for the device-address returned may
then be accessed by use of the $DEVICE statement.

For example, the following program displays all devices currently defined in the DET:

0010 DIM A$3,B$50,M$64
0020 M$=$MACHINE
0030 M=VAL(STR(M$,16,1)

:REM Number of DET entries is in $MACHINE
0040 PRINT "DEVICE ADDRESS";TAB(20);"DEVICE EQUIVALENCE"
0050 FOR X=1 TO M
0060 A$=$DET(X)
0070 IF A$<>" "
0080 B$=$DEVICE(A$)
0090 PRINT A$;TAB(20);B$
0100 END IF
0110 NEXT X

General Form:

alpha-receiver = $DET (numeric-expression)

LANGUAGE STATEMENTS $DET

NPL Statements Guide 2-113

$DET (cont.)
NOTE: The order of entries returned by $DET() has no special significance and may be

changed when new values are assigned to DET entries. If there are n valid $DE-
VICE values currently defined, all valid addresses correspond to $DET(1) through
$DET(n).

Examples:
0010 A$=$DET(1)
0010 STR(A$,4,3)=$DET(X)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

$DET is not supported on the Wang 2200.

References:

$DEVICE
Device Equivalence Table - Section 7.2.2 of the Programmer’s Guide

$DET (cont.) LANGUAGE STATEMENTS

2-114 NPL Statements Guide

$DEVICE

General Form:

Form 1:

$DEVICE({device-address})=alpha-expression
 {file-number }
 {alpha-variable }

Form 2:

alpha-receiver= $DEVICE({device-address})
 {file-number }
 {alpha-variable}

Where:

alpha-variable = contains a valid NPL device-address or file-number (with no

preceding slash).

alpha-expression = an alpha-expression which evaluates to a native operating sys-

tem file-specification or device-specification followed by one

or more optional clauses. The total resultant value of the al-

pha-expression should not exceed 50 characters in length. One

blank space separates the file or device-name and each optional

clause.

clause = [1.2={N,Y}]

[1.4={N,Y}]

[2.8={N,Y]]

[360={N,Y}]

[720={N,Y}]

[ALF={N,Y}]

[ERR={N,Y}]

[EXT={N,Y}]

[LCL={N,Y}]

[PES=numeric-constant]

[SES=numeric-constant]

[TMO={N,Y}]

[XLA={N,Y}]

LANGUAGE STATEMENTS $DEVICE

NPL Statements Guide 2-115

$DEVICE (cont.)

Discussion:

The $DEVICE assignment statement provides a method of changing or inspecting a spe-
cific entry in the Device Equivalence Table. The Device Equivalence Table establishes
an equivalence between NPL device addresses and the native operating system files or de-
vices. The number of Device Equivalence Table entries is set to 16 by default but may be
set higher (up to a maximum of 255) by use of the /D startup option. Refer to Section
7.2.2 of the Programmer’s Guide for details on the Device Equivalence Table.

Form 1: Changing the Device Equivalence Table

Form 1 can be used to modify the device equivalence table of the $DEVICE statement.

If the result of the alpha-expression used in the assignment is blank, the specified device-
address is removed from the table. Otherwise, it replaces the current native name that the
NPL device address is currently mapped to, and all subsequent I/O is performed to the
new device. The alpha-expression should equate to a valid native operating system file or
device specification. No checking is done for validity of the specification until an attempt
is made to access the device, at which time a P48, Invalid Device Specification, occurs if
the device is not available.

For example:

0010 $DEVICE(/D11)="/other/platter1.bs2"
 : $DEVICE(/D12)="/data/platter1.bs2"
 : SELECT DISK /D11
 : LOAD RUN

This changes the device equivalents so that subsequent references to the disk addresses
/D11 and /D12 refer to the diskimage files "/other/platter1.bs2" and "/data/platter1.bs2"
respectively. It subsequently loads and runs the "START" program from the "/other/plat-
ter1.bs2" diskimage.

Execution of a $DEVICE statement (Form 1) which specifies a file or device which has
already been opened by prior access causes that file or device to be closed. Whether the
file was previously open or not, the first actual I/O statement following execution of the
$DEVICE statement which is directed to the NPL address causes the file to be opened.

$DEVICE LANGUAGE STATEMENTS

2-116 NPL Statements Guide

$DEVICE (cont.)

Form 2: Inspecting the Device Equivalence Table

The current state of the device equivalence table may be inspected by using Form 2 of the
$DEVICE statement.

An alpha-receiver can be set equal to the current entry in the Device Equivalence Table
for the specified device-address or file-number. This can be a useful programming tool
when inspecting and retaining the current device equivalence table for later restoration.

As of Revision 3.0 of NPL, additional statements may be used to examine the status of
the Device Equivalence Table:

• $MACHINE contains information about the maximum size of the DET and the
number of entries currently in use.

• $DET may be used to examine the DET in physical order to determine which de-
vice-addresses are assigned.

Refer to $MACHINE and $DET for details.

For example, the following is executed immediately after startup (using default device
equivalences established by the RunTime Program):

:0010 DIM A$50,B$50
: A$=$DEVICE(/D11)
: B$=$DEVICE(/215)
: PRINT "/D11=";A$
: PRINT "/215=";B$

:RUN
/D11=platter1.bs2
/215=/DEV/PRN

NOTE: The start-up device equivalences are dependent on the native operating system. Re-
fer to the appropriate NPL Supplement for details.

If the device-address specified is not currently defined in the device equivalence table,
the alpha-receiver is set equal to blank spaces.

LANGUAGE STATEMENTS $DEVICE

NPL Statements Guide 2-117

$DEVICE (cont.)

Optional Clauses:

One or more optional clauses may be specified in the $DEVICE statement. These op-
tional clauses are used to set specific I/O options (each option is discussed below) for ac-
cessing the native operating system file or device.

NOTE: Most options are specific to only one device class (print or disk). Use of device class
specific options with the incorrect device class is typically ignored. Also, some op-
tions are mutually exclusive. Use of mutually exclusive options in the same $DE-
VICE statement may result in ambiguous results.

The effect of many options is highly operating system-dependent. In addition, it is possi-
ble that new options are defined for new ports of NPL. Please refer to the NPL Supple-
ments for complete details on the actual options available and their effect for the
operating system.

"Raw" Diskette Clauses:

The five "raw" diskette clauses, 1.2=Y, 1.4=Y, 2.8=Y, 360=Y, and 720=Y, instruct the
RunTime program to treat the associated native operating system device name as a "raw"
device with a particular format:

1.2=Y 5-1/4" high density diskette (1.2 MB capacity)
1.4=Y 3-1/2" high density diskette (1.44 MB capacity)
2.8=Y 3-1/2" diskette (2.88 MB capacity)
360=Y 5-1/4" diskette (360K capacity)
720=Y 3-1/2" diskette (720K capacity)

For example, refer to the following statement under MS-DOS:

$DEVICE(/D20)="A: 1.2=Y"

This instructs the RunTime program to treat drive A as a "raw" 1.2 MB diskette.

$DEVICE LANGUAGE STATEMENTS

2-118 NPL Statements Guide

Support of "raw" diskette access is extremely hardware and operating system-dependent.
On some operating systems, various "raw" diskette formats are accessed by use of special
device names rather than the $DEVICE clauses described above. Refer to Section 5.2 of
the NPL Supplement for details on "raw" diskette support and naming conventions on the
operating system.

LANGUAGE STATEMENTS $DEVICE

NPL Statements Guide 2-119

$DEVICE (cont.)

The ALF Clause

The ALF option when specified as part of a $DEVICE statement controls output options
for print type devices. The form of the ALF option may be set to "Y" or "N". "Y" indi-
cates that the special output options are to be used. "N" indicates that the special output
options are not to be used. The ALF option is added on to the end of the alpha-expres-
sion.

For example:

0010 $DEVICE(/215)="/dev/prn ALF=N"

Special output options generally control end of line sequences for printers.

For example, under the MS-DOS versions of NPL, a linefeed (HEX(0A)) is automat-
ically generated by the RunTime whenever a carriage return (HEX(0D)) is encountered
in print output. Setting ALF=N in a $DEVICE statement suppresses the generation of
automatic line-feeds under MS-DOS.

NOTE: The operator cannot override the ALF specification by using the Auto Linefeed
function of the PRINT CONTROL screen in the HELP processor. However, execu-
tion of a subsequent $DEVICE statement with the ALF option resets ALF to the
value specified.

If ALF is not specified, the initial default value of "Y" is used.

The ALF=N clause is commonly used when sending binary sequences (graphics, for ex-
ample) which may contain HEX(0D)’s (which are not end-of-line markers), or when per-
forming overstrike printing on the same line.

Refer to Section 5.5 of the appropriate NPL Supplement for hardware or operating sys-
tem-specific details regarding $DEVICE and the ALF printer option.

The ERR Clause:

The $DEVICE clause, ERR=[Y,N], controls whether or not NPL errors are generated if
the host operating system reports an error when writing print class output to a disk file.

$DEVICE LANGUAGE STATEMENTS

2-120 NPL Statements Guide

$DEVICE (cont.)

The default value of "N" means that a NPL error is never generated during a print class
output operation. A value of "Y" means that NPL generates disk class errors for print
class output when the print address is defined using $DEVICE as a disk file and the host
operating system reports an error. All possible disk type errors are reported, but error
code D81 (File Full) is the only error code used. Such errors are recoverable and may be
trapped by an ERROR statement.

NOTE: The ERR clause is meaningful only for print class devices, assigned to direct output
to a disk file.

For example:

0010 $DEVICE(/215)="TEXT.DAT ERR=Y" :REM Enable error detection
0020 SELECT PRINT 215
0030 PRINT "THIS IS A TEST"<

:ERROR E=ERR

If an error occurs during a $GIO statement, any character count or LRC registers in the
arg-2 variable may contain invalid values.

The EXT Clause:

The EXT clause is meaningful only for disk class devices. EXT=Y indicates that the
diskimage file is to be treated as an extended diskimage file. The default value of EXT=N in-
dicates that the diskimage is to be treated as a non-extended diskimage. An extended
diskimage is a diskimage file that may exceed 16 MB. In accessing extended diskimage files,
RTP uses bytes 7&8 of each index entry as the high-order byte of the sector address. In ac-
cessing non-extended diskimage files (EXT=N), bytes 7&8 of index entries are ignored and
all sector addresses are treated as two byte addresses. Use of extended diskimages has serious
implications for the application program. These implications are discussed in greater detail in
Section 7.3.10 of the Programmer’s Guide.

For example:

$DEVICE(/D11)="PLATTER1.BS2 EXT=Y"

defines D11 as an extended diskimage file named PLATTER1.BS2.

LANGUAGE STATEMENTS $DEVICE

NPL Statements Guide 2-121

$DEVICE (cont.)

The LCL Clause:

The LCL clause is valid only for print class device. "Y" is used to specify that a local
printer attached to the terminal in use is to be used for print output directed to the device
address specified. The default value of "N" indicates that the printer is not a local printer.
Local printers are supported on most serial terminals which have local printer capability.
Refer to Appendix D of the Programmer’s Guide for details on local printer support for
the terminals being used.

When a local printer is accessed by use of the LCL clause, operation of the local printer
is transparent to the native operating system. The RunTime Program automatically sends
required control codes to the terminal to switch between screen and printer output as re-
quired by the application.

NOTE: An $OPEN directed to device address defined as a local printer does not "hog" that
address on a system wide basis (as it would for non-local printers). Thus, multiple
terminals may use the same device address for local printers. Any valid print class
device address may be defined as a local printer.

For example:

$DEVICE(/204)=">1 LCL=Y"

This defines address 204 as a local printer on the terminal in use under SuperDOS. Refer
to Section 5.5 of the NPL Supplements for further details on the device-name to use for
the operating system.

The PES and SES clauses:

The PES= and SES= clauses are used to specify the primary and secondary extent sizes,
in units of 256 byte blocks, to be used when a file is created. The PES= and SES= clauses
are valid for both disk class devices and print class devices. This clause is meaningful
only on operating systems where disk space is allocated in fixed size extents and the size
of primary and secondary extents can be set under program control. On these operating
systems, the numeric-value specified by the PES and SES clauses overrides built in logic
for determining the extent size to use. On other operating systems, this clause is syntacti-
cally supported but has no effect. Refer to Section 5.3 of the appropriate NPL Supple-
ments for information about fixed disk allocation for the operating system and the default
method used to determine extent sizes where applicable.

$DEVICE LANGUAGE STATEMENTS

2-122 NPL Statements Guide

$DEVICE (cont.)

NOTE: The extent size for a file can only be set at the time of file creation. For disk class de-
vices, files are created by SCRATCH DISK and MOVE. Also, for disk class devices,
if the file already exists, existing extent sizes are used and any PES or SES clause
specified is not used. For print class devices, files are created when output is di-
rected to a disk file that does not previously exist.

In the event that the specified primary or secondary extent size cannot be allocated, the
RunTime automatically attempts to use built in defaults before aborting the operation. If
built in defaults also cannot be allocated, a NPL error results.

For example, refer to the following under SuperDOS:

$DEVICE(/D11)="PLATTER1.BS2 PES=10000 SES=1000"
SCRATCH DISK T/D11,LS=10,END=12000

This specifies that the primary extent size for PLATTER1.BS2 equals 10000 256 byte
blocks (or 2,560,000 bytes) and that the secondary extent size equals 1000 256 byte
blocks (or 256,000 bytes).

The TMO Clause:

The TMO clause is valid only for print class devices. This clause controls whether or not
a multi-character input operation ($GIO microcommand C620) returns with zero bytes
read if there are no bytes present at the specified device. This is useful for communica-
tions applications which use the C620 microcommand to read data from a serial port. A
value of "Y" indicates that time-out is to occur and that the C620 microcommand returns
with zero bytes if no bytes are present at the specified port. The default value of "N" indi-
cates that no time-out is to occur and that the C620 microcommand waits for bytes to be
present, thus "hanging" the application if no bytes are present.

Limited serial communications support is operating system-dependent and may not be
suitable for all communications requirements. On some operating systems, enhanced
asynchronous communications support is available with use of the Niakwa Science and
Communications Drivers (SCD) Package. Refer to Section 5.7 of the NPL Supplements
for details on limited serial communications support and the availability of the SCD Pack-
age on the operating system. In addition, refer to Section 7.8 of the Programmer’s Guide
for further information on limited serial communications techniques.

LANGUAGE STATEMENTS $DEVICE

NPL Statements Guide 2-123

$DEVICE (cont.)

For example:

$DEVICE(/219)="com1 TMO=Y"

This defines address 219 as the com1 port on an IBM PC and specify that time-outs are to
occur on input operations from this device.

The XLA Clause:

The XLA clause is valid only for print class devices. A value of "Y" indicates that printer
translation is to take place for output directed to the specified device address. The default
value of "N" indicates that no printer translation is to take place. Refer to Section 7.7.7 of
the Programmer’s Guide for further details on printer translation.

For example:

$DEVICE(/215)="/dev/prn XLA=Y"

This indicates that printer translation is to take place for output directed to address 215.

Examples:

0010 $DEVICE(/D32)="/niakwa/progs/platter1.bs2"
0010 $DEVICE(A$)="/basic2c/data/platter1.bs2"
0010 $DEVICE(X$)=Y$
0010 $DEVICE(#1)="/usr/BASIC2C/platter1.bs2 EXT=Y"
0010 $DEVICE(/217)="/basic2c/spool.dat SES=500 ERR=Y XLA=Y"
0010 A$=$DEVICE(B$)
0010 A$=$DEVICE(/D32)
0010 A$=$DEVICE(/217)
0010 FOR I=1 TO 5

: J$(I)=$DEVICE(K$(I))
: NEXT I

0010 $DEVICE(/D11)="/progs/platter1.bs2 EXT=Y"
 : $DEVICE(/D12)="/data/platter1.bs2"
 : $DEVICE(/215)="/dev/prn ALF=N"
 : $DEVICE(/216)="spool.dat ERR=Y"
 : SELECT DISK /D11
 : LOAD RUN

$DEVICE LANGUAGE STATEMENTS

2-124 NPL Statements Guide

DEVICE (cont.)

This example specifies disk address D11 as extended diskimage /progs/platter1.bs2, disk
address D12 as non-extended diskimage /data/platter1.bs2, printer address 215 as
/dev/prn (with optional ALF clause equal to N), and printer address 216 as a native oper-
ating system file named spool.dat with error detection enabled. Information sent to
printer address 216 is redirected to this data file.

Compatibility Issues:

$DEVICE is not supported in Wang 2200 Basic-2.

Use of optional clauses is supported on NPL revisions as follows:

1.2 2.01 or greater
1.4 3.00 or greater
2.8 4.00 or greater
360 2.01 or greater
720 3.00 or greater
ALF 2.00 or greater
ERR 3.00 or greater
EXT 2.01 or greater
LCL 2.01 or greater
PES/SES 3.00 or greater
TMO 2.01 or greater
XLA 2.01 or greater

Use and functionality of many optional clauses is operating system-dependent. Refer to
Chapter 5 of the NPL Supplements for details.

References:

$DET
$MACHINE
The Device Equivalence Table - Section 7.2.2 of the Programmer’s Guide
The /D option - Section 2.4.2 of the Programmer’s Guide
"Raw" diskette handling - Section 5.2 of the NPL Supplements
Printer Devices - Section 5.5 of the NPL Supplements
Serial Port - Section 5.7 of the NPL Supplements

LANGUAGE STATEMENTS $DEVICE

NPL Statements Guide 2-125

DIM

Discussion:

The DIM statement is used to declare variables within NPL programs, and possibly also
to assign an initial value to the variable.

If the DIM statement does not occur within a PUBLIC section or within a FUNCTION or
PROCEDURE body, the variables are declared as module private non-common vari-
ables.

If the DIM statement occurs within a PUBLIC section, the variables are declared as PUB-
LIC variables (see DIM/PUBLIC).

If the DIM statement occurs within a FUNCTION or PROCEDURE body, the variables
are declared as RECURSIVE variables (see DIM/RECURSIVE).

Non-common variables are cleared by execution of:

• The CLEAR command,

• The CLEAR V command,

General Form:

DIM dim-element[,dim-element] ...

Where:

dim-element = [-]
{numeric-id [=initial-num-value] }
{numeric-array-id (sub1[,sub2]) }
{alpha-id$[length][=initial-str-value] }
{alpha-array-id$(sub1[,sub2])[length] }

sub1, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.

length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.

DIM LANGUAGE STATEMENTS

2-126 NPL Statements Guide

DIM (cont.)

• The CLEAR N command,

• The LOAD RUN command,

• A program overlay,

• The RUN command (or statement).

Either dimension of an array may be specified as containing up to 65535 elements and
the length of any variable may be specified up to 65535 bytes. However, the maximum to-
tal number of array elements must not exceed 65535 and the total size of the array (num-
ber of elements * length) must not exceed 65535 bytes.

On 32-bit hardware platforms, NPL supports access to larger arrays, and on these dimen-
sions of arrays and string lengths may be permitted to be larger than 65535 (up to
4294967295, or the value imposed by the operating system due to real or virtual memory
limits).

If a numeric-expression is used in dimensioning variables, any variables contained in the
numeric-expression must be declared prior to being used in the DIM statement. Useful
numeric-expressions normally used as terms only constants, common variables, pre-
viously declared scalar variables which have been assigned an initial value, function val-
ues for FUNCTIONs in previously INCLUDEd modules and built-in functions such as
SPACE in some combination.

For syntactical reasons, if an expression is used for the length of an alpha-scalar, it may
not begin with "(".

Dimensioning of arrays to zero elements is supported. This is a useful programming tool
for dynamically establishing array size based on available memory.

For example:

0010 DIM Table$(2)20,OK$32,SizeWas
0020 FUNCTION ’Try To Expand(/POINTER RefToArray$,Newsize

: DIM Oldsize
: Oldsize=LEN(STR(Table$()))/LEN(STR(Table$()))
: MAT REDIM Table$(Newsize)20
: RefToArray$=ALL("X") :;

LANGUAGE STATEMENTS DIM

NPL Statements Guide 2-127

DIM (cont.)

Initial Values for Scalar Variables

DIM statements are extended to permit initial value assignment to scalars when the vari-
able is created. If no initial value is defined, the default value is 0 for numerics, blank for
strings.

NOTE: Initial values are only assigned when a variable is created. If the variable already ex-
ists (i.e., is COMmon, or the program was RUN with line numbers to avoid clearing
non-common variables), no initial value is assigned.

The allocation of variables in a DIM statement is implicitly /STATIC if the DIM
statement is not within a function body or PUBLIC section. The allocation of vari-
ables in a DIM statement is implicitly /RECURSIVE if the DIM statement is within
a function body. The allocation of variables in a DIM statement is implicitly /PUB-
LIC if the DIM statement is within a PUBLIC section. Refer to DIM /STATIC, DIM
/RECURSIVE and DIM /PUBLIC for details and restrictions of each allocation type.

As with all expressions which are evaluated at resolve time, the initial values may
only reference previously declared values, or FUNCTIONs which are declared in
other, previously INCLUDEd modules.

Default variable declaration is assumed by NPL when a variable reference appears with-
out any previous explicit declaration. Here, NPL takes one of two actions:

a. If $OPTION byte 38 is set to HEX(01), an error occurs. All variable refer-
ences must be preceded by a declaration.

b. If $OPTION byte 38 is set to HEX(00), a variable may be declared by de-
fault in some cases, depending on the context in which the first variable ref-
erence in the program appears, according to the following table:

Location of First Variable Reference Default Allocation Type
Within a function body Not legal; error occurs
Outside all function bodies DIM/STATIC

DIM LANGUAGE STATEMENTS

2-128 NPL Statements Guide

DIM (cont.)

NOTE: Constant variables must always be explicitly declared.

Examples:

0010 DIM Ratio,E=EXP(1)
0010 DIM FileName$8,Default_City$30="Moose Jaw"
0010 DIM CornYields(_NUMBER_OF_MONTHS_KEPT_ON_RECORD)
0010 DIM Buffer$(_MAX_OPEN_FILES)512

0010 DIM A$(SPACE-20000)1,B$((SPACE-1000)/C2)C2,C$(MAX(256,J))1

This declares variables which use, respectively, all but the last 20K of memory, the re-
maining memory (after A$()) less 1K set up as elements of C2 bytes each (assuming C2
is a common variable) and an array with either J bytes or 256 bytes, whichever is larger
(again, J is assumed to be a common variable).

0010 DIM X$24, Q$(4)4, X(4,4)

This will define one variable X$ to 24 bytes, and two arrays: Q$() - four elements, four
bytes each and X() - a numeric two dimensional array four by four.

Compatibility Issues:

The Wang 2200 Basic-2 limitation of 124 characters on the length of a scalar has been ex-
tended to 65535 (larger on 32-bit platforms). (Be aware, however, that 124 bytes is still
the largest scalar variable length which can be saved using a DATASAVE DC statement).

The memory overhead for variables is greater under NPL than in a Wang 2200 Basic-2:

Variable
Type

Overhead on
Wang 2200

Overhead
 under NPL
One dimension Two dimensions

Numeric Scalar 4 8 (10) N/A
Numeric Array 6 12 (16) 14 (18)
Alpha Scalar 5 10 (12) N/A
Alpha Array 7 14 (18) 16 (20)

LANGUAGE STATEMENTS DIM

NPL Statements Guide 2-129

DIM (cont.)

NOTE: Numbers in parentheses () are for 32-bit platforms. NPL always allocates variable
memory in units of 16 bytes. Consequently, in addition to the indicated overhead
and the defined variable size, up to 15 bytes of overhead may be required to allocate
the variable. The above figures are for statically allocated (not /RECURSIVE) vari-
ables.

Variables which are designated by long identifiers require some additional overhead,
which is deducted at program load time.

Wang 2200 Basic-2 does not allow expressions to be used as dimension sizes. Wang
2200 Basic-2 allows only constant and numeric-scalar common variables to be used as
variable dimensions.

Wang 2200 Basic-2 does not allow array-variables to be dimensioned with 0 elements.

Constant variables and initial values are only supported by NPL Release 4.0 or later.

References:

COM
DIM /PUBLIC
DIM /RECURSIVE
DIM /STATIC
FUNCTION
$OPTIONS
PROCEDURE
PUBLIC

DIM LANGUAGE STATEMENTS

2-130 NPL Statements Guide

DIM Constant Variable Declarations

Discussion:

DIM constant declarations allow for declarations of scalar and numeric variables which
are evaluated at resolve time. Identifiers which are constant class are always preceded by
an underscore ("_").

NOTE: As with all expressions which are evaluated at resolve time, the initial values may
only reference previously declared values, or FUNCTIONs which are declared in
other, previously INCLUDEd modules.

The compiler attempts to detect syntax which could modify the value of variables de-
clared as constants, and flags such syntax as an error.

There may be some syntax which could result in modifying a constant that cannot be de-
tected at compile time (e.g., passing a constant variable as argument to FUNCTION
where /POINTER parameter is required) and these are flagged at resolve time.

There may be some syntax which could result in modifying a constant that cannot be de-
tected at resolve time (e.g., passing a constant variable as argument to indirectly named
FUNCTION where /POINTER parameter is required) and these are flagged at execution
time.

NOTE: A constant identifier which occurs within a PUBLIC section is PUBLIC by default.

General Form:

 DIM [/PUBLIC] const-variable [,const-variable]...
 [/STATIC]

Where:

const-variable = {_numeric-id =initial-num-value }
{_alpha-id$[length] =initial-str-value }

length = numeric-expression which evaluates to a value
in the range from 1 to 65535. If length not
specified, default to 16.

LANGUAGE STATEMENTS DIM Constant Variable Declarations

NPL Statements Guide 2-131

DIM Constant Variable Declarations (cont.)

CONSTANTs may also be used as part of numeric expressions used to specify the num-
ber of array elements and the length (for alphanumerics).

For example:

10 DIM _NumberOfElements=100
20 DIM _ElementLength=4
30 DIM Array$(_NumberOfElements)_ElementLength*2
 : RUN
 : LIST DIM Array$(
DIM Array$(100)8

NOTE: Constants can also be used with the COM statement under Release IV.

In addition, a DIM statement can contain a mix of constant and non-constant vari-
ables, for example:

0010 DIM X, _Y, Z, _Apples
 : DIM /PUBLIC Buffer$512, _SystemId$ = "Windows"

Examples:

0010 DIM _CGA_RED=4,_CGA_GREEN=2,_CGA_BLUE=1
0010 DIM _BRIGHT$5=HEX(020400020E),_NORMAL$1=HEX(0F)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

DIM
COM

DIM Constant Variable Declarations LANGUAGE STATEMENTS

2-132 NPL Statements Guide

DIM /PUBLIC

Discussion:

This statement declares a list of variables that are added to the workspace PUBLIC vari-
able space (if they do not already exist).

Variables in the PUBLIC variable space may be referenced by name in all modules. A
PUBLIC variable may be referenced by name in a module provided:

• The variable appears in a DIM PUBLIC statement located in the module or in a
PUBLIC section which the module USES.

All declarations of string and array variables in the PUBLIC variable space must agree as
to length and number of elements.

• When the reference occurs within the body of a function or procedure, no RE-
CURSIVE or STATIC variable or parameter of the same name has been declared
in the current function.

• When the reference does not occur within the body of a function or procedure, no
STATIC variable of the same name has been declared in the module.

General Form:

DIM /PUBLIC dim-element[,dim-element]...

Where:

dim-element = {numeric-id [=initial-num-value] }
{numeric-array-id (sub1[,sub2]) }
{alpha-id$[length][=initial-str-value] }
{alpha-array-id$(sub1[,sub2])[length] }

sub1, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.

length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.

LANGUAGE STATEMENTS DIM /PUBLIC

NPL Statements Guide 2-133

DIM / PUBLIC (cont.)

The declaration of the variable must always appear before the reference to the variable.

DIM statements which occur within a PUBLIC section are implicitly DIM /PUBLIC. In
this case, the /PUBLIC keyword is optional but may be entered for clarity.

NOTE: Values assigned to /PUBLIC variables survive only as long as the defining module
remains resolved.

Examples:

0010 DIM /PUBLIC Inited,FishName$16,B,A(VectorSize)
0010 DIM /PUBLIC NameList$(20)45
 :DIM /PUBLIC Temporary,Access$256

Compatibility Issues:

This statement is supported only with Release IV or greater.

LIN’s are supported in Release IV or greater.

References:

DIM /PUBLIC LANGUAGE STATEMENTS

2-134 NPL Statements Guide

DIM /RECURSIVE

Discussion:

This statement declares a list of scalar variables that are added to the current function’s
RECURSIVE variable space. The variables may not already be declared as function pri-
vate variables or parameters. Variables in the RECURSIVE variable space may be refer-
enced by name only in the function body in which the declaration appears. Multiple
declarations of variables in the function’s private variable space are not permitted.

A new copy of a function’s RECURSIVE variables is allocated and initialized each time
the function is called and is released when the function RETURNs. The initial value of
RECURSIVE variables is evaluated once only, at resolve time.

NOTE: Parameters of functions passed by value are always RECURSIVE variables.

Variables declared inside the body of any function without the STATIC or PUBLIC key-
words are also by default RECURSIVE variables.

RECURSIVE variables explicitly declared outside the body of a function are not permit-
ted.

General Form:

DIM /RECURSIVE dim-element[,dim-element]...

Where:

dim-element = {numeric-id [=initial-num-value] }
 {numeric-array-id (sub1[,sub2]) }
 {alpha-id$[length][=initial-str-value] }
 {alpha-array-id$(sub1[,sub2])[length] }

sub1, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.

length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.

LANGUAGE STATEMENTS DIM /RECURSIVE

NPL Statements Guide 2-135

DIM / RECURSIVE (cont.)

NOTE: All variables declared inside a function without the STATIC or PUBLIC keywords
are RECURSIVE, and it is illegal to declare a RECURSIVE variable outside of all
functions. Consequently, the RECURSIVE keyword is always optional and is usu-
ally only entered for clarity.

A DIM /RECURSIVE statement may not be executed in immediate mode.

The total allocated data for a function’s recursive variables may not exceed 64K.

Examples:

0010 DIM /RECURSIVE Inited,FishName$16
0010 DIM /RECURSIVE names$(10)32, numbers(100)

0030 PROCEDURE ’do_nothing
 : ; local variables EXPLICITLY declared /RECURSIVE
 : DIM count, char$1, matrix(2,2), asciiCodes$(10)1
: ENDPROCEDURE

Compatibility Issues:

This statement is supported only with Release IV or greater
LINs are supported on Release IV or greater.

References:

DIM /RECURSIVE LANGUAGE STATEMENTS

2-136 NPL Statements Guide

DIM /STATIC

Discussion:

The STATIC keyword at the start of a DIM statement indicates that all variables speci-
fied in the statement are private to a module or to the current function (if the statement is
in the body of a function). Private variables may only be referenced by name from the
same module (or function) in which the DIM statement declares them.

DIM /STATIC Within a Function Body

Each function may declare its own list of private variables. Each function private variable
may be declared as either /STATIC or /RECURSIVE. A single copy of a function’s
/STATIC variables is allocated and initialized at resolve time. (By contrast, a function’s
/RECURSIVE variables are allocated and initialized each time the function is called).
The initial value (if any) is computed only once, at resolve time.

Multiple declarations of variables in the function’s private variable space are not permit-
ted.

General Form:

DIM /STATIC dim-element[,dim-element]...

Where:

dim-element = {numeric-id [=initial-num-value] }
{numeric-array-id (sub1[,sub2]) }
{alpha-id$[length][=initial-str-value] }
{alpha-array-id$(sub1[,sub2])[length] }

sub1, sub2 = numeric-expression which evaluates to a value in
the range from 0 to 65535.

length = numeric-expression which evaluates to a value in
the range from 1 to 65535. If length not
specified, default to 16.

LANGUAGE STATEMENTS DIM /STATIC

NPL Statements Guide 2-137

DIM / STATIC (cont.)

Variables in the function’s private variable space may be referenced by name only in the
function body in which the declaration appears. A function’s private variable may be ref-
erenced by name anywhere in a function, provided the variable appears in a DIM
STATIC statement previously in the function.

Variables declared inside the body of any function in a DIM statement without the
STATIC or PUBLIC keywords are by default in the module’s RECURSIVE variable list.
In this case, the STATIC keyword is necessary if the same allocation must be used for it-
erative calls to the function.

DIM /STATIC Outside a Function Body

Each module may also declare its own list of private variables.

When a DIM STATIC occurs outside the body of all functions, the defined variables are
private to the module.

If the variables are already declared in the module’s private variable list, all attributes of
the variable must agree with the previous declaration. In particular, strings must have the
same length, arrays must have the same dimensions.

Variables in the module’s private variable space may be referenced by name only in the
module in which the declaration appears. A module’s private variable may be referenced
by name anywhere in a module, provided:

• The variable appears in a DIM STATIC statement previously in the module.

• When the reference occurs within the body of a function or procedure, no RE-
CURSIVE or STATIC variable or parameter of the same name has been declared
in the body of the current function (in which case it cannot be referenced in that
function).

Variables declared outside the body of any function in a DIM statement without the
STATIC or PUBLIC keywords are also by default in the module’s private variable list. In
this case, the STATIC keyword is not necessary but may be entered for clarity.

Memory for only one copy of a module’s STATIC variables is allocated at resolve time.

DIM /STATIC LANGUAGE STATEMENTS

2-138 NPL Statements Guide

DIM / STATIC (cont.)

Variable Reference Conflicts

If a variable identifier is declared in a module in a DIM /STATIC statement, and also in a
DIM /PUBLIC statement (either explicitly or in a referenced PUBLIC section), this is not
considered an error. Instead, separate variables are allocated in the private variable list
and in the public variable list. A program reference to the variable refers to either the
STATIC or PUBLIC variable, depending on which declaration occurred most recently in
the program before the reference. To avoid confusion in such cases, it is advisable to
place DIM /STATIC declarations as early as possible in the module, preferably immedi-
ately after any INCLUDE and USES declarations.

Similarly, if a variable identifier is declared outside all functions in a DIM /STATIC or
/PUBLIC statement, and also inside a function with a DIM /STATIC or /RECURSIVE
statement, this is not considered an error. Instead, separate variables are allocated in the
module private or public variable list and in the function private variable list. A program
reference in the function body to the variable refers to either the function variable or the
non-function variable, depending on which declaration occurred most recently in the pro-
gram before the reference. To avoid confusion in such cases, it is advisable to place DIM
/STATIC declarations as early as possible in the function body, preferably immediately
after the function header.

The result of a DIM /STATIC statements executed in Immediate Mode depends on the lo-
cation of the next executable statement. If that statement is in the body of a function, the
variable is private to the function. Otherwise, it is private to the module.

Examples:
0010 DIM /STATIC Inited,FishName$16,A(VectorSize)
0010 DIM /STATIC NameList$(20)45
0010 DIM /STATIC Ratio,E=EXP(1)
0010 DIM /STATIC FileName$8,Default_City$30="Moose Jaw"
0010 DIM /STATIC CornYields(_NUMBER_OF_MONTHS_KEPT_ON_RECORD)
0010 DIM /STATIC Buffer$(_MAX_OPEN_FILES)512
 :DIM /STATIC Temporary,Access$256

Compatibility Issues:

This statement is supported only with Release IV or greater

LIN’s are supported on Release IV or greater.

References:

LANGUAGE STATEMENTS DIM /STATIC

NPL Statements Guide 2-139

$DISCONNECT

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

The compiler generates a warning when this statement is encountered.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
An error 0 (not implemented) is returned if $DISCONNECT ON is executed. No opera-
tion is performed if $DISCONNECT OFF is encountered at execution time.

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, enables (ON) or disables (OFF)
terminal disconnect detection.

Under NPL, terminal disconnect is not detectable.

This statement is syntactically recognized only by NPL Revision 3.0 or greater.

References:

General Form:

$DISCONNECT {ON [numeric-expression]}
 {OFF }

$DISCONNECT LANGUAGE STATEMENTS

2-140 NPL Statements Guide

DO/ENDDO

NOTE: The use of this statement is not recommended. Refer to structured IF/ELSE/END IF
as a better alternative.

Discussion:

The DO/ENDDO statements are used to specify a group of statements to be executed con-
ditionally following an IF, ELSE, or ERROR statement. When the condition preceding
the DO statement is true, all statements between DO and ENDDO are executed. If the
condition preceding DO is false, then the statements between DO and ENDDO are not
executed and program operation resumes with the statement following ENDDO.

DO/ENDDO statements must always be paired with ENDDO sequentially following DO
in statement order. Improperly paired DO/ENDDO statements result in a P31 (Do not
matched with ENDDO) error at execution time.

Examples:

0010 IF A=B THEN DO<
: C=D<
: E=F<
: ENDDO<
: ELSE DO<
: G=H<
: I=J<
: ENDDO<

0020 PRINT A

In this case, if A=B, then only the statements C=D and E=F are executed. If A is not
equal to B, then only the statements G=H and I=J are executed. In either case, the state-
ments at line 20 are executed.

General Form:

DO [:statement] ... : ENDDO

LANGUAGE STATEMENTS DO/ENDDO

NPL Statements Guide 2-141

DO/ENDDO (cont.)

Nested DO Groups:

Nested DO/ENDDO groups are supported.

For example:

0010 IF A=B THEN DO<
: C=D<
: IF X=Y THEN DO<
: GOSUB 100<
: M=N<
: ENDDO<
: E=F<
: ENDDO<
: ELSE DO<
: G=H<
: I=J<
: ENDDO<

0020 PRINT A

In this case, the statements GOSUB 100 and M=N are executed only if both A=B and
X=Y are true. The statements C=D and E=F are executed whenever A=B, regardless of
whether or not X=Y. As in the above example, the statements G=H and I=J are executed
only when A is not equal to B.

Statements following DO, including ENDDO, may be on separate lines. During program
execution, execution of an ENDDO when no DO has been executed does not cause an er-
ror. ENDDO actually performs no operation as a statement. Rather, it is used only at reso-
lution time to determine the address of the next statement to execute when a condition
preceding a DO statement is executed and evaluated as false.

For example:

0010 IF A=B THEN DO
0020 C=D
0030 GOSUB 100
0040 ENDDO
0050 X=C+1
0060 IF C<80 THEN 30

DO/ENDDO LANGUAGE STATEMENTS

2-142 NPL Statements Guide

DO/ENDDO (cont.)

In this example, program operation may be transferred from line 60 to line 30 based on
the value of C. Whenever this transfer takes place, the GOSUB 100 statement on line 30
are always executed and the ENDDO statement at line 40 performs no operation. It is
only on the initial execution of this program, when line 10 is executed, and the evaluation
A=B is false that the statements on line 20 and 30 are not executed.

NOTE: The programming technique demonstrated by this program, though valid, is not rec-
ommended. Programs which branch into or out of DO/ENDDO groups prove very
difficult to maintain.

Use of DO/ENDDO in Nested Conditionals:

When a condition preceding a DO statement is not evaluated, statements following the
DO statement are always executed.

For example:

0010 FOR X=0 TO 1<
: FOR Y=0 TO 1<
: PRINT "X=";X;"Y=";Y;<
: IF X=1 THEN PRINT "A";<
: ELSE IF Y=1 THEN DO<
: PRINT "B";<
: ENDDO<

 : ELSE PRINT "C";<
: PRINT<
: NEXT Y,X

:RUN

X= 0 Y= 0 C
X= 0 Y= 1 B
X= 1 Y= 0 AB
X= 1 Y= 1 AB

In this example, whenever X=1, the condition Y=1 is not evaluated. Therefore, the DO
statement is not executed. Therefore, the statement PRINT B is executed whenever X=1,
regardless of the value of Y. Without the DO/ENDDO statements, "B" would not be
printed when X=1 and Y=0. Because of the potential for confusion, use of DO/ENDDO
in nested IF/THEN/ELSE constructs is not recommended.

LANGUAGE STATEMENTS DO/ENDDO

NPL Statements Guide 2-143

DO/ENDDO (cont.)

Ambiguous Situations:

Placing ELSE clauses at the start of a new line can lead to ambiguous situations and is
not recommended.

When ELSE is on a separate line from the IF statement it follows, in general, the ELSE
statement is not executed even if the result of the IF statement is false. However, if the
ELSE statement immediately follows an ENDDO statement, ELSE is executed (if the re-
sult of IF is false) even when ELSE is on a separate line.

For example:

0010 IF A=B THEN DO
0020 C=D
0030 E=F
0040 ENDDO
0050 ELSE X=Y

In this case, the statement X=Y is executed whenever A is not equal to B.

0010 IF A=B THEN C=D
0020 ELSE X=Y

In this case, the statement X=Y is never executed even when A does not equal B.

Another ambiguous situation occurs when DO/ENDDO is used in conjunction with the
ERROR statement.

For example:

0010 DATA LOAD BAT/D11,(X)X$<
: ERROR DO<
: E=ERR

0020 PRINT "ERROR ";E;" OCCURRED"<
 : ENDDO
0030 A=B

If DO/ENDDO was not used and an error did not occur on the DATA LOAD statement,
program operation would resume at line 20 (the next line number following the ERROR
statement). However, the use of DO/ENDDO changes this logic so that if no error occurs,
program operation resumes at line 30 (following the ENDDO statement).

DO/ENDDO LANGUAGE STATEMENTS

2-144 NPL Statements Guide

DO/ENDDO (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

Nesting of DO/ENDDO is not supported in Wang 2200 Basic-2.

In Wang 2200 Basic-2 Revision 3.0 or higher, ELSE may be on a different line from IF,
regardless of whether or not ELSE follows a DO Group (although, in prior releases, of
Wang Basic-2, ELSE is always invalid if it is on a separate line from IF). In NPL, ELSE
on a separate line from IF is only valid when it follows a DO Group. Refer to ELSE for
further details.

References:

ELSE
ERROR
IF/THEN
IF/ELSE/END IF

LANGUAGE STATEMENTS DO/ENDDO

NPL Statements Guide 2-145

DSC Alpha-operator

Discussion:

The DSC (decimal subtract with carry) alpha-operator subtracts the decimal value of the
alpha-operand from the decimal value of the alpha-receiver. The DSC alpha-operator
may only be used in an alpha-expression in an alpha-assignment statement.

The DSC operation assumes that both operands contain valid, unsigned BCD (Binary
Coded Decimal) data, where data consists of two digits per byte, and each digit is a num-
ber between 0 and 9. DSC does not check the operand contents for validity prior to sub-
tracting; consequently, the resultant is unpredictable if operands contain invalid data.

Each byte of alpha-operand is subtracted (base 10 arithmetic) from each corresponding
byte of the receiving alpha-variable; borrow propagation is automatically performed be-
tween bytes. The DSC operation is performed from right to left.

If the values of the alpha-operand and the receiving alpha-variable are of different length,
then the DSC algorithm implicitly extends the shorter value with leading zeroes prior to
the operation. If the resultant is larger than the receiving alpha-variable, then the extrane-
ous high order bytes of the resultant are truncated before assignment.

NOTE: Contrary to conventional alpha-variable operations, the DSC alpha-operator oper-
ates on all bytes of an alpha-variable (either as a receiver or an alpha-operand), in-
cluding trailing spaces.

General Form:

alpha-receiver = [...] DSC alpha-operand [...]

Where:

alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }

DSC Alpha-operator LANGUAGE STATEMENTS

2-146 NPL Statements Guide

DSC Alpha-Operator (cont.)

Example:
0010 A$=B$ DSC HEX(0001)
0010 A$=DSC STR(B$,5,3)

:0010 DIM A$3,C$3
:0020 PACK(######) A$ FROM 9990
:0030 C$=A$ DSC HEX(1298)
:0040 PRINT HEXOF(C$)
:RUN
008692

Compatibility Issues:

The Decimal Subtract with Carry operation accepts invalid packed decimal numbers as
an alpha-expression in Wang 2200 Basic-2. In this case, the results are predictable but
meaningless.

NPL is compatible with Wang 2200 Basic-2 with respect to the DSC function, provided
the alpha-expression contains valid, packed decimal values.

References:

PACK
UNPACK
$PACK
$UNPACK
DAC
VER

LANGUAGE STATEMENTS DSC Alpha-operator

NPL Statements Guide 2-147

DSKIP

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:

The DSKIP statement is used with cataloged data files in order to set the "current" value
in the Internal Device Table (for the file number specified) to a higher value. It permits
skipping over logical records or physical sectors within the file.

If the END keyword is used, the new position of the "current" pointer is set to the end of
the file. The offset of the end of file is stored in the file trailer sector each time a DATA
SAVE DC END instruction is performed on the file. A DKSIP END statement also
checks to ensure that the current pointer points to a valid end of file block.

If the END keyword is not used, the numeric expression indicates how far forward the
current pointer should be advanced. If the letter "S" follows the expression, the value of
the expression is a number of sectors which should be skipped. If the letter "S" does not
follow the expression, the value of the expression is a number of logical records which
should be skipped.

General Form:

DSKIP [file-number,]{numeric-expression[S]}
 {END }

Where:

numeric-expression = number of sectors or logical records to be
skipped.

S = indicates that numeric-expression represents
physical sectors as opposed to logical re-
cords.

END = skip to end of file.

DSKIP LANGUAGE STATEMENTS

2-148 NPL Statements Guide

DSKIP (cont.)

When using the "S" parameter, the number of sectors specified is added to the current sec-
tor address. If this sector number would exceed the end of file, the current sector is set to
the end of file sector address.

When not using the "S" parameter, the number of sectors to add to the "current" sector ad-
dress is determined by actually reading forward through the specified number of logical
records.

If an end-of-file record is encountered while skipping records, the skip operation termi-
nates with the current sector pointing to the end-of-file record. The IF END condition in-
dicates whether an end-of-file record was found.

Examples:
0010 DSKIP #1,5
0010 DSKIP 10
0010 DSKIP END
0010 DSKIP #Z,10S
0010 DSKIP #3,X*3

Compatibility Issues:

References:

IF END
Catalog Access Methods - Section 7.3.8 of the Programmer’s Guide

LANGUAGE STATEMENTS DSKIP

NPL Statements Guide 2-149

ELSE

NOTE: The use of this statement is not recommended. Refer to the structured
IF/ELSE/END IF as a better alternative.

Discussion:
The ELSE statement is used to conditionally execute a simple-statement or DO Group
which immediately follows an IF/THEN statement.

The ELSE statement can also be used following an ON x GOSUB or an ON x SELECT
statement. In these cases, if evaluation of the ON x statement results in no action, the
ELSE clause is executed. If evaluation of the ON x statement results in execution of one
of the GOSUBs (or SELECTs), the ELSE clause is not executed.

When a single statement is executed when the IF/THEN condition is true, ELSE must be
on the same line as the corresponding IF/THEN, otherwise a syntax error occurs.

HINT: As of Release IV, use of ELSE simple-statement is only permitted immediately following
IF xxx THEN simple-statement or ON xxx GOSUB/GOTO/SELECT statements on the
same program line. Other uses are flagged as a syntax error.

Examples:

0010 IF A=X THEN PRINT "A=X"
 : ELSE PRINT "A DOES NOT = X"
0010 IF A=X THEN GOSUB 1020
 : ELSE DO
 : GOSUB 1030
 : GOSUB 2000
 : ENDDO
0010 IF A$=STR(B$,1,5) THEN PRINT "YES"

: ELSE PRINT "NO"
0010 ON X GOSUB 100,200,300,400

: ELSE PRINT "ENTRY NOT ALLOWED"

General Form:

ELSE {simple-statement }
 {DO [:statement]...: ENDDO}

LANGUAGE STATEMENTS ELSE

NPL Statements Guide 2-146

ELSE (cont.)

Compatibility Issues:
Prior to Release IV, use of ELSE simple-statement was permitted in contexts other than
immediately following IF xxx THEN, or ON xxx GOSUB/GOTO/SELECT statements,
and resulted in the statement being ignored.

In Wang 2200 Basic-2 Revision 3.0 or higher, ELSE may be on a different line from IF,
regardless of whether or not ELSE follows a DO Group (although, in prior releases of
Wang Basic-2, ELSE is always invalid if it is on a separate line from IF). In NPL, ELSE
on a separate line from IF is only valid when it follows a DO Group.

DO Groups are supported only in NPL Revision 3.0 or greater.

Programmers are advised to avoid the use of the ELSEDO/ENDDO constructs with the
new IF/ELSE/ENDIF constructs of Release IV or greater.

NOTE: Future releases of NPL may restrict the use of ELSE DO entirely, with the new IF
constructs. DO/ENDDO is still permitted.

References:
DO/ENDDO
IF/THEN
ON/GOSUB
ON/SELECT
IF/ELSE/END IF

ELSE LANGUAGE STATEMENTS

2-147 NPL Statements Guide

ELSE Structured

Discussion:
The structured ELSE statement defines the start of the statements in an IF...ELSE...END
IF structure which are executed only if the condition in the structured IF statement was
false. It must be followed by an END IF statement, which indicates the end of the
IF...ELSE...END IF structure.

It is possible to branch into the range of an IF...ELSE...END IF structure, although this is
poor programming practice. If a structured ELSE statement of any kind is encountered
during execution, control is transferred to the statement following the matching END IF
statement.

Examples:

:IF X=Y
: PRINT "SAME";
:ELSE
: IF ’Fuzzy_Equal(X,Y)=0
: PRINT "PRETTY MUCH THE SAME";X
: ELSE
: PRINT "DIFFERENT ENOUGH";X;Y
: END IF
:END IF

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
IF Structured
END IF Structured

General Form:

ELSE

LANGUAGE STATEMENTS ELSE Structured

NPL Statements Guide 2-148

END

Discussion:
The END statement is used to indicate the end of a program. END is an optional state-
ment and may appear more than once in a program.

When END is executed, an "END PROGRAM" message and the amount of free space is
displayed (program or variable space, the smaller of the two).

When END is executed under the interpretive RunTime, Immediate Mode is activated
with the program and variables remaining in memory. If running under the non-interpre-
tive RunTime, a colon appears on the screen. Press the EXECUTE key to exit NPL.

If an END statement is executed, program execution cannot be continued.

Examples:

1000 IF A=B THEN END
1000 END

Compatibility Issues:
To exit RTP or RTI, use $END.

References:
$END

General Form:

END

END LANGUAGE STATEMENTS

2-149 NPL Statements Guide

$END

Discussion:
The $END statement causes an exit from the RunTime program. Unlike the END state-
ment, no colon or free space listing appears. Program control is returned to the native op-
erating system.

If a numeric-expression is specified, the termination code for the RunTime program is set
to the value of the expression. Otherwise, the termination code is set to a value indicating
normal completion (usually 0). Termination codes may be used to indicate why the Run-
Time program ended, or to indicate a failure to the calling program of the native operat-
ing system.

Examples:
0010 IF A$="Y" THEN $END
0010 $END
0010 $END X

Compatibility Issues:
This statement is supported only with Release 1.03 or greater.

This statement is not valid in Wang 2200 Basic-2.

Native operating system detection and legal values for $END termination codes vary, as
does the value used to indicate normal completion. Refer to the appropriate NPL Supple-
ment for specific details.

As of Revision 4.0 of NPL, a $END acts upon INCLUDEd modules by effectively delet-
ing all discardable and non-discardable modules (i.e., even if the module has been modi-
fied and not saved or has common variables defined), to ensure /EXIT procedures are
always executed to allow cleanup.

General Form:

$END [numeric-expression]

LANGUAGE STATEMENTS $END

NPL Statements Guide 2-150

$END (cont.)

NOTE: Future releases of NPL may include an option to treat "non-discardable" modules
differently at $END (i.e., automatic save of modified modules or a warning and op-
tion to save).

References:
END

$END LANGUAGE STATEMENTS

2-151 NPL Statements Guide

END FUNCTION

Discussion:
This statement declares the end of the body of a function.

The optional identifier may be used for documentation purposes, and must match the cor-
responding FUNCTION name.

If execution "falls into" an END FUNCTION statement (i.e., no RETURN (value) state-
ment is executed before the END FUNCTION is reached), an error is generated.

Examples:
0010 END FUNCTION ’Bessel
0010 END FUNCTION ’PrintableTime$
0010 END FUNCTION ’SubString$
0010 END FUNCTION : ;current

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
FUNCTION

General Form:

END FUNCTION [’identifier[$]]

LANGUAGE STATEMENTS END FUNCTION

NPL Statements Guide 2-152

END IF

Discussion:
The END IF statement defines the end of the statements in an IF...ELSE...END IF struc-
ture. Refer to IF (structured) for an explanation of how this statement may be used in an
IF...ELSE...END IF structure.

Examples:

:IF X=Y
: PRINT "SAME";
: ELSE
: IF ’Fuzzy_Equal(X,Y)=0
: PRINT "PRETTY MUCH THE SAME";X
: ELSE
: PRINT "DIFFERENT ENOUGH";X;Y
: END IF
: END IF

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
IF/ELSE/END IF

General Form:

END IF

END IF LANGUAGE STATEMENTS

2-153 NPL Statements Guide

END PROCEDURE

Discussion:
This statement declares the end of the body of a procedure.

The optional identifier may be used for documentation purposes and must match the cor-
responding PROCEDURE name.

If execution "falls into" an END PROCEDURE statement (i.e., no RETURN statement is
executed before the END PROCEDURE is reached), a RETURN is implied.

Examples:
0010 END PROCEDURE ’ProcessRecord
0010 END PROCEDURE ’Initialize
0010 END PROCEDURE ’Shutdown
0010 END PROCEDURE ’MoveWindow
0010 END PROCEDURE :;current

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
PROCEDURE

General Form:

END PROCEDURE [’identifier]

LANGUAGE STATEMENTS END PROCEDURE

NPL Statements Guide 2-154

END PUBLIC

Discussion:
The END PUBLIC defines the end of a PUBLIC section of a module. There must be a
matching END PUBLIC statement for each PUBLIC statement of a module. The Pack-
ageIdentifier (if any) of this statement must match the PackageIdentifier (if any) of the
corresponding PUBLIC statement.

Examples:
0010 END PUBLIC
0010 END PUBLIC StringFunctions
0010 END PUBLIC StandardColorNames

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
PUBLIC

General Form:

END PUBLIC [PackageIdentifier]

END PUBLIC LANGUAGE STATEMENTS

2-155 NPL Statements Guide

END RECORD

Discussion:
The END RECORD statement marks the end of the RECORD declaration for the indi-
cated identifier. If no record-identifier is specified, the current record is assumed.

Once a complete record is declared, the user may declare instances of the record as string
variables in DIM statements in which the length is specified by #RECORDLENGTH (re-
cord-identifier).

Examples:
0010 END RECORD Payroll
0010 END RECORD Employee
0010 END RECORD Passwords
0010 END RECORD

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
RECORD
#RECORDLENGTH
FIELD

General Form:

END RECORD [record-identifier]

LANGUAGE STATEMENTS END RECORD

NPL Statements Guide 2-156

END SWITCH

Discussion:
This statement declares the exit point of a numeric, string or logical CASE structure. Con-
trol is transferred to the statement following the END SWITCH statement when either
the code of a matching CASE has finished executing, or no matching CASE was found.

Examples:

:SWITCH Widget_Type
: CASE 0
: PRINT "Gizmos"
: CASE 1
: PRINT "Thingammies"
:END SWITCH

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
CASE

General Form:

END SWITCH

END SWITCH LANGUAGE STATEMENTS

2-157 NPL Statements Guide

ERR Function

Discussion:
The ERR statement returns a unique two or three-digit error code of the most recent error
condition.

Whenever a RunTime error is detected, ERR is set to the appropriate error code. Any ref-
erence to the ERR function resets the value to zero. ERR is also reset to zero whenever a
RUN or CLEAR command is executed. Refer to Appendix B of the Programmer’s Guide
for a table of error codes.

NOTE: ERR is typically used in conjunction with the ERROR statement.

ERR may also be inspected to determine if overflow or other mathematical errors have
occurred which are suppressed by the SELECT ERROR setting.

Additional information about errors may be obtained under program control by use of the
ERR$ and $OSERR statements.

Examples:

0010 DATALOAD BAT (X)X$(): ERROR E=ERR: PRINT "ERROR";E;"OCCURRED"
0010 LIMITS T"FILE1",A,B,C,D: ERROR GOTO 100
0020 REM NO ERROR - NORMAL PROCESSING

0100 REM ERROR ROUTINE: X=ERR: IF X=48 THEN 110: IF X=93 THEN 120

0010 X=ERR : REM CLEAR ERROR
:SELECT ERROR>69
: Y=A/B+C/D
:IF ERR>0 THEN PRINT "WARNING - Error has occurred!"

General Form:

ERR

LANGUAGE STATEMENTS ERR Function

NPL Statements Guide 2-158

ERR Function (cont.)

Compatibility Issues:
The error codes returned by some I/O statements may be somewhat different from what
is expected when executing in Wang 2200 Basic-2. In particular, disk access errors are
commonly reported as I91 (Disk Hardware Error) or I90 (Disk Hardware Error) instead
of some of the more esoteric of the error codes in the 90-99 range.

NOTE: Error trapping routines which require a specific error code to be returned in the
event of an I/O error may be unsuccessful because of the above.

Three-digit error codes are supported only in NPL Revision 3.0 or greater and are not sup-
ported on the Wang 2200.

References:
CLEAR
ERROR
$OSERR
SELECT ERROR

ERR Function LANGUAGE STATEMENTS

2-159 NPL Statements Guide

ERR$

Discussion:
The ERR$ function returns a string of text which describes the specified error-code. The
specified error-code must be a two-digit integer which matches one of the valid error-
codes listed in Appendix B of the Programmer’s Guide.

NOTE: This function uses the ERR function to determine the error-code. ERR may also be
used directly as the specified error-code when using ERR$.

The text returned is identical to the literal message that appears when an untrapped error
occurs in immediate mode. Text for error messages is stored in the file ER-
RORMSG.HLP with pointers to text stored in file ERRORMSG.IDX. These files are in-
cluded with every RunTime package and should be installed in the NPL directory. Refer
to the Supplement for further details on installation procedures.

NOTE: Text returned by ERR$ should be used for information only. Text is subject to
change in future releases or may be modified by the user.

If, for any reason, these files cannot be accessed, or if the specified error-code is invalid,
ERR$ returns all spaces.

Examples:

0010 $FORMAT DISK T/D10,
 :ERROR E=ERR
 :E$=ERR$(E)
 :PRINT "Error ";&E;" - ";E$;" occurred"

General Form:

alpha-receiver = ERR$ (error-code)

Where:

error-code = a numeric-expression representing the error
code for which to return the error descrip-
tion. The expression must be in the range of 0
to 999 or an error results.

LANGUAGE STATEMENTS ERR$

NPL Statements Guide 2-160

ERR$ (cont.)

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

On the Wang 2200, text for error messages is built into the operating system. It is, there-
fore, always found.

References:
ERR
ERROR
Error Codes - Appendix B of the Programmer’s Guide

ERR$ LANGUAGE STATEMENTS

2-161 NPL Statements Guide

ERROR

NOTE: The use of DO/ENDDO is preferred.

Discussion:
The ERROR statement is used to provide program control of recoverable errors. The fol-
lowing table lists all error-code ranges and indicates which are recoverable:

Error Code Range Recoverable or Not
0-36 Not recoverable
37 Recoverable

38-47 Not recoverable
48 Recoverable

49-59 Not recoverable
60-99 Recoverable

100-199 Reserved
200-299 Extended NPL error codes - not recoverable
300-499 Extended NPL error codes - recoverable
500-599 External error codes - not recoverable
600-799 External error codes - recoverable
800-899 Reserved

General Form:

simple-statement :ERROR{simple-statement[:simple-statement]...}
 {DO[:statement]...:ENDDO}

LANGUAGE STATEMENTS ERROR

NPL Statements Guide 2-162

ERROR (cont.)

When a recoverable error is detected in a simple statement which is immediately fol-
lowed by an ERROR statement, the standard system error response is suppressed and exe-
cution continues with the statement following the ERROR verb.

When using the statement format of ERROR, any simple statements on a program line
following an ERROR statement are executed only if an ERROR occurs. If a statement is
followed by ERROR and the statement executes without an error, program execution con-
tinues with the first statement on the next line. Structured statements are permitted on the
statement format of ERROR, but their use is not encouraged since breaking such a struc-
tured statement into multiple lines would mean that no error on the simple statement pre-
ceding ERROR could branch into the middle of a structured statement.

When using the DO Group format of ERROR, any statements within the DO group are
executed only if an error occurs. If an error does not occur, program execution resumes
with the first statement following the ENDDO statement.

Math errors which have been suppressed using the SELECT ERROR statement do not
generate errors (default values are returned; refer to SELECT ERROR for details) and,
therefore, are not detected by the ERROR statement.

For example, assuming a SELECT ERROR >65 has been executed, errors in the range of
60 to 65 cannot be detected by the ERROR statement.

Programs can detect the occurrence of the suppressed errors by use of the ERR function.

Examples:

0010 DATA LOAD DC OPEN T#2, "DATA"
 :ERROR GOSUB 800
 :PRINT "ERROR"
0020 DATA LOAD DC #2,X

In this case any missing file or I/O errors occurring in the DATA LOAD DC OPEN state-
ment cause the subroutine at line 800 to be called, followed by the PRINT "ERROR"
statement. If no error occurs on the DATA LOAD DC OPEN statement, execution pro-
ceeds at line 20 (the next line number).

0010 Q=T/W: ERROR DO: PRINT"W CONTAINS ZERO VALUE": Q=0: ENDDO: T=T+1

In this case, assuming that error 62 has not been suppressed by SELECT ERROR, the
statement Q=0 is executed only if an error occurs on the statement Q=T/W but the state-
ment T=T+1 is always executed.

ERROR LANGUAGE STATEMENTS

2-163 NPL Statements Guide

ERROR (cont.)

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

On revisions of NPL prior to 3.0 and on the Wang 2200, a P37 error (Undefined Marked
Subroutine) is non-recoverable.

Error codes of 100 or greater are generated only on NPL Revision 3.0 or greater.

References:
DO/ENDDO
ERR
ON ERROR
SELECT ERROR

LANGUAGE STATEMENTS ERROR

NPL Statements Guide 2-164

EXEC Key

Discussion:
The EXEC key performs two functions:

1. If in STEP Mode, the EXEC key executes the next program statement scheduled for
execution, after which the program is again halted. This is intended as a convenient
way of single-instruction stepping through program execution.

NOTE: If a STEP # statement has been executed to limit the normal debugging range, the
halt is delayed until the program enters the specified range of lines.

2. If in Immediate Mode, but not in STEP Mode, pressing the EXEC key is the equiva-
lent of entering the CONTINUE command, causing normal program continuation.

Pressing the EXEC key from Immediate Mode when a program is not resolved generates
an error A09 - Program Not Resolved.

Examples:

Compatibility Issues:
The EXEC key provides an approximate equivalent to the HALT and CONTINUE keys
on a Wang 2200.

The default key sequence for EXEC varies between different hardware versions of NPL.

References:
CONTINUE
STEP
Immediate Mode - Section 2.5 of the Programmer’s Guide
Keyboard Equivalences - Appendix D of the Programmer’s Guide

General Form:

EXEC (key)

EXEC Key LANGUAGE STATEMENTS

2-165 NPL Statements Guide

EXP Function

Discussion:
The EXP function returns the value of the mathematical constant "e" (value
2.718281828459...) raised to a numeric-expression. This is valid wherever a numeric-ex-
pression is legal.

Examples:
0010 T = EXP(G3-7)
0010 C5(M3) = 10*EXP(F2(K))
0010 Z(3,J) = EXP(A4)/5

Compatibility Issues:
Due to the use of different algorithms, results of these functions may differ from func-
tions evaluated in Wang 2200 Basic-2. In general, however, the functions are accurate to
13 significant digits.

References:

General Form:

EXP(numeric-expression)

LANGUAGE STATEMENTS EXP Function

NPL Statements Guide 2-166

FIELD

Discussion:
The FIELD statement declares a field type variable. The statement is only legal between
a RECORD and END RECORD statement.

NPL associates each field type variable with a start, length and format of data within a re-
cord. Arrays also have associated dimension information.

NPL assumes that the start of the field is the position immediately following any previous
FIELD and FIELD FILLER declarations.

The format-specification determines how NPL stores a field value in the record and the
length in bytes of the field in the record. For arrays, the length is the length of each ele-
ment). This must be a valid field format as supported by $PACK/ $UNPACK field (F=xx
type) formats. If the format specification is not given, a default value is assigned. The de-
fault value for alpha fields is HEX(Annn), where VAL(HEX(0nnn)2) is the "len" of the
string (or array element length). The default value for numeric fields is HEX(F108) (i.e.,
NPL internal numeric format).

General Form:

FIELD field-spec[,field-spec]...

Where:

field-spec = {field-definition }
{/FILLER (fill-length)}

field-definition = field-identifier[[(dim1[,dim2])]][=format-spec]
 [$[(dim1[,dim2])] [len]]

format-spec = {HEX(tsll) }
{<alpha-variable> }
{string function-value }

FIELD LANGUAGE STATEMENTS

2-167 NPL Statements Guide

FIELD (cont.)

The format-spec may also be an intrinsic string function, such as $FIELDFORMAT() or
a user-defined string FUNCTION value (the FUNCTION must be declared in a pre-
viously INCLUDEd library module).

The user may enter the format-specification explicitly as a two-byte hexadecimal value
HEX(tsll), where the "t" hexdigit specifies the field type, "s" specifies the subtype (or
number of decimals) and "VAL(HEX(ll))" evaluates to the length of the field.

Alternatively, the user may enter the format-specification as an alpha-variable.

NOTE: FIELD declarations for string fields are permitted to specify an element or format-
spec, but not both. For example:

FIELD Ticket $10 ; Legal
FIELD Ticket $ = HEX(A00A) ; Legal
FIELD Ticket $10 = HEX(A00A) ; Not Legal
FIELD Ticket $(10)2 = HEX(A002) ; Not Legal

The /FILLER field specification declares an unreferenceable section of a RECORD field
type variable. The length expression indicates the number of bytes in the record that must
be skipped.

Library functions are available which allow definition of the type, subtype and length as
separate numeric expressions (which is not permitted with the hex format), using mne-
monic CONSTANT values for the field type parameter.

Library functions are also available which allow definition of the format-specification as
a data type and length using codes defined by the Niakwa Data Manager.

If the field format is to be the same as a previously defined field, the $FIELDFORMAT()
built-in function may be used to indicate the field format.

All field-identifiers must be unique within the scope (STATIC/PUBLIC) specified.

LANGUAGE STATEMENTS FIELD

NPL Statements Guide 2-168

FIELD (cont.)

Examples:

 0010;
 : INCLUDE T/D13, "PCKFIELD"
 : INCLUDE T#_NPLDEV,"PCKFIELD"
 : USES PackFormats
 :;
 : DIM _BIN1$ = ’FieldType$(_PACK_UNSIGNED_BINARY_FORMAT,0,1)
 :;
 : RECORD Header

: FIELD Self_Id_Message$30
: FIELD /FILLER(64-1-30) : ;next field at byte 64, 30 used now
: FIELD Info_Level=_BIN1$
: FIELD Min_Info_Level=_BIN1$
: FIELD Number_Sections=_BIN1$
: FIELD Screen_Size_Lines=_BIN1$
: FIELD Screen_Size_Columns=_BIN1$
: FIELD /FILLER(10) : ;not interested in this
: FIELD Cursor_Position_Row=_BIN1$
: FIELD Cursor_Position_Col=_BIN1$
: END RECORD

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
END RECORD
#FIELDLENGTH
$FIELDFORMAT
#FIELDSTART
$PACK
RECORD
#RECORDLENGTH
$UNPACK
RECORDs/FIELDs-Section 4.12 of the Programmer’s Guide
PCKFIELDS-Section 3.4

FIELD LANGUAGE STATEMENTS

2-169 NPL Statements Guide

String FIELD-Expressions - Alpha-Variable Equivalent

Discussion:
String field-expressions are permitted wherever alpha-variables are allowed. The expres-
sion is equivalent to the substring of the record buffer, as defined by the string field name.

Examples:

0010 OldestChild$=Employee_Record$.Child_Name$(1)
0010 PRINT Input_Screen_Header$.Self_Id_Message$
0010 Alpha_Sort_Field$=Employee_Record$.<Selected_Field$>$
0010 IF Employee_Records$(I).<Selected_Field$>$=" "

Compatibility Issues:
This statement is supported only with Release IV or greater.

General Form:

alpha-variable-1.{field-identifier}$[(sub1[,sub2])]
 {<alpha-variable-2>}

Where:

alpha-variable-1 = the name of a buffer containing a
 record.

field-identifier = the name of a field in the record.

alpha-variable-2 = an alpha-variable containing the name
 of a PUBLIC string field.

sub1[,sub2] = numeric expressions which are suscripts
to select an element of a string array
field.

LANGUAGE STATEMENTS String FIELD-Expressions - Alpha-Variable Equivalent

NPL Statements Guide 2-170

String FIELD-Expressions (cont.)

References:
END RECORD
FIELD
$FIELDFORMAT
#FIELDLENGTH
#FIELDSTART
RECORD
#RECORDLENGTH

String FIELD-Expressions - Alpha-Variable Equivalent LANGUAGE STATEMENTS

2-171 NPL Statements Guide

Numeric FIELD-Expressions - Term in Numeric Expression

Discussion:
Numeric field-expressions are permitted as terms in any numeric expression. The term is
equivalent to the unpacked value of the field in the record, as defined by the numeric
field name.

Examples:
0010 Total= Total + PayrollRecord$.Federal_Withholding
0010 PRINT AT(InputScreenHeader$.Cursor_Position_Row,0);
0010 X=Employee_Record$.<Deduction_Name$>
0010 Total(I)=Total(I)+Employee_Record$.Miscellaneous_Deductions(I)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
END RECORD
RECORD
FIELD
#RECORDLENGTH

General Form:

alpha-variable-1.{field-identifier }[(sub1[,sub2])]
 {<alpha-variable-2> }

Where:

alpha-variable-1 = the name of a buffer containing a
 record.

field-identifier = the name of a field in the record.

alpha-variable-2 = an alpha-variable containing the name
of a PUBLIC numeric field.

sub1[,sub2] = numeric expressions which are sub-
scripts to select an element of a
string array field.

LANGUAGE STATEMENTS Numeric FIELD-Expressions - Term in Numeric Expression

NPL Statements Guide 2-172

$FIELDFORMAT Function

Discussion:
The $FIELDFORMAT intrinsic function returns the two-byte field specification for a
given field identifier variable.

The $FIELDFORMAT function permits indirect specification of a PUBLIC field name
using the same syntax as a field expression. The indirect specification <string> is permit-
ted to have "$" or "()", or both, but these are ignored. The type of the field must be indi-
cated by "$" or "()", or both, after the <string> specification.

Examples:
0010 BoxRowFormat$=$FIELDFORMAT(BoxRow)
0010 BoxTitleFormat$=$FIELDFORMAT(BoxTitle$)
0010 Employee_Name_Format=$FIELDFORMAT(Employee_Name$)
0010 Child_Name_Format$=$FIELDFORMAT(Childrens_Names$())
0010 Miscellaneous_Format$=$FIELDFORMAT(Miscellaneous_Deductions())
0010 $UNPACK(F=$FIELDFORMAT(BoxRow))STR(Rec$,#FIELDSTART(BoxRow))TO Row

0010 RECORD /PUBLIC MouseFace
 : FIELD MouseNoseColor = HEX(B001)
 : FIELD MouseWhiskersLength = HEX(B002)
 : FIELD MouseNickName$32
 : FIELD MouseTail(20) = HEX(B004)
 : END RECORD
0020 ;
 : DIM _MaxFieldNameLength = 20
 : DIM F$2, N$_MaxFieldNameLength
 : ;
 : N$ = "MouseNoseColor"
 : F$ = $FIELDFORMAT(<N$>)
 : PRINT HEXOF(F$) :; this prints B001
 : N$ = "MouseNickName"
 : F$ = $FIELDFORMAT (<N$>$)
 : PRINT HEXOF (F$) :; this prints A020
 : N$ = "MouseTail"
 : F$ = $FIELDFORMAT(<N$>())
 : PRINT HEXOF(F$) :; this prints B004

General Form:

$FIELDFORMAT {field-identifier[$][()]}
 {<alpha-variable> }

Where:

alpha-variable = an alpha-variable containing the name of a
PUBLIC field.

$FIELDFORMAT Function LANGUAGE STATEMENTS

2-173 NPL Statements Guide

$FIELDFORMAT (cont.)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
FIELD
$PACK
$UNPACK

LANGUAGE STATEMENTS $FIELDFORMAT Function

NPL Statements Guide 2-174

#FIELDLENGTH Function

Discussion:
The #FIELDLENGTH intrinsic function returns the field length in bytes for a given field
identifier variable.

The #FIELDLENGTH function permits indirect specification of a PUBLIC field name us-
ing the same syntax as a field expression. The indirect specification string is permitted to
have "$" or "()", or both, but these are ignored. The type of the field must be indicated by
"$" or "()", or both, after the <string> specification.

For example:

0010 RECORD /PUBLIC MouseFace
0020 FIELD MouseNoseColor=HEX(B001)
0030 FIELD MouseWhiskersLength=HEX(B002)
0040 FIELD MouseNickName$32
0050 FIELD MouseTail(20)=HEX(B001)
0060 END RECORD MouseFace

:X$="MouseNoseColor"
:X=#FIELDLENGTH(MouseNoseColor) :; returns 1
:X=#FIELDLENGTH(<X$>) :; <-- same using indirect
:X$="MouseNickName$" :; $ is allowed but ignored
:X=#FIELDLENGTH(MouseNickName$) :; Returns 32
:X=#FIELDLENGTH(<X$>$) :; <-- same using indirect
:X$="MouseTail()" :; () are allowed but ignored
:X=#FIELDLENGTH(MouseTail()) :; returns 1
:X=#FIELDLENGTH(<X$>()) :; <-- same using indirect

General Form:

#FIELDLENGTH {field-identifier[$][()]}
 {<alpha-variable> }

Where:

alpha-variable = an alpha-variable containing the name of a
PUBLIC field.

#FIELDLENGTH Function LANGUAGE STATEMENTS

2-175 NPL Statements Guide

#FIELDLENGTH Function (cont.)

NOTE: If the field identifier is an array, the length returned is the length of an element.

Examples:
0010 BoxRowLength=#FIELDLENGTH(BoxRow)
0010 BoxTitleLength=#FIELDLENGTH(BoxTitle$)
0010 Employee_Name_Length=#FIELDLENGTH(Employee_Name$)
0010 Child_Name_Length=#FIELDLENGTH(Childrens_Names$())
0010 Deductions_Length=#FIELDLENGTH(Miscellaneous_Deductions())
0010 G$=STR(Rec$,BoxRowStart,#FIELDLENGTH(BoxRow))

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
RECORD
FIELD
$FIELDFORMAT
#FIELDSTART

LANGUAGE STATEMENTS #FIELDLENGTH Function

NPL Statements Guide 2-176

#FIELDSTART Function

Discussion:
The #FIELDSTART intrinsic function returns the starting STR() position in a record for
a given field identifier variable (a value of 1 means start of record).

The #FIELDSTART function permits indirect specification of a PUBLIC field name us-
ing the same syntax as a field expression. The indirect specification string is permitted to
have "$" or "()" or both, but these are ignored. The type of the field must be indicated by
"$" or "()", or both, after the <string> specification. For example:

0010 RECORD /PUBLIC MouseFace
0020 FIELD MouseNoseColor=HEX(B001)
0030 FIELD MouseWhiskersLength=HEX(B002)
0040 FIELD MouseNickName$32
0050 FIELD MouseTail(20)=HEX(B001)
0060 END RECORD MouseFace

:X$="MouseNoseColor"
:x=#FIELDSTART(MouseNoseColor) :; returns 1
:x=#FIELDSTART(<X$>) :;<-- same using indirect
:X$="MouseNickName$" :;$ is allowed by ignored
:x=#FIELDSTART(MouseNickNames$) :;Returns 4
:X=#FIELDSTART(<X$>$) :;<-- same using indirect
:X$="MouseTail()" :;() are allowed but ignored
:x=#FIELDSTART(MouseTail(() :;returns 36
:x=#FIELDSTART(<X$>()) :;<--same using indirect

Examples:
0010 BoxRowStart=#FIELDSTART(BoxRow)
0010 BoxTitleStart=#FIELDSTART(BoxTitle$)
0010 Employee_Name_Start=#FIELDSTART(Employee_Name$)
0010 Child_Name_Start=#FIELDSTART(Childrens_Names$())
0010 Deductions_Start=#FIELDSTART(Miscellaneous_Deductions())
0010 $UNPACK(F=$FIELDFORMAT(BoxRow))STR(Rec$,#FIELDSTART(BoxRow))TO Row

General Form:

#FIELDSTART {field-identifier[$][()]}
 {<alpha-variable> }

Where:

alpha-variable = an alpha-variable containing the name of a
PUBLIC field.

#FIELDSTART Function LANGUAGE STATEMENTS

2-177 NPL Statements Guide

#FIELDSTART Function (cont.)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
RECORD
FIELD
$FIELDFORMAT
#FIELDLENGTH

LANGUAGE STATEMENTS #FIELDSTART Function

NPL Statements Guide 2-178

FIX Function

Discussion:
The FIX function returns the integer portion of the value of a numeric-expression, truncat-
ing the fractional portion of the value, if any. This is valid wherever a numeric-expres-
sion is legal.

Examples:
0010 Q=FIX(A)
0010 A(10)=30-FIX(Q)

:PRINT FIX(3.1)
 3
:PRINT FIX(3.9)
 3
:PRINT FIX(-8.1)
-8
:PRINT FIX(-8.9)
-8

Compatibility Issues:

References:
INT

General Form:

FIX (numeric-expression)

FIX Function LANGUAGE STATEMENTS

2-179 NPL Statements Guide

FN Function

NOTE: The use of this statement is not recommended. Refer to FUNCTION as a better al-
ternative.

Discussion:
FN is a general-purpose function which is used to invoke functions defined by the
DEFFN function definition statement. A single, numeric argument must be passed when
the function is used. The FN function may be used in any numeric-expression. This is
valid wherever a numeric-expression is legal.

FN is used in conjunction with DEFFN. DEFFN defines the function while FN invokes
the defined function.

NOTE: Other FN functions may appear in a DEF FN statement. FN() functions may be
nested in this way up to five levels deep.

For example:

0010 DEF FNA(X)=FNB(X)+2
 : DEF FNB(Y)=FNC(Y)*5
 : DEF FNC(Z)=FND(Z)/3
 : DEF FND(T)=1+FNE(T)+2

This is legal, but if FNE() references other FN functions, evaluating FNA() generates an
error P39 - FN’s nested too deep.

Use of FN in Immediate Mode under NPL requires that the program be resolved in mem-
ory.

General Form:

FN {letter}(numeric-expression)
 {digit }

LANGUAGE STATEMENTS FN Function

NPL Statements Guide 2-180

FN Function (cont.)

Examples:
0010 X = FNX(23)+45
0010 A,B,C=24+Y/FNR(24+FN4(W(10)))
0010 IF FNA(R) = FNA(R1) THEN 200

:0010 INPUT Y
:0020 X=FNB(Y)
:0030 PRINT Y,X
:0040 DEF FNB(A)=(A-3)/2
:RUN
? 9
 9 3
:

Compatibility Issues:
Use of an FN function is not allowed in Immediate Mode on a Wang 2200.

References:
DEF FN
FUNCTION

FN Function LANGUAGE STATEMENTS

2-181 NPL Statements Guide

FOR/BEGIN Structured

Discussion:
The FOR/BEGIN statement defines the start of a FOR/BEGIN...NEXT structure. It may
be followed by any number of statements, which comprise the body of the loop. It must
then be followed by a NEXT statement with a matching numeric-scalar variable.

The FOR/BEGIN statement may be distinguished from the unstructured FOR statement
by the presence of the BEGIN keyword at the end of the statement.

The numeric-scalar variable specified becomes the index-variable of the loop.

It is assigned the initial value specified by num-exp1. Num-exp2 (the target-expression)
and num-exp3 (the step-expression) are evaluated once, at entry to the loop.

If the step-expression is positive, and the index-variable is greater than the target-expres-
sion, control is transferred to the statement following the matching NEXT statement.

If the step-expression is negative, and the index-variable is less than the target-expres-
sion, control is transferred to the statement following the matching NEXT statement.

Otherwise, the step-expression and target-expression are stored in an internal stack, and
execution proceeds with the first statement in the body of the loop.

NOTE: A step-expression of 0 always results in execution of the loop body exactly once.

General Form:

FOR numeric-scalar=num-exp1 TO num-exp2 [STEP num-exp3]
BEGIN

LANGUAGE STATEMENTS FOR/BEGIN Structured

NPL Statements Guide 2-182

FOR/BEGIN Structured (cont.)

Repeated branching out of a FOR/BEGIN...NEXT loop body without exiting the loop in
an approved manner can result in a stack overflow. The following conditions clear the
stack information created by a FOR/BEGIN statement:

• Exiting the loop at the matching NEXT statement

• Executing a BREAK statement to exit the loop

• Executing a NEXT statement for an outer FOR loop

• If the FOR loop was executed after entering a function or subroutine, executing a
RETURN statement clears the information.

Unlike the unstructured version, which is permitted to have multiple (or no) NEXT state-
ments, the end of the loop body of a FOR/BEGIN...NEXT loop is well defined. This per-
mits the loop body to be skipped if the entry conditions indicate this should be done.
Also, the LOOP statement may be used to skip to the NEXT statement of the FOR/BE-
GIN...NEXT loop, and BREAK may be used to skip past the NEXT statement of the loop
(clearing loop information on the stack).

Examples:
0010 FOR X=1 TO Y BEGIN

: ;Note that if Y is less than 1, the loop is not executed at all
: NEXT X

0010 FOR Index=1 TO N BEGIN
0010 FOR Course=Soup TO Nuts BEGIN
0010 FOR GreekLetter=_ALPHA TO _OMEGA BEGIN
0010 FOR Century=1000 TO 1900 STEP 100 BEGIN
0010 FOR XValue=0 TO 1.00 STEP .01 BEGIN
0010 FOR T=1 TO 20 BEGIN

: Address$=$DET(T)
: IF Address$=" " THEN BREAK
: Device$=$DEVICE(Address$)
: PRINT Address$;Device$
: NEXT T

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
BREAK
LOOP
NEXT

FOR/BEGIN Structured LANGUAGE STATEMENTS

2-183 NPL Statements Guide

FOR/TO

NOTE: The use of this statement is not recommended. Refer to FOR/BEGIN as a better al-
ternative.

Discussion:
The FOR/TO statement is used in conjunction with the NEXT statement to create itera-
tive loops during program execution. Each FOR/TO statement must be paired with a
matching NEXT (or NEXT CLEAR) statement later in the program. Both FOR/TO and
NEXT statements must specify the same index-variable.

The FOR/TO statement is used when a group of statements is to be executed repeatedly,
while incrementing (or decrementing) an index-variable from an initial value (numeric-
expression1) to a final value (numeric-expression2) by regular increments (numeric-ex-
pression3).

When first executed, the index-variable is set equal to numeric-expression1 and program
execution continues with the following statement.

Upon execution of the corresponding NEXT statement, if a positive STEP value is used,
the index-variable is tested to determine if the index-variable (+ STEP value) exceeds the
final loop value. If a negative STEP value is used, the index-variable is tested to deter-
mine if the index-variable (- STEP value) is less than the final loop value. In either case,
if the test is true, program execution continues with the program statement following the
NEXT statement and the increment (or decrement) is not performed. If not, the index-
variable is incremented (or decremented) and execution continues with the statement fol-
lowing the corresponding FOR statement.

NOTE: The statements between the FOR/TO and NEXT statements are always executed at
least once, even if the initial value for the index-variable exceeds numeric-expres-
sion2.

General Form:

FOR index-variable = numeric-expression1 TO
numeric-expression2 [STEP numeric-expression3]

LANGUAGE STATEMENTS FOR/TO

NPL Statements Guide 2-184

FOR/TO (cont.)

Five rules should be considered when using FOR/TO loops:

1. The values of numeric-expression2 and numeric-expression3 are determined only
once at the start of the loop.

2. No practical limit exists as to the number of loops which can be nested within a pro-
gram.

3. Every FOR/TO loop that is encountered is executed at least once (even those with a
STEP value of zero or those where the index-variable already meets the final value
condition).

4. Branching into the middle of FOR/TO loops. The FOR/TO statement must be exe-
cuted in order to enter a loop. If the FOR/TO statement has not been executed, execu-
tion of the corresponding NEXT statement generates an error P40 - No
Corresponding FOR for Next Statement.

5. Branching out of a FOR/TO loop is allowed, although some caution should be used in
doing so. Repeated branching from a loop without normal termination can fill the sys-
tem stack where FOR/TO loop information is kept, causing a Stack Overflow error. If
a loop is not terminated normally, the stack information is not cleared. There are sev-
eral ways of clearing the FOR/TO stack information:

• Setting the index variable equal to numeric-expression2 and then executing the
corresponding NEXT statement.

• Execution of a NEXT CLEAR statement.

• If in a nested loop, executing the outermost NEXT statement clears inner loop
stack information.

• If in a subroutine, a RETURN or RETURN CLEAR command clears the
FOR/TO stack information for loops within the subroutine.

FOR/TO LANGUAGE STATEMENTS

2-185 NPL Statements Guide

FOR/TO (cont.)

6. Branching out of a FOR/TO loop with a RETURN is allowed. Execution of the RE-
TURN statement automatically clears information from the system stack regarding all
loops executed since the most recent GOSUB statement.

Examples:
0010 FOR I=1 TO 10: PRINT I: NEXT I
0010 FOR A=100 TO 10 STEP -5
0010 FOR X=N TO (T+1)*Z/R STEP S-2

0010 FOR J=1 TO 50
: X=J*2/9
: IF X=23.4 THEN J = 50 :;WHEN TRUE TERMINATE LOOP

0020 NEXT J
0030 END

:0010 X=10
: FOR I=1 TO X
: PRINT I
: NEXT I

:RUN
1 2 3 4 5 6 7 8 9 10
:

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

NEXT CLEAR is not supported on the Wang 2200.

References:
CONTINUE NEXT
NEXT
NEXT CLEAR

LANGUAGE STATEMENTS FOR/TO

NPL Statements Guide 2-186

$FORMAT DISK

Discussion:
$FORMAT DISK is used to format disk media. The $FORMAT DISK statement per-
forms differently depending on the device specified.

When a $FORMAT DISK statement is executed against a diskimage file, the file is de-
leted from the native operating system. The address still exists in the device table, but
must be scratched using the SCRATCH DISK statement before it can again be accessed.

When $FORMAT DISK is executed against a "raw" diskette, the diskette is physically
formatted in "raw" format.

Examples:
0010 $FORMAT DISK T/D32,
0010 $FORMAT DISK T/D10,
0010 $FORMAT DISK T#1,
0010 $FORMAT DISK TA$,

Compatibility Issues:
Refer to the NPL Supplement for details on "raw" diskette devices.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:
SCRATCH DISK
Native Operating System Files as diskimage files - Section 7.3.4
Native Operating System "raw" devices as diskimage files - Section 7.3.5
Diskimage Files - Section 7.3.4 of the Programmer’s Guide
"Raw" Devices - Section 7.3.5 of the Programmer’s Guide

General Form:

$FORMAT DISK T [file-number,]
 [disk-address,]
 [<address-var>,]

$FORMAT DISK LANGUAGE STATEMENTS

2-187 NPL Statements Guide

FUNCTION

Discussion:
This statement declares the entry point and type of a named function, and the parameters
to that function (if any). If the /FORWARD keyword is not specified, statements follow-
ing the FUNCTION statement define the body of the function. These must be followed
by a matching END FUNCTION statement. Refer to Section 4.8 of the Programmer’s
Guide for more information.

Return Value Types of FUNCTIONs

Functions must return either a numeric or string value. A "$" after the function identifier
indicates a string return value. Absence of a "$" after the function identifier indicates a
numeric return type. Numeric function return values can be used wherever numeric con-
stants are permitted. String function return values can be used wherever string literals are
permitted.

Using FUNCTIONs as Terms in Expressions

Functions may appear in expressions of the appropriate type using the syntax for a func-
tion term.

General Form:

 FUNCTION’ name return-type [(parameter[,parameter]...)]
 [attribute]...

Where:

name = identifier

return-type = [$]

parameter = [/POINTER][_]variable [length]
[_]variable([dim1,[dim2]])

attribute = {/PUBLIC }
{/FORWARD }
{/EXTERNAL}
{/BEGINS }

LANGUAGE STATEMENTS FUNCTION

NPL Statements Guide 2-188

FUNCTION (cont.)

For example,

numeric function term ’identifier [(parameters)]
string function term ’identifier$[(parameters)]

Parameters (if any) are evaluated from left to right, and all parameters are evaluated be-
fore the call is made. The parameters specified are passed to the function body, and exe-
cution proceeds with the first executable statement in the function. When the function
body executes a RETURN(value) statement, the value specified is used (as if replacing
the ’identifier[(parameters)] term), and evaluation of the expression containing the func-
tion reference term continues.

Return Value of FUNCTIONs

Return values of string-valued functions may refer to recursive variables. Space allocated
to return values is managed internally by the RunTime and should be transparent to the
program. Return values are released (when they are no longer referenced) at a number of
points, including:

• Prior to any evaluation of SPACE functions, or

• Prior to any allocation of new memory, in particular, each time a FUNCTION is
called.

A performance penalty occurs when operating with a number of unreleased return values.

For example:

0010 FUNCTION ’Dup$(Value$1,Count)
 : DIM Result$1000
 : STR(Result$,,Count)=ALL(Value$)
 : RETURN(STR(Result$,,Count))
 :END FUNCTION
0020 PROCEDURE ’RunsABitSlower(/POINTER _Arg1$,/POINTER _Arg2$)
 : ;return values cannot be released
 : END PROCEDURE
0030 ’RunsABitSlower(’Dup$("X",100),’Dup$("Y",100))

Calls to functions and procedures are permitted from Immediate Mode.

FUNCTION LANGUAGE STATEMENTS

2-189 NPL Statements Guide

FUNCTION (cont.)

Unlike Immediate Mode calls to subroutines using GOSUB or GOSUB’, there is no im-
plied HALT before functions or procedures are executed.

If a function is called from Immediate Mode, then, even if the function is halted or
STOPped for debugging, any Immediate Mode statements following the function are
eventually executed when the function returns.

NOTE: As a result of this change, if statements are entered after an Immediate Mode GO-
SUB(’) statement, they are also executed when the function RETURNs. This behav-
ior is different from that of previous releases. On previous releases, statements after
an immediate GOSUB(’) were never executed when the RETURN was executed.

For example:

:PRINT "->";’WindowName$(TopWindow);"->"
->MainWindow<-
:GOSUB ’GetShorty: PRINT "Result is ";X
Result is 22 <- immediate mode code executed after RETURN
 :

NOTE: Unlike previous releases, an immediate mode GOSUB or GOSUB’ no longer does
an implied HALT at the first statement.

Examples:

0010 FUNCTION ’Bessel(X)
0010 FUNCTION ’PrintableTime$(/POINTER _AnyString$)
0010 FUNCTION ’SetSubString$(/POINTER Var$,Start,Length,Val$80)/FORWARD
0010 FUNCTION ’SubString$(/POINTER Var$,Start,Length,Val$80)/BEGINS

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
END FUNCTION
Refer to Section 4.8 of the Programmer’s Guide

LANGUAGE STATEMENTS FUNCTION

NPL Statements Guide 2-190

’Function-name (...) Numeric-Expression Equivalent

Discussion:
FUNCTIONs declared as numeric return types (no "$" string type indicator) may appear
wherever a numeric expression is permitted by specifying the function Identifier pre-
ceded by "’" and followed by an argument list.

Refer to the general discussion of the NPL function interface in Section 4.8 of the NPL
Programmer’s Guide.

Example:

0010 Y0=’Bessel(X0)
0010 Start_Size=’Minimum_File_Size
0010 PRINT ’Target(Sales$),’Accrued(’Pension(Employee_Code$))
0010 CONVERT ’Id(RND(1)) TO Badge$,(#####)
0010 Y=’<CallBackFunction$>(X)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Refer to Section 4.8 of the Programmer’s Guide

General Form:

’function-name [(argument[,argument]...)]

Where:

function-name = {Identifier }
{<alpha-variable> }

argument = {numeric-expression }
{<alpha-variable> }
{literal-string }

’Function-name (...) Numeric-Expression Equivalent LANGUAGE STATEMENTS

2-191 NPL Statements Guide

’Function-name$(...) Literal-String Equivalent

Discussion:
FUNCTIONs declared as string return types ("$" type indicator in header) may appear
wherever alpha-variables are permitted by specifying the function Identifier preceded by
"’" and followed by "$" and an argument list.

Refer to the general discussion of function interface in Section 4.9 of the Programmer’s
Guide.

Example:

0010 Y0$=’Title$(X0)
0010 Start_Name=’Default_File_Name$
0010 PRINT ’ColorSet$(Foreground,Background);’Surname$(Salesman$)
0010 CONVERT STR(’Id$(Password$),2,3) TO Count
0010 VerifyFunction$=’<CallBackFunction$>$(2)

Compatibility Issues:

References:
Refer to Section 4.8 of the Programmer’s Guide

General Form:

’function-name$ [(argument[,argument]...)]

Where:

function-name = {Identifier }
{<alpha-variable> }

argument = {numeric-expression }
{<alpha-variable> }
{literal-string }

LANGUAGE STATEMENTS ’Function-name$(...) Literal-String Equivalent

NPL Statements Guide 2-192

$GIO

Discussion:
$GIO is supported strictly for compatibility with Wang Basic-2 and is used for general in-
put and output to the specified device, which must be a printer-type device (not a disk-
type device). If no device is specified, the address used in the last SELECT TAPE
statement is used.

General Form:

$GIO [remark] [device-address,] (microcommand-sequence
 [file-number,]
 [<address-var>,]

 [,register-var]) [alpha-variable...]]

Where:

remark = a character string which identifies the
operation being performed. The remark is
ignored at execution time, although only
letters, digits, and spaces are legal in
a remark.

microcommand-sequence = {alpha-variable}
{hex-literal }

register-var = an alpha-variable whose individual bytes
are used as registers to store control in-
formation. Must be dimensioned length of
at least 10 bytes.

alpha-variable = an alpha-variable used for multiple char-
acter I/O operations, serving as a data
buffer.

LANGUAGE STATEMENTS $GIO

NPL Statements Guide 2-193

$GIO (cont.)

The operation performed by the $GIO statement is determined by the contents of the mi-
crocommand-sequence. Each two bytes of this variable (or literal) defines a microcom-
mand operation to be performed. Operations are performed sequentially, starting from the
first two bytes, unless a branch microcommand is encountered. The available operations
are detailed later in this document but, in general, consist of commands to transfer charac-
ters between the active device and either the register-var or alpha-variable buffer. Com-
mands are referred to by the four hexadecimal-digit representation of the two bytes of the
microcommand.

The alpha-variable specified as the register-var in the $GIO statement is used as a register
variable. That is, certain bytes of the register-var variable are used as register bytes. The
maximum readable length of a register variable is 15 bytes. All 15 bytes may be used, but
certain bytes (5,6,8,9,10) are used by the system for status registers. The value of these
registers may be changed by the system.

Register byte 8 is used to store error status information; register bytes 9 and 10 are used
to store information related to character count during $GIO operation. The programmer
should keep in mind that using these registers (5,6,8,9,10) is legal, but the system
changes them at different times during the $GIO operation.

Control Code Status
When using the $GIO instruction, a special flag exists in memory called the "control
code". The status of this "control code" is either "true" or "false", depending on the condi-
tion of the operation. Initially, the condition code is false.

Once the control code is set to true, $GIO operation is terminated unless the next instruc-
tion in the microcommand is one of two special branch instructions that check the control
status. The special branch statements are:

Dxxx (branch to xxx if control code true)

Exxx (branch to xxx if control code false)

where xxx is a 3 hexadecimal-digit address within the microcommand se-
quence. The address is determined by the sequential position away from
the first microcommand (which has address 000).

$GIO LANGUAGE STATEMENTS

2-194 NPL Statements Guide

$GIO (cont.)

For example, an instruction such as "D004" would cause a branch to the
fifth microcommand in the $GIO statement if the control code is true. If
control code is false, the statement is ignored.

The following conditions set the control code to true:

1000 Set condition code true
15xy If compare error bit is set
16xy If complemented status code (register 8) and HEX(xy) HEX(00)
17xy If status code (register 8) and HEX(xy) HEX(00)
1Bx If during write operation buffer is empty
1By If during read operation buffer is full
1Cxy If x=y
1Dxy If register pair x,x+1=register pair y,y+1
1Exy If register x register y
1Fxy If register pair x,x+1 register pair y,y+1

Microcommand Emulation

The following table lists the microcommands currently supported by the $GIO emulator,
and the function provided by each.

2020 End of $GIO command string.
A000, A200 Print string from current alpha-variable buffer with no effect on TAB()

42r0 Print character in register r with no effect on TAB()
40xx Print HEX(xx) with no effect on TAB()
0rHH Set register r to HEX(HH)

44xx &
46x0

Send one-byte control sequence to device driver. Refer to the discussion below.

73x0 Select new I/O channel from reg x.
71hh Select new I/O channel as HEX(hh).
870x Read single bytes. Refer to the discussion below.
Cx20 Read multiple bytes into current alpha-variable buffer. Refer to the discussion below.
12x1 Set coarse timeout on next I/O operation (ignored).
12x2 Set fine timeout on next I/O operation (ignored).
1200 Disable timeouts (ignored).
760x Status request (emulated only to screen address 05; responds appropriately for 80-column terminal).

LANGUAGE STATEMENTS $GIO

NPL Statements Guide 2-195

$GIO (cont.)

860x Wait for response (response equivalent to "ready").
Dxxx Branch to location if $GIO condition code is "true".
Exxx Branch to location if $GIO condition code is "false".
1A00 Set up next alpha-variable buffer for transmit.
18xx Select alpha-variable buffer by number.
19rc Increment decrement register (pair) #r.
1000 Set cc to TRUE.
14xx Compare registers.
15xx Compare registers.
16xx Compare registers.
17xx Compare registers.
1Cxx Compare registers.
1Dxx Compare registers.
1Exx Compare registers.
1Fxx Compare registers.
A604 Calculate and save LRC value in register 5. The LRC value is a cumulative XOR of all bytes

in the data buffer.
7600 Check for application security code. Implementation of this feature is highly operating

system-specific. Refer tothe appropriate NPL Supplements for implementation details.

Using $GIO Input (Cx20) Microcommands:

The Cx20 microcommands may be used to read bytes from a device address defined as a
serial port. The TMO clause of the $DEVICE statement may be used to enable time-outs
on read operations using the C620 microcommand so that the statement returns with zero
bytes read if no bytes are present at the specified port. For the Cx20 series microcom-
mands, the number of bytes actually read is returned in bytes 9 and 10 of the register-var
variable of the $GIO statement. This capability provides for limited serial communica-
tions ability on systems where the complete asynchronous communications capabilities
provided by the Niakwa Scientific and Communications Drivers (SCD) Package are not
available.

$GIO LANGUAGE STATEMENTS

2-196 NPL Statements Guide

$GIO (cont.)

Refer to Section 5.7 of the NPL Supplements for details on limited serial communica-
tions support and the availability of the SCD Package on your operating system. In addi-
tion, refer to Section 7.8 of the Programmer’s Guide for further information on limited
serial communications techniques. (Refer to $DEVICE for further information on the
TMO clause.)

Reading Bytes Using 870x and Cx20 Type Microcommands
Another important use of these microcommands is in accessing native operating system
files. These microcommands may be used to read single bytes (870x type, x not equal 0)
or strings of bytes (Cx20, x=2,3,6 or 7 are all treated the same) from native operating sys-
tem files. The 8700 microcommand (which, on Wang 2200 systems, means "read and dis-
card one byte") must be used to "rewind" any file before data may be read from it. For
the Cx20 series microcommands, the number of bytes actually read is returned in bytes 9
and 10 of the register-var variable of the $GIO statement. For the 870x microcommand,
the timeout (HEX(10)) bit is set in byte 8 of the register-var variable if a read of length 0
(end of file) is returned.

For example, the following program reads and prints the "/config.sys" file.

0010 $DEVICE(/211)="/config.sys"
 : $GIO/211,(HEX(8700)) :REM REWIND THE FILE
0020 $GIO/211,(HEX(C620),G$) A$:REM READ SOME BYTES
 : G=VAL(STR(G$,9),2) :REM GET COUNT OF BYTES READ
 : IF G=0 THEN 30 :REM CHECK END OF FILE
 : $GIO/005,(HEX(A000)) A$,G :REM PRINT THE BYTES TO SCREEN
 : GOTO 20
0030 $END

These microcommands may only be used for valid printer type devices (addresses /000,
/204, /210, /211, ... /21F). Attempts to direct these microcommands to other device
classes may result in a P48 (Illegal Device Specified) error or may result in no data being
read.

Program logic which reads from native operating system files in the above manner
should avoid polling the keyboard unless the HELP key has been disabled since the
HELP key closes all native operating system files. Although continuing the program
would reopen the files, the native operating system file pointer would be positioned at the
end of the file (which is suitable for output, but not for input).

LANGUAGE STATEMENTS $GIO

NPL Statements Guide 2-197

$GIO (cont.)

HINT: Only perform $GIO to print class devices which are $OPENed, or avoid using function
calls to evaluate the alpha-variables in a $GIO statement.

For example, instead of:

0010 $GIO/01C(HEX(8700C620),L$)A$(’NextRecordNumber)

use:

0010 R=’NextRecordNumber
 : $GIO/01C(HEX(8700C620),L$)A$(R)

Examples:
:0010 M$=HEX(40414042)
 : $GIO /005,(M$) :REM register-var, alpha-variable

 not required for single
 character output.

:RUN
AB (printed on screen)

:0010 X$="TEST"
: $GIO /005,(HEX(A000))X$

:RUN
TEST (printed on screen)

Compatibility Issues:
The A604 microcommand performs no operation on NPL releases prior to Revision
2.01.20.

The 7600 microcommand performs no operation on NPL releases prior to Revision
2.01.17 and is not supported on the Wang 2200.

The TMO clause of $DEVICE is supported only in NPL Revision 2.01 or greater.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

Since, in general, the controllers attached to the Wang 2200 I/O bus are quite intelligent,
the task of emulating the functions provided by this statement on a non-Wang 2200 sys-
tem is formidable, to say the least.

Only a partial subset of the defined microcommands is implemented by NPL. The choice
of microcommands has been dictated by the frequency of their usage and the feasibility
of accurately reproducing their result.

$GIO LANGUAGE STATEMENTS

2-198 NPL Statements Guide

$GIO (cont.)

Despite the large number of microcommands (65536, not all defined), the large majority
of applications of $GIO use it as a patch to circumvent a few deficiencies in T-compat-
ible BASIC and some or all releases of Wang 2200 Basic-2.

Support of microcommands is limited to those stated above. Use of $GIO to perform tele-
communications is functional only if an appropriate device driver is installed. Refer to
the Niakwa SCD manual for further details.

If function calls are used to evaluate an alpha-variable value in a $GIO statement, and the
current device is not $OPENed, the current device of the $GIO is flushed before evaluat-
ing the function and reselected after evaluating. Consequently, if the $GIO is directed to
a text file, and that file is closed for any reason while evaluating the function, the new file
position is at the end of the file.

References:
SELECT TAPE

LANGUAGE STATEMENTS $GIO

NPL Statements Guide 2-199

#GOLDKEY Function

Discussion:
The #GOLDKEY function returns a value between 0 and 65535 which is generated on a
random basis for each RunTime Package diskette (Gold Key numbers are different). The
#GOLDKEY function returns the same value for the interpretive runtime and the non-in-
terpretive runtime on any one Gold Key. The intent of this function is to provide a
method of copy protection for application software authors. This is valid wherever a nu-
meric-expression is legal.

The following is a suggested procedure for implementing copy protection:

1. The application system devises an arbitrary hashing algorithm which we denote by
FNA. This function produces a unique number for each argument in the range 1-
65535, preferably in such a way that the algorithm is not obvious. In general, this
number may be up to 13 digits long.

2. The application system devises a second arbitrary hashing algorithm FNB. This func-
tion should take the 13-digit number produced by FNA and return another number,
again in such a way that the algorithm is not obvious. The vendor should reserve
space on the program diskimage (in a data file) for a single value of FNB for which
the software is authorized.

General Form:

#GOLDKEY

#GOLDKEY Function LANGUAGE STATEMENTS

2-200 NPL Statements Guide

#GOLDKEY Function (cont.)

3. At one or more critical points, the application software computes the value of the
FNA and FNB functions, based on the value of the #GOLDKEY function, and com-
pare this with the value on the program disk. If the numbers match, the program pro-
ceeds. Otherwise, an authorization check program should be called. The authorization
check program should:

A. Inform the user that the software is not authorized for use with the particular
Gold Key diskette being used.

B. Display the vendor’s telephone number and explicit instructions on how to
contact personnel able to authorize use of the software.

C. Display the value returned by the FNA algorithm.

D. Request an authorization number to be supplied by the vendor. At this point,
the user must contact someone at the vendor’s organization who:

 a. Can determine whether the user has the right to use the software and,
if so,

 b. Has access to a utility program which computes and displays the FNB
value based on the FNA number supplied by the user.

Once this number is supplied to the user, the authorizing program does
the following:

E. Saves the FNB number in the reserved area to enable future use of the soft-
ware by the same #GOLDKEY and proceed.

Additional Comments About #GOLDKEY

It is very inadvisable for programs to take any destructive actions based on what is de-
cided to be a "breach" of authorized use of the software. In particular, this is true because
the replacement Gold Key diskettes (provided as a result of upgrades or media failure)
usually has a different value for the #GOLDKEY function.

LANGUAGE STATEMENTS #GOLDKEY Function

NPL Statements Guide 2-201

#GOLDKEY Function (cont.)

NOTE: All programs which are capable of producing the FNB number should be compiled
with the -OBJFORMAT SCRAMBLED option, or SAVEd with the ! scramble pro-
tect option for distribution, so as to inhibit inspection or modification of the FNB al-
gorithm.

This function is provided as a convenience to licensees, to be used or not used as they see
fit. Although due care has been taken in the implementation of this function, Niakwa dis-
claims all responsibility for the integrity or reliability of any and all copy protection sys-
tems based on the #GOLDKEY function.

HINT: It is recommended that production software be set up to refuse access if #GOLDKEY
equals zero.

NOTE: The NPL demonstrator diskettes set #GOLDKEY to zero. This provides a mecha-
nism to create demo versions of application software which operates only with dem-
onstrator diskettes.

#GOLDKEY Determination

A new program, GOLDKEY.OBJ, was added to the Niakwa Development Package to al-
low developers to determine the #GOLDKEY number for any Niakwa Runtime based on
the Gold Key serial number without having to open the RunTime Package. This program
can be run as any other Niakwa program. When executed, the GOLDKEY program
prompts for the Gold Key serial number as shown below.

Enter Serial Number (1 - 65535) to convert to #GOLDKEY:

Once the serial number is entered, the program returns the correct #GOLDKEY code
number that is necessary for some application security programs.

Examples:

Compatibility Issues:
The #GOLDKEY function is supported only on RTP Revision 1.03 or later.

#GOLDKEY is not supported in the Wang 2200.

References:

#GOLDKEY Function LANGUAGE STATEMENTS

2-202 NPL Statements Guide

GOSUB

NOTE: Functions and Procedures are a better alternative. Statement labels should be used
as a better alternative to line numbers.

Discussion:
The GOSUB statement is used to begin a subroutine which begins at the line-number or
statement-label specified. The line number or label must exist in the current module.

If the target line-number or statement-label is located in a function body, this statement
must also be in the body of the same function.

If the GOSUB statement is located inside a function body, the target line-number or state-
ment-label must also be located in the body of the same function.

The GOSUB statement may be used within a subroutine (i.e., subroutines may be
"nested"). The maximum number of nested GOSUB calls is limited by the amount of
available memory. Typically, up to 60 nested levels are allowed. Each GOSUB encoun-
tered places information onto the stack. This information is cleared upon execution of a
RETURN, RETURN CLEAR, or LOAD statement.

Repeated execution of GOSUB without execution of a RETURN, RETURN CLEAR, or
LOAD statement can result in a stack overflow error.

Program overlays (LOAD) remove all subroutine RETURN information from the stack.

General Form:

GOSUB {line-number }
 {statement-label }

LANGUAGE STATEMENTS GOSUB

NPL Statements Guide 2-203

GOSUB (cont.)

GOSUB is legal as an Immediate Mode command, but with the following restrictions:

• The program must be resolved.

• When the RETURN statement is executed, any statements following the GOSUB
statement are executed, unless execution HALTs due to being in STEP mode, or
due to a CONTINUE RETURN implied HALT.

NOTE: If statements are entered after an immediate mode GOSUB(’) statement, they are
also executed when the function RETURNs. This is different from previous releases.
On previous releases, statements after an immediate GOSUB(’) were never executed
when the RETURN was executed.

For example:

:PRINT "->";’WindowName$(TopWindow);"<-"
->MainWindow<-
:GOSUB ’GetShorty: PRINT "Result is ";X
Result is 22 <- immediate mode code executed after RETURN
 :

NOTE: Unlike previous releases, an immediate GOSUB or GOSUB’ no longer does an im-
plied HALT at the first statement.

Examples:
0010 GOSUB Reset
0020 GOSUB ProcessRecord
0030 GOSUB Code_1
:GOSUB InKey

Compatibility Issues:
On NPL releases prior to Revision 4.0, program execution halts at the first statement
within the subroutine. Press EXEC or enter CONTINUE to continue.

GOSUB is not a valid Immediate Mode command in Wang 2200 Basic-2.

This statement is supported only with Release IV or greater.

References:

GOSUB LANGUAGE STATEMENTS

2-204 NPL Statements Guide

GOSUB’

NOTE: The use of this statement is not recommended. Refer to FUNCTION or PROCE-
DURE as a better alternative.

Discussion:
The GOSUB’ statement is used to execute a subroutine in a manner very similar to the
GOSUB statement. However, in place of a line number, an integer value or DEFFN’ iden-
tifier is specified that relates to a corresponding integer value or DEFFN’ identifier on a
DEFFN’ statement. Upon executing the GOSUB’, the program branches to the related
DEFFN’ statement. When a subsequent RETURN statement is executed, the execution of
the program transfers to the statement following the GOSUB’ that invoked the subroutine.

NOTE: As of Revision 3.0 or greater, the associated DEFFN’ may be defined in an external
subroutine rather than in the NPL program. In cases where a given DEFFN’ is de-
fined both internally and externally, the internal routine is executed. When neither
an internal nor external routine is present, an error occurs. Refer to Mixed Lan-
guage Programming in Chapter 16 of the Programmer’s Guide for further details
on external subroutines.

Optionally, parameters may be passed to the specified subroutine. The parameters may
consist of constants, variables, and expressions. Upon execution of the GOSUB’ state-
ment, the parameters specified are automatically assigned to a corresponding list of vari-
ables in the related DEFFN’ statement. Care should be taken to ensure that numeric
parameters are passed to numeric-receivers and alpha parameters are passed to alpha-vari-
ables or a RunTime error occurs. The number of arguments in the GOSUB’ statement
must match the number of parameters in the corresponding DEFFN’ statement. (Refer to
DEFFN’ for further details.)

General Form:

GOSUB ’{<num-exp>}[(argument [,argument]...)]
 {integer }
 {name }
 {identifier }
 {<alpha-variable>}

LANGUAGE STATEMENTS GOSUB’

NPL Statements Guide 2-205

GOSUB’ (cont.)

GOSUB ’, with parameters, is legal as an Immediate Mode command, but with the fol-
lowing restrictions:

• The program must be resolved.

• When the RETURN statement is executed, any statements following the GO-
SUB’ statement are executed, unless execution HALTs due to being in STEP
mode, or due to a CONTINUE RETURN implied HALT.

A numbered PUBLIC DEFFN’ called by a GOSUB’ statement may be indirectly speci-
fied by a numeric expression within angle brackets (< >). The expression is evaluated
and truncated to an integer, if necessary. The result must be a number in the range 0-
65535. A named PUBLIC DEFFN’ called by a GOSUB’ may be indirectly specified by
an alpha-variable within angle brackets (< >). The alpha-variable must contain a valid
identifier. To avoid any possible ambiguity, when the target marked subroutine is speci-
fied indirectly, it must be declared as a PUBLIC DEFFN’ subroutine or as an external
subroutine.

If the marked subroutine is not indirectly specified, the function must be defined either in
the same module, as PUBLIC in a PUBLIC section, or as an external subroutine.

NOTE: If statements are entered after an immediate mode GOSUB(’) statement, they are
also executed when the function RETURNs. This is different from previous releases.
On previous releases, statements after an immediate GOSUB(’) were never executed
when the RETURN was executed.

For example:

:PRINT "->";’WindowName$(TopWindow);"<-"
->MainWindow<-
:GOSUB ’GetShorty: PRINT "Result is ";X
Result is 22 <- immediate mode code executed after RETURN
 :

NOTE: Unlike previous releases, an immediate GOSUB or GOSUB’ no longer does an im-
plied HALT at the first statement.

GOSUB’ LANGUAGE STATEMENTS

2-206 NPL Statements Guide

GOSUB’ (cont.)

Examples:
0010 ; declare ’MySub public so that it may be used indirectly
 : DEFFN’MySub(B,C)/PUBLIC /FORWARD
 : ;
0020 DIM X=100,Y=12,SubName$="MySub"
 : ;
 : GOSUB ’MyAdd(X,Y) : ; call subroutine ’MyAdd directly
 : GOSUB ’<SubName$>(X,Y) : ; call subroutine ’MySub indirectly
 : END
0030 ;
 : DEFFN’MyAdd(B,C)
 : A=B+C
 : PRINT A
 : RETURN
0040 ;
 : DEFFN’MySub(B,C)
 : A=B-C
 : PRINT A
 : RETURN
RUN
112
88

 DONE

0010 GOSUB’<X>
0010 GOSUB’<A(X)>
0010 GOSUB’<VAL(A$(X),2)>
0010 GOSUB’$NAMEOF(DEFFN’ MySub)(A$,B$)
0010 GOSUB’<x$>(A$,B$)

Compatibility Issues:
On NPL releases prior to Revision 4.0, program execution halts at the first statement
within a GOSUB’ executed from immediate mode.

Use of more than 16 parameters is supported only in NPL Revision 3.0 or greater.

Use of GOSUB’s above ’255 is supported only in NPL Revision 3.0 or greater.

Use of GOSUB’s above ’255 is not supported on the Wang 2200.

Use of external subroutines is supported only in NPL Revision 3.0 or greater.

Use of external subroutines is not supported on the Wang 2200.

GOSUB’ is not a valid Immediate Mode command in Wang 2200 Basic-2.

Use of named subroutines and indirect references are supported only in NPL Revision 4.0
or greater.

LANGUAGE STATEMENTS GOSUB’

NPL Statements Guide 2-207

GOSUB’ (cont.)

References:
DEFFN’
External Calls - Chapter 16 of the Programmer’s Guide

GOSUB’ LANGUAGE STATEMENTS

2-208 NPL Statements Guide

GOTO

NOTE: The use of this statement is not recommended because it is not structured. Use state-
ment labels instead of line numbers as a better alternative.

Discussion:
The GOTO statement is used to unconditionally transfer program execution to a specified
line-number or labeled statement. The line number or label must exist in the current mod-
ule.

If the target line-number or statement-label is located in a function body, this statement
must also be in the body of the same function.

If the GOTO statement is located inside a function body, the target line-number or state-
ment-label must also be located in the body of the same function.

GOTO is legal as an Immediate Mode command and causes program execution to re-
sume at the specified line-number when program execution is continued. When using
GOTO in Immediate Mode, the following restrictions should be observed:

• The program must be resolved in memory.

• The line-number specified must be an existing program line-number.

Examples:
0010 GOTO 1000
0010 GOTO 7299
0010 GOTO 3333
0010 GOTO Reset
0020 GOTO ProcessRecord
0030 GOTO Code_1
:GOTO InKey

General Form:

GOTO {line-number }
 {statement-label }

LANGUAGE STATEMENTS GOTO

NPL Statements Guide 2-209

GOTO (cont.)

Compatibility Issues:
This statement’s statement-label option is supported only with Release IV or greater.

References:

GOTO LANGUAGE STATEMENTS

2-210 NPL Statements Guide

HALT Key

Discussion:
The HALT key is used to invoke Immediate Mode during program execution or a listing
operation.

Pressing the HALT key during program execution invokes Immediate Mode at the com-
pletion of the current statement. The program remains resolved in memory; normal pro-
gram continuation is allowed.

Pressing the HALT key during a listing operation stops the listing at the end of the cur-
rent line and terminate the list operation.

The HALT key is not operational under the non-interpretive RunTime program.

Operation of the HALT key can be suppressed under program control by setting byte 13
of $OPTIONS system variable to HEX(01) (refer to $OPTIONS for details).

Examples:

Compatibility Issues:
The HALT key under NPL only invokes Immediate Mode; on the Wang 2200 the HALT
key is also used to STEP through a program.

The HALT key is supported on NPL Revision 2.00 and higher of the Interpretive Run-
Time (RTI) program.

Refer to the NPL Supplement for the keyboard specific HALT key sequence.

References:
$OPTIONS

General Form:

HALT (key sequence)

LANGUAGE STATEMENTS HALT Key

NPL Statements Guide 2-211

$HELP

Discussion:
Form 1

Form 1 of the $HELP statement is used to store an eight-character HELP entry name in
the $HELP pseudo variable. This HELP entry name may refer to a stand-alone HELP file
or a HELP entry in a combined, indexed HELP file (refer to $HELPINDEX below). If re-
ferring to a stand-alone file, the HELP entry name must be a valid native file system file-
name. An extension of .HLP is assumed if extensions are permitted by the native file
system.

Upon depression of the HELP key by the operator at runtime, application program execu-
tion is suspended, the contents of the screen is saved, and the current content of the
$HELP variable is inspected by the HELP processor. The HELP processor first attempts
to locate the specified HELP entry by searching the HELPINDEX file, if one exists. If
this fails, the HELP processor treats the HELP entry name as a stand-alone filename and
attempts to locate the HELP entry as a stand-alone file on disk.

Once the HELP entry is found, the information contained is displayed on the HELP
screen. If the HELP entry cannot be found by either of the above methods, the message
"NO HELP AVAILABLE" is displayed on the HELP screen.

The HELP information displayed can be varied, depending on which program of the ap-
plication system is executing. Further, the information may be varied, depending on
which portion of a program is executing. This capability allows for very specific instruc-
tions to the operator, depending on the exact circumstances.

General Form:

Form 1:

$HELP=alpha-expression

Form 2:

alpha-receiver =$HELP

$HELP LANGUAGE STATEMENTS

2-212 NPL Statements Guide

$HELP (cont.)

Execution of the application program is resumed by executing the Leave Help option, at
which point the application screen contents is restored to its original state (before HELP
was invoked).

There are two components to implementing HELP screens for an application system.
First, creation of the HELP FILES and, secondly, strategic placement of $HELP state-
ments throughout the application programs. Refer to Chapter 11 of the Programmer’s
Guide for further details on $HELP.

Form 2

Form 2 is used to inspect the current contents of the $HELP system variable. Refer to
Chapter 11 of the Programmer’s Guide for details on use of HELP and indexed Help files.

Examples:
0010 $HELP="ARINF01"
0010 $HELP=F$&"001"
0010 A$=$HELP
0010 X$,Y$=$HELP

Compatibility Issues:
This statement is not valid in Wang 2200 Basic-2.

References:
$HELPINDEX
$HELP - Chapter 11 of the Programmer’s Guide

LANGUAGE STATEMENTS $HELP

NPL Statements Guide 2-213

$HELPINDEX

Discussion:
In addition to stand-alone HELP files, the RunTime program supports Indexed HELP
files. Indexed Help files are essentially combined "stand-alone" Help files and are useful
in that they are generally easier to maintain and require less disk space. In revisions of
NPL prior to Release IV, $HELP could handle indexed HELP files containing up to 256
individual HELP entries. With Release IV of NPL. $HELP is capable of handling in-
dexed help files with large number entries. There is no longer a built-in limit, but only 4K
bytes of index (256 entries) are loaded and searched at a time. Subsequently, access to
later index keys becomes progressively slower. Individual HELP entries in a Indexed
HELP file are accessed by using a special HELP INDEX file which contains a listing of
all HELP entries in the Indexed file along with a location (byte pointer) for each.

Refer to $HELP, Chapter 11of the Programmers Guide for details.

Form 1

Form 1 is used to assign the $HELPINDEX system variable the native operating system
file-specification of the Indexed HELP file. Form 2 of the $HELPINDEX statement can
be used to examine the contents of the $HELPINDEX system variable.

General Form:

Form 1:

$HELPINDEX=alpha-expression

Form 2:

alpha-receiver =$HELPINDEX

Where:

alpha-expression = a length of 50 characters.

$HELPINDEX LANGUAGE STATEMENTS

2-214 NPL Statements Guide

$HELPINDEX (cont.)

The Indexed HELP file and its associated index must have the same filename and be lo-
cated in the same directory or equivalent native operating system file structure. If exten-
sions are supported by the native operating system, they are differentiated by their
extension: .HLP for the Indexed file, .IDX for the INDEX file.

Upon depression of the HELP key by the operator at runtime, the $HELPINDEX variable
is inspected by the HELP processor. The filename contained is used to locate both the In-
dexed HELP file and its associated INDEX file. The INDEX file is first searched for the
specific HELP entry (current contents of the $HELP system variable). If found, the In-
dexed HELP file is referenced and the text at the specified location is displayed. If an en-
try is not found in the HELPINDEX, or the HELPINDEX file is not found, the HELP
processor searches for a stand-alone HELP file in the current directory using the $HELP
filename.

Refer to $HELP, Chapter 11 of the Programmer’s Guide, for a detailed discussion of the
internal format of HELP files.

HINT: It is recommended that any program which modifies the value of $HELPINDEX save the
original value in a variable and then restore $HELPINDEX to its original value before ex-
iting the program. This ensures that the original value of $HELPINDEX is not lost.

Example:
This example illustrates how to store the value of $HELPINDEX at the beginning of a
program, set it to a new value for the duration of the program, set up different individual
HELP references, and restore $HELPINDEX to its original value before exiting the pro-
gram:

:0010 DIM X$50
:0020 X$=$HELPINDEX : REM SAVE ORIGINAL VALUE
:0030 $HELPINDEX="/HELP/AR" : REM SET COMBINED HELP FILE NAME TO FILE

 AR.HLP IN DIRECTORY /HELP; INDEX TO
 AR.IDX IN DIRECTORY /HELP

:0040 $HELP="CUSTNO" : REM SET HELP ENTRY TO "CUSTNO"
:0050 LINPUT "PLEASE ENTER CUSTOMER NUMBER" -A$
:0060 $HELP="CUSTNAME" : REM SET HELP ENTRY TO "CUSTNAME"
:0070 LINPUT "PLEASE ENTER CUSTOMER NAME" -B$
:0080 $HELP=" " : REM BLANK $HELP BEFORE EXITING
:0090 $HELPINDEX=X$: REM RESTORE ORIGINAL $HELPINDEX
:0100 LOAD RUN"START" : REM EXIT PROGRAM

LANGUAGE STATEMENTS $HELPINDEX

NPL Statements Guide 2-215

$HELPINDEX (cont.)

Compatibility Issues:
This statement is supported only with Release 1.03 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:
$HELP
$HELPINDEX
$HELP - Chapter 11 of the Programmer’s Guide

$HELPINDEX LANGUAGE STATEMENTS

2-216 NPL Statements Guide

HEX Function

Discussion:
HEX-literals are a form of literal-string. HEX-literals provide a method of expressing any
eight-bit character in a constant. This is achieved by expressing a given character or code
by its two-digit hexadecimal equivalent (digits 0-9 or A-F).

HEX literals may be used anywhere that an alpha literal may be used. Consequently,
HEX literals are often used to express literals which cannot otherwise be expressed as al-
pha literals--that is, literals which must contain a quotation mark, a carriage-return or
codes that do not have a keyboard equivalent. HEX literals are also used where the natu-
ral expression of a constant is in hexadecimal, like device control codes for printers, the
screen, etc.

For example:

:10 A$=HEX(034E49414B5741) :REM ASSIGN A 7 BYTE HEX LITERAL TO A$
:20 PRINT A$:REM PRINT A$ TO THE SCREEN
:RUN

This example would clear the screen and print the characters "NIAKWA" on the screen.
The hexadecimal representation of the control code to clear the screen is 03, which was
assigned to the first byte of the variable A$. In the remaining bytes, the hexadecimal rep-
resentation of "NIAKWA" is stored. Consequently, when these bytes are issued to the
screen, the described action is effected.

General Form:

HEX(hh[hh..])

Where:

h = hexadecimal digit (0-9 or A-F).

LANGUAGE STATEMENTS HEX Function

NPL Statements Guide 2-217

HEX Function (cont.)

The same result could be achieved in a different way by the use of both types of literals
and by specifying literals directly in the PRINT statement as follows:

:10 PRINT HEX(03);"NIAKWA"
:RUN

Since no keyboard equivalent exists for HEX(03), we represented it as a HEX-literal.
Since the letters in "NIAKWA" are all represented on the keyboard, we can use an alpha
literal to represent it. The result is the same as the previous example, and the program be-
comes more readable.

Examples:
0010 PRINT HEX(03) :REM Will clear the screen
0010 PRINT HEX(01) :REM Will home the cursor
0010 PRINT HEX(0A0A0A0D) :REM Will move cursor down three lines and

then perform a carriage return.
0010 X$=HEX(418142)

Compatibility Issues:
For programs compiled with versions of the compiler prior to Release II, no distinction is
maintained between HEX literals and ASCII literals. Regardless of the original form of
the statement, literals are decompiled either as HEX literals or ASCII literals, based upon
the values contained in the literal. Literals with all characters in the range HEX(20) to
HEX(7F), except for HEX(22) (double quotes (")) are displayed as ASCII literals. All
other literals are displayed as HEX literals.

NOTE: As of Release II, the original form of literals may be maintained by use of the
KEEPREMS Compiler Option or the $KEEPREMS system variable (used when en-
tering program text).

References:
$KEEPREMS

HEX Function LANGUAGE STATEMENTS

2-218 NPL Statements Guide

HEXPACK

Discussion:
The HEXPACK statement is used to convert ASCII character strings of hexadecimal
characters into their binary equivalent. Each pair of characters in alpha-variable2 is con-
verted to a single character in alpha-variable1. Alpha-variable2 must contain only the
characters 0-9 and A-F, or the characters HEX(3A) - HEX(3F) which are treated the
same as hexdigits "A" - "F".

Trailing spaces in alpha-variable2 are ignored.

Examples:
0010 HEXPACK A$ FROM B$
0010 HEXPACK STR(B$,1,3) FROM STR(D$(),1,6)
0010 HEXPACK A$() FROM W9$()

:0005 DIM A$12,B$6
:0010 A$="123456789ABC"
:0020 HEXPACK B$ FROM A$
:0030 LIST DIM *
:RUN
DIM A$12

"123456789ABC" HEX(3132 3334 3536 3738 3941 4243)
DIM B$6

"?4Vx/Ö" HEX(1234 5678 9ABC)

Compatibility Issues:

References:
HEXUNPACK

General Form:

HEXPACK alpha-variable1 FROM alpha-variable2

LANGUAGE STATEMENTS HEXPACK

NPL Statements Guide 2-219

HEXPRINT

NOTE: The use of this statement is not recommended. Refer to PRINT HEXOF() as a bet-
ter alternative.

Discussion:
The HEXPRINT statement is used to print the hexadecimal value of one or more alpha-
variables. All characters of an alpha-variable are displayed, including trailing spaces.

Examples:
0010 HEXPRINT A$,B$,C$;
0010 HEXPRINT B$;C$;L$(3),L$(4)
0010 HEXPRINT R1$,R2$,R3$,R$4;

Compatibility Issues:

References:
PRINT HEXOF()

General Form:

HEXPRINT alpha-variable [{;} alpha-variable]...[;]
 {,}

Where:

, = specifies begin printing on a new print-line.

; = specifies no blank spaces between alpha-variables.

A trailing semi-colon suppresses the trailing HEX(0D)(trail-
ing line-feed).

HEXPRINT LANGUAGE STATEMENTS

2-220 NPL Statements Guide

HEXUNPACK

Discussion:
The HEXUNPACK statement is used to convert the binary value of an alpha-variable to
the hexadecimal character equivalents of that value. Alpha-variable2 must be at least
twice as long as alpha-variable1. If alpha-variable2 is longer than required, the remaining
bytes are not affected.

Examples:
:0010 DIM A$2,B$4
:0020 A$=HEX(B751)
:0030 HEXUNPACK A$ TO B$
:0040 PRINT "B$=";B$
:RUN
B$=B751

:0010 DIM R$16,S$8
:0020 R$=HEX(44A9B522C650D119)
:0030 HEXUNPACK STR(R$,3,4) TO S$
:0040 PRINT "S$=";S$
:RUN
S$=B522C650

Compatibility Issues:

References:
HEXPACK

General Form:

HEXUNPACK alpha-variable1 TO alpha-variable2

LANGUAGE STATEMENTS HEXUNPACK

NPL Statements Guide 2-221

#ID Function

Discussion:
The #ID function is used to return the CPU identification number of the host processor if
available. The operation of #ID is extremely hardware-dependent. In the event that CPU
serialization is not supported by the host processor or operating system, #ID returns a
value of zero. #ID is typically used in multi-user networks to distinguish between users.
This is valid wherever a numeric-expression is legal.

Examples:
0010 X=#ID

Compatibility Issues:
Refer to the appropriate NPL Supplement for #ID values on particular hardware versions
of NPL.

References:
#TERM
#PART
Multi-user Capabilities - Chapter 7 of the NPL Supplements

General Form:

#ID

#ID Function LANGUAGE STATEMENTS

2-222 NPL Statements Guide

$IF

Discussion:
The $IF ON/OFF statement tests the device-ready condition of the specified device and
branches to the specified line-number if the device is ready ($IF ON) or not ready ($IF
OFF). If no device is specified, the device defined by the last SELECT TAPE statement
is used. Since the sensing of device-ready information depends on the native operating
system, the accuracy of this statement under NPL is very limited. Provided the device is
configured, the default action of the instruction assumes a "device ready" status. The fol-
lowing exceptions are worth noting:

/000 Although not configured, the null address is always "ready" (used by many pro-
grams to decide whether they are running on a Wang 2200T, which returns a "not
ready" status).

/001 The keyboard address is ready only if there is a key currently buffered from the
keyboard and the partition is operating in foreground.

/005 The screen address returns a status of ’ready’ if the partition is operating in fore-
ground. If the partition is operating in background, a status of "not ready" is re-
turned.

Examples:
0010 $IF ON 100
0010 $IF ON #2,300
0010 $IF OFF #1,1000
0010 $IF OFF /001,100

General Form:

$IF {OFF} [{file-number }] line-number
 {ON } {device-address}

LANGUAGE STATEMENTS $IF

NPL Statements Guide 2-223

$IF (cont.)

Compatibility Issues:
Since the sensing of device-ready information depends on the native operating system,
the accuracy of this statement under NPL is very limited.

Use of $IF to determine whether or not the partition is operating in background is sup-
ported only on NPL Revisions 3.0 or greater and is highly operating system-dependent.
Refer to the NPL Supplements for further details on background partition support on
your operating system.

References:
SELECT TAPE

$IF LANGUAGE STATEMENTS

2-224 NPL Statements Guide

IF Structured

Discussion:
The structured IF is used to execute a conditional branch to another program location
based on either a true or false decision. The structured IF statement defines the start of an
IF...ELSE...END IF structure. It may be followed by a number of statements which are
executed if the logical condition is true. It may optionally be followed by a structured
ELSE statement, and a number of other statements, which are executed if the logical con-
dition is false. It must be followed by an END IF statement, which indicates the end of
the IF...ELSE...END IF structure.

General Form:

IF logical-expression

Where:

logical-expression = {cond [logical-operator cond]...}
 {true}
 {false}

logical-operator = {AND}
{OR}
{XOR}

cond = {alpha-value rel-op alpha -value}
{numeric-expression rel-op numeric-expression}

alpha-value = {alpha-variable}
{string-literal}

rel-op = { = }
{ > }
{ <= }
{ >= }
{ <> }

LANGUAGE STATEMENTS $IF

NPL Statements Guide 2-225

IF Structured (cont.)

Refer to IF/THEN for a detailed discussion of evaluation of condition and use of logical
operators.

The reserved words TRUE and FALSE are permitted to replace any logical expression,
and always evaluate to a true or false condition, respectively. These expressions are typi-
cally not used in IF/END IF structured constructs, but may be useful as exit conditions
from structured WHILE...WEND, or REPEAT...UNTIL loops which is terminated by a
BREAK.

The structured IF is differentiated from the unstructured one by the absence of the THEN
keyword on the IF statement, and the absence of anything following the ELSE keyword
on the ELSE statement. The structured forms may not be mixed with unstructured forms.

Therefore, the following example is illegal:

0239 IF Nice_Long_Variable_Name = 56 THEN DO : REM unstructured
 : PRINT Beta_Particle_Count;
 : ELSE : REM structured stmt used in unstructured IF=not allowed.
 : Beta_Particle_Count = ’Get_New_Beta_Count()
 : ENDDO

Examples:
0010 IF Name$="Bobby"
0010 IF Number=666
0010 IF Number=666 AND Name$="Bobby"
0010 IF Number=666 OR Name$="Bobby"
0010 IF Number=666 OR Name$="Bobby" AND Day =_THURSDAY

0010 :IF X=Y
 : PRINT "SAME";
 : END IF
0020 IF ’Fuzzy_Equal(X,Y)=0
 : PRINT "PRETTY MUCH THE SAME";X
 : ELSE
 : PRINT "DIFFERENT ENOUGH";X;Y
 : END IF

Compatibility Issues
This statement is supported only with Release IV or greater.

$IF LANGUAGE STATEMENTS

2-226 NPL Statements Guide

IF Structured (cont.)

References
BREAK
DO
ENDDO
ELSE
END IF
REPEAT
UNTIL
WHILE
WEND
Structured Programming - Section 4.2.1 of Programmer’s Guide

LANGUAGE STATEMENTS $IF

NPL Statements Guide 2-227

IF/THEN

NOTE: The use of this statement is not recommended. Refer to structured IF/ELSE/END IF
as a better alternative.

Discussion:
The IF/THEN statement is used to test conditions and conditionally execute the specified
statement, DO group, or branch to the specified line number if the overall evaluation of
the statement is true. If the statement is false, program execution continues with the next
statement unless the specified direction was a DO group. In this case, if the statement is
false, program execution continues with the statement following the ENDDO statement.

General Form:

 IF logical-expression THEN direction:ELSE {simple-statement }
 {DO[:statement]...:ENDDO }

Where:

logical-expression = {cond [logical-operator cond]...}

logical-operator = {AND}
{OR }
{XOR}

cond = {alpha-value rel-op alpha -value }
{numeric-expression rel-op numeric-expression}

alpha-value = {alpha-variable}
{string-literal}

rel-op = { = }
{ > }
{ <= }
{ >= }
{ <> }

direction = {statement }
{line-number }
{DO [:statement] ...: ENDDO}

IF/THEN LANGUAGE STATEMENTS

2-228 NPL Statements Guide

IF/THEN (cont.)

The general definition of a logical-expression is defined here, and is referred to in other
statements.

Evaluation of Conditions

Operands for conditions must be of the same type (alpha or numeric). In evaluation of nu-
meric conditions, the expression on either side of the relational operator is fully calcu-
lated before comparison. In the evaluation of alpha conditions, the following rules apply:

• Comparison is performed on a binary basis, byte by byte, starting from the left-
most byte.

• If the alpha values are unequal in length, the shorter value is implicitly extended
by spaces (HEX(20)) and the comparison proceeds for the full length of the
longer value.

Use of Logical Operators

Multiple conditions may be specified, separated with the logical operators AND, OR, or
XOR.

When multiple conditions are specified, evaluation of the statement is performed from
left to right. As conditions and logical operators are encountered, a net "truth" flag in
memory is updated. Once evaluation of all conditions and operators is complete, this
"truth" flag is the result of the statement.

LANGUAGE STATEMENTS IF/THEN

NPL Statements Guide 2-229

IF/THEN (cont.)

The "truth" flag is set to true following evaluation of a logical operator under the follow-
ing conditions:

AND The net "truth" flag as established by evaluation of all conditions and
operators before the AND operator must be true, and the condition
following the AND operator must be true.

OR The net "truth" flag as established by evaluation of all conditions and
operators before the OR operator must be true, or the condition
following the OR operator must be true (or both).

XOR Either the net "truth" flag as established by evaluation of all conditions
and operators before the XOR operator must be true, or the condition
following the XOR operator must be true, but not both.

For example:

10 A=1: B=1: C=1: D=1
20 IF A=1 THEN PRINT "TRUE ON LINE 20"
30 IF A=1 AND B=2 THEN PRINT "TRUE ON LINE 30"
40 IF A=1 AND B=2 OR C=1 THEN PRINT "TRUE ON LINE 40"
50 IF A=1 AND B=2 OR C=1 AND D=2 THEN PRINT "TRUE ON LINE 50"
60 IF A=1 AND B=2 OR C=1 OR D=2 THEN PRINT "TRUE ON LINE 60"

:RUN

TRUE ON LINE 20
TRUE ON LINE 40
TRUE ON LINE 60

On line 20, the evaluation of the condition A=1 is true so the entire statement is true.

On line 30, the evaluation of the condition A=1 is true and the net "truth" flag is set ac-
cordingly. However, since the condition following the AND (B=2) is false, the net truth
flag is set to false following evaluation of the AND operator and, therefore, the statement
is false.

On line 40, the net truth flag after evaluation of the segment:

IF A=1 AND B=2

is false. However, evaluation of the OR C=1 sets the truth flag to true since C=1 is true.

IF/THEN LANGUAGE STATEMENTS

2-230 NPL Statements Guide

IF/THEN (cont.)

On line 50, the net truth flag after evaluation of the segment:

IF A=1 AND B=2 OR C=1

is true. However, evaluation of the AND D= 2 sets the truth flag to false since both the
preceding net truth flag and the condition following the AND (D= 2) are not true.

On line 60, the net truth flag after evaluation of the segment:

IF A=1 AND B=2 OR C=1

is true. In this case, evaluation of the OR D= 2 sets the truth flag to true since, while the
condition D= 2 is false, the preceding net truth flag was true.

Non-evaluation of Conditions

When logical operators are used, all specified conditions are not necessarily evaluated. If
a determination of the overall truth of the statement can be made without evaluating a
given condition, that condition is not evaluated. For example:

10 A=1: B=1
20 IF A=2 AND B=1/0 THEN ...
30 IF A=1 OR B=1/0 THEN ...

On line 20, once the condition A= 2 is evaluated as false the entire statement must be
false. Therefore the condition B= 1/0 is not evaluated. On line 30, once the condition A=
1 is evaluated as true, the entire statement must be true and again the condition B= 1/0 is
not evaluated.

This means that conditions may contain invalid numeric-expressions. An error only oc-
curs if the condition containing the invalid expression is actually evaluated.

The ELSE Clause:

Optionally, the IF/THEN statement may also be followed by an ELSE clause. The ELSE
clause may contain one statement or a DO group which is executed only if the preceding
IF condition is false. If the IF condition is true, the ELSE clause is not executed. State-
ments subsequent to statements in the ELSE clause are not affected and are executed nor-
mally regardless of whether or not the ELSE clause is executed.

LANGUAGE STATEMENTS IF/THEN

NPL Statements Guide 2-231

IF/THEN (cont.)

NOTE: When a single statement follows ELSE, the ELSE statement must reside on the
same line as the IF/THEN statement. However, if a DO Group follows ELSE, ELSE
may be on a separate line. (Refer to ELSE and DO/ENDDO for further details on
this subject.)

Use of IF/THEN Statements in the ELSE Clause:

An ELSE clause may contain an IF/THEN statement which can be followed by another
ELSE clause. In this case, the IF statement in the ELSE clause is only executed if the pre-
ceding IF statement is false. If the IF statement in the ELSE clause is not executed be-
cause the preceding ELSE is true, the subsequent ELSE clause is not executed.
Otherwise, the subsequent ELSE clause is executed or not executed, based on the results
of the IF statement in the ELSE clause.

For example:

10 A=1: B=1
20 IF A=1 THEN PRINT "A=1"

: ELSE IF B=2 THEN PRINT "B=2"
:ELSE PRINT "NEITHER WAS TRUE"

:RUN

A=1

The IF B=2 statement is not evaluated because the first IF statement was true. Therefore,
the ELSE statement associated with IF B=2 is not executed. The message--"NEITHER
WAS TRUE"--would be printed only if both IF statements were false.

Examples:
:0010 IF Q=79 THEN 150
:0020 GOTO 50
:RUN

The above sample code branches to line number 150 if the value of Q is equal to 79; if
the value of Q is less than or greater than 79, the code branches to line 50.

IF/THEN LANGUAGE STATEMENTS

2-232 NPL Statements Guide

IF/THEN (cont.)

:0010 IF X$="RENTAL" OR W(1)=100 THEN PRINT "ERROR"
:RUN

The above example prints the word "ERROR" if EITHER the alpha-variable X$ is equal
to "RENTAL" or the value of W(1) is equal to 100.

:0010 IF AC THEN DO B=D: X=Y: ENDDO: ELSE DO B=E: A=C: ENDDO
:RUN

If the value of A is greater than the value of C, then B is set equal to the value of D and X
is set equal to Y, and the ELSE clause is ignored. If A is not greater than C, then B is set
equal to E and A is set equal to C.

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

References:
DO/ENDDO
ELSE

LANGUAGE STATEMENTS IF/THEN

NPL Statements Guide 2-233

IF END THEN

Discussion:
The IF END THEN statement is a special form of the IF/THEN statement used to test
whether an end-of-file marker in a disk file was read on a previous disk read (DATA-
LOAD) statement. Whenever an end-of-file marker is read, the end-of-file flag is turned
"on". The IF END THEN statement tests for the end-of-file flag. If it was set "on", the
END condition is evaluated as "true"; otherwise, the END condition is evaluated as
"false". Program execution then continues according to standard IF/THEN logic. Refer to
IF/THEN for details.

An end-of-file marker is created by the DATASAVE DC END statement. When this
marker is read by a DATALOAD DC or DA statement, the IF END THEN flag is set
"on".

The end-of-file flag is turned "on" when an end-of-file marker is read by a DATALOAD
DC or DA statement, and turned "off" following a subsequent DATALOAD statement or
IF END THEN statement. The CLEAR and RUN commands also reset the end-of-file
flag.

Examples:
:0010 DATALOAD DC X$,Y$,Z$,J,K,L
:0020 IF END THEN 500
:0030 PRINT X$,Y$,Z$,J,K,L
:0040 GOTO 200
:0500 GOSUB ’123
:RUN

If the end-of-file marker has been read, then program execution transfers to line 500; oth-
erwise, the values of the variables X$, Y$, Z$, J, K and L are printed.

General Form:

IF END THEN {statement }
 {DO [:statement]...: ENDDO}
 {line-number }

 [:ELSE {statement }]
 {DO [:statement] ...: ENDDO }

IF END THEN LANGUAGE STATEMENTS

2-234 NPL Statements Guide

IF END THEN (cont.)
0010 IF END THEN 9999 : PRINT "More Information Available"
0010 IF END THEN 1000
0010 IF END THEN PRINT "File has been exhausted"
 : ELSE GOTO 0120

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

References:
DO/ENDDO
ELSE
IF/THEN

LANGUAGE STATEMENTS IF END THEN

NPL Statements Guide 2-235

IMAGE (%)

Discussion:
The IMAGE statement is a formatted template for printing literals and variables with the
PRINTUSING statement. It consists of a line-number, followed by a percent sign (%),
followed by a format specification. A location for a formatted variable within the image
is signaled by one or more # characters, possibly with additional numeric punctuation
characters.

Any combination of printable characters may be part of the IMAGE statement, inserted
before and/or after the image-specs. Either a leading or a trailing sign may be used, but
not both.

During printing, each image-spec is paired off with the next item in the PRINTUSING
statement item-list. Alpha variables treat numeric punctuation as # characters. If the al-
pha-variable is too long, it is right-truncated. If more items are supplied than there are im-
age-specs, the image-specs are reused from the beginning.

To use an IMAGE for a PRINTUSING statement, the IMAGE statement must be the first
statement on a line (must immediately follow the line-number).

General Form:

%[[character-string] [image-spec]]...

Where:

character-string = a string of alpha characters.

image-spec = [-][$][# [,]...]... [.][#...][^^^^][+]
[+] [-]
 [++]
 [--]

IMAGE (%) LANGUAGE STATEMENTS

2-236 NPL Statements Guide

IMAGE % (cont.)

The "$", ","(comma), "."(decimal point) characters can be changed in the PRINTUSING
output from an IMAGE statement by replacing bytes 4,5, and 6 respectively of the $OP-
TIONS system variable with the desired output characters. Replacing these characters is
primarily used for foreign currency applications. Refer to $OPTIONS system variable for
more details.

Examples:
:0010 %The balance in your account is $##,###.##
:0020 T=1234.56: R=54.39
:0030 PRINTUSING 10,T+R
:RUN
The balance in your account is $1,288.95

:0010 DIM F$50
:0020 %You will be billed for ### cartons at $##.##/lb.
:0030 C=87: P=11.97
:0040 PRINTUSING 20,C,P
:RUN
You will be billed for 87 cartons at $11.97/lb.

:0010 Q=5049.6: W=2.01
:0020 %##### = $####.## at +#.##%
:0030 PRINTUSING 20,"TOTAL",Q,W
:RUN
TOTAL = $5049.60 at +2.01%

Compatibility Issues:
In Wang 2200 Basic-2, the IMAGE statement must occupy a statement line by itself, and
not be combined with multiple statements on the same line. This is not a restriction in
NPL.

References:
PRINTUSING
$OPTIONS

LANGUAGE STATEMENTS IMAGE (%)

NPL Statements Guide 2-237

INCLUDE

Discussion:
The INCLUDE statement statically loads the specified filename from the specified disk-
image into a separate module at resolve time (if it is not already loaded) and resolves it (if
it is not already resolved). The filename and module-name are evaluated once only, at re-
solve time.

Once a module has been INCLUDEd, its declared PUBLIC sections become available to
the module which executed the INCLUDE statement. Named PUBLIC sections must be
referenced by the USES statement.

Nested INCLUDE operations are permitted. If the INCLUDEd module also contains fur-
ther USES and INCLUDE statements within its PUBLIC section, then these are also
available to the "main" module.

The new module may optionally be given a name specified in the TO clause. If no ex-
plicit module name is given, the filename is used. The "main" module, containing the ap-
plication’s mainline, has a blank module name (" "). Module names must be unique
within the workspace. If a module with the given name has already been loaded, it is not
reloaded. Although any string may be used to name a file, NPL requires that the module
name be a legal identifier (i.e., alphanumeric, starting with a digit).

General Form:

INCLUDE T [file-number,] filename [TO module-name]
 [disk-address,]
 [<address-var>,]

Where:

filename = { <alpha-variable> }
{ literal }

module-name = { <alpha-variable> }
{ literal }

INCLUDE LANGUAGE STATEMENTS

2-238 NPL Statements Guide

INCLUDE (cont.)

NOTE: A variable used as the address in an INCLUDE statement must be assigned a value
in a DIM statement, or must be a constant variable, or a common variable.

If such a variable is just assigned a value in the program the INCLUDE will fail be-
cause the INCLUDE is performed at resolution time, before the variable will be as-
signed during program execution.

The "TO module-name" specification is frequently used to load interchangeable compo-
nents into the same module name. For example, different modules that handle color or
monochrome displays could each be loaded into a module named "DISPLAY".

If an INCLUDEd module declares a /MAIN procedure (for initialization purposes), then
it is executed before any referencing modules are allowed to execute.

A module remains loaded as long as the INCLUDE statement is part of the resolved pro-
gram code. If an INCLUDEd module is no longer referenced by any other module at the
end of a resolution pass, it is deleted (there are exceptions: (1) when the module has
COM variables, and (2) when the module has been modified and not saved). Values as-
signed to any /PUBLIC variables are no longer valid after the INCLUDEd module is un-
loaded.

Modules may be independently scramble-protected. The fact that one module is scramble-
protected does not prevent debugging or development in other modules.

If it is required to list or edit an INCLUDEd module it may be selected with the MOD-
ULE command.

If the INCLUDEd module has an /EXIT function, that function is executed before the
module is deleted.

Examples:

0010 INCLUDE T PlotDriver$
0010 INCLUDE T#2, "BANKFILE" TO "DataFileSpecs"
0010 INCLUDE T "SOURCEIO"
0010 INCLUDE T<NiakwaLibrariesDevice$>,"FIELDPCK"

LANGUAGE STATEMENTS INCLUDE

NPL Statements Guide 2-239

INCLUDE (cont.)

"MAIN" Module

10 : A program that uses nested include modules
 : INCLUDE T "COMBO"
 : DIM G$#RECORDLENGTH(TeaTime)
20 PRINT ’Funct(A) :; Public FUNCTION in COMBO1
 : GOSUB ’Blob :; Public DEFFN’ in COMBO2

 : PRINT Pubvar :; Public variable in COMBO3
 : G$.Milk=1

Program "COMBO":

10 PUBLIC
 : INCLUDE T"COMBO1"
 : INCLUDE T"COMBO2"
 : INCLUDE T"COMBO3"
 : END PUBLICINCLUDE (cont.)

Program "COMBO1"

10 PUBLIC
: FUNCTION ’Funct(X)/FORWARD :;functions...
 : END PUBLIC

Program "COMBO2"

10 PUBLIC
 : DEFFN’Blob/FORWARD :;DEFFN’s...
: END PUBLIC

Program "COMBO3"

10 PUBLIC
 : DIM Pubvar :;Variables...
 : RECORD TeaTime :;including RECORDs and FIELDs
 : FIELD Lumps=HEX(B001)
 : FIELD Lemon=HEX(B001)
 : FIELD Milk=HEX(B001)
 : FIELD TeaCosyName$10
 : END RECORD
 : END PUBLIC

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Modules - Section 4.10 of the NPL Programmer’s Guide
USES
PUBLIC

INCLUDE LANGUAGE STATEMENTS

2-240 NPL Statements Guide

INIT

NOTE: The use of this statement is not recommended. Refer to ALL () function as a better
alternative.

Discussion:
The INIT statement is used to set all characters in one or more alpha-variables to a char-
acter specified as the first character of a variable or as 2 hexdigits.

The INIT statement performs the same function as ALL().

Examples:

:0010 DIM A$8
:0020 INIT("?")A$
:0030 PRINT A$
:RUN
????????

:0010 DIM B9$4
:0020 C$="ABCDEFGH"
:0030 INIT(C$)B9$
:0040 PRINT B9$
:RUN
AAAA

:0010 DIM D1$(2)2,D2$(10)1
:0020 INIT(FF)D1$(),D2$()
:0030 HEXPRINT D1$()
:RUN
FFFFFFFF

Compatibility Issues:

References:
ALL

General Form:

INIT ({hh }) alpha-variable [,alpha-variable]...
 {alpha-variable }
 {literal }

Where:

hh = two hexdigits (0-9, or A-F).

LANGUAGE STATEMENTS INIT

NPL Statements Guide 2-241

INPUT

Discussion:
The INPUT statement is used to prompt the operator to enter data during program execu-
tion. An optional message is allowed in the INPUT statement to instruct operator input.

When an INPUT statement is executed, the optional message is displayed at the current
cursor position followed by a "?" prompt. The program is suspended at this point until the
requested values have been entered. Data is sequentially assigned to variables in the order
they are entered, with the "?" prompt appearing until all variables have been assigned.
When all variables have been assigned, program execution continues.

Values can be entered in one of two ways: one at a time by entering the value and press-
ing RETURN, or more than one value at a time by using a comma as the variable delim-
iter. If an operator enters RETURN with no data entered at an INPUT prompt, execution
of the INPUT statement is terminated and the remaining variable values are unchanged.

If entering string values which contain commas within the string, the string must be en-
tered within quotation marks.

For example:

:0010 INPUT A$
: PRINT A$

:RUN
?"Chicago, Illinois"
Chicago, Illinois

DEFFN ’ subroutines numbered ’0 to ’31, or ’126 through ’127, can be executed while
the system is waiting for a response to input, by pressing the defined special function key.
However, when the RETURN statement in the subroutine is executed, the INPUT state-
ment is reexecuted from the beginning and any values previously entered in response to
the INPUT statement must be reentered.

General Form:

INPUT [literal-string,] {alpha-variable }[,{alpha-variable }]...
 {numeric-receiver } {numeric-receiver}

INPUT LANGUAGE STATEMENTS

2-242 NPL Statements Guide

INPUT (cont.)

Data can also be entered in an INPUT statement by using defined special function keys.
Refer to DEFFN’ Keyboard Input statement for details on entering character strings using
special function keys.

If invalid data is entered, an error message is displayed and the "?" prompt reappears, al-
lowing data to be reentered.

The RECALL key recalls the last data typed during an input operation (useful for repeti-
tive data entry). Refer to Section 5.4 of the Programmer’s Guide for details on Line Edi-
tor features.

Pressing the HELP key during an INPUT operation generates the HELP display. The IN-
PUT operation is continued when program execution is continued (with variable values
unchanged).

All the functions of the Line Editor are available to allow entry or correction of the IN-
PUT line. Refer to Section 5.4 of the Programmer’s Guide for details.

In addition, the initial mode of the Line Editor for an INPUT statement may be set so that
entered data overstrikes or is automatically inserted into the entered line. Also, the opera-
tion of the INSERT key for an INPUT statement can be set so that it either inserts a sin-
gle space or switches between insert and overstrike modes. These choices for these
options are set using byte 44 of the $OPTIONS system variable. Refer to $OPTIONS for
more details.

Examples:
0010 INPUT A,B,C$
0010 INPUT "INPUT A,B,C$",A,B,C$
0010 INPUT A$(I)
0010 INPUT STR(A$,3,3),B

0010 INPUT "Input Some Data",A,B,C
0020 PRINT "END"
:RUN
Input Some Data? 1
? 4
? 12
END

:RUN
Input Some Data? 1,4,12
END

LANGUAGE STATEMENTS INPUT

NPL Statements Guide 2-243

INPUT (cont.)

Compatibility Issues:
Execution of marked subroutines with parameters during response to INPUT is supported
by Wang 2200 Basic-2. NPL does not support this feature.

References:
DEFFN ’ Keyboard Input
DEFFN ’ Subroutine
$OPTIONS

INPUT LANGUAGE STATEMENTS

2-244 NPL Statements Guide

INPUT SCREEN

Discussion:
INPUT SCREEN is used to read the specified portion of the current NPL screen mapping
area into the specified variable. The screen is read row by row, starting at the specified
x,y coordinates for the specified number of rows and columns.

If AT values are not specified, the following defaults are used:

x - starting row = 0
y - starting column = 0

If BOX values are not specified, the following defaults are used:

r - number of rows = 24-x
c - number of columns = (w-1)-y

where "w" is the current screen width (normally 80 but may be 132 on some termi-
nals).

General Form:

INPUT SCREEN alpha-variable [,AT (x,y)][,BOX (r,c)]

Where:

x = a numeric-expression specifying the starting row.

y = a numeric-expression specifying the starting column.

r = a numeric-expression specifying the number of rows to input.
For any value r, r+1 rows are input.

c = a numeric-expression specifying the number of columns per row
to input. For any value c, c+1 columns are input for each
row input.

LANGUAGE STATEMENTS INPUT SCREEN

NPL Statements Guide 2-245

INPUT SCREEN (cont.)

NOTE: Defaults for BOX values when AT values are not specified are (24,79) (assuming an
80-column width) which are identical to the largest possible values for a PRINT
BOX statement on an 80-column screen.

The use of the "r" and "c" parameters corresponds to the way PRINT BOX works. If the
"r" or "c" parameter, in conjunction with the x and y values, would cause areas beyond
the current width or length of the screen to be accessed, a P34 (Illegal Value) error results.

INPUT SCREEN is primarily intended to be used in conjunction with PRINT SCREEN
to temporarily save and then redisplay a portion of the screen. This capability allows new
"pop-up" type features to be added to existing applications. Refer to PRINT SCREEN for
a detailed example of this functionality.

INPUT SCREEN only recognizes information which has been displayed by NPL print
class output statements directed to device address 05. Use of any other function that af-
fects the screen display may result in incorrect data being returned by INPUT SCREEN.
Such functions may include use of $SHELL, use of external routines which update the
screen, use of third-party, stay-resident programs which output to the screen, or native op-
erating system messages.

Volume of Information Returned:
The information returned by INPUT SCREEN to the specified alpha-variable consists of
an 80-byte string containing header information about the display, followed by three sec-
tions containing the actual characters, attribute and box graphic information, and color at-
tribute information, respectively. The length of each of these three sections is
((r+1)*(c+1)) bytes where "r" is the number of rows specified and "c" is the number of
columns specified. Within each section, the bytes represent the character position being
read. Characters are read from the screen row by row for the specified range and column
by column within each row for the specified range. In cases where the last row is off the
screen, the r+1 row contains useful information only for section 2. The three sections are
stored contiguously with no delimiter. If the programmer needs to know the starting byte
location for any section, it must be determined by calculation based on the specified "r"
and "c" parameters. If the specified alpha-variable is too small to contain the information
generated, no error occurs. The information generated by INPUT SCREEN is simply
truncated to the last complete section.

INPUT SCREEN LANGUAGE STATEMENTS

2-246 NPL Statements Guide

INPUT SCREEN (cont.)

NOTE: No partial sections are ever returned.

For example:

INPUT SCREEN A$,BOX(10,10)

This inputs rows 0-10, columns 0-10 into variable A$. In this case, to store all returned in-
formation, A$ must be dimensioned to:

header information 80 bytes
section 1 (r+1)*(c+1) or

11*11= 121 bytes
section 2 121 bytes
section 3 121 bytes
total 443 bytes

INPUT SCREEN of a full standard-sized screen would require 6080 bytes (80 +
3*25*80) to store all information returned. However, if an application did not require the
color attributes, 2000 bytes less would be required, and, if the application also did not re-
quire the video attributes/box-graphics, another 2000 bytes less would be required, thus
reducing the required size to 2080 bytes.

NOTE: Where a screen width greater than 80 or a number of lines greater than 24 is sup-
ported, additional space is required.

Contents of the Information Returned:

As indicated above, INPUT SCREEN returns 80 bytes of header information followed by
three sections of ((r+1)*(c+1)) bytes each. The specific contents are as follows:

Header Information (Bytes 1 to 80)

Bytes 1-29 - terminal ID message. This is arbitrarily set by NPL to "2236DE R03
19200BPS 8+0 (USA)" regardless of the terminal and communications parameters
being used.

Bytes 30-78 - supplementary header information. This information is automatically
used by PRINT SCREEN. The exact contents are as follows:

LANGUAGE STATEMENTS INPUT SCREEN

NPL Statements Guide 2-247

Byte Contents
30-63 Reserved - all(00)

64 Information level of header. This field indicates the level of information
returned by INPUT SCREEN in the header. The value for the 3.0 revision is
HEX(00), but will increase in future releases as new information is added to the
header fields (bytes 31-80). Applications that use newer information may check
this byte to ensure that the information contained in the header corresponds
with the RunTime revision in use.

65 Minimum information level of header. This field is used internally by the
RunTime to determine whether a sufficient revision of RTP is in use for PRINT
SCREEN of a given buffer. This value is HEX(00) on the 3.0 revision but may
be modified in the future as new information is added to the header fields.

66 Binary number of valid display sections. This is determined based on the size
of the receiver-variable specified in conjunction with the "r" and "c" parameters
specified.

67 Binary screen size (lines). 24 on current revisions.
68 Binary screen size (columns). 80 or 132 on current revisions.
69 Binary value of AT row value (x).
70 Binary value of AT column value (y).
71 Binary value of BOX row value (r).
72 Binary value of BOX column value (c).
73 Current color for background/foreground:

 HEX(80) bit - reserved (=0)
 HEX(08) - reserved (=0)
 HEX(x0) - background color (x=0 to 7)
 HEX(0x) - foreground color (x=0 to 7)

74 Current color for perimeter and underline
 HEX(80) bit - 0=dim perimeter, 1=bright perimeter
 HEX(x0) - perimeter color (x=0 to 7)
 HEX(08) - reserved (=0)
 HEX(0x) - underline replacement color (x=0 to 7)

75 Video modes when enhanced mode selected (by HEX(0E))
 For all bits, 0=off; 1=on HEX(40)bit - reverse video
 HEX(20) bit - blink HEX(10) bit - bright
 HEX(08)bit - underline Other bits are 0 and reserved.

INPUT SCREEN LANGUAGE STATEMENTS

2-248 NPL Statements Guide

Byte Contents
76 Flags for video

 HEX(01) bit:
 0 = current video mode turned off by HEX(0D)
 1 = current video mode not turned off by HEX(0D)
 HEX(02) bit:
 0 = current video mode is normal (not enhanced)
 1 = current video mode is enhanced
 Other bits reserved and 0.

77 Alternate character set status
 HEX(00) - normal character set in effect
 HEX(02) - alternate character set in effect
 Other values reserved.

78 Cursor status
 HEX(00) cursor off HEX(01) cursor on steady
 HEX(02) cursor on blinking Other values reserved.

Byte 79 Binary cursor position (row)
Byte 80 Binary cursor position (column)

Section 1 - Character Information

Each NPL character present within the specified AT, BOX range is placed in section 1 of
the alpha-variable. Characters are read from the screen mapping area row by row for the
specified range and column by column within each row for the specified range. The char-
acter returned by INPUT SCREEN is the NPL hexcode (not affected by $SCREEN
value).

In some cases (such as after using $SHELL), the character is "unknown" to NPL.

In these cases a value of HEX(00) is returned for the character.

If row r+1 is off the screen, this section contains all HEX(00).

LANGUAGE STATEMENTS INPUT SCREEN

NPL Statements Guide 2-249

INPUT SCREEN (cont.)

Section 2 - Video Attribute and Box-graphics Area

For each character read by INPUT SCREEN, a one-byte bit mapped code is placed
in section 2. This code represents the video attribute status, box graphic segments
present, and whether the character is from the normal or alternate character set. The
code is structured as follows:

HEX(80) bit Character is from the alternate character set
HEX(40) bit Reverse video attribute is on
HEX(20) bit Blink video attribute is on
HEX(10) bit Bright video attribute is on
HEX(08) bit Underline video attribute is on
HEX(04) bit Left horizontal box graphic segment is present
HEX(02) bit Right horizontal box graphic segment is present
HEX(01) bit Vertical box graphic segment is present

When "character" box graphics are in use, the vertical box graphic segment actually
represents the south vertical box graphic segment (character boxes use south and
north vertical segments while "true" box graphics use a single vertical segment).
When regenerating character boxes, PRINT SCREEN references the box graphic seg-
ment in the character in the row immediately above to determine whether or not a
north vertical segment is required. If the character above contains a vertical segment,
a north segment is assumed to be required.

NOTE: This technique does not guarantee 100% proper restoration of character boxes.
Some anomalies may be present.

Row r+1 is used in this section to represent horizontal box graphics segments which
appear below row "r". Other bits for row r+1 will be off.

Section 3 - Color Attribute

For each character read by INPUT SCREEN, a one-byte code is placed in section 3.
This code represents the background/foreground color attribute for the character. The
background attribute is stored in the high-order nibble and may have a value of
HEX(0x) the HEX(7x). The foreground attribute is stored in the low-order nibble
and may have a value of HEX (x0) to HEX(x7).

INPUT SCREEN LANGUAGE STATEMENTS

2-250 NPL Statements Guide

INPUT SCREEN (cont.)

NOTE: The HEX(80) and HEX(08) bits are currently unused and set to zero. These bits are
reserved for future expansion and should not be used by the application.

The color attribute values are set based on the execution of the dynamic color attribute
control sequence:

HEX(02000605 0b 0f 0u 0p 0i 0F)

where the current value of "b" and "f" are the background and foreground color attrib-
utes. Refer to Section 7.3.18 of the Programmer’s Guide for further details on the dy-
namic color attribute selection control sequence.

Color attribute values are set only when the dynamic color attribute selection sequence is
active. Byte 22 of $OPTIONS must be set to a non-zero value for this to be true. In addi-
tion, use of color attribute selection must be supported on the monitor in use when IN-
PUT SCREEN is executed. Refer to the appropriate NPL Supplement for further details
on monitors supported for dynamic color attribute selection.

NOTE: If color is generated by any other method (such as by attribute replacement on EGA
monitors), these colors are not recognized by INPUT SCREEN.

If color attributes are not in use, the contents of each byte of section 3 will be
HEX(07), black background with white foreground.

LANGUAGE STATEMENTS INPUT SCREEN

NPL Statements Guide 2-251

INPUT SCREEN (cont.)

NOTE: Applications which use INPUT SCREEN to store information for later redisplay
may find it useful to store other related information. This may include:

$SCREEN - contains current screen translation table.

$OPTIONS - several bytes in $OPTIONS affect screen output operations.

$MACHINE - contains information about the environment including terminal type
and graphics capability.

$BOXTABLE - determines whether or not character boxes are used and the charac-
ter set to be used for character boxes.

Examples:
0010 INPUT SCREEN A$
0010 INPUT SCREEN A$, BOX(5,10)
0010 INPUT SCREEN A$, AT(3,20),BOX(5,10)
0010 INPUT SCREEN STR(A$,,80)
0010 INPUT SCREEN STR(A$,24,236), AT(B-A+1,C-D+1),BOX(3,12)

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

Several features of the NPL implementation of INPUT SCREEN are not supported in
Wang Basic-2:

• The AT and BOX parameters are not supported.

• The supplemental information returned in bytes 30-78 is not returned on the
Wang 2200.

• Color attributes are not supported on the Wang 2200. Therefore, information
about color attributes is not returned by INPUT SCREEN.

• PRINT SCREEN is not supported on the Wang 2200.

On the Wang 2200, INPUT SCREEN is supported only with MXE terminal controllers.
In NPL, the INPUT SCREEN operation is supported on all systems.

INPUT SCREEN LANGUAGE STATEMENTS

2-252 NPL Statements Guide

INPUT SCREEN (cont.)

On the Wang 2200, the terminal self-ID message is actually generated by the Wang 22x6
terminal and may vary from one terminal to another. It also varies based on communica-
tions parameters in use. In NPL, the self-ID message is a constant and is the same for all
terminals and all configurations.

On the Wang 2200, INPUT SCREEN generates a status message to the terminal indicat-
ing progress of the command. In NPL, no message is generated.

References:
PRINT SCREEN
Screen Handling - Section 7.3of the Programmer’s Guide

LANGUAGE STATEMENTS INPUT SCREEN

NPL Statements Guide 2-253

INT function

Discussion:
The INT function returns the integer (whole number) or non-decimal portion of a nu-
meric-expression. For a non-integer value, INT returns the greatest integer which is still
less than the original value. This is valid wherever a numeric-expression is legal.

NOTE: INT is also useful for computing a "ceiling" function -INT(-x).

Examples:
0010 Q=INT(A)
0010 A(10)=30-INT(Q)

:PRINT INT(3.1)
 3
:PRINT INT(3.9)
 3
:PRINT INT(-8.1)
-9
:PRINT INT(-8.9)
-9

:0010 R=5: S=6: T=4
:0020 IF INT((R+S)/T) THEN PRINT "ERROR": ELSE PRINT "OK"
:RUN
ERROR

:0010 INPUT "How many in a box",N
: INPUT "How many items",C
: PRINT "Requires";-INT(-N/C);"boxes"

:RUN
How many in a box? 10
How many items? 92
Requires 10 boxes

Compatibility Issues:

References:

General Form:

INT (numeric-expression)

INT function LANGUAGE STATEMENTS

2-254 NPL Statements Guide

$KEEPREMS

Discussion:
$KEEPREMS is a one-byte system variable which is used in the interpretive RunTime
(RTI) to control generation of p-code used to maintain REM (remark) statements, pro-
gram text indentation, and the display format of literals.

Form 1:

Values may be assigned to the $KEEPREMS system variable using Form 1. These val-
ues have the following effects:

HEX(00) - Equivalent to compiler option KEEPREMS OFF

REMs are not retained.

Program indentation is not retained. Return-graphics are generated at the end of
each statement.

The initial format of literals is not retained. In this event, literals which contain only
the characters HEX(20) to HEX(7F) (except for HEX(22)) are displayed as quote lit-
erals. Literals with any characters outside of this range are displayed as HEX literals.

General Form:

 Form 1:

$KEEPREMS = alpha-expression

 Form 2:

alpha-variable = $KEEPREMS

LANGUAGE STATEMENTS $KEEPREMS

NPL Statements Guide 2 - 255

$KEEPREMS (cont.)

HEX(01) (the default) - Equivalent to compiler option KEEPREMS ON

REMs are retained.

Program indentation is retained. Return-graphics are not generated automat-
ically at the end of each statement (though return-graphics are retained where en-
tered via SHIFT/INSERT).

The format of literals is retained.

HEX(02) - Equivalent to compiler option KEEPREMS DEC

REMs are retained.

Program indentation is retained, but return-graphics are generated at the end of each
statement (as with a value of HEX(00)).

The format of literals is retained.

$KEEPREMS affects the p-code generated when lines of program text are entered in Im-
mediate Mode, or when the $OBJECT function is used. Depending on the value of
$KEEPREMS, additional information is saved which can affect only the display format
of source code generated by the de-compiler during program edit or listing operations or
during generation of SOURCE text by the compiler (B2C) when p-code files are used as
input. It does not affect p-code execution in any way. Values of $KEEPREMS may be
HEX(00), (01) (the default), or (02).

$KEEPREMS affects the generation of p-code as program lines are entered from the line
editor. It has no effect when programs are saved to disk.

$KEEPREMS LANGUAGE STATEMENTS

2 - 256 NPL Statements Guide

$KEEPREMS (cont.)

The size of the p-code generated is affected by $KEEPREMS as follows:

• Retention of literal format requires up to one extra byte per literal.

• Retention of program indentation requires up to two extra bytes per statement.

• Retention of REMs requires as much space as needed to store the remark.

$KEEPREMS performs no operation on the non-interpretive RunTime Program.

Form 2:

The current value of $KEEPREMS may be examined using Form 2.

Examples:

0010 X$=$KEEPREMS
0010 $KEEPREMS=BIN(0)
0010 $KEEPREMS=HEX(02)
0010 $KEEPREMS=A$

:$KEEPREMS=HEX(00)
:10 REM Set values to zero: FOR I=1 TO 10: A$(I)=HEX(30): NEXT I
:$KEEPREMS=HEX(01)
:11 REM Set values to zero: FOR I=1 TO 10: A$(I)=HEX(30): NEXT I
:$KEEPREMS=HEX(02)
:12 REM Set values to zero: FOR I=1 TO 10: A$(I)=HEX(30): NEXT I
:LIST
0010 FOR I=1 TO 10

: A$(I)="0"
: NEXT I

0011 REM Set values to zero: FOR I=1 TO 10: A$(I)=HEX(30): NEXT I
0012 REM Set values to zero

: FOR I=1 TO 10
: A$(I)=HEX(30)
: NEXT I

LANGUAGE STATEMENTS $KEEPREMS

NPL Statements Guide 2 - 257

$KEEPREMS (cont.)

Compatibility Issues:
The $KEEPREMS system variable is not valid in Wang 2200 Basic-2.

The $KEEPREMS system variable is implemented in Revision 2.00 and greater of NPL.

References:
KEEPREMS Option - Section 14.15 of the Programmer’s Guide

$KEEPREMS LANGUAGE STATEMENTS

2 - 258 NPL Statements Guide

$KEYBOARD

Discussion:
This statement allows a NPL application program to modify (Form 1) or examine (Form
2) the current keyboard translation table. The $KEYBOARD system variable contains the
576 byte keyboard translation table currently in effect. The keyboard translation table is
used to translate hex values for keys received from the actual keyboard to hex values ex-
pected by NPL programs.

This table translation is necessary since many keyboards do not have exact equivalences
for some NPL required keys. The RunTime program contains built-in defaults for this ta-
ble which should be adequate for most applications. Exceptions would be for the interna-
tional character set or for applications which require use of the CLEAR or CONTINUE
keys. Refer to Appendix D of the Programmer’s Guide for hardware-specific default val-
ues.

A convenient method of modifying the keyboard translation table is provided by the ED-
KEYBOA utility. This utility may be used to create a disk file with the values to be
loaded for keyboard translation. When the RunTime program is invoked, it looks for this
file and, if found, replaces the built-in default translation table values with values from
this file. Refer to Chapter 13 of the Programmer’s Guide for details on the EDKEYBOA
utility and the location of the file from which keyboard defaults are loaded.

General Form:

Form 1:

$KEYBOARD = alpha-expression

Form 2:

alpha-receiver = $KEYBOARD

Where:

alpha-expression / alpha-receiver = is a length of 576 characters.

LANGUAGE STATEMENTS $KEYBOARD

NPL Statements Guide 2 - 259

$KEYBOARD (cont.)

Alternatively, a program may directly access and modify the keyboard translation table
from within a NPL program by using the $KEYBOARD statement.

Organization of the Translation Table:

On all keyboards supported by NPL, the keys can be divided into two groups:

1. "Simple" keys which generate only a single code to a native operating system pro-
gram when pressed.

2. "Complex" keys which generate multiple codes to a native operating system program
when pressed.

For example, on a Wang PC, the "A", RETURN and BACKSPACE keys are simple
keys, generating HEX(41), HEX(0D), and HEX(08), respectively. The "EXECUTE" and
"CANCEL" keys are complex keys, generating HEX(1FC5) and HEX(1FE0), respec-
tively.

The keyboard translation table consists of two main parts.

• Part 1 contains the replacement values for "simple" codes sent by the keyboard.

• Part 2 contains the replacement codes for "complex" codes sent by the keyboard.

Each of these two parts of the table is further broken down into two sub-sections.

• Section 1 consists of 32 bytes which are used on a bit (32*8=256 bits) basis to de-
termine whether the replacement code is to be classified as "standard" or "spe-
cial" when passed to the NPL program. When a code is classified as "special", it
is treated as a NPL Special Function Key by the program. When a code is classi-
fied as "standard", it is treated as a standard keyboard key (e.g., A-Z, a-z, RE-
TURN, BACKSPACE, etc.). A bit value of zero indicates that the code is to be
classified as standard. A value of 1 indicates that the code is to be classified as
special.

$KEYBOARD LANGUAGE STATEMENTS

2 - 260 NPL Statements Guide

$KEYBOARD (cont.)

• Section 2 consists of 256 bytes which contain the actual replacement character to
be sent.

Translation Table Layout

Part I - contains replacement values for "simple" keys.

Section 1 - 32 bytes (from 1 to 32)

Section 2 - 256 bytes (from 33 to 288)

Part 2 - replacement codes for "complex" keys.

Section 1 - 32 bytes (from 289 to 320)

Section 2 - 256 bytes (from 321 to 576)

Total 576 bytes

The table operates on the basis of relative position based on the HEX code generated by
the key pressed. Key codes HEX(00) to HEX(FF) correspond to byte or bit 1 to 256, rela-
tive to the start of the relevant section. For example, if the key pressed generates a simple
code HEX(41) (the letter "A"), the replacement value is located as follows:

1. Since the key is "simple", part 1 of the table is accessed.

2. Based on the code of HEX(41), the value in byte number 66 (VAL(HEX(41))+1) of
section 2 of part 1 (byte number 98 overall) is sent to the NPL program.

3. Based on the value of bit number 66 (HEX(02) bit of byte number 9), which is zero,
the code is classified as "standard".

LANGUAGE STATEMENTS $KEYBOARD

NPL Statements Guide 2 - 261

$KEYBOARD (cont.)

Examples:

The following example changes the replacement value for the function key labeled "1/IN-
DENT" on the Wang PC (which produces "complex" code HEX [80]) to "special"
HEX(01) (’1) (the standard default is ’0 ("special" HEX(00)).

10 DIM X$(576)1
20 X$()=$KEYBOARD : REM FETCH CURRENT VALUES
30 STR(X$(),449,1)=HEX(01) : REM SET BYTE 129 OF PART 2,

 SECTION 2, TO VALUE HEX(01)
40 $KEYBOARD=X$() : REM IMPLEMENT MODIFIED TABLE

NOTE: In this example, it was not necessary to modify the bit masks in section 1 of part 2
since the key modified was previously defined as "special".

Also, the result of this example would be that both the function key labeled "1/IN-
DENT" and the function key labeled "2/PAGE" is translated to special function key
1 (’1). No key would produce special function key zero (’0).

WARNING--Incorrect modification of the keyboard table can result in "hanging" the ap-
plication because keys are no longer translated to values understood by the application.
In particular, it is possible to map the keyboard in such a way that no key available gen-
erates HELP or, even worse, that HELP can be generated but EXEC and CANCEL are
unavailable (so the system is stuck in HELP until it is rebooted).

NOTE: Keyboard mapping is done based on the values returned by the native operating sys-
tem from standard function calls. If the native operating system does not distinguish
between, for example, the shifted and unshifted states of a key, it is not be possible
for NPL applications to do this either.

Compatibility Issues:
The $KEYBOARD statement is not supported in Wang 2200 Basic-2.

$KEYBOARD LANGUAGE STATEMENTS

2 - 262 NPL Statements Guide

$KEYBOARD (cont.)

References:
CLEAR
CONTINUE
Keyboard - Section 7.4 of the Programmer’s Guide
Chapter 13 of the Programmer’s Guide
Appendix D of the Programmer’s Guide

LANGUAGE STATEMENTS $KEYBOARD

NPL Statements Guide 2 - 263

KEYIN

Discussion:
The KEYIN statement is used to receive a single character from the keyboard. The
KEYIN statement always examines the input keyboard buffer for any characters pre-
viously entered but not processed.

There are two forms of the KEYIN statement:

Form 1

Form 1 of the KEYIN statement causes the program to wait for a key to be entered, if no
key is present in the input buffer. The value of the key is stored in the first position of the
specified alpha-variable. If no line-number is specified, program execution always contin-
ues with the next program instruction. If, however, a line-number is specified, then pro-
gram execution continues with the next program instruction only if the key received is
what is termed a standard key. If the key received is a Special Function Key, then proc-
essing continues at the specified line-number. This allows for special handling for Stand-
ard versus Special Function keys. Refer to Section 5.4 of the Programmer’s Guide for
details on Standard versus Special Function keys. This form of the KEYIN statement is
the preferred method of accepting operator input because the use of processor time to poll
the keyboard is minimized.

General Form:

 Form 1:

KEYIN alpha-variable [,,line-number]]

 Form 2:

KEYIN alpha-variable,line-number,line-number

KEYIN LANGUAGE STATEMENTS

2 - 264 NPL Statements Guide

KEYIN (cont.)

Form 2

Form 2 of the KEYIN statement is often referred to as the "polling" KEYIN. When this
form of the statement is executed, the keyboard buffer is examined for the presence of a
key. If a key is present, the value of the key is stored, program execution continues at the
first line-number, if a standard key was received, or the second line-number if a Special
Function Key was received. If no character is present, the program does not wait for a
character, but rather continues execution with the next statement. This form of the
KEYIN statement is frequently used to clear the keyboard buffer in the event of an unex-
pected error condition so that operator type ahead is not processed inappropriately.

For example:

0010 KEYIN X$,10,10 : REM Clear Buffer
0020 PRINT AT(5,10); "Enter ’Y’ or ’N’"
0030 KEYIN Y$

Individual polling KEYINs may also be used by long-running processes to periodically
check for operator intervention (cancel, request for status report, HELP).
Pressing the HELP key in response to KEYIN generates the HELP display.

Examples:

0010 KEYIN R$

In the above example, program execution waits until a key is pressed. The key value is
then stored in R$ and the next program statement is executed. It is not possible to distin-
guish between standard and special keys in this case.

0010 KEYIN F$(1),,50

In the above example, program execution waits until a key is pressed and places the
keyin value in F$(1). If a special function key is pressed, program execution transfers to
line 50, otherwise, the next program statement is executed.

0010 KEYIN J$,30,40

In the above example, the presence of a standard character in the keyboard input buffer
causes the program to transfer to line 30, a special function key to line 40, and no input at
all to the next program statement.J$ receives the key value, if any.

LANGUAGE STATEMENTS KEYIN

NPL Statements Guide 2 - 265

KEYIN (cont.)

Compatibility Issues:
The Wang 2200 allows KEYIN to be directed to a device other than the keyboard. The
KEYIN statement only accepts keys from the keyboard in NPL. A syntax error is gener-
ated if a device address or file number is specified in the statement.

At runtime, if a SELECT INPUT statement has been executed to any device other than
the keyboard, the KEYIN statement is still wait for input from the keyboard in NPL.

References:

KEYIN LANGUAGE STATEMENTS

2 - 266 NPL Statements Guide

LEN Function

Discussion:
LEN is a numeric function which is used to determine the number of characters in an al-
pha-variable. All characters in the string are counted, including leading and embedded
spaces, and ignoring all trailing spaces. This is valid wherever a numeric-expression is le-
gal.

NOTE: If the variable contains all spaces, a value of 1 is returned.

When executing a LEN function of a STR function, the LEN function returns the defined
length of the alpha-variable, e.g., trailing spaces are not ignored in this case.

To determine the dimensions of an alpha-array with one dimension under program con-
trol:

0010 N=LEN(STR(A$(1)))
 : M=LEN(STR(A$()))/N

Current dimensions of A$() are A$(M)N.

Examples:
0010 X=LEN(A$)
0010 X=LEN(A$())
0010 X=LEN(STR(A$,X))
0010 X=LEN(STR(A$()))

:0010 T$="EFGHIJ "
:0020 PRINT LEN(T$)
:RUN
6
:0010 H$="EF GHIJ "
:0020 PRINT LEN(H$)
:RUN
7

:0010 B$=" "
:0020 PRINT LEN(B$)
:RUN
1

:0010 A$="E FGHIJ KLM "
:0020 PRINT LEN(STR(A$,,16))
:RUN
16

General Form:

LEN (alpha-variable)

LANGUAGE STATEMENTS LEN Function

NPL Statements Guide 2 - 267

LEN Function (cont.)

Compatibility Issues:

References:

LEN Function LANGUAGE STATEMENTS

2 - 268 NPL Statements Guide

LET Alpha Assignment

General Form:

[LET] alpha-variable [,alpha-variable]... = alpha-expression

Where:

alpha-variable = {scalar alpha-variable}
{alpha array element}
{alpha array}
{STR() function}

alpha-expression = {[alpha-operand][alpha-operator alpha-operand]...}
{alpha-operand [& alpha-operand]... }
{string field-expression }

alpha-operand = {alpha-variable }
{literal-string }
{ALL function }
{BIN function }
{ alpha function}
{string field-expression }

alpha-operator = { ADD[C] }
{ AND }
{ BOOLh }
{ DAC }
{ DSC }
{ OR }
{ SUB[C] }
{ XOR }

& = concatenation alpha-operator

h = hexdigit, 0-9 or A-F

LANGUAGE STATEMENTS LET Alpha Assignment

NPL Statements Guide 2 - 269

LET Alpha Assignment (cont.)

Discussion:
The LET statement is used to assign the result of the evaluation of the expression on the
right-hand side of the "=" to the variable or variables on the left-hand side of the "=".

NOTE: The null alpha-expression is not allowed.

There are two forms of the assignment statement: numeric assignment and alpha assign-
ment. Type conversion is not performed and, therefore, mixed-type assignment generates
an error. Refer to LET Numeric Assignment statement for details on how to assign values
to numeric-receivers.

The use of the word LET, if omitted, is assumed.

Two Types of Alpha-Expressions

From the general form, it would first be noted that there are, in fact, two types of alpha-
expressions, the sole significance of which is related to the concatenation operator (&).
This operator provides the capability for concatenation of the value of two alpha-oper-
ands to form a single character string. This alpha-operator is treated specially and may
not be combined with any other operator (except itself) in the same alpha-expression. The
concatenation operator is discussed in CONCATENATION.

Evaluation of Alpha-Expressions

As defined by the general form, an alpha-expression may contain any number of alpha-
operands and alpha-operators. Order of evaluation of an alpha-expression is always se-
quential from left to right on an operator-by-operator basis. That is, the result of the first
operation is placed in the alpha-receiver and each subsequent operation is conducted left
to right on the subsequent new values of the receiver.

For example, in the statement:

A$ = B$ AND C$ OR D$

The contents of the alpha-operand B$ is first assigned to the alpha-receiver A$. Then the
contents of the next alpha-operand A$ is ANDed to the current value of A$. Then the con-
tents of the final alpha-operand D$ is ORed with the current value of A$ and the evalu-
ation is complete. Parentheses cannot be used to alter this order of operations.

LET Alpha Assignment LANGUAGE STATEMENTS

2 - 270 NPL Statements Guide

LET Alpha Assignment (cont.)

NOTE: The first type of an alpha-expression allows that the initial alpha-operand is op-
tional, and may be omitted. The following is an example of this:

A$=AND B$

Here, the value of alpha-operand B$ is ANDed with the current value of the alpha-re-
ceiver A$ as existed prior to execution of the statement. In effect, this statement is equiva-
lent to A$ = A$ AND B$.

This is not true of the concatenation alpha-expression where the first alpha-operand is
mandatory.

If more than one alpha-receiver is specified, assignment is done to the last receiver first.
Evaluation proceeds as if a series of LET statements were executed.

Examples:
0010 A$=B$ & "ABC" & C$
0010 STR(A$(),10,16)=STR(B$(3),2,4) & STR(B$(4),2,12)
0010 A$,C$(2),D$()=B$ & ALL("X")
0010 A$,STR(B$(4),3,4)=STR(C$,4,6) AND HEX(F0)
0010 Results$=AR$.Custname$ AND ALL (’BitStrip$)

:0005 DIM B$(5)16
:0010 A$="RSTUVWXYZ"
:0020 STR(B$(1),3,4)=A$
:0030 PRINT STR(B$(1),3,4)
:RUN
RSTU

0010 data_rec$.INFO$=STR(C$,1,8)
0010 A$=data_rec$.INFO$

Compatibility Issues:
There is no variance in NPL and Wang 2200 Basic-2 for the LET statement itself. How-
ever, there are some variances in what reciever and assignments are allowed. Refer to
ALL, STR, ’Function-name Numeric Expression, and ’Function-name Literal Expres-
sion for more details.

LANGUAGE STATEMENTS LET Alpha Assignment

NPL Statements Guide 2 - 271

LET Alpha Assignment (cont.)

References:
CONCATENATION
ADD
AND
BOOL
DAC
DSC
ORSUB
XOR
ALL function
BIN function

LET Alpha Assignment LANGUAGE STATEMENTS

2 - 272 NPL Statements Guide

LET Numeric Assignment

General Form:

 [LET] numeric-variable [,numeric-variable]... = numeric-expression

Where:
numeric-expression = term [arithmetic-operator term]...

term = {numeric-function }
{numeric-scalar-variable }
{numeric-array-element }
{numeric-constant }
{(numeric-expression) }
{-term }
{user-defined numeric function}
{numeric-field expression }

arithmetic-operator = {+}
{-}
{*}
{/}
{^}

numeric-function = { INT(n) } or { LGT(n) }
{ FIX(n) } { LOG(n) }
{ ABS(n) } { EXP(n) }
{ SGN(n) } { #PI }
{ MOD(n,n) } { SIN(n) }
{ ROUND(n,n) } { COS(n) }
{ RND(n) } { TAN(n) }
{ SQR(n) } { ARCSIN(n) }
{ MAX Function } { ARCCOS(n) }
{ MIN Function } { ATN(n) }
{ ERR } { LEN Function}
{ SPACE } { NUM Function}
{ SPACEF}
{ SPACEK } { POS Function}
{ SPACEP } { VAL Function}
{ SPACEV } { VER Function}
{SPACEW}
{ #ID }
{ #GOLDKEY }
{ #PART }
{ #TERM }
{ #RECORDLENGTH(record-identifier) }
{ #FIELDSTART(field-identifier) }
{ #FIELDLENGTH(field-identifier) }

n = numeric-expression

LANGUAGE STATEMENTS LET Numeric Assignment

NPL Statements Guide 2 - 273

LET Numeric Assignment (cont.)

Discussion:
The LET statement is used to assign the result of the evaluation of the expression on the
right-hand side of the "=" to the variable or variables on the left-hand side of the "=".

There are two forms of the assignment statement: numeric assignment and alpha assign-
ment. Type conversion is not performed and, therefore, mixed type assignment generates
an error. Refer to LET Alpha Assignment statement for details on how to assign values to
alpha-receivers.

NOTE: The use of the word LET, if omitted, is assumed.

Evaluation of Numeric-Expressions

As defined by the general form, a numeric-expression may contain a series of terms sepa-
rated by arithmetic operators. A term may consist of numeric-scalar-variables, numeric-
array-elements, numeric-constants, numeric-functions, and numeric-expressions.

Evaluation of numeric-expressions is from left to right, except where affected by the pri-
orities. However, unlike the evaluation of alpha-expressions, the interim results are stored
in an internal work area and not placed in any of the receivers until the entire expression
is evaluated. Refer to LET Alpha Assignment statement for details on how to assign val-
ues to alpha-receivers.

Order of Arithmetic Evaluation

The order of priority for arithmetic-operators is:

1. ^ (exponentiation)
2. - (negation)
3. *, / (multiplication, division)
4. +,- (addition, subtraction)

NOTE: On most keyboards, the exponentiation sign ("^") is the up-arrow key.

The priority of evaluation can be modified by the use of parentheses such that portions of
an expression within parentheses are evaluated first.

LET Numeric Assignment LANGUAGE STATEMENTS

2 - 274 NPL Statements Guide

LET Numeric Assignment (cont.)

For example:

A=B+C/D

The expression C/D is evaluated first and then added to B.

A=(B+C)/D

The use of the parentheses changes the order of evaluation so that the expression (B+C)
is evaluated first and the result is divided by D.

Nested Expressions

The operands for numeric-functions may themselves be numeric-expressions. In this
case, the evaluation of these nested expressions starts with the innermost expression.
Where more than one expression exists at the same level of nesting, evaluation proceeds
from left to right. The evaluation of each expression follows the rules of arithmetic evalu-
ation stated above. For example, refer to the following:

X=INT(MAX(A*4.5,(B-C)/D))

This uses five numeric expressions which are evaluated as follows:

1. A*4.5

2. (B-C)

3. Result of (B-C) divided by D

4. MAX of the results of expressions 1 & 3

5. INT of the result of the expression 4 (the MAX Function)

LANGUAGE STATEMENTS LET Numeric Assignment

NPL Statements Guide 2 - 275

LET Numeric Assignment (cont.)

Examples:
0010 X=((A+B)^C/D(1)-4)*INT(C/D(1))
0010 X,Y(1)=MAX(LEN(A$)-1,LEN(STR(B$)))+A+2
0010 X=A+(-B*C/D)
0010 X=AR$.Amount*’Calculate-Discount(Customer_Number)

:0010 LET M=4
:0020 PRINT M
:RUN
4

:0010 W=10: P=15
:0020 J,K,L=W*(P/3)^2
:0030 PRINT J,K,L
:RUN
250 250 250

Compatibility Issues:
Due to the use of a different algorithm, results of functions used in a LET statement may
differ from functions evaluated on a Wang 2200. In general, however, the functions are
accurate to 13 significant digits.

References:

LET Numeric Assignment LANGUAGE STATEMENTS

2 - 276 NPL Statements Guide

LET Numeric Field Assignment

Discussion:
Assignment statements permit the left-hand side to be a numeric field reference if the
right-hand side is a numeric expression.

Multiple receivers on the left-hand side are not permitted.

Examples:

0010 PayrollRecord$.Federal_Withholding=Gross*Rate
0010 InputScreenHeader$.Cursor_Position_Row=0
0010 Employee_Record$.<Deduction_Name$>=0
0010 Employee_Record$.Miscellaneous_Deductions(I)=Transaction_Misc(I)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
RECORD
FIELD

General Form:

[LET] alpha-variable.{field-identifier }[(sub1[,sub2])]=num-exp
 {<alpha-variable> }

LANGUAGE STATEMENTS LET Numeric Field Assignment

NPL Statements Guide 2 - 277

LGT Function

Discussion:
The LGT function is used to derive the common base 10 logarithm of a numeric-expres-
sion greater than 0. This is valid wherever a numeric-expression is legal.

Examples:
:0010 B3=500
:0020 A=LGT(B3+9)
:0030 PRINT A
:RUN
2.7067177823368

:0010 C=1000+LGT(2000)
:0020 PRINT C
:RUN
1003.30102999566

Compatibility Issues:
Due to the use of different algorithms, results of this function may differ from the Wang
2200. In general, however, the function is accurate to 13 significant digits.

References:

General Form:

LGT (numeric-expression)

LGT Function LANGUAGE STATEMENTS

2 - 278 NPL Statements Guide

LIMITS

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

General Form:

 Form 1:

LIMITS T [device-address,] file-name, start, end
 [file-number,]
 [<address-var>,]

[,[used] [,status]]

 Form 2:

LIMITS T [file-number,] start, end, current

Where:

start = numeric-receiver which will receive the starting sector
address.

end = numeric-receiver which will receive the ending sector
address.

used = numeric-receiver which will receive the number of sec-
tors used.

status = numeric-receiver which will receive the current status
of the file.

current = numeric-receiver which will receive the current sector
address.

LANGUAGE STATEMENTS LIMITS

NPL Statements Guide 2 - 279

LIMITS (cont.)

Discussion:
The LIMITS statement is used to obtain sector address information about a cataloged file.
There are two forms of the LIMITS statement. Using Form 1, the file-name is specified
and access is made to the catalog to determine the requested information. Using Form 2,
the file-name is not specified and information is retrieved from the specified device slot
in the Internal Device Table.

Form 1

Form 1 of the LIMITS statement is used to determine the starting sector, ending sector,
number of sectors used, and the status for the specified file-name. The used parameter, if
specified, is obtained from the trailer sector of the specified file. Refer to Section 7.3.7 of
the Programmer’s Guide for details on the trailer sector. If a variable is not specified for
the status and the file-name does not exist, an error occurs when the LIMITS statement is
executed.

The status codes are:

-2 Scratched data file

-1 Scratched program file

0 File not found

1 Program file

2 Data file

Form 2

Form 2 of the LIMITS statement looks for the specified file-number in the Internal De-
vice Table, returning the starting, ending, and current sector addresses for that file-num-
ber. If file-number is not specified, the default slot (#0) is used. If the file number has not
been opened (using DATA LOAD DC OPEN or DATA SAVE DC OPEN), zeros are re-
turned for all values.

LIMITS LANGUAGE STATEMENTS

2 - 280 NPL Statements Guide

LIMITS (cont.)

Examples:
0010 LIMITS T/D10,"EMPLOYEE",A,B
0010 LIMITS T#X,A$,Q1,Q2,Q3
0010 LIMITS T#6,STR(N$,5,8),S,E,U,R
0010 LIMITS T/D30,X$(3,4),R1,R2,R3,R4
0010 LIMITS T#2,"PAYROLL",P,P(1),P(2),P(3)
0010 LIMITS T#8,S,E,C
0010 LIMITS T<A$>,S,E,C
0010 LIMITS T A,B,C

Compatibility Issues:
The LIMITS statement has been extended in NPL as follows:

1. The diskimage address for Form 1 may be an arbitrary /xxx address (the address need
not be established in an internal device table slot using a previous SELECT state-
ment).

2. The "used" variable need not be specified. If the "used" parameter is not requested,
the LIMITS statement executes faster, since substantially less head movement of the
disk is required.

3. If the "used" variable is the same as the "type" variable, the statement is executed as
though the "used" variable was not specified.

4. Previous versions of NPL allowed the syntax:

LIMITS T [device-address,]file-number,start,end, [used][,status]
 [file-number,]

The trailing comma is no longer supported.

5. Use of the address-var parameter is supported only on NPL Revision 3.0 or greater
and is not supported on the Wang 2200.

References:
DATA LOAD DC OPEN
DATA SAVE DC OPEN
Internal Device Table - Section 7.2.3 of the Programmer’s Guide
Disk Devices - Section 7.2 of the Programmer’s Guide

LANGUAGE STATEMENTS LIMITS

NPL Statements Guide 2 - 281

LIMITS INDEX

NOTE: The use of this statement is not recommended. Refer to Niakwa Data Manager as a
better alternative.

Discussion:
The LIMITS INDEX statement reads the index sector of the specified diskimage and re-
turns the number of index sectors, current end (+ 1), end catalog (+ 1), and hash type val-
ues into the specified numeric-variables. This permits program inspection of these values
without performing direct access to sector zero and converting the binary values.

LIMITS INDEX respects the EXT clause of the device equivalence definition for the
diskimage. That is, if EXT=Y is not specified, LIMITS INDEX disregards values stored
in bytes 7 and 8 of sector zero when calculating the values to return for CURRENT END
and END CATALOG. Refer to Section 7.3.10 of the Programmer’s Guide for further de-
tails on extended diskimages. Refer to Section 7.3.6 of the Programmer’s Guide for fur-
ther details on the internal structure of sector zero of a diskimage file.

General Form:

LIMITS INDEX T [file-number,] num-var1, num-var2, num-var3,
 [disk-address,] num-var4
 [<address-var>,]

Where:

num-var1 = a numeric-variable that will receive the number of in-
dex sectors of the specified diskimage.

num-var2 = a numeric-variable that will receive the value of the
CURRENT END of the specified diskimage +1.

num-var3 = a numeric-variable that will receive the value of the
END CATALOG of the specified diskimage +1.

num-var4 = a numeric-variable that will receive the hash type of
the specified diskimage. A value of 0 indicates nor-
mal hash type, a value of 1 indicates alternate hash
type as created by SCRATCH DISK ’.

LIMITS INDEX LANGUAGE STATEMENTS

2 - 282 NPL Statements Guide

LIMITS INDEX (cont.)

Typical use of LIMITS INDEX is for determination of the amount of space available in a
diskimage or in determination of the END CATALOG value to specify in a MOVE END
operation or the LS and END CATALOG value to specify in a MOVE operation.

For example:

0010 X=2000 :REM I need a 2000 sector file
0020 LIMITS INDEX T#1,A,B,C,D
0030 IF C-B<X THEN 100 :REM Not enough space - try MOVE END
0040 DATA SAVE DC OPEN T#1,(X)"MYFILE"<

:ERROR GOTO 130
0050 STOP "Successful completion"
0100 MOVE END T#1,=B+X<

:ERROR GOTO 120
0110 GOTO 40 :REM Now I have enough room
0120 REM Can’t do it at all - advise operator
0130 REM Error on DATA SAVE DC OPEN - advise operator

NOTE: LIMITS INDEX assumes that sector zero of the specified diskimage file contains
valid information. No attempt is made to validate the information returned.

Examples:
0010 LIMITS INDEX T/D10,A,B,C,D
0010 LIMITS INDEX T#1,A,X(1),X(2),X(3)

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

LIMITS INDEX is not supported on the Wang 2200.

References:
LIST DC
MOVE
MOVE END
$DEVICE
NPL Diskimages - Section 7.3.6 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS LIMITS INDEX

NPL Statements Guide 2 - 283

LINPUT

Discussion:
LINPUT is used to perform field type entry of an alpha-variable.

Upon execution of the LINPUT statement, the current value of the specified alpha-vari-
able is displayed as a field of a length equal to the length of the alpha-variable with the
cursor appearing at the beginning of the value. If the optional "-" is specified, the con-
tents of the alpha-variable is displayed underlined. At this point, the operator may enter a
new value or EDIT the existing value.

The specified variable in a LINPUT statement serves in place of the EDIT buffer. That is,
all data entry/edit is performed directly on the contents of the alpha-variable.

Pressing the RETURN key terminates the LINPUT operation with the current value of
the field on the screen being stored in the specified alpha-variable.

EDIT Capabilities:
If the "?" parameter is specified, the LINPUT begins in DEFFN Mode as opposed to Edit
mode.

General Form:

LINPUT [literal,] [?] [-]alpha-variable

Where:

literal = optional text to be displayed on the screen.

- = causes contents of alpha-variable to appear underlined
on the screen.

? = causes LINPUT to begin in DEFFN Mode.

LINPUT LANGUAGE STATEMENTS

2 - 284 NPL Statements Guide

LINPUT (cont.)

In DEFFN Mode:

• Program assigned Special Function keys are enabled.

• The cursor appears steady.

• Keypad keys (EAST, WEST, NORTH, SOUTH, INSERT, DELETE) may be
used to manipulate data in the field.

In Edit Mode:

• Program assigned Special Function keys are disabled (except SF’126 and
SF’127).

• All Edit mode Special Function keys are enabled and may be used to manipulate
data in the field (except for LINE INSERT/LINE DELETE).

• The cursor appears blinking.

• Keypad keys (EAST, WEST, NORTH, SOUTH, INSERT, DELETE) may be
used to manipulate data in the field.

• If all data in the field is erased by use of the LINE ERASE key, the initial value
may be recalled by use of the RECALL key.

Refer to Chapter 5 of the Programmer’s Guide for details on EDIT mode capabilities.

In both Edit and DEFFN Mode, cursor movement is limited to the specified length of the
alpha-variable.

Regardless of the initial mode (DEFFN versus Edit), the operator may change modes at
any time during execution of the statement by pressing the EDIT key.

Use of Special Function Keys to Access DEFFN’s:

Special Function keys may be used to access text definition subroutines or executable
subroutines when in DEFFN Mode.

LANGUAGE STATEMENTS LINPUT

NPL Statements Guide 2 - 285

LINPUT (cont.)

If a text definition subroutine is called, the specified text is placed in the alpha-receiver
starting at the current cursor position, the cursor is located at the end of the added text,
and execution of the LINPUT statement continues. If a HEX(0D) is present in the text,
the LINPUT statement is completed as if the RETURN key were pressed.

If an executable subroutine is called, execution of the LINPUT is terminated as if RE-
TURN was pressed, then the subroutine is called. Upon RETURN from the subroutine,
the statement following the LINPUT is executed.

All the functions of the Line Editor are available to allow entry or correction of the LIN-
PUT line. Refer to Section 5.4 of the Programmer’s Guide for details.

In addition, the initial mode of the Line Editor for a LINPUT statement may be set so that
entered data overstrikes or is automatically inserted into the entered line. Also, the opera-
tion of the INSERT key for a LINPUT statement can be set so that it either inserts a sin-
gle space or switches between insert and overstrike modes. These choices for these
options are set using byte 44 of the $OPTIONS system variable. Refer to $OPTIONS for
more details.

NOTE: Attempting to call subroutines which contain parameters is not permitted (an alarm
is sounded and the key is ignored).

Examples:
0010 LINPUT "ENTER THE DISK ADDRESS",B$
0010 LINPUT STR(D$(),1,20)
0010 LINPUT "IS ANSWER CORRECT? ",Q9$
0010 LINPUT -A$
0010 LINPUT "Edit Programmer Name"?-Z$

Compatibility Issues:
In Wang 2200 Basic-2, the maximum length of an alpha-variable used for LINPUT opera-
tions is 480 bytes. In NPL, the maximum length is 512 bytes.

Execution of marked subroutines with parameters during response to LINPUT is sup-
ported by Wang 2200 Basic-2. NPL does not support this feature.

LINPUT LANGUAGE STATEMENTS

2 - 286 NPL Statements Guide

LINPUT (cont.)

References:
INPUT
KEYIN
DEFFN’
DEFFN’
Edit Mode versus DEFFN Mode - Section 5.4 of the Programmer’s Guide

LANGUAGE STATEMENTS LINPUT

NPL Statements Guide 2 - 287

LIST (General Parameters)

Discussion:
This section discusses topics that are common to all forms of the LIST statement. The
documentation for each individual LIST statement refers to this section.

General Parameters for all LIST Statements

LIST output that is directed to the screen is displayed one screen at a time. That is, a page
break is issued to prevent LIST output from rapidly scrolling up the screen. When a page
break is issued, the system halts the list operation and display the message "--MORE--"
in the lower right corner of the screen. Pressing the RETURN key at this prompt contin-
ues the LIST operation. If the page break should occur in the middle of a multi-statement
line, the multi-statement line is broken up at the correct line with the remainder of the
line being displayed after continuing from the page break. The number of lines between
page breaks can be controlled using the current SELECT LINE entry in the Internal De-
vice Table. This page break can be suppressed by specifying the F parameter.

LIST output that is directed to the printer is printed continuously. That is, the system does
not halt between pages. If the S parameter is not specified, output is printed continuously
from one page to the next. If the "S" parameter is specified, a form-feed character is auto-
matically inserted into the output stream based on the SELECT LISTLINE value (default
is 55 lines).

General Form:

LIST [title] [S]
 [F]

Where:

title = an optional descriptive title; may be a literal-string or
alpha-variable.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

LIST (General Parameters) LANGUAGE STATEMENTS

2 - 288 NPL Statements Guide

LIST (General Parameters) (cont.)

When an optional title is specified, the title is listed with two blank lines appearing at the
beginning of the list. If the output is directed to the screen, the title is highlighted (printed
brighter than normal). If output is directed to a printer and the "S" parameter is specified,
the title prints on every page of the listing.

NOTE: When LIST is executed as a program statement on listings directed to the screen,
the "S" parameter is ignored.

Compatibility Issues:
Generation of page breaks when listing to a printer is supported only in NPL revision 3.0
or greater.

This statement is supported only with Release 3.0 or greater.

References:

LANGUAGE STATEMENTS LIST (General Parameters)

NPL Statements Guide 2 - 289

LIST

Discussion:
Refer to LIST general parameters section for details on parameters common to all LIST
statements.

The LIST command produces a listing of the program currently in memory.

General Form:

LIST [title] [S] [D] [([low-line][,[high-line]])]
 [F] [line-number1][,[line-number2]]

Where:

title = an optional descriptive title; may be a literal-
string or alpha-variable.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

D = specifies de-compressed output.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

line-number1 = lowest line-number to list.

line-number2 = highest line-number to list.

LIST LANGUAGE STATEMENTS

2 - 290 NPL Statements Guide

LIST (cont.)

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be referenced using "LIST DT".

The optional "D" parameter causes the LIST output to be displayed in decompressed
form (multi-statement lines are displayed 1 statement per line). In addition to decom-
pressed form, the "D" parameter also displays line-numbers that are referenced at other
points in the program with a "-" designation in front of the line-number. The "D" parame-
ter also affects the listing of special remark statements:

• REM% statements are displayed with a blank line before and after the remark
text. If the list output is displayed to the screen, the remark text is also high-
lighted (printed brighter than normal).

• REM%^ statements are displayed with a blank line before and after the remark
text. If the list output is directed to the printer, a page break is issued before the
text is printed.

The optional line-number range parameters operate as follows:

• If only line-number1 is specified, only that specific program line is listed.

• If line-number1, (comma) is specified, all program lines starting at line-number1
are listed in ascending sequence.

• If ,(comma)line-number2 is specified, all program lines starting at the lowest AS-
CII sequence up to and including line-number2 are listed.

• If line-number1,line-number2 is specified, all program lines within the range of
line-number1 to line-number2 inclusive are listed.

• If no line-numbers are specified, the entire program in memory is listed.

The optional low/high range parameters are used to specify the range of lines accessed
for determining whether or not to place a "-" before a line number listed when the "D" pa-
rameter is used. The "-" indicates that the line-number is referenced at other points in the
program within the specified low/high range. These operate as follows:

LANGUAGE STATEMENTS LIST

NPL Statements Guide 2 - 291

LIST (cont.)

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

• If no line-numbers are specified, the entire program in memory is accessed.

LIST performs no operation on the non-interpretive form of the RunTime Program.

Examples:
:LIST
:LISTD
:LISTD(0,100)
:LIST 2000,3000
:LISTD(0,100)2000,3000

:LIST
0010 FOR I=1 TO 10: PRINT I: NEXT I
0020 PRINT "THIS IS A TEST": J$="XYZ"
0030 A=1: B=2: C=3: PRINT A,B,C,J$
0040 GOSUB 200
0050 IF Q(1)=1 THEN 20
1000 DEFFN’15 "LISTDT";HEX(0D)
1010 DEFFN’16 "LISTSD";HEX(0D)

LIST LANGUAGE STATEMENTS

2 - 292 NPL Statements Guide

LIST (cont.)

:LISTD
 0010 FOR I=1 TO 10

: PRINT I
: NEXT I

 0020 PRINT "THIS IS A TEST"
 : J$="XYZ"

 0030 A=1
: B=2
: C=3
: PRINT A,B,C,J$

 0040 GOSUB 200
 0050 IF Q(1)=1 THEN 20
 1000 DEFFN’15 "LISTDT";HEX(0D)
 1010 DEFFN’16 "LISTSD";HEX(0D)

:LIST"Lines 20 through 30"D20,30

Lines 20 through 30
 0020 PRINT "THIS IS A TEST"

: J$="XYZ"
 0030 A=1

: B=2
: C=3
: PRINT A,B,C,J$

A$=Lines 20 through 30"
:LIST A$ D(20,30)20,30
Lines 20 through 30
 0020 PRINT "THIS IS A TEST"

: J$="XYZ"
 0030 A=1

: B=2
: C=3

:PRINT A,B,C,J$

NOTE: The "D" parameter causes the output to be displayed in decompressed format with
line-numbers referenced within the low-line,high-line range displayed with the "-"
designation.

LANGUAGE STATEMENTS LIST

NPL Statements Guide 2 - 293

LIST (cont.)

:0010 GOTO 20: GOTO 30
:0015 GOTO 25
:0020 GOTO 30
:0025 GOTO 10
:0030 GOTO 20
:LISTD

-0010 GOTO 20

 : GOTO 30

 0015 GOTO 25

-0020 GOTO 30

-0025 GOTO 10

-0030 GOTO 20

:LISTD(10,10)

0010 GOTO 20

 : GOTO 30

0015 GOTO 25

-0020 GOTO 30

 0025 GOTO 10

-0030 GOTO 20

NOTE: With the low-line,high-line range of 10,10, LISTD places a "-" only at lines 20 and
30 which are the only lines referenced in the range 10,10.

Compatibility Issues:
LIST is supported on NPL Revisions 2.00 and greater.

The "F" parameter is not supported in Wang 2200 Basic-2.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

References:
Inspection of Program Text - Section 6.5 of the Programmer’s Guide

LIST LANGUAGE STATEMENTS

2 - 294 NPL Statements Guide

LIST #

Discussion:
The LIST # command produces a cross-reference listing of all references to specific line-
numbers within the specified range of lines of the program in memory.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional line-number range parameters operate as follows:

General Form:

LIST [title] [S] #[*] [([low-line][,[high-line]])]
 [F]

 [line-number1][,[line-number2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program line as opposed to just line-number.

line-number1 = low range of line-numbers to be cross-referenced.

line-number2 = high range of line-numbers to be cross-referenced

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

LANGUAGE STATEMENTS LIST #

NPL Statements Guide 2 - 295

LIST # (cont.)

• If only line-number1 is specified, a cross-reference is performed only on that spe-
cific line-number.

• If line-number1, (comma) is specified, all line-numbers starting at line-number1
are cross-referenced in ascending ASCII sequence.

• If ,(comma)line-number2 is specified, all line-numbers starting at the lowest AS-
CII sequence up to and including line-number2 are cross-referenced.

• If line-number1,line-number2 is specified, all line-numbers within the range of
line-number1 to line-number2 inclusive are cross-referenced.

• If no line-numbers are specified, a cross-reference is performed on all line-num-
ber references.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

• If no line-numbers are specified, all program text for the current list module is ac-
cessed.

If a line-number is referenced by 1 or more statements within the low/high range, but is
not present in the program range being listed, the line-number are listed in the cross-refer-
ence with a "?" in front of the line-number.

LIST # LANGUAGE STATEMENTS

2 - 296 NPL Statements Guide

LIST # (cont.)

The default format for the LIST # command lists only the cross-referenced line-numbers.
Specifying the "*" parameter displays the statement on the line where the line number
was referenced. In addition, a number of colons (":") precede the statement to indicate
how many statements precede the referenced statement.

NOTE: This clause will change for each LIST statement noted.

LIST # performs no operation on the non-interpretive form of the RunTime program.

Examples:
:LIST #
:LIST # 60,
:LIST "Referenced Program lines through line 100"# * ,100
:LIST # 50,150
:LIST # * 1000,
:LIST # (0,2000)50,150
:LIST # (8000,)
:LIST # *(100,),200
2000 REM
 : REM SAMPLE PROGRAM
 : REM
2010 GOSUB ’100 : REM open data file
2020 GOSUB ’101 : REM read a record
2030 IF END THEN 2100 : REM quit if end of file
2040 IF F$="X" THEN R1=R1+1
 : ELSE R2=R2+1 : REM update R1 or R2 record
 count
2050 A=MIN(A,F2,F9*2) : REM compute min of fields F2,F9
2060 B=MAX(B,F3,F8) : REM compute max of F3 and F8
2070 F2,F3,F8,F9=0 : REM reset data values
2080 GOSUB ’102 : REM update data record
2090 GOTO 2020 : REM iterate until eof
2100 GOSUB ’103 : REM close file
2105 PRINT "MIN OF F2,F9 IS",A : REM display results
2110 PRINT "MAX OF F3,F8 IS",B
2120 STOP
2130 DEFFN’100 : RETURN : REM This subr opens a file
2140 DEFFN’101 : RETURN : REM this subr reads a record
2150 DEFFN’102 : RETURN : REM this subr writes a record
2160 DEFFN’103 : RETURN : REM this subr closes a file
:LIST #
 2020 - 2090
 2100 - 2030

:LIST # *
2020
2090 GOTO 2020
2100
2030 IF END THEN 2100

:LIST #(0,2050)
2020 - 2090

LANGUAGE STATEMENTS LIST #

NPL Statements Guide 2 - 297

LIST # (cont.)
:LIST
:0010 GOTO 20: GOTO 30
:0020 GOTO 30
:0025 GOTO 10
:0030 GOTO 20

:LIST #
0010 - 0025
0020 - 0010 0030
0030 - 0010 0020

:LIST#(20,30)

 0010 - 0025
 0020 - 0030
 0030 - 0020

:LIST#(20,30)20,30

 0020 - 0030
 0030 - 0020

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST # is supported on NPL Revisions 2.00 and greater.

In Wang 2200 Basic-2, if a line-number is referenced more than once from a program
line (multi-statement line), only 1 reference for the program line appears in the LIST #
output. In NPL, a reference is made for each reference in the program line.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

Prior to NPL Release IV, the "*" option would display all statements on the line contain-
ing the reference.

References:
LIST DT
MODULE
Inspection of Program Text - Section 6.5 of the Programmer’s Guide

LIST # LANGUAGE STATEMENTS

2 - 298 NPL Statements Guide

LIST ’

Discussion:
The LIST’ command produces a cross-reference listing of all references in a program to
DEFFN’ subroutines using GOSUB’ statements.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

Refer to LIST Statement for details on general parameters for all LIST statements.

LIST’ statements are extended to include named DEFFN routines.

General Form:

LIST [title] [S] ’[*] [([low-line][,[high-line]])]
 [F]

 [deffn-1][,[deffn-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program line as opposed to just line-number.

deffn-1 = low range of subroutines to be displayed.

deffn-2 = high range of subroutines to be displayed.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

LANGUAGE STATEMENTS LIST ’

NPL Statements Guide 2 - 299

LIST ’ (cont.)

NOTE: In ranges of DEFFN’ names, numbered DEFFIN’s sort numerically but named
DEFFIN’s sort lexicographically (all numbers appear before any names).

For example:

’2 appears before ’12 <- numerical
’9999 appears before ’65535
’Aardvark appears before ’Zebra
’f10000 appears before ’f9 <-lexical

A LIST’ range that ends at 65535 is equivalent to ’all ranges after start value’. It is not
possible to specify a range that ends exactly at 65535.

The optional range parameters (deffn-1,deffn-2) operate as follows:

• If only deffn-1 is specified, a cross-reference is performed only on that specific
marked subroutine.

• If deffn-1, (comma) is specified, all marked subroutines starting at deffn-1 are
cross-referenced in ascending ASCII sequence.

• If ,(comma)deffn-2 is specified, all marked subroutines, starting at the lowest AS-
CII sequence up to and including deffn-2, are cross-referenced.

• If deffn-1,deffn-2 is specified, all marked subroutines within the range of deffn-1
to deffn-2, inclusive, are cross-referenced.

• If no deffn range parameters are specified, a cross-reference is performed on all
marked subroutines.

The optional low/high range parameters are used to specify the range of lines accessed
from which references (GOSUB ’) and definitions (DEFFN ’) are displayed. These oper-
ate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

LIST ’ LANGUAGE STATEMENTS

2 - 300 NPL Statements Guide

LIST ’ (cont.)

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence, up to and including high-line, are accessed.

• If low-line,high-line is specified, all program lines within the range of low-line to
high-line, inclusive, are accessed.

• If no line-numbers are specified, the entire program in the current list module is
accessed.

In addition to listing subroutines defined by DEFFN ’, LIST ’ also lists subroutines de-
fined by external subroutines. DEFFN ’s defined in external subroutines are always dis-
played by LIST ’, regardless of any low-line, high-line range specified.

NOTE: Unless the rtpdef next number field is defined in the external routines, LIST ’ may
respond slowly the first time executed when external subroutines are loaded. Refer
to the NPL External Subroutine Development Kit documentation for further details
on external subroutines.

If a DEFFN’ subroutine is called by one or more GOSUB’ statements but is not defined
in the low-line, high-line range being accessed, the subroutine is cross-referenced with
the line-number displayed as ("????").

LIST ’ performs no operation on the non-interpretive form of the RunTime program.

Specifying the "*" parameter displays the statement on the line where the DEEFN’ sub-
routine was referenced. In addition, a number of colons ":" precede the statement to indi-
cate how many statements precede the referenced statement.

Examples:
:LIST’
:LIST’10,31
:LIST"SUBROUTINES"’ *
:LIST"Subroutine ’31"’ 31
:LIST ’(100,200)
:LIST ’(2000,)10,31
:LIST ’ *(,4000)24,

2000 REM
 : REM SAMPLE PROGRAM
 : REM
2010 GOSUB ’fileOpen : REM open data file
2020 GOSUB ’101 : REM read a record
2030 IF END THEN 2100 : REM quit if end of file

LANGUAGE STATEMENTS LIST ’

NPL Statements Guide 2 - 301

LIST ’ (cont.)
2040 IF F$="X" THEN R1=R1+1
 : ELSE R2=R2+1: REM update R1 or R1 rcd
. counter
2050 A=MIN(A,F2,F9*2) : REM compute min of fields F2,F9
2060 B=MAX(B,F3,F8) : REM compute max of F3 and F8
2070 F2,F3,F8,F9=0 : REM reset data values
2080 GOSUB ’102 : REM update data record
2090 GOTO 2020 : REM iterate until eof
2100 GOSUB ’103 : REM close file
2105 PRINT "MIN OF F2,F9 IS",A : REM display results
2110 PRINT "MAX OF F3,F8 IS",B
2120 STOP
2130 DEFFN’fileOpen : RETURN : REM This subr opens a file
2140 DEFFN’101 : RETURN : REM this subr reads a record
2150 DEFFN’102 : RETURN : REM this subr writes a record
2160 DEFFN’103 : RETURN : REM this subr closes a file

:LIST ’
2130 DEFFN’fileOpen
 - 2010
2140 DEFFN’101
 - 2020
2150 DEFFN’102
 - 2080
2160 DEFFN’103
 - 2100
:LIST ’(2100,)

2130 DEFFN’fileOpen
2140 DEFFN’101
2150 DEFFN’102
2160 DEFFN’103
 - 2100

:LIST ’(2100,)102,
2150 DEFFN’102
2160 DEFFN’103
 - 2100

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST ’ is supported on NPL Revisions 2.00 and greater.

Wang 2200 Basic-2 does not support the use of range parameters with LIST ’ output.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

Prior to NPL Release IV, the "*" option would display all statements on the line contain-
ing the reference.

LIST ’ LANGUAGE STATEMENTS

2 - 302 NPL Statements Guide

LIST ’ (cont.)

References:
DEFFN’
GOSUB’
LIST DT
Inspection of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST ’

NPL Statements Guide 2 - 303

LIST DC

Discussion:
The LIST DC format of the LIST command produces a listing of files in the diskimage
file specified by the device-address.

General Form:

LIST [title] [S] DC T[device-address,][restrict[,restrict]...][W]
 [F] [file-number,]

 [<address-var>,]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

restrict = {[FILE rel-op] alpha-mask }
{ TYPE rel-op alpha-mask }
{ START rel-op numeric-expression }
{ END rel-op numeric-expression }
{ USED rel-op numeric-expression }
{ FREE rel-op numeric-expression }
{ DATE rel-op alpha-mask }
{ TIME rel-op alpha-mask }

W = Specifies that output from LIST DC should consist
only of the names of the files selected displayed
across the screen.

rel-op = relational operator {<,=,>,<=,>=,<>}.

alpha-mask = alpha-variable or alpha-literal.

LIST DC LANGUAGE STATEMENTS

2 - 304 NPL Statements Guide

LIST DC (cont.)

Any diskimage file currently defined in the device equivalence table can be specified in
the LIST DC command using the device address parameter. If no device address is speci-
fied, the diskimage address currently defined as the default diskimage (#0) in the Internal
Device Table is assumed.

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

The listing is comprised of:

General information about the diskimage:

• Device Equivalence

• Number of Index Sectors

• End Catalog

• Current End

Information about each specified cataloged file on the disk (refer below for specifica-
tion methods):

File name
File Type Scratched or Not, Program or Data

Start Sector (Beginning sector address of the file)
End Sector (Ending sector address of the file)

Sectors Used (Number of sectors occupied by file)
Sectors Free (Number of unused sectors in the file)
Date Stamp (Date the file was last modified)
Time Stamp (Time the file was last modified)

LANGUAGE STATEMENTS LIST DC

NPL Statements Guide 2 - 305

LIST DC (cont.)

Refer to Section 7.3.6 of the Programmer’s Guide, (Internal Structure of Diskimages) for
additional details about these parameters.

Specifying Files
The LIST DC command allows restriction of the file listing by specification of key words
related to information about the file, followed by a relational operator, followed by a
mask. As the catalog index is read, file parameters are matched against the specified
mask as required by the relational operator. Only files meeting the specified requirements
are listed. Multiple restrictions may be specified, in which case only files meeting all re-
quirements are listed.

For keywords which represent alpha data, the mask must be a literal or alpha-variable.
For keywords which represent numeric data the mask must be a valid numeric expression
of which the integer portion is used.

For alpha masks, standard wildcard usage is supported. That is, a "?" in any position
matches any character in that position. An "*" indicates that any characters from the posi-
tion of the asterisk to the end of the field match.

The key words available for file specification are:

FILE Eight-byte alpha
TYPE Two-byte alpha. Byte 1 is "S" if the file is scratched; blank if not

scratched. Byte 2 is "P" for program files; "D" for data files.
START Numeric

END Numeric
USED Numeric
FREE Numeric
DATE Eight-byte alpha in the format yy/mm/dd
TIME Eight-byte alpha in the format hh:mm:ss

LIST DC LANGUAGE STATEMENTS

2 - 306 NPL Statements Guide

LIST DC (cont.)

NOTE: If no keyword is specified, the key word FILE and the relational operator "=" are
assumed.

LIST DC performs no operation on the non-interpretive form of the RunTime program.

As of Revision 3.0 of NPL, the file name, file type, and file status (scratched or not
scratched) are stored in the file trailer sector as well as the file index. LISTDCT checks
this information and displays a "?" at the end of each file name line where the informa-
tion in the trailer sector does not exist or does not match the index. This "?" is not dis-
played if the "W" option is specified.

NOTE: File trailer information can be established by use of a MOVE (form 1) statement.

Examples:
:LIST DC T/D32,
$DEVICE(/D32) ="/BASIC2C/PROGS.BS2"
INDEX SECTORS = 10
END SECTORS = 265
CURRENT END = 265

FILE TYPE START END USED FREE DATE TIME
2CCOPY P 89 176 62 26 86/06/01 04:10:31
2CRCVR P 177 265 72 17 86/05/30 08:59:01 ?
2CBCKP P 10 88 62 17 86/06/04 15:21:54

NOTE: The question mark at the end of the file name line, if present, indicates that file-
name, type, and status contained in the trailer does not match that contained in the
index.

:LIST DC T/D32,W
$DEVICE(/D32) ="/BASIC2C/PROGS.BS2"
INDEX SECTORS = 10
END SECTORS = 265
CURRENT END = 265

2CCOPY 2CRCVR 2CBCKP

:SELECT #1 D32 would produce the same listing as
:LIST DCT#1 LIST DCT/D32 in previous example.

:A$="D32" would produce the same listing as
:LIST DCT<A$> LIST DCT/D32 in previous example.

:LIST DCT "AR*" lists all files beginning with AR
(default key word and relational operator
if none specified is "FILE =").

LANGUAGE STATEMENTS LIST DC

NPL Statements Guide 2 - 307

LIST DC (cont.)
:LIST DCT "AR*",DATE>="86/01/01" Lists all files with a name

starting with "AR" and a date
 stamp of January 1, 1986 or later.

:LIST DCT TYPE = "?P" List all programs, scratched and active.

:LIST DCT TYPE = "SP" List all scratched programs.

:LIST DCT TYPE = " P", DATE="86/09/30", START>=5000

 List all active (non-scratched) programs
with a date stamp of Sept. 30, 1986 which
start at sector 5000 or higher on the diskimage.

:LIST DCT "?? ’*" Lists all files with a space in 3rd
position, and an apostrophe in the 4th
position (default condition if none
specified is "FILE =").

:LIST DCT TYPE="S?" Lists all scratched files.

:LIST DCT FREE >0 Lists files with non-zero free space.

:LIST DCT START>=3000 Lists all files which start at or
 after sector 3000.

Compatibility Issues:
Wang Basic-2 supports a method of file selection similar to NPL. However, the Wang
syntax is different than NPL and is not fully supported. In addition, the Wang Basic-2 im-
plementation is limited to the use of a filename mask and specification of a specific file
type.

LIST DC is supported on NPL Revision 2.00 and greater.

The optional W parameter is supported on NPL Revision 3.0 or greater.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:
Inspection/Modification of Environment - Section 6.6 of the Programmer’s Guide

LIST DC LANGUAGE STATEMENTS

2 - 308 NPL Statements Guide

LIST DIM

Discussion:
The LIST DIM command displays the list of variables currently defined in memory
within the specified range of variables in alphabetical order.

Variables displayed are those which can be referenced from the current context (execut-
ing module and function).

General Form:

LIST [title] [S] DIM [*] [var1][,[var2]]
 [F]

Where:

title = an optional descriptive title; must be a literal-string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = causes the contents of variables in the specified range
to be displayed.

var1 = low variable in range to be displayed.

var2 = high variable in range to be displayed.

LANGUAGE STATEMENTS LIST DIM

NPL Statements Guide 2 - 309

 LIST DIM (cont.)

The information displayed for each variable is:

• An indicator of each variable’s allocation status as:

DIM Module private non-common static variables
COM Module private common static variables

DIM /RECURSIVE Function private recursive variables and by-value parameters
DIM /STATIC Function private static variables
DIM /PUBLIC Public variables

/POINTER Function private by-reference parameters

• If the variable is a FIELD or RECORD identifier, a keyword indicating this is dis-
played

• The variable name

• Current array dimension (if array-variable)

• Element length (if alpha-variable)

• For Function private by-reference (/POINTER) parameters, the name of the vari-
able to which parameter references is displayed, if this can be determined.

• Optionally, by specifying the [*] parameter, the element value is displayed: if a
numeric-variable, the numeric value is displayed; if an alpha-variable, the string
value is displayed in both ASCII (in quotes) and HEX() representation. If a string
value is longer than 16 bytes, the value is displayed on multiple lines, with the
starting STR() index of each part at the beginning of each line. Non-displayable
HEX codes which do not have printable character representations are displayed
in string value as ".". If the variable is a FIELD identifier, the values of the
#FIELDSTART, #FIELDLENGTH and $FIELDFORMAT functions are dis-
played. If the variable is a RECORD identifier, the value of the #RE-
CORDLENGTH function is displayed.

Refer to LIST General Parameters section for details on parameters common to all LIST
statements.

LIST DIM LANGUAGE STATEMENTS

2 - 310 NPL Statements Guide

LIST DIM (cont.)

The optional variable range parameters operate as follows:

• If only var1 is specified, LIST DIM output for only that specific variable is gener-
ated.

• If var1, (comma) is specified, LIST DIM output for variables starting with var1
in ascending ASCII sequence is generated.

• If ,(comma)var2 is specified, LIST DIM output for variables starting at the low-
est ASCII sequence up to and including var2 is generated.

• If var1,var2 is specified, LIST DIM output for variables within the range of var1
to var2 inclusive is generated.

• If no variable range parameters are specified, LIST DIM output is generated for
all variables currently defined in memory.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in var1 and var2, only variables of that type are listed.

Array variables are specified in a LIST DIM statement using a special syntax. The array
designator is specified followed by an open parenthesis "(". For example, the arrays S$()
and N() would be specified by:

0010 LIST DIM S$(, N(

LIST DIM displays all variables defined in memory, even if not referenced in the current
program text. However, if the program has not yet been resolved, variables referenced in
the program text may not be defined yet. Refer to LIST V for a cross-reference of vari-
ables referenced in the program text.

LIST DIM performs no operation when executed by the non-interpretive form of the Run-
Time Program.

Some of the uses of the LIST DIM command are:

• Generate a quick dump of variables during program debugging.

• Generate diagnostic information from end-user with application problems.

LANGUAGE STATEMENTS LIST DIM

NPL Statements Guide 2 - 311

LIST DIM (cont.)

• Display current dimensions of variables which have been redimensioned using
the MAT REDIM statement.

• Display current variable status, whether common or non-common variable is in
use.

Examples:
:LIST DIM A$,S$(
:LIST DIM F$,L$
:LIST DIM * A,D

:0009 COM C$16
:0010 DIM A(10),B$(11)32
:0020 FOR I=1 TO 10
: A(I)=I
: B$(I)="ABC"
: NEXT I
:0030 C$="TEST LIST DIM "
:RUN
:LIST DIM *
DIM A(10)
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5
(6) 6
(7) 7
(8) 8
(9) 9
(10) 10
DIM B$(11)32
(1) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(2) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(3) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(4) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(5) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(6) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(7) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(8) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(9) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(10) "ABC " HEX(4142 4320 2020 2020 2020 2020 2020 2020)
 STR(17) " " HEX(2020 2020 2020 2020 2020 2020 2020 2020)
(11) ALL(" ") ALL(20)
COM C$16
 "TEST LIST DIM " HEX(5445 5354 204C 4953 5420 4449 4D20 2020)
DIM I
 10

LIST DIM LANGUAGE STATEMENTS

2 - 312 NPL Statements Guide

LIST DIM (cont.)

Compatibility Issues:
This statement is supported only with Release 2.0 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:
COM
DIM STATIC
DIM PUBLIC
DIM RECURSIVE
LIST V
LIST STACK DIM Inspection and Modification of Program Logic - Section 6.3 of the
Programmer’s Guide
Inspection and Modification of Variables - Section 6.4 of the Programmer’s Guide
Inspection and Modification of Environment - Section 6.6 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST DIM

NPL Statements Guide 2 - 313

LIST DT

Discussion:
The LIST DT command lists various information about the current NPL environment.
This information consists of:

• Device-addresses associated with current SELECT [R,G,D], ERROR, ROUND,
P (pause), LINE, CI, INPUT, PLOT, TAPE, LOG entries in the Internal Device
Table.

• Device-addresses associated with current SELECT PRINT, LIST, CO, and DISK
entries in the Internal Device Table.

• File slot information for any cataloged files open for processing are displayed
with the current disk address information for each file slot entry.

NOTE: If file slots above #15 are defined (by SELECT DISK/FILE NUMBER), the highest
file #slot is displayed even if no address is assigned. Refer to Section 7.2.3 of the Pro-
grammer’s Guide for details on the Internal Device Table.

• Device-addresses and their corresponding native operating system file or device
defined in the Device Equivalence Table as established using $DEVICE state-
ments. Refer to Section 7.2.2 of the Programmer’s Guide for details on the De-
vice Equivalence Table.

General Form:

LIST [title] [S] DT
 [F]

Where:

title = an optional descriptive title; must be a literal-string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

LIST DT LANGUAGE STATEMENTS

2 - 314 NPL Statements Guide

LIST DT (cont.)

• Program load sequence. This lists up to six NPL programs LOADed into memory
since memory was last cleared. If more than six programs have been loaded, the
program names displayed are those of the first program loaded plus the last five
programs loaded.

The $PROGRAM and "Program Load Sequence" information displayed in LIST
DT applies to the current RUN module only, and does not show modules loaded
using INCLUDE statements.

• If the program is halted and can be continued, a line is displayed showing the
name of the Executing Module.

• The module name of the RUN module is displayed. On current releases, this is
always blank.

• The module name of the LIST module is displayed. On current releases, this
shows the current run module’s flag, in the same format as for INCLUDE mod-
ules.

• All modules (except the root module) which are currently loaded display a line in
the format:

INCLUDE T/xxx, "FILENAME" TO "ModuleIdentifier" :status

Here the T/xxx and FILENAME fields identify the device and filename used to initially
load the module, and ModuleIdentifier is the internal module name.

The "status" field shows the current modification state of the module and is one of the fol-
lowing keywords:

LOAD <-- module unchanged since loaded (using INCLUDE)
ERROR <-- was loaded by INCLUDE but could not be resolved
MERGE <-- module overlaid or otherwise modified since load
CLEAR <-- module is clear of program lines
SAVE <-- module unchanged since last saved (in full)

LANGUAGE STATEMENTS LIST DT

NPL Statements Guide 2 - 315

LIST DT (cont.)

The RUN indicator shows that the module is currently resolved (Public functions
may be called either indirectly, or directly, if module is currently INCLUDEd).

The COM indicator shows that the module has defined common (COM) variables,
and, so, is normally not deleted after a RUN, even when no longer referenced by IN-
CLUDE statements.

• TRACE status. This shows the current trace status in effect.

• STEP status. This shows the current STEP status in effect including the STEP #
range for the current LIST module if STEP is on. The name of the current LIST
module in quotes (if not blank) precedes the STEP information.

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

LIST DT performs no operation on the non-interpretive form of the RunTime Program.

Examples:
:LIST DT
SELECT R, ERROR >60, ROUND, P, LINE 24, LISTLINE 55
SELECT CI /001, INPUT /001, PLOT /000, TAPE /000, LOG /000 OFF

SELECT PRINT /005(80), LIST /005(80), CO /005(80)

FILE ADDRESS FILE-NAME START CURRENT END
 * NO OPEN FILES *

$DEVICE(/004) = "/dev/prn"
$DEVICE(/015) = "/dev/prn"
$DEVICE(/010) = "A:"
$DEVICE(/D11) = "platter1.bs2"
$DEVICE(/D12) = "platter2.bs2"
$DEVICE(/020) = "rivexp.bs2"

Program Load Sequence:START
Executing MODULE "rivfact"
RUN MODULE " "
LIST MODULE "rivfact"
INCLUDE T/020, "rivfact " TO "rivfact":MERGE :RUN
TRACE OFF
"rivfact"
STEP OFF

LIST DT LANGUAGE STATEMENTS

2 - 316 NPL Statements Guide

LIST DT (cont.)

Compatibility Issues:
The LIST DT statement is functionally the same in Wang 2200 Basic-2. However the
command has been extended to include the NPL Device Equivalence Table, and in addi-
tion, the format of the output has been modified extensively.

LIST DT is supported on NPL Revisions 2.00 and greater.

Display of SELECT LOG device, SELECT LISTLINE value, TRACE status, and STEP
status are new features implemented in Revision 3.0 of NPL.

Display of RUN MODULE, LIST MODULE and INCLUDEd modules are features im-
plemented in Revision 4.0 of NPL.

References:
$DEVICE
SELECT
STEP
TRACE
Internal Device Table - Section 7.2.3 of the Programmer’s Guide
Device Equivalence Table - Section 7.2.2 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST DT

NPL Statements Guide 2 - 317

LIST FIELD

Discussion:
The LIST FIELD command produces a listing of all FIELDs referenced by the program
in the current LIST module, and on which program lines they are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

The default format for the LIST FIELD command lists line-numbers where the specified
FIELD(s) appears. Specifying the "*" parameter causes the program statement which con-
tains the specified FIELD(s) to be listed in addition to the line #.

General Form:

 LIST [title][S] FIELD[*] [([low-line][,[high-line]])]
 [F]

 [name-1][,[name-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

name-1 = low range of field identifier to be displayed.

name-2 = high range of field identifier to be displayed.

LIST FIELD LANGUAGE STATEMENTS

2 - 318 NPL Statements Guide

LIST FIELD (cont.)

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

• If no line-numbers are specified, the entire program in memory is accessed.

The optional name range parameters operate as follows:

• If only name-1 is specified, LIST FIELD output for only that specific field is gen-
erated.

• If name-1, (comma) is specified, LIST FIELD output for fields starting with
name-1 in ascending ASCII sequence is generated.

 :LIST FIELD (100,200)
 :LIST FIELD(2000,) .Boats$,.Trucks$
 :LIST FIELD * (,4000),.Hats

• If , (comma)name-2 is specified, LIST FIELD output for fields starting at the low-
est ASCII sequence up to and including name-2 is generated.

• If name-1,name-2 is specified, LIST FIELD output for fields within the range of
name-1 to name-2 inclusive is generated.

• If no range parameters are specified, LIST FIELD output is generated for all
fields referenced by the program in the current LIST module.

LANGUAGE STATEMENTS LIST FIELD

NPL Statements Guide 2 - 319

LIST FIELD (cont.)

If exactly 1 type of field (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in name-1 and name-2, only fields of that type are listed. If different field types
are specified, all field types are listed.

Field arrays are specified in a LIST FIELD statement using a special syntax. The array
designator is specified, followed by an open parenthesis "(". For example, the arrays .Ta-
ble$() and .Counters() would be specified by:

0010 LIST FIELD .Counters(,.Table$(

The primary difference between LIST FIELD and LIST STACK DIM is that LIST
FIELD shows only fields referenced by the program in the current LIST module. LIST
STACK DIM displays all fields in memory, in stack order, even if not referenced by the
program in the current LIST module.

LIST FIELD performs no operation (NOP) on the non-interpretive form of the RunTime
Program.

Examples:

:LIST FIELD (100,200)
:LIST FIELD(2000,) .Apples$,.Oranges
:LIST FIELD *(,4000),.Pages
:LIST FIELD
:LIST FIELD .Sticks,.Firewood$
:LIST FIELD * .Sticks,.Firewood$
:LIST FIELD .Units
:LIST FIELD *, .Firewood$

 SAMPLE PROGRAM
0010 RECORD /PUBLIC Area
 : FIELD LeftUpperQuad=HEX(5202)
 : FIELD LeftLowerQuad=HEX(5202)
 : FIELD RightUpperQuad=HEX(5202)
 : FIELD RightLowerQuad=HEX(5202)
 : END RECORD
0020 DIM Buffer$#RECORDLENGTH(Area)
0030 Buffer$.LeftUpperQuad=2.6
0040 Buffer$.LeftLowerQuad=3.8
:

:
:LIST FIELD
.LeftLowerQuad

- 0010 0040
.LeftUpperQuad

- 0010 0030
.RightLowerQuad

- 0010
.RightUpperQuad

- 0010

LIST FIELD LANGUAGE STATEMENTS

2 - 320 NPL Statements Guide

LIST FIELD (cont.)
:LIST FIELD *

.LeftLowerQuad---
-
0010 :: FIELD LeftLowerQuad=HEX(5202)
0040 Buffer$.LeftLowerQuad=3.8

.LeftUpperQuad---
0010 : FIELD LeftUpperQuad=HEX(5202)
0030 Buffer$.LeftUpperQuad=2.6

.RightLowerQuad--
0010 :::: FIELD RightLowerQuad=HEX(5202)

.RightUpperQuad--
0010 ::: FIELD RightUpperQuad=HEX(5202)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
FIELD
RECORD
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST FIELD

NPL Statements Guide 2 - 321

LIST FUNCTION

Discussion:
The LIST FUNCTION produces a listing of all functions referenced by the program in
the current LIST module, and on which program lines they are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

General Form:

 LIST [title][S] FUNCTION[*] [([low-line][,[high-line]])]
 [F]
 [function-identifier1][,[function-identifier2]]

Where:

title = an optional descriptive title; must be a
literal-string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just
line-number.

low-line = lowest line-number for which to show refer-
ences.

high-line = highest line-number for which to show ref-
erences.

function-identifier1 = low range of function to be displayed.

function-identifier2 = high range of function to be displayed.

LIST FUNCTION LANGUAGE STATEMENTS

2 - 322 NPL Statements Guide

LIST FUNCTION (cont.)

The default format for the LIST FUNCTION command lists line-numbers where the
specified function references appear. Specifying the "*" parameter causes the program
statement containing the specified FUNCTION(s) to be listed in addition to the line num-
ber.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

• If only function-identifier1 is specified, LIST FUNCTION output for only that
specific function is generated.

• If function-identifier1, (comma) is specified, LIST FUNCTION output for func-
tions starting with function-identifier2 in ascending ASCII sequence is generated.

 :LIST FUNCTION (100,200)
 :LIST FUNCTION (2000,) ’Get_Status$,.’Current_Status$
 :LIST FUNCTION *(,4000),.’Count_Hats

• If , (comma)function_identifier2 is specified, LIST FUNCTION output for func-
tions starting at the lowest ASCII sequence up to and including function-identi-
fier2 is generated.

• If function-identifier1,function-identifier2 is specified, LIST FUNCTION output
for functions within the range of function-identifier1 to function-identifier2 inclu-
sive is generated.

• If no range parameters are specified, LIST FUNCTION output is generated for
all functions referenced by the program in the current LIST module.

If exactly 1 type of function (numeric-scalar, alpha-scalar) is specified in function-identi-
fier1 and function-identifier2, only functions of that type are listed. If different function
types are specified, all function types are listed.

LANGUAGE STATEMENTS LIST FUNCTION

NPL Statements Guide 2 - 323

LIST FUNCTION (cont.)

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

• If no line-numbers are specified, the entire program in the current LIST module
is accessed.

Examples:

:LIST FUNCTION
:LIST FUNCTION ’Do_it,’Did_it
:LIST FUNCTION * ’Do_it,’Did_it$
:LIST FUNCTION ’Get_Activity,
:LIST FUNCTION *,’Rain_Event

=======================================R 0010 ;SAMPLE ROUTINES
0020 ;MAINLINE
0030 INCLUDE T "FUNCTS"
0040 Y$=’Get_Position$(Z$)
==

==
0010 ;FUNCTS
0100 FUNCTION ’Get_Position$(A$16) /PUBLIC
0110 RETURN (A$)
0120 END FUNCTION
0200 FUNCTION ’Do_It(V)
0210 RETURN (V)
0220 END FUNCTION
==

:RUN
:
:LIST FUNCTION

 ’Get_Position$
 - 0040

LIST FUNCTION LANGUAGE STATEMENTS

2 - 324 NPL Statements Guide

LIST FUNCTION (cont.)

:LIST FUNCTION *

’Get_Position$--
0040 Y$=’Get_Position$(Z$)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
LIST
LIST DT
MODULE
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST FUNCTION

NPL Statements Guide 2 - 325

LIST PROCEDURE

Discussion:
The LIST PROCEDURE command produces a listing of all PROCEDUREs referenced
by the program in the current LIST module, and on which program lines they are refer-
enced.

General Form:

 LIST [title][S] PROCEDURE[*] [([low-line][,[high-line]])]
 [F]
 [procedure-identifier1][,[procedure-identifier2]]

Where:

title = an optional descriptive title; must be a
literal-string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just
line-number.

low-line = lowest line-number for which to show refer-
ences.

high-line = highest line-number for which to show ref-
erences.

procedure-identifier1 = low range of procedure to be displayed.

procedure-identifier2 = high range of procedure to be displayed.

LIST PROCEDURE LANGUAGE STATEMENTS

2 - 326 NPL Statements Guide

LIST PROCEDURE (cont.)

The LIST procedure refers to program text in the current list module. This is set to the
currently executing module whenever a program HALTs or continues, or when changed
using the MODULE command, and can be referenced using LIST DT.

The default format for the LIST PROCEDURE command lists line-numbers where the
specified PROCEDURE(s) appears. Specifying the "*" parameter causes the program
statement containing the specified PROCEDURE(s) to be listed in addition to the line
number..

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

• If only procedure-identifier1 is specified, LIST PROCEDURE output for only
that specific procedure is generated.

• If procedure-identifier1, (comma) is specified, LIST PROCEDURE output for
procedures starting with procedure-identifier2 in ascending ASCII sequence is
generated.

 :LIST PROCEDURE (100,200)
 :LIST PROCEDURE(2000,) ’Get_Status$,.’Current_Status$
 :LIST PROCEDURE *(,4000),.’Count_Hats

• If , (comma)procedure-identifier2 is specified, LIST PROCEDURE output for
procedures starting at the lowest ASCII sequence up to and including procedure-
identifier2 is generated.

• If procedure-identifier1,procedure-identifier2 is specified, LIST PROCEDURE
output for procedures within the range of procedure-identifier1 to procedure-iden-
tifier2 inclusive is generated.

• If no range parameters are specified, LIST PROCEDURE output is generated for
all procedures referenced by the program in the current LIST module.

LANGUAGE STATEMENTS LIST PROCEDURE

NPL Statements Guide 2 - 327

LIST PROCEDURE (cont.)

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

• If no line-numbers are specified, the entire program in the current list module is
accessed.

Examples:

:LIST PROCEDURE
:LIST PROCEDURE ’Did_it,’Do_it
:LIST PROCEDURE * ’Did_it,’Do_it$
:LIST PROCEDURE ’Update_Activity,
:LIST PROCEDURE *,’Rain_Event

0010 ; Mainline
:PROCEDURE ’Set_Position(A$16) /PUBLIC /FORWARD
:PROCEDURE ’Do_It(n) /FORWARD
:DIM n, Z$16
:’Do_it(n)
:’Set_Position(Z$)

0020 END
0030 PROCEDURE ’Set_Position(A$16) /BEGINS

:RETURN
:END PROCEDURE
:PROCEDURE ’DoIt(n) /BEGINS
:RETURN
:END PROCEDURE

:list procedure
’Do_It- 0010 0010 0030
’Set_Position

 - 0010 0010 0030

:list procedure *

’Do_It--
00100 :; PROCEDURE ’Do_It(N) /FORWARD
0010 ::::: ’Do_It(N)
0030 ::: PROCEDURE ’Do_It(N) /BEGINS

LIST PROCEDURE LANGUAGE STATEMENTS

2 - 328 NPL Statements Guide

LIST PROCEDURE (cont.)
’Set_Position---
0010 : PROCEDURE ’Set_Position(A$) /PUBLIC /FORWARD
0010 :::: ’Set_Position(Z$)
0030 PROCEDURE ’Set_Position(A$16) /BEGINS
 LIST PROCEDURE (cont.)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST PROCEDURE

NPL Statements Guide 2 - 329

LIST PUBLIC DEFFN

Discussion:
The LIST PUBLIC DEFFN command produces a listing of all DEFFNs declared by all
currently loaded and resolved PUBLIC sections in the workspace. This allows selection
of new public names which are not in conflict with currently loaded declarations. It also
allows a review of the declared parameter names and types as a reminder when program-
ming.

General Form:

LIST PUBLIC[title][S] DEFFN[*] [([low-line][,[high-line]])]
 [F]
 [DEFFN-identifier1][,[DEFFN-identifier2]]

Where:

title = an optional descriptive title; must be a
literal-string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = l ist program statement as opposed to just
line-number.

low-line = lowest line-number for which to show refer-
ences.

high-line = highest line-number for which to show ref-
erences.

DEFFN-identifier1 = low range of DEFFN to be displayed.

DEFFN-identifier2 = high range of DEFFN to be displayed .

LIST PUBLIC DEFFN LANGUAGE STATEMENTS

2 - 330 NPL Statements Guide

LIST PUBLIC DEFFN (cont.)

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional variable range parameters operate as follows:

• If only DEFFN-identifier1 is specified, LIST PUBLIC DEFFN output for only
that specific DEFFN is generated.

• If DEFFN-identifier1, (comma) is specified, LIST PUBLIC DEFFN output for
DEFFNs starting starting with DEFFN-identifier1 in ascending ASCII sequence
is generated.

 :LIST PUBLIC DEFFN ’Set_Length, ’Set_Width
 :LIST PUBLIC DEFFN *,’Set_Count

• If , (comma)DEFFN-identifier2 is specified, LIST PUBLIC DEFFN output for
DEFFNs starting at the lowest ASCII sequence up to and including DEFFN-iden-
tifier2 is generated.

• If DEFFN-identifier1,DEFFN-identifier2 are specified, LIST PUBLIC DEFFN
output for variables within the range of DEFFN-identifier1 to DEFFN-identifier2
inclusive is generated.

• If no range parameters are specified, LIST PUBLIC DEFFN output is generated
for all DEFFNs currently loaded and resolved PUBLIC sections in memory.

LANGUAGE STATEMENTS LIST PUBLIC DEFFN

NPL Statements Guide 2 - 331

LIST PUBLIC DEFFN (cont.)

The F, S and * options are all permitted on this LIST statements.

The output of the statement shows the name of the indicated DEFFN, preceded by the
module name in which the DEFFN is declared. If a "*" option is used, additional informa-
tion about the DEFFN also appears in the listing. The extra information printed when the
"*" option is used consists of the statement in which the declaration occurs.

NOTE: This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

No LIST PUBLIC examples should use a line number range.

Examples:

:LIST PUBLIC DEFFN
:LIST PUBLIC DEFFN ’Did_it,’Do_it
:LIST PUBLIC DEFFN * ’Did_it,’Do_it
:LIST PUBLIC DEFFN ’Set_activity,
:LIST PUBLIC DEFFN *,’Rain_Event

==
0010 ;SAMPLE ROUTINES
0020 ;MAINLINE
0025 DIM /PUBLIC A,B
0030 INCLUDE T "DEFFNS"
0040 GOSUB ’Calc_It(X,Y,Z)
==
0010 ;DEFFNS
0020 DEFFN ’Calc_It(A,B,C) /PUBLIC
0030 B=2: C=3: A=B*C+5
0035 PRINT A,B,C; " Values in the DEFFN’"
0040 RETURN
0100 DEFFN ’Nothing(G)
0110 RETURN
==

:RUN
:
:LIST PUBLIC DEFFN

"DEFFNS" DEFFN ’Calc_It

:LIST PUBLIC DEFFN *

"DEFFN" DEFFN ’Calc_It---
0020 DEFFN ’Calc_It(A,B,C)/PUBLIC

LIST PUBLIC DEFFN LANGUAGE STATEMENTS

2 - 332 NPL Statements Guide

LIST PUBLIC DEFFN (cont.)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide
LIST ’

LANGUAGE STATEMENTS LIST PUBLIC DEFFN

NPL Statements Guide 2 - 333

LIST PUBLIC FIELD

Discussion:
The LIST PUBLIC FIELD command produces a listing of all FIELDs declared by all cur-
rently loaded and resolved PUBLIC sections in the workspace. This allows selection of
new public names which are not in conflict with currently loaded declarations.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

General Form:

LIST PUBLIC [title][S] FIELD[*] [([low-line][,[high-line]])]
 [F]

 [name-1][,[name-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

name-1 = low range of field to be displayed.

name-2 = high range of field to be displayed.

LIST PUBLIC FIELD LANGUAGE STATEMENTS

2 - 334 NPL Statements Guide

LIST PUBLIC FIELD (cont.)

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

• If only name-1 is specified, LIST PUBLIC FIELD output for only that specific
field is generated.

• If name-1, (comma) is specified, LIST PUBLIC FIELD output for fields starting
with name-1 in ascending ASCII sequence is generated.

 :LIST PUBLIC FIELD
 :LIST PUBLIC FIELD .Boats$,.Trucks$
 :LIST PUBLIC FIELD *,.Hats

• If , (comma)name-2 is specified, LIST PUBLIC FIELD output for fields starting
at the lowest ASCII sequence up to and including name-2 is generated.

• If name-1,name-2 is specified, LIST PUBLIC FIELD output for fields within the
range of name-1 to name-2 inclusive is generated.

• If no range parameters are specified, LIST PUBLIC FIELD output is generated
for all fields declared by all currently loaded and resolved public sections in the
workspace.

If exactly 1 type of field (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in name-1 and name-2, only fields of that type are listed. If different field types
are specified, all field types are listed.

Field arrays are specified in a LIST PUBLIC FIELD statement using a special syntax.
The array designator is specified, followed by an open parenthesis "(". For example, the
arrays .Table$() and .Counters() would be specified by:

0010 LIST PUBLIC FIELD .Table$(, .Counters(

LIST PUBLIC FIELD performs no operation on the non-interpretive form of the Run-
Time Program.

LANGUAGE STATEMENTS LIST PUBLIC FIELD

NPL Statements Guide 2 - 335

LIST PUBLIC FIELD (cont.)

The F, S and * options are all permitted on this LIST statements. However, specifying a
restricted line range has no effect on the output.

The output of the statement shows the name of the field, preceded by the module name in
which the variable is declared. If a "*" option is used, additional information about the
field also appears in the listing. The extra information field consists of the #FIELD-
START, #FIELDLENGTH and $FIELDFORMAT function values.

NOTE: This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

Examples:

:LIST PUBLIC FIELD .Apples$,.Oranges
:LIST PUBLIC FIELD *,.Pages
:LIST PUBLIC FIELD
:LIST PUBLIC FIELD .Firewood$,.Sticks
:LIST PUBLIC FIELD * .Firewood$,.Sticks,
:LIST PUBLIC FIELD .Units
: LIST PUBLIC FIELD *, .Firewood$

 SAMPLE PROGRAM
0005 INCLUDE T "RECORD"
0010 RECORD /PUBLIC Area
 : FIELD LeftUpperQuad=HEX(5202)
 : FIELD LeftLowerQuad=HEX(5202)
 : FIELD RightUpperQuad=HEX(5202)
 : FIELD RightLowerQuad=HEX(5202)
 : END RECORD

:
: RUN
:
:LIST PUBLIC FIELD
"RECORD" DIM /PUBLIC FIELD .LeftLowerQuad
"RECORD" DIM /PUBLIC FIELD .LeftUpperQuad
"RECORD" DIM /PUBLIC FIELD .RightLowerQuad
"RECORD" DIM /PUBLIC FIELD .RightUpperQuad

LIST PUBLIC FIELD LANGUAGE STATEMENTS

2 - 336 NPL Statements Guide

LIST PUBLIC FIELD (cont.)

:LIST PUBLIC FIELD *

"RECORD" DIM /PUBLIC FIELD .LeftLowerQuad------------------------------
#FIELDSTART()=3 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

"RECORD" DIM /PUBLIC FIELD .LeftUpperQuad------------------------------
#FIELDSTART()=1 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

"RECORD" DIM /PUBLIC FIELD .RightLowerQuad-----------------------------

#FIELDSTART()=7 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

"RECORD" DIM /PUBLIC FIELD .RightLowerQuad-----------------------------

#FIELDSTART()=5 #FIELDLENGTH()=2
$FIELDFORMAT()=HEX(5202)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
LIST RECORD
LIST FIELD
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST PUBLIC FIELD

NPL Statements Guide 2 - 337

LIST PUBLIC FUNCTION

Discussion:
The LIST PUBLIC FUNCTION command produces a listing of all FUNCTIONs de-
clared by all currently loaded and resolved PUBLIC sections in the workspace. This al-
lows selection of new public names which are not in conflict with currently loaded
declarations. It also allows a review of the declared parameter names and types as a re-
minder when programming.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

General Form:

LIST PUBLIC [title][S] FUNCTION[*] [([low-line][,[high-line]])]
 [F]
 [function-identifier1][,[function-identifier2]]

Where:

title = an optional descriptive title; must be a
literal-string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just
line-number.

function-identifier1 = low range of function to be displayed.

function-identifier2 = high range of function to be displayed.

LIST PUBLIC FUNCTION LANGUAGE STATEMENTS

2 - 338 NPL Statements Guide

LIST PUBLIC FUNCTION (cont.)

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional function name range parameters operate as follows:

• If only function-identifier1 is specified, LIST PUBLIC FUNCTION output for
only that specific function is generated.

• If function-identifier1, (comma) is specified, LIST PUBLIC FUNCTION output
for functions starting starting with function-identifier1 in ascending ASCII se-
quence is generated.

 :LIST PUBLIC FUNCTION ’Get_Length$, ’Get_Width$
 :LIST PUBLIC FUNCTION *,’Get_Box_Count

• If , (comma)function-identifier2 is specified, LIST PUBLIC FUNCTION output
for functions starting at the lowest ASCII sequence up to and including function-
identifier2 is generated.

• If function-identifier1,function-identifier2 are specified, LIST PUBLIC FUNC-
TION output for variables within the range of function-identifier1 to function-
identifier2 inclusive is generated.

• If no range parameters are specified, LIST PUBLIC FUNCTION output is gener-
ated for all variables declared by the program currently in memory.

If exactly 1 type of function (numeric-scalar, alpha-scalar) is specified in function-identi-
fier1 and function-identifier2, only functions of that type are listed. If different function
types are specified, all function types are listed.

The F, S and * options are all permitted on this LIST statements.

LANGUAGE STATEMENTS LIST PUBLIC FUNCTION

NPL Statements Guide 2 - 339

LIST PUBLIC FUNCTION (cont.)

The output of the statement shows the name of the indicated variable type, preceded by
the module name in which the function is declared. If a "*" option is used, additional in-
formation about the function also appears in the listing. The extra information consists of
the statement in which the declaration occurs.

NOTE: This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

When a function has both a /FORWARD and a subsequent declaration, only one is dis-
played.

The first declaration (usually /FORWARD) is displayed (including any embedded inline
comments).

Examples:

:LIST PUBLIC FUNCTION
:LIST PUBLIC FUNCTION ,’Did_it,’Do_it
:LIST PUBLIC FUNCTION *’Did_it$, ’Do_it
:LIST PUBLIC FUNCTION ’Get_activity,
:LIST PUBLIC FUNCTION *,’Weather_event

=======================================
0010 ;SAMPLE ROUTINES
0020 ;MAINLINE
0030 INCLUDE T "FUNCTS"
0040 Y$=’Get_Position$(Z$)
==

==
0010 ;FUNCTS
0100 FUNCTION ’Get_Position$
0110 RETURN (A$)
0120 END FUNCTION
0200 FUNCTION ’Do_It(V)
0210 RETURN (V)
0220 END FUNCTION
==

:RUN
:
:LIST PUBLIC FUNCTION

"FUNCTS" ’Get_Position$

:LIST PUBLIC FUNCTION *

"FUNCTS" ’Get_Position$--
0100 FUNCTION ’Get_Position$(A$16)/PUBLIC

LIST PUBLIC FUNCTION LANGUAGE STATEMENTS

2 - 340 NPL Statements Guide

LIST PUBLIC FUNCTION (cont.)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST PUBLIC FUNCTION

NPL Statements Guide 2 - 341

LIST PUBLIC PROCEDURE

Discussion:
The LIST PUBLIC PROCEDURE command produces a listing of all procedures de-
clared by all currently loaded and resolved PUBLIC sections in the workspace. This al-
lows selection of new public names which are not in conflict with currently loaded
declarations. It also allows a review of the declared parameter names and types as a re-
minder when programming.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

General Form:

LIST PROCEDURE[title][S] PROCEDURE[*] [([low-line][,[high-line]])]
 [F]

 [procedure-identifier1][,[procedure-identifier2]]
Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

identifier1 = low range of procedure to be displayed.

identifier2 = high range of procedure to be displayed.

LIST PUBLIC PROCEDURE LANGUAGE STATEMENTS

2 - 342 NPL Statements Guide

LIST PUBLIC PROCEDURE (cont.)

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional variable range parameters operate as follows:

• If only procedure-identifier1 is specified, LIST PUBLIC PROCEDURE output
for only that specific procedure is generated.

• If procedure-identifier1, (comma) is specified, LIST PUBLIC PROCEDURE out-
put for procedures starting starting with procedure-identifier1 in ascending AS-
CII sequence is generated.

 :LIST PUBLIC PROCEDURE ’Set_Length,’Set_Width
 :LIST PUBLIC PROCEDURE *,’Set_Box_Count

• If , (comma)procedure-identifier2 is specified, LIST PUBLIC PROCEDURE out-
put for procedures starting at the lowest ASCII sequence up to and including pro-
cedure-identifier2 is generated.

• If procedure-identifier1,procedure-identifier2 are specified, LIST PUBLIC PRO-
CEDURE output for variables within the range of procedure-identifier1 to proce-
dure-identifier2 inclusive is generated.

• If no range parameters are specified, LIST PUBLIC PROCEDURE output is gen-
erated for all variables declared by the program currently in memory.

The F, S and * options are all permitted on this LIST statement.

The output of the statement shows the name of the indicated procedure type, preceded by
the module name in which the procedure is declared. If a "*" option is used, additional in-
formation about the procedure appears in the listing. The extra information consists of the
statement in which the declaration occurs.

LANGUAGE STATEMENTS LIST PUBLIC PROCEDURE

NPL Statements Guide 2 - 343

LIST PUBLIC PROCEDURE (cont.)

NOTE: This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

When a procedure has both a /FORWARD and a subsequent declaration, only one is dis-
played.

The first declaration (usually /FORWARD) is displayed (including any embedded inline
comments).

Examples:

:LIST PUBLIC PROCEDURE
:LIST PUBLIC PROCEDURE ’Did_it,’Do_it
:LIST PUBLIC PROCEDURE * ’Did_it’Do_it
:LIST PUBLIC PROCEDURE ’Set_Activity,
:LIST PUBLIC PROCEDURE *,’Rain_Event

=======================================
0010 ;SAMPLE ROUTINES
0020 ;MAINLINE
0030 INCLUDE T "PROCS"
0040 ’Set_Position(Z$)
==

==
0010 ;PROCS
0100 PROCEDURE ’Set_Position(A$16) /PUBLIC
0110 RETURN
0120 END PROCEDURE
0200 procedure ’Do_It(V)
0210 RETURN (V)
0220 END PROCEDURE
==

:RUN
:
:LIST PUBLIC PROCEDURE

"PROCS" ’Set_Position

:LIST PUBLIC PROCEDURE *

"PROCS" ’Set_Position---
0100 PROCEDURE ’Set_Position(A$16)/PUBLIC

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide
LIST PROCEDURE

LIST PUBLIC PROCEDURE LANGUAGE STATEMENTS

2 - 344 NPL Statements Guide

LIST PUBLIC RECORD

Discussion:
The LIST PUBLIC RECORD command produces a listing of all RECORD(s) declared
by all currently loaded and resolved PUBLIC sections in the workspace. This allows se-
lection of new public names which are not in conflict with currently loaded declarations.
It also allows a review of the declared names as a reminder when programming.

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

General Form:

LIST PUBLIC[title][S] RECORD[*] [([low-line][,[high-line]])]
 [F]
 [name-1][,name-2]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

name-1 = low range of records to be displayed.

name-2 = high range of records to be displayed.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

LANGUAGE STATEMENTS LIST PUBLIC RECORD

NPL Statements Guide 2 - 345

LIST PUBLIC RECORD (cont.)

A line-number range, if specified, is ignored for all LIST PUBLIC statements.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

• If only name-1 is specified, LIST PUBLIC RECORD output for only that spe-
cific record is generated.

• If name-1, (comma) is specified, LIST PUBLIC RECORD output for records
starting with name-1 in ascending ASCII sequence is generated.

 :LIST PUBLIC RECORD
 :LIST PUBLIC RECORD Employee,Payroll
 :LIST PUBLIC RECORD *,.Hats

• If , (comma)name-2 is specified, LIST PUBLIC RECORD output for records
starting at the lowest ASCII sequence up to and including name-2 is generated.

• If name-1,name-2 is specified, LIST PUBLIC RECORD output for records
within the range of name-1 to name-2 inclusive is generated.

• If no range parameters are specified, LIST PUBLIC RECORD output is gener-
ated for all records declared by all currently loaded and resolved public sections
in the workspace.

LIST PUBLIC RECORD performs no operation (NOP) on the non-interpretive form of
the RunTime Program.

The F, S and * options are all permitted on this LIST statements.

The output of the statement shows the name of the indicated record, preceded by the mod-
ule name in which the variable is declared. If a "*" option is used, additional information
about the record appears in the listing. The extra information consists of the #RE-
CORDLENGTH function value.

LIST PUBLIC RECORD LANGUAGE STATEMENTS

2 - 346 NPL Statements Guide

LIST PUBLIC RECORD (cont.)

NOTE: This public declaration statement is displayed even if the module in which it appears
is scramble-protected.

Examples:

:LIST PUBLIC RECORD Apples,Oranges
:LIST PUBLIC RECORD *,Birds
:LIST PUBLIC RECORD
:LIST PUBLIC RECORD Firewood,Sticks
LIST PUBLIC RECORD * Firewood,Sticks
LIST PUBLIC RECORD Units
 LIST PUBLIC RECORD *, Firewood

MODULE 1
0010 ;MYMAIN
0020 INCLUDE T "RECORD"
0030 DIM Buffer$#RECORDLENGTH(Area)
0040 Buffer$.LeftUpperQuad=3.5

 MODULE 2
0010 RECORD /PUBLIC Area
 : FIELD LeftUpperQuad=HEX(5202)
 : FIELD LeftLowerQuad=HEX(5202)
 : FIELD RightUpperQuad=HEX(5202)
 : FIELD RightLowerQuad=HEX(5202)
 : END RECORD

:
: RUN
:
:LIST PUBLIC RECORD
:"RECORD" DIM /PUBLIC RECORD Area

:LIST PUBLIC RECORD *

"RECORD" DIM /PUBLIC RECORD Area---------------------------------------
#RECORDLENGTH()=8

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
LIST RECORD
LIST FIELD
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST PUBLIC RECORD

NPL Statements Guide 2 - 347

LIST PUBLIC V

Discussion:
The LIST PUBLIC V command produces a listing of all public variables declared by all
currently loaded and resolved PUBLIC sections in the workspace. This allows selection
of new public names which are not in conflict with currently loaded declarations. It also
allows a review of the declared variables and types as a reminder when programming.

General Form:

LIST PUBLIC [title][S] V[*] [([low-line][,[high-line]])]
 [F]

 [variable-1][,[variable-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

variable-1 = low range of variable to be displayed.

variable-2 = high range of variable to be displayed.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

LIST PUBLIC V LANGUAGE STATEMENTS

2 - 348 NPL Statements Guide

LIST PUBLIC V (cont.)

NOTE: The module in which the public section is declared must already be INCLUDEd,
either by a previous program RUN or by an immediate mode "INCLUDE" state-
ment.

A line-number range, if specified, is ignored for all LIST PUBLIC statement.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional name range parameters operate as follows:

• If only variable-1 is specified, LIST PUBLIC V output for only that specific vari-
able is generated.

• If variable-1, (comma) is specified, LIST PUBLIC V output for variables starting
with variable-1 in ascending ASCII sequence is generated.

 :LIST PUBLIC V
 :LIST PUBLIC V Boats$,Trucks$
 :LIST PUBLIC V *,Hats

• If , (comma)variable-2 is specified, LIST PUBLIC V output for variables starting
at the lowest ASCII sequence up to and including variable-2 is generated.

• If variable-1,variable-2 is specified, LIST PUBLIC V output for variables within
the range of variable-1 to variable-2 inclusive is generated.

• If no range parameters are specified, LIST PUBLIC V output is generated for all
variables declared by all currently loaded and resolved public sections in the
workspace.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in variable-1 and variable-2, only variables of that type are listed. If different
variable types are specified, all variables types are listed.

Arrays are specified in a LIST PUBLIC V statement using a special syntax. The array
designator is specified, followed by an open parenthesis "(". For example, the arrays Ta-
ble$() and Counters() would be specified by:

0010 LIST PUBLIC V Table$(, Counters(

LANGUAGE STATEMENTS LIST PUBLIC V

NPL Statements Guide 2 - 349

LIST PUBLIC V (cont.)

LIST PUBLIC V performs no operation (NOP) on the non-interpretive form of the Run-
Time Program.

The F, S and * options are all permitted on this LIST statements.

The output of the statement shows the name of the indicated variable, preceded by the
module name in which the variable is declared. If a "*" option is used, additional informa-
tion about the variable also appears in the listing. The extra information consists of the
current value of the variable.

Examples:

0020 PUBLIC
0030 X,Y,Z$10
0040 END PUBLIC

:LIST PUBLIC V
" " DIM /PUBLIC X
" " DIM /PUBLIC Y
" " DIM /PUBLIC Z$10

:LIST PUBLIC V *
" " DIM /PUBLIC X---
 0
" " DIM /PUBLIC Y---
 0
" " DIM /PUBLIC Z$--
 " " HEX(2020 2020 2020 2020 2020)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LIST PUBLIC V LANGUAGE STATEMENTS

2 - 350 NPL Statements Guide

LIST RECORD

Discussion:
The LIST RECORD command produces a listing of all RECORD(s) declared by the pro-
gram in the current LIST module, and what program lines they are declared on.

General Form:

 LIST [title][S] RECORD[*] [([low-line][,[high-line]])]
 [F]

 [name-1][,[name-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

name-1 = low range of record identifier to be displayed.

name-2 = high range of record identifier to be displayed.

LANGUAGE STATEMENTS LIST RECORD

NPL Statements Guide 2 - 351

LIST RECORD (cont.)

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be declared using LIST DT.

The default format for the LIST RECORD command lists line-numbers where the speci-
fied RECORD(s) appears. Specifying the "*" parameter causes the program statement
which contains the specified RECORD(s) to be listed in addition to the line #.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

• If no line-numbers are specified, the entire program in the current list module is
accessed.

LIST RECORD performs no operation (NOP) on the non-interpretive form of the Run-
Time Program.

The optional name range parameters operate as follows:

• If only name-1 is specified, LIST RECORD output for only that specific RE-
CORD is generated.

• If name-1, (comma) is specified, LIST RECORD output for RECORDS starting
with name-1 in ascending ASCII sequence is generated.

LIST RECORD LANGUAGE STATEMENTS

2 - 352 NPL Statements Guide

LIST RECORD (cont.)

 :LIST RECORD (100,200)
 :LIST RECORD (2000,) Boats,Trucks
 :LIST RECORD *(,4000),Hats

• If , (comma)name-2 is specified, LIST RECORD output for records starting at
the lowest ASCII sequence up to and including name-2 is generated.

• If name-1,name-2 is specified, LIST RECORD output for records within the
range of name-1 to name-2 inclusive is generated.

• If no range parameters are specified, LIST RECORD output is generated for all
records declared by the program in the current LIST module.

Examples:

:LIST RECORD Apples,Oranges
:LIST RECORD *,Birds
:LIST RECORD
:LIST RECORD Firewood,Sticks
LIST RECORD * Firewood,Sticks
LIST RECORD Units
: LIST RECORD *, Firewood

MODULE 1
0010 ;MYMAIN
0020 INCLUDE T "RECORD"
0030 DIM Buffer$#RECORDLENGTH(Area)
0040 Buffer$.LeftUpperQuad=3.5

 MODULE 2
0010 RECORD /PUBLIC Area
 : FIELD LeftUpperQuad=HEX(5202)
 : FIELD LeftLowerQuad=HEX(5202)
 : FIELD RightUpperQuad=HEX(5202)
 : FIELD RightLowerQuad=HEX(5202)
 : END RECORD

:RUN
:
:LIST RECORD
:Area - 0030

:LIST RECORD *

"Area---
0030 DIM Buffer$.#RECORDLENGTH(Area)

Compatibility Issues:
This statement is supported only with Release IV or greater.

LANGUAGE STATEMENTS LIST RECORD

NPL Statements Guide 2 - 353

LIST RECORD (cont.)

References:
LIST PUBLIC RECORD
LIST FIELD
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LIST RECORD LANGUAGE STATEMENTS

2 - 354 NPL Statements Guide

LIST Statement Label References

Discussion:
The LIST statement label references command produces a listing of all statement labels
referenced by the program in the current LIST module, and on which program lines they
are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

General Form:

 LIST [title][S] =[*] [([low-line][,[high-line]])]
 [F]
 [name-1][,[name-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program statement as opposed to just line-num-
ber.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

name-1 = low range of statement-label to be displayed.

name-2 = high range of statement-label to be displayed.

LANGUAGE STATEMENTS LIST Statement Label References

NPL Statements Guide 2 - 355

LIST Statement Label References (cont.)

The default format for the LIST statement label references command lists line-numbers
where the specified statement label reference(s) appears. Specifying the "*" parameter
causes the program statement containing the specified statement label reference(s) to be
listed, in addition to the line number.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line, high-line is specified, all program lines within the range of low-line
to high-line inclusive are accessed.

• If no line-numbers are specified, the entire program in the current LIST module
is accessed.

The optional name range parameters operate as follows:

• If only name-1 is specified, LIST statement label output for only that specific la-
bel is generated.

LIST Statement Label References LANGUAGE STATEMENTS

2 - 356 NPL Statements Guide

LIST Statement Label

• If name-1, (comma) is specified, LIST statement label output for labels starting
with name-1 in ascending ASCII sequence is generated References (cont.)

 :LIST = (100,200)
 :LIST = (2000,)Boats,Trucks
 :LIST = * (,4000),Hats

• If , (comma)name-2 is specified, LIST statement label output for labels starting at
the lowest ASCII sequence up to and including name-2 is generated.

• If name-1,name-2 is specified, LIST statement label output for labels within the
range of name-1 to name-2 inclusive is generated.

• If no range parameters are specified, LIST statement label output is generated for
all labels referenced by the program in the current LIST module.

Examples:

0010 =RecordCount
 : IF A=20 THEN GOTO Exit
 : A=A+1
 : GOTO RecordCount
 : =Exit
 : B=A+10
0020 END

:LIST =
=Exit - 0010 0010
=RecordCount
 - 0010 0010

:LIST = *
=Exit---
0010 : IF A=20 THEN GOTO Exit
0010 :::: =Exit

=RecordCount--
0010 =RecordCount
0010 ::: GOTO RecordCount

LANGUAGE STATEMENTS LIST Statement Label References

NPL Statements Guide 2 - 357

LIST Statement Label References (cont.)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LIST Statement Label References LANGUAGE STATEMENTS

2 - 358 NPL Statements Guide

LIST STACK

Discussion:
The LIST STACK command produces a listing of all currently active FOR/NEXT loops,
GOSUBs and function calls.

The information provided about the status of active subroutines includes:

• The module, line number and statement which called the subroutine

If the subroutine called is a PROCEDURE or FUNCTION, the name of the called proce-
dure or function follows the statement.

The information provided about the status of active functions includes:

• The module, line number and statement which called the subroutine

If the subroutine called is a PROCEDURE or FUNCTION, the name of the called proce-
dure or function follows the statement.

General Form:

LIST [title] [S] STACK

Where:

title = an optional descriptive title; must be a literal-string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

LANGUAGE STATEMENTS LIST STACK

NPL Statements Guide 2 - 359

LIST STACK (cont.)

The information provided about the status of FOR/NEXT loops includes:

• The line-number in which the loop was initially invoked.

• The name of the index-variable.

• The current value of the index-variable.

• The exit value of the loop is displayed.

• The STEP value of the loop is displayed.

The information provided about the status of active subroutines includes:

• The line-number and statement which called the subroutine.

LIST STACK has also been updated to show the immediate commands that called any
halted functions or initiated pending FOR loops. These will appear as:

(Halted after) ::STOP - statement at which CONTINUE will execute
/IMM PRINT ’Funct(X) - immediate mode statement in progress
’Funct - if procedure/function call, name of function
 called

LIST STACK output is listed in stack order. That is, the FOR/NEXT loop or GOSUB
that was executed first is listed first. The most recent entry in the stack is listed last.

The LIST STACK command can be used to determine how program execution advanced
to a particular point in a program. LIST STACK also displays either where execution of a
CONTINUE RETURN statement would complete or the number of iterations remaining
in a FOR/NEXT loop.

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

LIST STACK LANGUAGE STATEMENTS

2 - 360 NPL Statements Guide

LIST STACK (cont.)

LIST STACK performs no operation on the non-interpretive form of the RunTime Pro-
gram.

Examples:

:
:LIST
0010 ;START
0030 INCLUDE T "rivfact"
0040 INPUT X
0050 PRINT ’factorial(X)
:
:MODULE "rivfact"
:
:list
0010 ; rivfact
0020 FUNCTION ’factorial(Value)/PUBLIC : ; Declare ’Factorial as Pub-
lic Function
0030 DIM Answer : ; This is a recursive variable
0040 IF Value<0 : ; test the trivial case
 : RETURN (0)
 : END IF
0050 IF Value<=1 : l test the second trivial case
 : RETURN(1)
 : END IF
0060 Answer=Value*’factorial(Value-1) : ; Recursively calling itself
0065 STOP
0070 RETURN (Answer)
0080 END FUNCTION
:

Executing the LIST STACK command when Immediate Mode is invoked by the STOP
statement in line 65 of the "rivfact" module (just prior to returning to the calling module)
would yield the following output.

:list stack
0050 PRINT ’factorial(X)
’factorial
"rivfact"0060 Answer=Value*’factorial(Value-1)
’factorial
:

0010 FOR I=1 TO 10
 : LINPUT -A$
 : GOSUB ’100

 : NEXT I
0020 DEFFN’100
 : PRINT A$
 : GOSUB ’110
 : RETURN
0030 DEFFN’110
 : STOP #
 : RETURN

LANGUAGE STATEMENTS LIST STACK

NPL Statements Guide 2 - 361

LIST STACK (cont.)

Executing the LIST STACK command when Immediate Mode is invoked by the STOP
statement in line 0030 (on the first pass-through the loop) would yield the following out-
put:

:LIST STACK
0010 FOR I=1 TO 10

 I=1, TO 10, STEP 1
0010 :: GOSUB ’100
0020 :: GOSUB ’110

Compatibility Issues:
This statement is supported only with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide
Inspection and Modification of Variables - Section 6.4 of the Programmer’s Guide
Inspection and Modification of Environment - Section 6.6 of the Programmer’s Guide

LIST STACK LANGUAGE STATEMENTS

2 - 362 NPL Statements Guide

LIST STACK DIM

Discussion:
The LIST STACK DIM command produces a list of variables currently defined in mem-
ory and in scope at time of execution of LIST STACK DIM within the specified range in
stack order (order of definition).

The information displayed is:

• An indicator of each variables status as common (COM) or non-common (DIM).

• Current array dimension (if array-variable).

• Element length (if alpha-variable).

• Optionally, by specifying the [*] parameter, the element value is displayed:

If numeric-variable, the numeric value is displayed.

If an alpha-variable, the string value is displayed in both ASCII (in quotes)
and HEX() representation. If a string value is longer than 16 bytes, the
value is displayed on multiple lines, with the starting STR() index of each
part at the beginning of the line. Non-displayable HEX codes which do not
have printable character representations are displayed in string value as ".".

General Form:

LIST [title] [S] STACK DIM [*] [var1][,[var2]]
 [F]

Where:

* = causes the contents of the specified variable range to be
displayed.

var1 = low variable in range to be displayed.

var2 = high variable in range to be displayed.

LANGUAGE STATEMENTS LIST STACK DIM

NPL Statements Guide 2 - 363

LIST STACK DIM (cont.)

If the variable is a FIELD identifier, the values of the #FIELDSTART, #FIELDLENGTH
and $FIELDFORMAT functions are displayed. If the variable is a RECORD identifier,
the value of the #RECORDLENGTH function is displayed.

Variables displayed are those which can be declared from the current context (executing
module and function). Recursive variables are preceded by a RECURSIVE keyword,
function private variables by a FUNCTION /STATIC.

The LIST STACK DIM output is listed in stack order. This can be very useful when diag-
nosing variable dimension problems (i.e., common verses non-common variables, COM
and COM CLEAR statements, etc.).

Refer to LIST general parameters section for details on parameters common to all LIST
statements.

The optional range parameters operate as follows:

• If only var1 is specified, LIST STACK DIM output for only that specific variable
is generated.

• If var1, (comma) is specified, LIST STACK DIM output for variables starting
with var1 in stack order is generated.

• If ,(comma)var2 is specified, LIST STACK DIM output for variables starting at
the beginning of the stack up to and including var2 is generated.

• If var1,var2 is specified, LIST STACK DIM output for variables within the range
of var1 to var2 inclusive in the stack is generated.

• If no variable range parameters are specified, LIST STACK DIM output is gener-
ated for all variables currently defined in memory in stack order.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in var1 and var2, only variables of that type are listed.

LIST STACK DIM LANGUAGE STATEMENTS

2 - 364 NPL Statements Guide

LIST STACK DIM (cont.)

Array variables are specified in a LIST STACK DIM statement using a special syntax.
The array designator is specified followed by an open parenthesis "(". For example, the
arrays S$() and N() would be specified by:

0010 LIST STACK DIM S$(, N(

The primary difference between LIST V and LIST STACK DIM is that LIST V shows
only variables declared by the program currently in memory. LIST STACK DIM dis-
plays all variables in memory in stack order even if not declared by the current program.

LIST STACK DIM performs no operation on the non-interpretive form of the RunTime
Program.

Examples:
The following is an example of valid syntax:

:LIST STACK DIM
:LIST STACK DIM *
:LIST STACK DIM * A$(,F$
:LIST STACK DIM I$
:LIST STACK DIM * J$,

The following is a practical example of statement use:

0005 ;RIVEXP02 - Example of simple function
0010 FUNCTION ’myfunc(/POINTER mynum, myvar$32)
0020 myvar$="abcd"
0030 mynum=24
0035 STOP
0040 RETURN (1)
0050 END FUNCTION
1000 A$="xyz": A=87
1010 IF ’myfunc(A,A$)=1 THEN PRINT A,A$: ELSE PRINT "error"

List STACK DIM executed while the STOP of line 35 produces:
:LIST STACK DIM
/POINTER mynum=A
DIM /RECURSIVE myvar$32
DIM A
DIM A$16
:

:0010 COM C$16
:0020 DIM A(10),B$(10)16
:0030 FOR I=1 TO 10
 : A(I)=I
 : B$(I)="ABC"
 : NEXT I
:0040 C$="Test of LIST DIM"
:RUN
:LIST STACK DIM
DIM I

LANGUAGE STATEMENTS LIST STACK DIM

NPL Statements Guide 2 - 365

LIST STACK DIM (cont.)
DIM B$(10)16
DIM A(10)
COM C$16

Compatibility Issues:
This statement is supported only with Release 2.00 or greater.

This statement is not valid in Wang 2200 Basic-2.

References:
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide
Inspection and Modification of Variables - Section 6.4 of the Programmer’s Guide
Inspection and Modification of Environment - Section 6.6 of the Programmer’s Guide
LIST V
LIST DIM

LIST STACK DIM LANGUAGE STATEMENTS

2 - 366 NPL Statements Guide

LIST T

Discussion:
The LIST T command produces a cross-reference listing of all occurrences of one or
more specific text strings in the current LIST module.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed
with the MODULE command, and can be declared using LIST DT.

The default format for the LIST T command lists line-numbers where the specified text
string appears. Specifying the "*" parameter displays the statement on the line where the
specified text string was declared.

LIST T is useful when removing or replacing all occurrences of a given string of text. It
can also be helpful to locate any statements within a program, such as the STOP state-
ment.

General Form:

LIST [title][S] T[*] [([low-line][,[high-line]])]
 [F]

 {literal-string} [,{literal-string}] ...
 {alpha-variable} [,{alpha-variable}]

Where:

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program line as opposed to just line-number.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

LANGUAGE STATEMENTS LIST T

NPL Statements Guide 2 - 367

LIST T (cont.)

NOTE: In specifying NPL keywords, case may be upper or lower. However, when searching
for literals, proper case must be used. Blank spaces are ignored when entered in the
search string (i.e., the search string "REM this " ignores the spaces and find all oc-
currences of "REMthis" as well as "REM this" in the program).

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

• If no line-numbers are specified, the entire program in the current list module is
accessed.

LIST T performs no operation on the non-interpretive form of the RunTime Program.

LIST T LANGUAGE STATEMENTS

2 - 368 NPL Statements Guide

LIST T (cont.)

Examples:
:LIST T(100,200)"MIN"
:LIST T(2000,)"ABC"
:LIST T*(,4000)"MIN"
:LIST T"ABC"

2000 REM
 : REM SAMPLE PROGRAM
 : REM
2010 GOSUB ’100 : REM open data file
2020 GOSUB ’101 : REM read a record
2030 IF END THEN 2100 : REM quit if end of file
2040 IF F$="X" THEN R1=R1+1
 : ELSE R2=R2+1 : REM update R1 or R1 rcd

 counter
2050 A=MIN(A,F2,F9*2) : REM compute min of fields F2,F9
2060 B=MAX(B,F3,F8) : REM compute max of F3 and F8
2070 F2,F3,F8,F9=0 : REM reset data values
2080 GOSUB ’102 : REM update data record
2090 GOTO 2020 : REM iterate until eof
2100 GOSUB ’103 : REM close file
2105 PRINT "MIN OF F2,F9 IS",A : REM display results
2110 PRINT "MAX OF F3,F8 IS",B
2120 STOP
2130 DEFFN’100 : RETURN : REM This subr opens a file
2140 DEFFN’101 : RETURN : REM this subr reads a record
2150 DEFFN’102 : RETURN : REM this subr writes a record
2160 DEFFN’103 : RETURN : REM this subr closes a file

:LIST T "MIN"
"MIN"

 - 2050 2150

LIST T*"MIN"
"MIN"
2050 A=MIN(A,F2,F9*2) : REM compute min of fields F2,F9
2105 PRINT "MIN OF F2,F9 IS",A : REM display results

LIST T (2000,2099)"MIN"
"MIN"
 - 2050

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST T is supported on NPL Revisions 2.00 and greater.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

In Wang 2200 Basic-2, if a text string appears more than once in a program line, only 1
reference for the program line appears in the LIST T output. In NPL, the reference is
made for each occurrence of the text string in the program line.

LANGUAGE STATEMENTS LIST T

NPL Statements Guide 2 - 369

LIST T (cont.)

References:
Inspection of Program Text - Section 6.5 of the Programmer’s Guide

LIST T LANGUAGE STATEMENTS

2 - 370 NPL Statements Guide

LIST V

Discussion:
The LIST V command produces a listing of all variables referenced by the program cur-
rently in memory, and on which program lines they are referenced.

The LIST function refers to program text in the current list module. This is set to the cur-
rently executing module whenever a program HALTs or continues, or when changed us-
ing the MODULE command, and can be referenced using LIST DT.

General Form:

LIST [title][S] V[*] [([low-line][,[high-line]])]
 [F]

 [variable-1][,[variable-2]]

Where:

title = an optional descriptive title; must be a literal-
string.

S = specifies that a page break be performed.

F = specifies that no page break be performed.

* = list program line as opposed to just line-number.

variable-1 = low range of variable to be displayed.

variable-2 = high range of variable to be displayed.

low-line = lowest line-number for which to show references.

high-line = highest line-number for which to show references.

LANGUAGE STATEMENTS LIST V

NPL Statements Guide 2 - 371

LIST V (cont.)

The default format for the LIST V command lists line-numbers where the specified vari-
able(s) appears. Specifying the "*" parameter displays the statement on the line(s) where
the specified variable(s) are referenced. In addition, a number of colons (":") precede the
statement to indicate how many statements precede the referenced statement.

Refer to LIST general parameters for details on general parameters for all LIST state-
ments.

The optional variable range parameters operate as follows:

• If only variable-1 is specified, LIST V output for only that specific variable is
generated.

• If variable-1, (comma) is specified, LIST V output for variables starting with vari-
able-1 in ascending ASCII sequence is generated.

• If , (comma)variable-2 is specified, LIST V output for variables starting at the
lowest ASCII sequence up to and including variable-2 is generated.

• If variable-1,variable-2 is specified, LIST V output for variables within the range
of variable-1 to variable-2 inclusive is generated.

• If no range parameters are specified, LIST V output is generated for all variables
referenced by the program in the current LIST module.

If exactly 1 type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-array) is
specified in variable-1 and variable-2, only variables of that type are listed. If different
variable types are specified, all variable types are listed.

Array variables are specified in a LIST V statement using a special syntax. The array des-
ignator is specified, followed by an open parenthesis "(". For example, the arrays S$()
and N() would be specified by:

LIST V LANGUAGE STATEMENTS

2 - 372 NPL Statements Guide

LIST V (cont.)

0010 LIST V S$(, N(

The optional low/high range parameters are used to specify the range of lines accessed
from which references are displayed. These operate as follows:

• If only low-line is specified, only that specific program line is accessed.

• If low-line, (comma) is specified, all program lines starting at low-line are ac-
cessed in ascending sequence.

• If ,(comma)high-line is specified, all program lines starting at the lowest ASCII
sequence up to and including high-line are accessed.

• If low-line,high-line is specified, all program lines within the range of low-line to
high-line inclusive are accessed.

• If no line-numbers are specified, the entire LIST module is accessed.

The primary difference between LIST V and LIST STACK DIM is that LIST V shows
only variables referenced in the program currently in memory. LIST STACK DIM dis-
plays all variables in memory in stack order, even if not referenced by the current pro-
gram.

LIST V performs no operation on the non-interpretive form of the RunTime Program.

Examples:

:LIST V
:LIST V C,L$
:LIST V*C,L$
:LIST VA,
:LIST V*,L$
:LIST V* (100,200),L$

2000 REM
 : REM SAMPLE PROGRAM
 : REM
2010 GOSUB ’100 : REM open data file
2020 GOSUB ’101 : REM read a record
2030 IF END THEN 2100 : REM quit if end of file
2040 IF F$="X" THEN R1=R1+1

 : ELSE R2=R2+1 : REM update R1 or R2 record counter

LANGUAGE STATEMENTS LIST V

NPL Statements Guide 2 - 373

LIST V (cont.)

2050 A=MIN(A,F2,F9*2) : REM compute min of fields F2,F9
2060 B=MAX(B,F3,F8) : REM compute max of F3 and F8
2070 F2,F3,F8,F9=0 : REM reset data values
2080 GOSUB ’102 : REM update data record
2090 GOTO 2020 : REM iterate until eof
2100 GOSUB ’103 : REM close file
2105 PRINT "MIN OF F2,F9 IS",A : REM display results
2110 PRINT "MAX OF F3,F8 IS",B
2120 STOP
2130 DEFFN’100 : RETURN : REM This subr opens a file
2140 DEFFN’101 : RETURN : REM this subr reads a record
2150 DEFFN’102 : RETURN : REM this subr writes a record
2160 DEFFN’103 : RETURN : REM this subr closes a file

:LIST V
 A - 2050 2050 2105
 B - 2060 2060 2110
 F$ - 2040
 F2 - 2050 2070
 F3 - 2060 2070
 F8 - 2060 2070
 F9 - 2050 2070
 R1 - 2040 2040
 R2 - 2040 2040
:LIST V(2050,2060)
 A - 2050 2050
 B - 2060 2060
 F2 - 2050
 F3 - 2060
 F8 - 2060
 F9 - 2050
:LIST V(2050,2060)F2,F8
 F2 - 2050
 F3 - 2060
 F8 - 2060

0005 REM Example of simple function
0010 FUNCTION ’myfunc(/POINTER mynum, myvar$32)
0020 myvar$="abcd"
0030 mynum=24
0035 STOP
0040 RETURN (1)
0050 END FUNCTION
1000 A$="xyz": A=87
1010 IF ’myfunc(A,A$)=1 THEN PRINT A,A$: ELSE PRINT "error"
:
:LIST V
 A - 1000 1010 1010
 A$ - 1000 1010 1010
 mynum - 0010 0030
 myvar$- 0010 0020
:
:
:
:

LIST V LANGUAGE STATEMENTS

2 - 374 NPL Statements Guide

LIST V (cont.)

Compatibility Issues:
The "*" parameter is not valid in Wang 2200 Basic-2.

LIST V is supported on NPL Revisions 2.00 and greater.

In Wang 2200 Basic-2, if a range of variables is specified (both start and end of range),
both variables must be the same type.

In Wang 2200 Basic-2, program syntax must be valid to execute the LIST V command.

In Wang 2200 Basic-2, if a variable is referenced more than once in a program line, only
1 reference for the program line appears in the LIST # output. In NPL, a reference is
made for each reference of the variable in the program line.

Low-line,high-line ranges are supported only on NPL Revision 3.0 or greater and are not
supported on the Wang 2200.

Prior to NPL Release IV, the "*" option would display all statements on the line contain-
ing the reference.

References:
Inspection and Modification of Program Text - Section 6.5 of the Programmer’s Guide

LANGUAGE STATEMENTS LIST V

NPL Statements Guide 2 - 375

LOAD Command

Discussion:
The LOAD command is used to load cataloged program(s) into memory. Using the
LOAD command, programs can be merged or appended with programs already existing
in memory. The LOAD command may also be used, after a CLEAR statement, to load a
new program alone in memory. An error is generated (ERR D82 - File not in Catalog) if
the program being loaded is not currently an active program file in the specified
diskimage.

Examples:
:LOAD T/D32,"2CCOPY"
:LOAD T<A$>,"2CCOPY"
:LOAD T "SP START"
:LOAD T#1,"TESTLOG"
:LOAD T B$
:LOAD T/310,"2CBCKP"

Compatibility Issues:
Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

In NPL Revision 4.0, the LOAD command acts upon the current LIST MODULE.

References:
LOAD DC Statement
Catalog Access - Section 7.3.8 of the Programmer’s Guide
Loading Programs - Section 5.3 of the Programmer’s Guide

General Form:

LOAD T [file-number,] {file-name}
 [disk-address,]
 [<address-var>,]

Where:

file-name = name of program to be loaded into memory.

LOAD Command LANGUAGE STATEMENTS

2 - 376 NPL Statements Guide

LOAD Statement

Discussion:
The LOAD statement is used to load a program or programs into memory and immedi-
ately execute the program(s).

General Form:

LOAD T [file-number,] {file-name } [line1]
 [disk-address,] {<expression>alpha-variable}
 [<address-var>,]

T [,line2][BEG line3]

Where:

file-name = name of program to be loaded into memory.

expression = number of files to be loaded from disk.

alpha-variable = a common variable which contains the names of
the programs to be loaded, trailing spaces
should be included (if needed).

line1 = the line-number of the first line to be deleted
from the program currently in memory. After
loading, program continues from this line.

line2 = the line-number of the last line to be deleted
from the program currently in memory (before
loading program).

line3 = the line-number of the program where execution
is to begin after loading program.

LANGUAGE STATEMENTS LOAD Statement

NPL Statements Guide 2 - 377

LOAD Statement (cont.)

Line1 and line2 can specify a range of lines currently in memory that are to be deleted be-
fore the load takes place. If only line1 is specified, all program text from line1 to the last
line-number in memory is deleted. If neither line1 nor line2 is specified, all program text
currently in memory is deleted before the load.

Line3 specifies the starting line for program execution after the load has taken place. If
not specified, program execution begins at line1, if specified, or the first line-number if
line1 not specified.

The parameter "< expression>" is used to load more than one program. The numeric-ex-
pression specifies how many programs are to be loaded while the alpha-variable contains
the names of the programs. Each program name in the alpha-variable must use exactly
eight bytes.

Clearing Multiple Line Number Ranges on LOAD

NPL allows for multiple line number ranges to be cleared during a single load statement.
The general form of the load statement has been modified for allow multiple, optional
CLEAR P clauses. The new LOAD’ statement also supports this syntax.

In a LOAD T< > (multiple program load), the variable used to specify the names of
file(s) loaded must be a common variable defined in some module. Local variables (recur-
sive or static) and PUBLIC variables of any type are not allowed.

When present, these optional CLEAR P clauses must follow the BEG clause (if used).

Examples:
10 LOAD T#1,"PROG1" 1000,2000 BEG 10 CLEAR P 2100,200 CLEAR P 3400-3500
10 LOAD T/D11,"PROG1"1000,2000 CLEAR P 2100,2200
10 LOAD T<3> 1000,2000 BEG 10 CLEAR P 3400,3500 CLEAR P 10320,11000

The CLEAR P clause(s) are executed before any new program text is loaded from disk.

NOTE: Use of line number ranges only affects the workspace of the currently loaded mod-
ule.

The numeric expression of a multiple-program load may not start with a numeric
field expression. Use of alpha field expressions is allowed.

LOAD Statement LANGUAGE STATEMENTS

2 - 378 NPL Statements Guide

LOAD Statement (cont.)

If the standard range of line numbers to clear (LOAD T"XXX" line1,line2) is not speci-
fied, the default is to clear all program text. Therefore, CLEAR P cannot be used to re-
place the standard line1, line2 range, but must be used in addition to it.

 For example:

10 LOAD T#1,"PROG1" CLEAR P 1000,2000 CLEAR P 2100,2200

is syntactically valid but actually clears all program text since no line1, line2 range is
specified.

Examples:
0010 LOAD T "SP LOAD"
0010 LOAD T#1,"AR EOD 1" 5000,5999 BEG 8000
0010 LOAD T#Q,"SP MENU" 5000 BEG 8000
0010 LOAD T/D10,Q$100,8000 BEG 10
0010 LOAD T<A$>,Q$100,8000 BEG 10
0010 LOAD T QQ$
0010 LOAD T QQ$ BEG 8000

Compatibility Issues:
Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:
LOAD Command
Catalog Access - Section 7.3.8 of the Programmer’s Guide
LOAD’

LANGUAGE STATEMENTS LOAD Statement

NPL Statements Guide 2 - 379

LOAD’

Discussion:
The LOAD’ statement may be used to specify an explicit disk address with each program
name specified as part of a multi-program load statement.

Each disk address/program name combination in the alpha-variable must be exactly 11
bytes in length with the first three bytes containing the disk address. Using file numbers
or variables for the disk address is not permitted. However, $SELECT can be used to gen-
erate a standard disk address from a file number.

NOTE: Use of line number ranges only affects the workspace of the currently loaded mod-
ule.

Multiple line number ranges can be cleared during a single load statement. The general
form of the LOAD’ statement allows multiple, optional CLEAR P clauses.

When present, these optional CLEAR P clauses must follow the BEG clause (if used).

For example:

10 LOAD T#1, "PROG1" 1000,2000 BEG 10 CLEAR P 2100,2000 CLEAR P3400-
3500
10 LOAD T/D11, "PROG1" 1000,2000 CLEAR P 2100,2200
10 LOAD T<3> ’A$ 1000,2000 BEG 10 CLEAR P 3400,3500 CLEAR P 10320,11000

The CLEAR P clause(s) are executed before any new program text is loaded from disk.

General Form:

LOAD T <expression> ’alpha-variable [line1][,line2][BEG line3]

where:

expression = the number of programs to be loaded from disk.

alpha-variable = a common variable which contains the disk ad-
dresses and names of each program to be loaded.

LOAD’ LANGUAGE STATEMENTS

2 - 380 NPL Statements Guide

LOAD’ (cont.)

NOTE: If the standard range of line numbers to clear (LOAD T"XXX" line1, line2) is not
specified, the default is to clear all program text. Therefore, CLEAR P cannot be
used to replace the standard line 1, line 2 range, but must be used in addition to it.

For example:

10 LOAD T#1,"PROG1" CLEAR P 100,200 CLEAR P 2100,2200

is syntactically valid but actually clears all program text since no line1, line2 range
is specified.

Examples:

10 COM A$(3)11
20 A$(1)="D11"&"PROGRAM1"
30 A$(2)="D12"&"PROGRAM2"
40 A$(3)="$SELECT(#2)&"PROGRAM3"
50 LOAD T <3>’A$()

NOTE: A device address may be specified as part of the general form, but it is ignored. For
example:

10 LOADT/D11, <3>’A$()

The device address D11 is ignored.

Compatibility Issues:

References:

LANGUAGE STATEMENTS LOAD’

NPL Statements Guide 2 - 381

LOAD BOOT Command

Discussion:
The LOAD BOOT command is used to load bootstrap programs from the native file sys-
tem. A bootstrap program is a NPL program which is saved as a native operating system
file and is automatically loaded and executed by the RunTime at initial start up. Refer to
the appropriate NPL Supplement for details.

When specified, progname contains the native operating system file specification used to
locate the bootstrap file.

When progname is omitted or blank, the program loaded is the last progname specified
by a LOAD BOOT or SAVE BOOT command. Initially, the "default" boot program
name is either BOOT, or the name of the boot program specified in the command line
when the RunTime Program was invoked.

If the native operating system allows extensions, a .OBJ extension is assumed if no exten-
sion is specified.

The "default" boot program name is changed any time a LOAD BOOT or SAVE BOOT
command is entered with an explicit filename.

The LOAD BOOT command is a programmable statement.

NOTE: Partial program loading options (line-number ranges) are not supported by the
LOAD BOOT command.

General Form:

LOAD BOOT [progname]

Where:

progname = an alpha-variable or literal string.

LOAD BOOT Command LANGUAGE STATEMENTS

2 - 382 NPL Statements Guide

LOAD BOOT Command (cont.)

LOAD BOOT and SAVE BOOT commands may also be used to inspect and replace pre-
boot programs. Refer to the discussion of the /P option in the RUNTIME options section
of the hardware supplement.

Examples:
Assuming a UNIX or MS-DOS based operating system:

:LOAD BOOT
:LOAD BOOT "UTILITY" :REM Loads a program named "UTILITY.OBJ"

 from the currently selected native file
 system directory.

Compatibility Issues:
The LOAD BOOT command is implemented in Revision 2.00 and greater of NPL.

The LOAD BOOT command is not a valid instruction in Wang 2200 Basic-2.

In NPL Revision 4.0, the LOAD command acts upon the current LIST MODULE.

References:
SAVE BOOT

LANGUAGE STATEMENTS LOAD BOOT Command

NPL Statements Guide 2 - 383

LOAD DA Command

NOTE: The use of this statement is not recommended. Refer to the LOAD command as a
better alternative.

Discussion:
The LOAD DA command is used to load a program into memory without accessing the
catalog index. The absolute sector-number in the diskimage of the program’s header re-
cord must be specified (expr1). If expr1 is an alpha-variable, the binary value of the first
two bytes is used.

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

The LOAD DA command is used in Immediate Mode only, and is distinguished from the
LOAD DA statement which is used in program mode. The operational characteristics of
the two forms of this instruction are different.

Using the LOAD DA command, programs can be merged from disk with programs al-
ready existing in memory. A warning message (Warning: Programs merged.) is gener-
ated when two or more programs are merged using the LOAD DA command. If merged
programs have identical line-numbers, the original program lines in memory are overwrit-
ten by the newly loaded program lines.

General Form:

LOAD DA T [file-number,] (expr1[,return-value])
 [device-address,]
 [<address-var>,]

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-receiver.

LOAD DA Command LANGUAGE STATEMENTS

2 - 384 NPL Statements Guide

LOAD DA Command (cont.)

The LOAD DA command can also be used after a CLEAR statement to load a new pro-
gram alone in memory.

The return-value performs no operation in NPL. The return-value does not affect opera-
tion of the SAVE DA statement at run time. No value is returned to the return-value, if
specified.

LOAD DA is a direct access instruction as opposed to a catalog instruction. That is, the
Internal Device Table is not affected by a LOAD DA instruction.

Examples:
:LOAD DA T (100)
:LOAD DA T (100,Q)
:LOAD DA T (Q,Q)
:LOAD DA T#1, (200,Q$)
:LOAD DA T/D31, (Q$,Q$)
:LOAD DA T<A$>, (Q$,Q$)
:LOAD DA T#Q, (500+Q-R)

Compatibility Issues:
Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

In Wang 2200 Basic-2, the return-value returns the sector immediately following the last
sector accessed by the LOAD DA operation. The return-value does not affect operation
of the SAVE DA statement in NPL. No value is returned in the return-value, if specified.
The syntax is supported for compatibility purposes only.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

In NPL Revision 4.0, the LOAD command acts upon the current LIST MODULE.LOAD

References:
LOAD DA Statement
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LANGUAGE STATEMENTS LOAD DA Command

NPL Statements Guide 2 - 385

LOAD DA Statement

NOTE: The use of this statement is not recommended. Refer to the LOAD statement as a
better alternative.

Discussion:
The LOAD DA statement is used to load a program into memory without accessing the
catalog index. The absolute sector-number in the diskimage of the program’s header re-
cord must be specified (expr1). If expr1 is an alpha-variable, the binary value of the first
two bytes is used.

General Form:

LOAD DA T [file-number,] (expr1[,return-value])
 [device-address,]
 [address-var,]

[line1][,[line2]][BEG line3]

Where:

expr1 = a numeric-expression or alpha-variable specifying
the starting sector address of the program to be
loaded.

return-value = an alpha-variable or numeric-receiver.

line1 = the line-number of the first line to be deleted
from the program currently in memory. After load-
ing, program continues from this line.

line2 = the line-number of the last line to be deleted
from the program currently in memory (before load-
ing program).

line3 = the line-number of the program where execution is
to begin after loading program.

LOAD DA Statement LANGUAGE STATEMENTS

2 - 386 NPL Statements Guide

LOAD DA Statement (cont.)

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

Line1 and line2 can specify a range of lines currently in memory that are to be deleted be-
fore the load takes place. If only line1 is specified, all program text from line1 to the last
line-number in memory is deleted. If neither line1 nor line2 is specified, all program text
currently in memory is deleted before the load.

Line3 specifies the starting line for program execution after the load has taken place. If
not specified, program execution begins at line1, if specified, or the first line-number if
line1 not specified.

The return-value performs no operation in NPL. The return-value does not affect opera-
tion of the SAVE DA statement at runtime. No value is returned to the return-value, if
specified.

LOAD DA is a direct access instruction as opposed to a catalog instruction. That is, the
Internal Device Table is not affected by a LOAD DA instruction

Examples:
0010 LOAD DA T (100)
0010 LOAD DA T (100,Q$) 5000,5999 BEG 8000
0010 LOAD DA T (Q$,Q$) 5000
0010 LOAD DA T/D10,(15326) 8000
0010 LOAD DA T<A$>,(15326) 8000
0010 LOAD DA T#Q,(1000) 8000,8100

Compatibility Issues:
Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

LANGUAGE STATEMENTS LOAD DA Statement

NPL Statements Guide 2 - 387

LOAD DA Statement (cont.)

In Wang 2200 Basic-2, the return-value returns the sector immediately following the last
sector accessed by the LOAD DA operation. The return-value does not affect operation
of the LOAD DA statement in NPL. No value is returned in the return-value, if specified.
The syntax is supported for compatibility purposes only.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:
LOAD DA Command
Direct Access - Section 7.3.9 of the Programmer’s Guide
Extended Diskimages - Section 7.3.10 of the Programmer’s Guide

LOAD DA Statement LANGUAGE STATEMENTS

2 - 388 NPL Statements Guide

LOAD RUN

NOTE: The use of this statement is not recommended. Use program modules as a better al-
ternative.

Discussion:
LOAD RUN is used to clear memory and load and execute a program. The program
name is specified as a literal-string or as an alpha-variable. Before the program is loaded,
all program text and variables are removed from memory. After the program is loaded
into memory, execution begins at the first line-number of the program.

If the program name is not specified, the default program name "START" is used.

Examples:
0010 LOAD RUN
0010 LOAD RUN"BEGIN"
0010 LOAD RUN T"BEGIN2"
0010 LOAD RUN T/D10,"START"
0010 LOAD RUN TA$,"START"
0010 LOAD RUN T#2,Q$
0010 LOAD RUN T#Q,"SP START"

Compatibility Issues:
Due to the fact that NPL executable programs are stored in an object code format, pro-
grams cannot be loaded and executed in Wang 2200 format (source).

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

Use of program modules is only supported in NPL Revision 4.0 or greater and is not sup-
ported on the Wang 2200.

General Form:

LOAD RUN [T] [file-number,] [prog-name]
 [device-address,]
 [address-var,]

Where:

prog-name = a literal-string or alpha-variable specifying the
name of the program to be run. The default program
name is "START".

LANGUAGE STATEMENTS LOAD RUN

NPL Statements Guide 2 - 389

LOAD RUN (cont.)

In NPL Revision 4.0, programs referenced with the "LOAD RUN" command are exe-
cuted in the current run module.

References:

LOAD RUN LANGUAGE STATEMENTS

2 - 390 NPL Statements Guide

LOG Function

Discussion:
The LOG function computes the natural logarithm of a numeric-expression. This is valid
wherever a numeric-expression is legal.

Examples:
0010 B(3,9)=(LOG(K2)+10)/LOG(10)
0010 R7=INT(LOG(D9+9))
:0010 INPUT E
:0020 X=100+LOG(E*100)
 : PRINT X
:RUN
? 10
 106.907755278982

Compatibility Issues:
Due to the use of different algorithms, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

General Form:

LOG (numeric-expression)

LANGUAGE STATEMENTS LOG Function

NPL Statements Guide 2 - 391

LOOP

Discussion:
The LOOP statement allows skipping the execution of the remainder of the body of a
structured loop, which may be either WHILE...WEND, REPEAT...UNTIL or FOR-BE-
GIN...NEXT type. When it occurs inside nested loops, only the body of the innermost
loop is skipped.

When executed, control is transferred to the WEND statement of the current
WHILE...WEND loop, to the UNTIL statement of the current REPEAT...UNTIL loop or
to the NEXT statement of an enclosing FOR/BEGIN...NEXT loop.

Examples:

0010 PRINT "All the even numbers from 1 to 10"
 : cur_number = 1
 : REPEAT
 : cur_number += 1
 : ; odd so LOOP back to the top of the REPEAT/UNTIL body
 : IF MOD(cur_number,2) <> 0 THEN LOOP
 : PRINT cur_number
 : UNTIL cur_number > 10

0020 num_times_LOOPed = 0
 : FOR row = 1 TO 4 BEGIN
 : FOR column = 1 TO 4 BEGIN
 : IF column > 2
 : ;I will execute this IF statement twice within the FOR

 column loop
 : num_Times_LOOPED +=1
 : LOOP
 : END IF
 : NEXT column
 : NEXT row
 : PRINT "Should HAVE looped 8 times: ";num_times_LOOPed

Compatibility Issues:

General Form:

LOOP

LOOP LANGUAGE STATEMENTS

2 - 392 NPL Statements Guide

LOOP (cont.)

References:
FOR/BEGIN
UNTIL
NEXT
WHILE
WEND
BREAK

LANGUAGE STATEMENTS LOOP

NPL Statements Guide 2 - 393

$MACHINE

Discussion:

$MACHINE is a 64-byte system variable containing information about the environment
in which the RunTime Program is currently operating. This information may be used by a
NPL application program to implement conditional logic for option selection based upon
the current environment. As of Revision 4.0 of NPL, 29 bytes are returned by $MA-
CHINE. New bytes will likely be added in future revisions.

NOTE: New values may be added for new hardware/operating system ports of NPL; refer
to the NPL Supplements for details on specific $MACHINE values for the operating
system.

$MACHINE may not be modified by the NPL program. Placing $MACHINE on the left
side of an assignment statement results in a syntax error.

Refer to the appropriate NPL Supplement(s) for specific details of the hardware-depend-
ent features for specific machines.

Specifically, the following information is available:

Byte 1 RunTime Version
"I" for MS-DOS/Novell Netware
"N" for MS-Windows
"P" for Phar Lap
"S" for SuperDOS
"X" for Intel XENIX (286)
"A" for Intel UNIX (386 models)
"U" for Motorola 68000 UNIX
"V" for VMS
"W" for MS-DOS on Wang PC’s

General Form:

alpha-receiver = $MACHINE

$MACHINE LANGUAGE STATEMENTS

2-394 NPL Statements Guide

$MACHINE (cont.)

Byte 2 Hardware Manufacturer Code
Byte 3 Monitor Type
Byte 4 Graphics Enabled ("G" = truebox graphics available; " " = no truebox graphics

available).
Byte 5 Hardware Model Code. Refer to NPL Supplement for a list of valid values. On

SuperDOS, indicates binary # of overflow areas set up in the memory share
module.

Byte 6 Number of NPL users in the RunTime before this task executed the RunTime. On
Xenix and UNIX, indicates number of users in the Niakwa RunTime after this
task was executed.

Byte 7 RunTime type in use - "I" = interpretive version; "P" = non-interpretive version.
Byte 8 Display width in binary. Will always be HEX(50) on 80-column screens. On

screens that support more than 80 columns, will be the width currently enabled.
Refer to Section 7.3.23 of the Programmer’s Guide for details on enabling wider
screen widths.

Byte 9 Terminal type-refer to the NPL Supplements for possible values.
Byte 10 Math co-processor present.

(00) Indicates that no co-processor is present or that use of the co-
processor is not supported on the hardware version in use.

Byte 11 HEX(00) Standard model in use. Maximum partition size is 56K. This value
is returned for NPL revisions prior to Revision 3.0 where the "S"
startup option was not used or was not available.

HEX(01) Extended model in use. A 56k program segment and 64K variable
segment are available. This value is returned by NPL revisions
prior to Revision 3.0 when the "S" option is in use.

HEX(02) Large model in use. This value is returned by NPL Revision 3.0 or
greater.

Byte 12 Number of colors available. Refer to Chapter 6 of the NPL Supplements for
details on color support in NPL.

Byte 13 Maximum number of authorized users (in binary).
Byte 14 Reserved.

LANGUAGE STATEMENTS $MACHINE

NPL Statements Guide 2-395

$MACHINE (cont.)

Byte 15 Reserved.
Byte 16 Maximum number of Device Equivalence Table entries available. Equal to the

number of devices specified in the "D" startup option. If the "D" option is not used,
the default value of 16 DET entries is used.

Byte 17 Number of Device Equivalence Table entries currently in use. A DET entry is
defined as being in use when a NPL address of file # is assigned. This value is
stored in binary format. Typical use of this value would be to determine if DET
entries are available for assignment.

For example:

0010 DIM A$50,M$64
0020 M$=$MACHINE
0030 A$=$DEVICE(/D20) :REM Save current DET entry for D20, if any-
thing
0040 IF A$<>" " THEN 200 :REM D20 is already in use - therefore we can
 use it with no concern about overflow as long
 as we restore it when done.
0050 M=VAL(STR(M$,16,1) :REM Maximum number of DET entries
0060 C=VAL(STR(M$,17,1) :REM Current number of DET entries in use
0070 IF C<M THEN 200 :REM At least one entry is available
0080 REM Routine to handle no DET entry available condition
.
.
.
0200 $DEVICE(/D20)="MYFILE.BS2":REM Set D20 to device required
.
.
.
0300 $DEVICE(/D20)=A$:REM Done with MYFILE.BS2, restore original DET
 entry

This example demonstrates how to assign a temporary DET entry without risk of over-
flowing the DET table.

NOTE: Even if all DET entries are currently used, this technique still succeeds as long as
the specified address is already defined in the DET. In this case, the same DET slot
is reused and the original value is restored after processing of the temporary entry
is complete.

$MACHINE LANGUAGE STATEMENTS

2-396 NPL Statements Guide

$MACHINE (cont.)

Byte 18 Indicates whether or not the task in use was STARTED in a background partition.
HEX(00) Indicates that the task was started in foreground.
HEX(01) Indicates that the task was started in background.

Byte 19 Byte 19 of $MACHINE contains the status of $DEMO keyboard redirection and
keyboard logging. Possible values for this byte are:

HEX(01)
bit = 1

Indicates that keyboard redirection from a $DEMO file is in effect.
When keyboard redirection is not in effect, this bit is off. This bit is
set to 0 on all conditions which terminate a $DEMO script. This
includes cancellation by the operator and end of file conditions. End
of file conditions are detected only AFTER a keyboard input
statement is executed where there are no more keystrokes in the
specified $DEMO file. Refer to $DEMO for further detail on demo
scripts.

HEX(02)
bit = 1

Indicates that keyboard logging is in effect. Keyboard logging is in
effect whenever the current SELECT LOG address is anything other
than /000 (the nul device) and the SELECT LOG status is ON. This
bit is 0 whenever SELECT LOG status is OFF or the SELECT LOG
address is /000. SELECT LOG status may be set either by use of the
SELECT LOG statement or by the operator.

Applications which examine this byte should use the logical AND operation to test the
specific bit to be examined.

For example:

0010 DIM M$64,X$1
0020 M$=$MACHINE
0030 X$=STR(M$,19,1) AND HEX(01)
0040 IF X$=HEX(01) THEN PRINT "$DEMO IS IN EFFECT"
0050 X$=STR(M$,19,1) AND HEX(02)
0060 IF X$=HEX(02) THEN PRINT "KEYBOARD LOGGING IS IN EFFECT"

LANGUAGE STATEMENTS $MACHINE

NPL Statements Guide 2-397

$MACHINE (cont.)

Byte 20 Indicates if the version of NPL running is a 32-bit or non-32-bit.
HEX(00) Non-32 bit RunTime in use.
HEX(01) 32-bit RunTime in use.

Byte 21 Contains the maximum number of entries (in binary) allocated to the handle table
(in K) during a RunTime session.

Byte 22 Indicates the XMS usage as specified in the /m and /u startup options.
Byte 23 Contains the current row position of the mouse pointer when a mouse event occurs

(if it is on the screen).
Byte 24 Contains the current column position of the mouse pointer when a mouse event

occurs (if it is on the screen).
Byte 25, 26 Extended field equivalent to $MACHINE byte 6 (number of active users in the

RunTime before this task booted). For systems with 256 or more users, these bytes
must be used to get an accurate user count

Byte 27, 28 Extended field equivalent to $MACHINE byte 13 (maximum number of
authorized users). For systems with 256 or more users, these bytes must be used
to determine the max user count.

Byte 29 Indicates whether keyboard mouse events are supported
HEX(00) Default; mouse is not available.
HEX(01) Mouse available. Under DOS 3.0 and greater, HEX(01) will only

occur if the NPL /K startup option is specified and a mouse driver is
installed and detected. Under MS-Windows, HEX(01) will occur
upon detection of an installed mouse device.

Examples:

The following program sets the replacement attribute for underline on the IBM color
monitor to bright white on red background:

0010 DIM X$32,Z$64
0020 X$=$MACHINE : REM STORE IN X$
0030 IF STR(X$,1,1)"I" THEN GOTO 90 : REM IF IBM VERSION
0040 REM IBM VERSION
0050 IF STR(X$,3,1)"C" THEN 90 : REM SKIP IF NOT COLOR MONITOR
0060 Z$=$OPTIONS : REM FETCH CURRENT OPTIONS
0070 STR(Z$,1,1)=HEX(4F) : REM SET UNDERLINE AS WHITE ON
 RED
0080 $OPTIONS=Z$: REM IMPLEMENT
0090 REM DONE

$MACHINE LANGUAGE STATEMENTS

2-398 NPL Statements Guide

$MACHINE (cont.)

Compatibility Issues:

This statement is supported only with Release 1.03 or greater.

This statement is not valid in Wang 2200 Basic-2.

Specific values for $MACHINE are detailed in the appropriate NPL Supplement.

Bytes 6-13 contain valid information only on NPL Revision 2.01 or greater.

Bytes 16-20 contain valid information only on NPL Revision 3.00 or greater.

Bytes 21-28 contain valid information on on NPL Revision 3.20 or greater.

Bytes 29 contain valid information on on NPL Revision 4.00 or greater.

References:

Chapter 9 of the Programmer’s Guide.

LANGUAGE STATEMENTS $MACHINE

NPL Statements Guide 2-399

MAT CON

Discussion:

The MAT CON statement is used to set all elements of a numeric-array to the numeric
value of 1. In addition, the specified numeric-array is optionally redimensioned according
to the new dimension parameters, if specified.

Examples:

0010 MAT Z = CON
0010 MAT X = CON(5,10)
0010 MAT P = CON(Q,S)
0010 MAT K = CON(15)

Compatibility Issues:

References:

General Form:

MAT numeric-array = CON [(dim1[,dim2])]

Where:

dim1, dim2 = numeric-expressions specifying new dimensions of
the numeric-array.

MAT CON LANGUAGE STATEMENTS

2-400 NPL Statements Guide

MAT COPY

Discussion:

The MAT COPY statement is used to copy the contents of one alpha-variable or array to
another. The copy is performed character-by-character, transferring the contents of the
source-alpha-variable to the receiver-alpha-variable. The copy stops when the receiver-al-
pha-variable is completely filled. If the receiver-alpha-variable is larger than the source-
alpha-variable, blanks are used to fill the remaining characters after all characters of the
source-alpha-variable have been received.

The source-alpha-variable or receiver-alpha-variable can be modified by the STRING
function. The source-alpha-variable and receiver-alpha-variable can be the same variable.

Either alpha-variable may be modified by the "s" and "n" parameters, which specify that
a substring of the alpha-variable is used. The "s" parameter specifies the first position to
use, the "n" parameter specifies a count. These parameters are equivalent to the first and
second parameters of a STR() function, and have the same default value. The syntax is
supported only to maintain compatibility with Wang 2200 Basic-2.

The [-] option on the source-alpha-variable reverses the order in which the characters are
transferred, beginning with the last character of source-alpha-variable and ending with
the first character.

General Form:

MAT COPY[-] source-alpha-variable [<[s][,[n]]>] TO[-]
receiver-alpha-variable [<[s][,[n]]>]

Where:

s = numeric-expression

n = numeric-expression

LANGUAGE STATEMENTS MAT COPY

NPL Statements Guide 2-401

MAT COPY (cont.)

The [-] option on the receiver-alpha-variable reverses the order in which the characters
are received. The first character received is stored in the last position of the receiver-al-
pha-variable. The second character received is placed in the next-to-last position. The
process continues until all characters have been received. Blanks are inserted if the re-
ceiver-alpha-variable is larger than the source-alpha-variable.

MAT COPY is useful for inserting and deleting elements of alpha-arrays which are main-
tained in order.

Examples:

0010 MAT COPY A$() TO B$()
0010 MAT COPY -B$() TO C$()
0010 MAT COPY A$ TO B$()
0010 MAT COPY A$() TO -B$
0010 MAT COPY -STR(A$,6,7) TO -B$()

This example shows how to use MAT COPY to maintain an array in sorted order while
adding new entries:

0010 DIM T$(100)32,N$32 :REM Table of names
 : N=0 :REM Number of names
0020 INPUT "New Name",N$
 : MAT SEARCH T$() ,N*32,=STR(N$) TO L$ STEP 32

 :REM Find the first name = to the name
 entered

 : I=VAL(L$,2)
 : IF I=0 THEN 40 :REM I=Starting byte position
 : L=N*32+1-I :REM L=Number of bytes
 : MAT COPY -T$() <I,L> TO -T$() <I+32,L>
 :REM Move the array down
 : GOTO 50
0040 I=N*32+1
0050 STR(T$(),I,32)=N$:REM Insert the new name
 : N=N+1
 : FOR I=1 TO N
 : PRINT T$(I)
 : NEXT I
 : GOTO 20

MAT COPY LANGUAGE STATEMENTS

2-402 NPL Statements Guide

MAT COPY (cont.)

READY (NIAKWA RUNTIME) PARTITION 01
:0010 DIM A$(3)10,B$(3)10,C$31
:0020 MAT INPUT A$
:0030 MAT COPY A$() TO B$()
:0040 MAT COPY A$() TO -C$
:0050 LIST DIM *
:RUN
? Niakwa,NPL,RunTime
DIM A$(3)10
(1) "Niakwa " HEX(4E69 616B 7761 2020 2020)
(2) "NPL " HEX(4E50 4C20 2020 2020 2020)
(3) "RunTime " HEX(5275 6E54 696D 6520 2020)
DIM B$(3)10
(1) "Niakwa " HEX(4E69 616B 7761 2020 2020)
(2) "NPL " HEX(4E50 4C20 2020 2020 2020)
(3) "RunTime " HEX(5275 6E54 696D 6520 2020)
DIM C$31
 " emiTnuR " HEX(2020 2020 656D 6954 6E75 5220 2020 2020)
 STR(17) "LPN awkaiN" HEX(2020 4C50 4E20 2020 2061 776B 6169 4E)

Compatibility Issues:

References:

LANGUAGE STATEMENTS MAT COPY

NPL Statements Guide 2-403

MAT IDN

Discussion:

The MAT IDN statement is used to assign the specified square matrix the form of an iden-
tity matrix.

The dim1 and dim2 parameters redimension the matrix to the specified size. The new di-
mension size must be equal to or smaller than the original array. The new array must also
be a square array.

Examples:

0010 MAT A=IDN(5,5)
0010 MAT B=IDN(100,100)
0010 MAT C1=IDN
0010 MAT D=IDN(X,Y)

:0010 MAT B=IDN(4,4)
 : MAT PRINT B
:RUN
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

Compatibility Issues:

References:

General Form:

MAT numeric-array = IDN [(dim1,dim2)]

Where:

dim1,dim2 = numeric-expressions specifying new dimensions of
the numeric-array.

MAT IDN LANGUAGE STATEMENTS

2-404 NPL Statements Guide

MAT INPUT

Discussion:

The MAT INPUT statement is used to input data from the keyboard into one or more ar-
ray variables.

When a MAT INPUT statement is executed, the input prompt "?" is displayed and execu-
tion is suspended until the requested data is entered. As data is entered, elements are as-
signed row by row until the array is filled.

More than one element may be entered at a time by separating values with the comma de-
limiter. Entering no data when requested (just pressing RETURN) ends the MAT INPUT
operation. The contents of the remaining array elements is unchanged.

Data entered using the MAT INPUT statement must be compatible with the array type be-
ing assigned (e.g., numeric data must be entered into a numeric-array). Leading spaces or
commas can be entered as alpha data by enclosing them in quotation marks.

If invalid data is entered, an error is generated and the data must be reentered starting
from the element in error.

General Form:

MAT INPUT array-variable [(dim1[,dim2]) [length]]
[,array-variable [(dim1[,dim2]) [length]]]...

Where:

dim1,dim2 = numeric expressions specifying new dimensions of the
array.

length = expression specifying the length of each element in
an alpha-array. Default length is 16.

LANGUAGE STATEMENTS MAT INPUT

NPL Statements Guide 2-405

MAT INPUT (cont.)

Examples:
0010 MAT INPUT A$
0010 MAT INPUT C$(5,2)10
0010 MAT INPUT A(5,5),B$,C(2,3)
0010 MAT INPUT X$(10,10)32
0010 MAT INPUT J$(10,2),I

:10 DIM A(2,3),B$(2)8
:20 MAT INPUT A,B$

:RUN

When executed, this program prompts the operator for the entry of 8 fields. The re-
sponses to the first six fields are placed in A() and must contain valid numeric data.
The remaining two responses are placed in B$() and may contain alpha data.

Compatibility Issues:

References:

MAT INPUT LANGUAGE STATEMENTS

2-406 NPL Statements Guide

MAT INV

Discussion:

The MAT INV statement is used to assign matrix P the inverse of matrix Q. Array P can
be assigned the inverse of itself by placing it on both sides of the statement.

Array Q must be a square (n x n) matrix. If det is not specified and Q is a singular matrix,
an error X72 (Singular Matrix) occurs.

NOTE: For internal reasons, MAT INV cannot invert a numeric matrix larger than
(2048,2048)--a 16MB array.

MAT INV is typically used to determine the solution to a system of linear equations in n
variables. Given the system:

q11*x 1 + q 12*x 2 + ... + q 1nxn = y 1
q21*x 1 + q 22*x 2 + ... + q 2nxn = y 2

.
. .
qn1*x 1 + q n2*x 2 + ... + q nnxn = y n

with all qij and yj known and variables xi to be determined.

In matrix notation, this set of equations may be written as QX=Y.

General Form:

MAT p = INV(q)[,[det][,norm-det]]

Where:

p,q = numeric-array names.

det = a numeric-receiver which is assigned the value of the
determinant of array p.

norm-det = a numeric-receiver which is assigned the value of the
normalized determinant of array q.

LANGUAGE STATEMENTS MAT INV

NPL Statements Guide 2-407

MAT INV (cont.)

In a given square matrix Q, the result of MAT P=INV(Q) can be used to determine a solu-
tion matrix for Q by computing MAT B=P*Q. The matrix P is always non-singular. The
matrix B is upper triangular. (If Q is non-singular, P=INV(Q), and B is identity matrix.)

A row of zeros in row r of B indicates that the row r of Q is linearly dependent on other
rows of Q. The elements of row r of P are the coefficients of a linear dependence of rows
of Q.

In solving linear equations, if the equation is Q*X=Y where Q and Y are given, the equa-
tion has a solution if P*Y is zero on all rows where B is all zeros.

If P is singular and meets the above zero-rows criteria, the equation is solvable, but the so-
lution is not unique. The matrix B can be used to determine a basis for the set of all solu-
tions by solving the much simpler B*X=P*Y (which can be reduced from last row up).

If Q is non-singular, the above discussion can be summarized by the fact that the equa-
tion has the unique solution X=P*Y.

Examples:

10 MAT D=INV(B),X,Y

This example illustrates the use of MAT INV is an actual problem. Three separate items
have been purchased as a group on three separate occasions:

 5 nuts, 7 bolts and 8 screws - Total cost is 83 cents.
 8 nuts, 2 bolts and 4 screws - Total cost is 52 cents.
10 nuts, 15 bolts and 9 screws - Total cost is $1.35.

What is the cost for each nut, bolt and screw?

Let x1 be the cost of a nut.
Let x2 be the cost of a bolt.
Let x3 be the cost of a screw.

MAT INV LANGUAGE STATEMENTS

2-408 NPL Statements Guide

MAT INV (cont.)

The equations to be solved are:

 5 x1 + 7 x2 + 8 x3 = 83
 8 x1 + 2 x2 + 4 x3 = 52
10 x1 +15 x2 + 9 x3 = 135

Following the notational conventions,we use the following NPL program:

:0010 DIM Q(3,3),P(3,3),Y(3),X(3)
:0020 MAT READ Q
:0025 DATA 5,7,8
 : DATA 8,2,4
 : DATA 10,15,9
:0030 MAT READ Y
:0035 DATA 83
 : DATA 52
 : DATA 135
:0040 MAT P=INV(Q)
:0050 MAT X=P*Y
:0055 FOR T=1 TO 3
 : X(T)=ROUND(X(T),6) : REM ROUND OFF TO 6 DECIMALS
 : NEXT T
:0060 MAT PRINT X
:RUN
 3
 4
 5

That is, a nut costs 3 cents, a bolt costs 4 cents and a screw costs 5 cents.

NOTE: Rounding of results to a reasonable number of decimals is typical when performing
numerical analysis.

Compatibility Issues:

Due to the large number of calculations involved in computing a matrix inverse, the ef-
fect of the different internal numeric forms and rounding error may be especially notice-
able on this instruction. The usual cautions concerning the accuracy of the result when
the normalized determinant is small relative to 1 also apply.

Unlike Wang BASIC-2, where if the matrix is singular the resultant matrix P has "unde-
fined" values, the NPL resultant may be useful to determine whether there are solutions.

References:

LANGUAGE STATEMENTS MAT INV

NPL Statements Guide 2-409

MAT MERGE

Discussion:

The MAT MERGE statement is used to merge two or more sorted data files into a speci-
fied output file, sorted in ascending order.

The sizes of variables required by MAT MERGE and the structure of these variables de-
pends on the type of pointer-variable used. If the pointer-variable consists of two-byte ele-
ments, only small arrays (up to 255 rows, up to 254 columns) can be merged. If the
pointer-variable consists of four-byte elements, large arrays (up to 65535 rows, up to
65534 columns) can be merged. The following information refers to these two cases as
the small and large pointer cases.

General Form:

MAT MERGE source-array[(f1[,f2])] TO
status-var,temp-var,pointer-array

Where:

source-array = a two-dimensional alpha-array containing data to
be merged.

(f1,f2) = optional byte range (start & length) which de-
fines a field within each source-array element:

f1 = numeric expression which specifies the
 starting position of the field.

f2 = numeric expression which specifies the
 length of the field.

status-var = an alpha-variable used to store merge status.

temp-var = an alpha-variable used by the system as workspace.

pointer-array = an array with elements of length two or four used
to store subscripts of the source-array.

MAT MERGE LANGUAGE STATEMENTS

2-410 NPL Statements Guide

MAT MERGE (cont.)

The source-array is an alpha-array which acts as a "buffer" for the data being merged.
The source-array has one row for each input file being merged. The number of columns
in the source-array is arbitrary, but should be as large as possible.

The status-variable is an alpha-variable which maintains status information about the
merge operation. It must be dimensioned to a minimum size of the number of rows in the
source-array plus one in the small pointer case, or double this amount in the large pointer
case.

The temp-variable is an alpha-variable used as a work area by the system. The temp-vari-
able must have at least twice as many bytes as the number of rows in the source-array in
the small pointer case, or at least double this amount plus 3 bytes in the large pointer case.

The pointer-array is an alpha-array whose elements are two or four bytes in length.

Operation of MAT MERGE

MAT MERGE compares elements of each row of the source-array and produces a
merged list of subscripts in the pointer-array. For each comparison, the subscripts of the
lowest element are placed in the next element of the pointer-array. When an element in
the source-array has been selected in this fashion, the status-variable (refer below) is up-
dated to point to the next element in that row and that element is used for the next com-
parison.

Use of Field Parameters

The MAT MERGE statement allows the merge operation to be performed on a substring
of the source-array elements. The substring is specified by including the (f1,f2) parame-
ters. The f1 parameter specifies the starting position of the sort substring and f2 specifies
the number of characters in the string (the default value for f2 assumes all remaining char-
acters in the element). If field parameters are used, data stored in each row must be in
sorted order based on the specified field.

LANGUAGE STATEMENTS MAT MERGE

NPL Statements Guide 2-411

MAT MERGE (cont.)

Use of the Status-Variable

As stated above, the status-variable must contain one byte for every row in the source-ar-
ray plus one extra byte (the n+1 byte) or double this for the large pointer case. It is easiest
to consider the status variable as a string array of (n+1) elements each with one byte for
the small pointer case, or two bytes for the large pointer case.

The first (n) elements are "row" status information, and determine which element in the
row should be used for the next comparison. These values must be set initially to
HEX(01) for the small pointer case, or HEX(0001) for the large pointer case. The "row"
elements are updated by the merge operation as described above. When all elements in a
row have been used up by the merge operation, the value HEX(FF) for small pointer case
or HEX(FFFF) for large pointer case is placed in the corresponding row element. As
rows are replenished by the program, it is the responsibility of the program to reset the
corresponding "row" element to HEX(01) for the small pointer case, or HEX(0001) for
the large pointer case.

The n+1 element is used by the merge operation to provide information relating to the ter-
mination of the merge operation.

If the n+1 element of the status-variable equals HEX(00) for the small pointer case, or
HEX(0000) for the large pointer case, then the merge terminated because the pointer-ar-
ray is full.

A MAT MOVE operation is then required to move the merged data from the source-array
to the output file. After the MAT MOVE operation, another MAT MERGE can then be
performed on the remaining data in the source-array.

If the n+1 element contains any other value, then the MAT MERGE terminated with an
empty row in the source-array. The value of the n+1 element (as a one-byte binary value
for the small pointer case, or as a two-byte binary value for the large pointer case) indi-
cates the empty row. The remaining status-variable elements points to the next element in
each row to be merged on the next MAT MERGE execution.

MAT MERGE LANGUAGE STATEMENTS

2-412 NPL Statements Guide

MAT MERGE (cont.)

Multiple Execution of MAT MERGE

The complete merging of several large files typically requires more than one pass of the
MAT MERGE statement.

The merge operation completes each time the locator-array becomes full or the end of a
merge-array row is encountered. At this point, a move operation is required to move the
merged data from the merge-array to the output file. The next merge operation can then
be performed on the remaining data. Each time a merge operation encounters the end of a
merge-array row, the operation is ended (even if data is available in subsequent rows).
For this reason, it may be advisable to replenish an empty merge-array row and reset the
control-variable to point to the newly entered data as indicated above.

Upon completion of a MAT MERGE execution, the application should check for one of
the following:

• Did the merge terminate because the pointer array is full?

• Did the merge terminate because of an empty row in the merge-array?

This can be determined by examining the control-variable as indicated above.

Examples:
0010 MAT MERGE B$() TO C$(), D$(), E$()
0010 MAT MERGE B$()(3,4) TO C$,D$,E$()

The following sample program illustrates the use of MAT MERGE to sort three cata-
loged data files.

LANGUAGE STATEMENTS MAT MERGE

NPL Statements Guide 2-413

MAT MERGE (cont.)

NOTE: This example assumes that the three data files are in sorted order.

0010 REM Sample use of MAT MERGE statement
0020 REM Assumes 3 data files with sorted elements are to be merged.
 : REM The data records are 60 bytes long, stored 4 per logical
 record.
 : REM If last blocks are not full, unused records must be high-
 values.
 : REM The sort key is located at byte 10 of each record and is 5
 bytes long.
0030 REM The names of the files are "FILE1","FILE2",and "FILE3" on
0040 REM devices #1,#2,and #3 respectively.
0050 REM The output goes to "OUTPUT" on device #4.
0060 DIM S$(3,4)60 : REM source array holds 1 L.R. per file
 : DIM C$(4)1 : REM status-variable
 : DIM T$(3)2 : REM temp-variable
 : DIM P$(10)2 : REM pointer size is arbitrary
0080 DIM O$(4)60 : REM used to write records
0090 GOSUB 200 : REM initialization
0120 MAT MERGE S$()(10,5) TO C$(),T$(),P$()
 : IF P$(1)=HEX(0000) THEN 190: REM check no more to merge
 : GOSUB 300 : REM move merged keys to output
 : GOSUB 400 : REM refill empty row if any
 : GOTO 120 : REM continue merging
0190 DATA SAVE DC #4,END : REM merge complete, finish up
 : DATA SAVE DC CLOSE ALL
 : STOP
0200 DATA LOAD DC OPEN T#1,"FILE1"
 : DATA LOAD DC OPEN T#2,"FILE2"
 : DATA LOAD DC OPEN T#3,"FILE3" : REM open input files
 : FOR X=1 TO 3
 : GOSUB ’1(X) : REM read initial records
 : NEXT X
 : DATA LOAD DC OPEN T#4,"OUTPUT"
 : O=1 : REM set next available output record
 : RETURN
0250 DEFFN’1(F) : REM refill source array for file #F
 : DATA LOAD DC #F,S$(F,1),S$(F,2),S$(F,3),S$(F,4)
 : IF END THEN 260 : REM check end of file
 : C$(F)=HEX(01) : REM set status variable to first in row
 : GOTO 290
0260 C$(F)=HEX(FF) : REM set status variable to ’all used up’
0290 RETURN
0300 L=1
0330 D=4 : REM set counter before move
 : MAT MOVE S$(),P$(L),D TO O$(O): REM move records to output buffer
 : L=L+D : REM advance pointer index by number moved
 : O=O+D : REM advance output index by number moved
 : IF O THEN 350 : REM do we have a full output block yet?
 : DATA SAVE DC #4,O$() : REM yes, save it
 : O=1 : REM reset available output record
 : GOTO 330 : REM repeat until all pointers are used up
0350 RETURN

MAT MERGE (cont.)

MAT MERGE LANGUAGE STATEMENTS

2-414 NPL Statements Guide

MAT MERGE (cont.)
0400 IF C$(4)=HEX(00) THEN 480 : REM are any rows used up?
 : GOSUB ’1(VAL(C$(4))) : REM yes, refill used up row
0480 RETURN
.

Compatibility Issues:

Use of 4-byte pointer arrays is supported in NPL Revision 4.0 or greater, and is not com-
patible with the Wang 2200.

References:

MAT MOVE
MAT SORT

LANGUAGE STATEMENTS MAT MERGE

NPL Statements Guide 2-415

MAT MOVE

General Form:

MAT MOVE source-array [,pointer-array] [,counter-var]

TO {receiver-array }
 {receiver-array-element}

Where:

source-array = {alpha-array[(f1[,f2])]}
{numeric-array }

pointer-array = {alpha-array }
{alpha-array-element}

receiver-array = {alpha-array[(f1[,f2])]}
{numeric-array }

receiver-
array-element = {alpha-array-element[(f1[,f2])]}

{numeric-array-element }

f1 = numeric-expression which specifies the starting
position of a sub-field within a source-array or
receiver-array or receiver-array-element.

f2 = numeric-expression which specifies the length of
a sub-field within a source-array or receiver-ar-
ray or receiver-array-element.

counter-var = numeric-scalar which contains the maximum number
of elements to be moved when the statement is
executed and contains a count of the number of
elements actually moved when execution is com-
pleted.

MAT MOVE LANGUAGE STATEMENTS

2-416 NPL Statements Guide

MAT MOVE (cont.)

Discussion:

MAT MOVE is used to transfer data from one array to another and optionally convert
data between numeric and alpha arrays. MAT MOVE is frequently used in conjunction
with MAT SORT and MAT MERGE in order to process disk-based files.

General Features

MAT MOVE transfers data on an element by element basis from the source-array to the
receiver-array.

The source-array is always processed starting at the first element.

Source and receiver arrays do not have to have the same number of dimensions or an
equal number of elements. The system automatically handles conversion between two di-
mensioned matrices and single dimension matrices as well as conversion between two di-
mension matrices of different dimensions.

If the receiver-array-element designation is used, data is transferred into the receiver-ar-
ray starting at the specified element.

The move operation terminates when either the source-array has been completely moved
or the receiver-array has been filled, unless a counter-var or pointer-array are used (refer
to the discussion below).

The Field Parameters

The data to be moved from alpha-source-arrays is defined by field parameters. The por-
tion of the element to receive data in alpha-receiver-arrays is also defined by field pa-
rameters. In both cases, if the field parameters are not specified, the entire element is the
field. If the size of the field in the receiver-array does not match the size of the field in
the source-array, data values are truncated or extended with blanks as required. Data in
elements outside of the specified field is not affected by the move operation.

Specific field sizes in alpha-source-arrays or alpha-receiver arrays may be specified by
the f1,f2 parameters. If specified, f1 indicates the starting byte number within each ele-
ment to be used. The number of bytes in the field is specified by the f2 parameter, if pre-
sent. If not specified, the number of bytes in the field is from f1 to the end of the element.

LANGUAGE STATEMENTS MAT MOVE

NPL Statements Guide 2-417

MAT MOVE (cont.)

In numeric-source-arrays, the entire value is always moved. In numeric-receiver-arrays,
the entire value of the element is always replaced.

The counter-var

The counter-var may be used to specify the maximum number of elements to move.

NOTE: The move operation may be terminated by conditions other than the counter-var. If
this occurs, the counter-var is set to the number of elements actually moved.

The pointer-array

The pointer-array can be used to reorder elements as they are moved. Ordered pointer-ar-
rays are produced by MAT SORT and MAT MERGE. Typically, pointer-arrays are used
in conjunction with one of these statements.

The pointer-array should contain a series of two-byte or four-byte subscripts used in ac-
cessing the source-array. If the source-array is a one dimensional array, the two-byte or
four-byte subscript is treated as the binary representation of a single subscript (depending
on the size of a pointer-array element). If the source-array is a two-dimensional array, a
two-byte subscript is treated as containing two single byte binary subscripts, and a four-
byte subscript is treated as containing two double-byte binary subscripts.

Pointer-arrays of this type are generated by MAT SORT and MAT MERGE statements.

When a pointer-array is specified, it is accessed to determine which element of the source-
array to move next. That is, the first element moved is the element specified by the sub-
scripts in the first element of the pointer-array. The next element to move is the element
specified by the subscripts in the next element of the pointer-array, and so on.

A given element in the source-array may be referenced more than once by the pointer-ar-
ray. If this occurs, the element is duplicated in the receiver-array.

The element location of the output of the move is not affected by the pointer-array.

If a pointer array element containing all HEX(00)’s is encountered, the move operation is
terminated. The move operation is also terminated when the end of the pointer-array is
reached.

MAT MOVE LANGUAGE STATEMENTS

2-418 NPL Statements Guide

MAT MOVE (cont.)

Pointer-array values are left unused if the move operation is terminated due to other con-
ditions.

If a pointer array element containing all HEX(00) is encountered, the move operation is
terminated.

NOTE: Some versions of NPL allow a two-dimensional array to be defined with more than
65535 rows or columns. However, subscripts greater than 65535 can not be stored in
the pointer-array when a two-dimensional array is used.

Type Conversion

If the source-array and receiver-array are of different types, automatic conversion is per-
formed between the NPL internal numeric format and an alpha format suitable for sort-
ing. The alpha representation of numeric values requires an element length of 8 bytes to
ensure that all possible values can be stored. Values are truncated or padded with spaces
as required.

Byte one is used for the sign which may have the following decimal values:

9 - The mantissa and exponent are both positive.
8 - If a pointer array element containing all HEX(00) is encountered, the move

operation is terminated. - the mantissa is positive but the exponent is negative.
1 - The mantissa and exponent are both negative.
0 - The mantissa is negative and the exponent is positive.

Byte two contains a representation of the exponent, high-order digit first. If the mantissa
and exponent are the same sign, the exponent is stored in decimal form. Otherwise, the
decimal complement form is used.

Remaining bytes are used to store the mantissa. The mantissa is stored in decimal format
if the sign of the mantissa and exponent are the same. Otherwise, decimal complement
format is used.

When converting from the alpha representation to a numeric value, an error occurs if the
alpha data does not contain a valid representation of a numeric value.

LANGUAGE STATEMENTS MAT MOVE

NPL Statements Guide 2-419

MAT MOVE (cont.)

Examples:
0010 MAT MOVE A$(),L$(),N TO B$()
0010 MAT MOVE X$()(2,3) TO V$()
0010 MAT MOVE A(4,2),B$(1),100 TO C$()
0010 MAT MOVE G(),N$(5),H TO D()
0010 MAT MOVE L$(3,4)(5,8),Z$() TO S()

:0005 REM This example illustrates the field feature of MAT MOVE
:0010 DIM A$(10)10,C$(3,3)10
:0020 A$(1)="1234567890" : REM Initialize source-array
0030 FOR X=2 TO 10
 : A$(X)=A$(X-1)
 : ROTATEC(A$(X),8)
 : NEXT X
:0040 C=3 : REM Initialize Counter
:0050 C$()=ALL("z") : REM Initialize receiver-array
:0060 MAT MOVE A$()(2,3),C TO C$(2,2)(2,6): REM Move 3 byte field
 to a 6 byte field
:0070 LIST DIM * A$(,C$(

:RUN

DIM A$(10)10
(1) "1234567890" HEX(3132 3334 3536 3738 3930)
(2) "2345678901" HEX(3233 3435 3637 3839 3031)
(3) "3456789012" HEX(3334 3536 3738 3930 3132)
(4) "4567890123" HEX(3435 3637 3839 3031 3233)
(5) "5678901234" HEX(3536 3738 3930 3132 3334)
(6) "6789012345" HEX(3637 3839 3031 3233 3435)
(7) "7890123456" HEX(3738 3930 3132 3334 3536)
(8) "8901234567" HEX(3839 3031 3233 3435 3637)
(9) "9012345678" HEX(3930 3132 3334 3536 3738)
(10) "0123456789" HEX(3031 3233 3435 3637 3839)

DIM C$(3,3)10
(1,1) "zzzzzzzzzz" HEX(7A7A 7A7A 7A7A 7A7A 7A7A)
(1,2) "zzzzzzzzzz" HEX(7A7A 7A7A 7A7A 7A7A 7A7A)
(1,3) "zzzzzzzzzz" HEX(7A7A 7A7A 7A7A 7A7A 7A7A)
(2,1) "zzzzzzzzzz" HEX(7A7A 7A7A 7A7A 7A7A 7A7A)
(2,2) "z234 zzz" HEX(7A32 3334 2020 207A 7A7A)
(2,3) "z345 zzz" HEX(7A33 3435 2020 207A 7A7A)
(3,1) "z456 zzz" HEX(7A34 3536 2020 207A 7A7A)
(3,2) "zzzzzzzzzz" HEX(7A7A 7A7A 7A7A 7A7A 7A7A)
(3,3) "zzzzzzzzzz" HEX(7A7A 7A7A 7A7A 7A7A 7A7A)

Refer to MAT SORT and MAT MERGE statements for examples of the MAT
MOVE statement as used in conjunction with these statements.

MAT MOVE LANGUAGE STATEMENTS

2-420 NPL Statements Guide

Compatibility Issues:

Use of 4-byte pointer arrays is supported in NPL Revision 4.0 or greater, and is not com-
patible with the Wang 2200.

LANGUAGE STATEMENTS MAT MOVE

NPL Statements Guide 2-421

MAT MOVE (cont.)

References:

MAT SORT
MAT MERGE

MAT MOVE LANGUAGE STATEMENTS

2-422 NPL Statements Guide

MAT* (Multiply)

Discussion:

The MAT* statement is used to multiply two arrays (array2,array3), resulting in a third ar-
ray (array1).

The number of columns in array1 must equal the number of rows in array2. Array3 can
not appear on both sides of the statement, otherwise an error is generated.

If array A has dimensions (L,M), and array B has dimensions (M,N) [note common di-
mension value], the statement MAT C=A*B is equivalent to:

0010 MAT REDIM C(L,N)
0020 FOR I=1 TO L
0030 FOR J=1 TO N
0040 S=0
0050 FOR K=1 TO M
0060 S=S+A(I,K)*B(K,J)
0070 NEXT K
0080 C(I,K)=S
0090 NEXT J
0100 NEXT I

Examples:
0010 MAT A = X * Y
0010 MAT C = A * B

Compatibility Issues:

References:

General Form:

MAT array1 = array2 * array3

Where:

array1,array2,array3 = numeric-array names

LANGUAGE STATEMENTS MAT* (Multiply)

NPL Statements Guide 2-423

MAT PRINT

Discussion:

The MAT PRINT statement is used to display the contents of the specified array-vari-
able(s).

MAT PRINT displays the contents of the specified array-variable(s) in a row-by-row for-
mat, with each new row beginning on a new print line.

Specifying a trailing comma displays output in a column format. Specifying a trailing
semicolon displays element rows continuously, with no blank spaces between elements in
a row.

Examples:
0010 MAT PRINT A$
0010 MAT PRINT A;
0010 MAT PRINT A,A$,B
0010 MAT PRINT X$

:0010 DIM A$(3,3)16,B(3,3)
:0020 MAT INPUT A$,B
:0030 MAT PRINT A$,B
:RUN
? THIS,IS,AN,EXAMPLE,OF,THE,MAT,INPUT,STATEMENT
? 1,2,3,4,5,6,7,8,9

THIS IS AN
EXAMPLE OF THE
MAT INPUT STATEMENT

 1 2 3
 4 5 6
 7 8 9

Compatibility Issues:

References:

General Form:

MAT PRINT array-variable [{;} array-variable]...[{;}]
 {,} {,}

MAT PRINT LANGUAGE STATEMENTS

2-424 NPL Statements Guide

MAT READ

Discussion:

The MAT READ statement is used to assign a list of values from a DATA statement to
the arrays specified.

Data is assigned row-by-row to each array, continuing left to right through the arrays.
The process uses the data values sequentially, beginning with the DATA statement with
the lowest line-number, using each value, then those from the next DATA statement, and
so on until the elements of all arrays have been filled or the data is exhausted. An error
occurs if the data is exhausted first. An error also occurs if the value being transferred
does not match the variable type required by the list of arrays.

Examples:
0010 MAT READ A$,B$
0010 MAT READ A$
0010 MAT READ B,C

Compatibility Issues:

References:

DATA

General Form:

MAT READ array-variable [(dim1[,dim2]) [length]]
 [,array-variable [(dim1[,dim2]) [length]]]...

Where:

dim1,dim2 = numeric-expressions specifying new dimensions of the
array.

length = expression specifying the length of each element in
an alpha-array. Default length is 16.

LANGUAGE STATEMENTS MAT READ

NPL Statements Guide 2-425

MAT REDIM

Discussion:

The MAT REDIM statement is used to redimension the specified array according to the
specified dimension parameters. In addition, if the redimensioned array is an alpha-array,
the length of the element may optionally be specified.

MAT REDIM may be used to expand statically allocated arrays beyond their initially al-
located size, provided:

1. There is sufficient memory to allocate both the old variable and the new large alloca-
tion.

2. There may not be any pending /POINTER or stack references to the variable.

If either condition is not met, an error 304 (cannot expand any variable) occurs. (This is a
recoverable error.)

The following example illustrates condition (1) above:

General Form:

MAT REDIM array-variable (dim1[,dim2]) [length]
,array-variable (dim1[,dim2]) [length]]...

Where:

dim1,dim2 = numeric-expressions specifying new dimensions of the
array.

length = expression specifying the length of each element in
an alpha-array. Default length is 16.

MAT REDIM LANGUAGE STATEMENTS

2-426 NPL Statements Guide

MAT REDIM (cont.)
0010 ; SYNALLOC - Example for Dynamically Allocating Arrays
0020 DIM X,Y
0030 DIM A$(0)0
0040 FUNCTION ’GetSize(/POINTER Elements for Element";
0050 PRINT "Enter Number of elements for Array";
0060 INPUT Elements
0070 PRINT "Enter Number of Elements for Array";
0080 INPUT Size
0090 RETURN (0)
0100 END FUNCTION
0110 IF ’GetSize(X,Y)=0
 : MAT REDIM A$(X)Y
 : END IF
0120 LIST DIM A$(
:RUN
Enter Number of Elements for Array ? 1024
Enter Length of each Array Element ? 32
DIM A$(1024)32

Condition 2 avoids errors caused by references to the variable at the old address. Because
the MAT REDIM statement expands the array, and it moves it to a new address, the as-
signment would reference the old copy of the array unless the /POINTER addresses are
corrected retroactively.

Newly allocated space in the variable contains either blanks, if a string, or zeroes, for nu-
merics. Previously allocated space is unchanged.

This extended capability of MAT REDIM also applies to implied or explicit array redi-
mensioning operations in the matrix math statements:

MAT = MAT + MAT - MAT *
MAT SCALAR MAT IDN MAT CON MAT ZER

The scope of statically allocated arrays may be PUBLIC, module, private or local to a
function.

NOTE: Recursive and scalar variables may not be specified in MAT REDIM statements.

LANGUAGE STATEMENTS MAT REDIM

NPL Statements Guide 2-427

MAT REDIM (cont.)

Examples:
0010 MAT REDIM Z(5,5)
0010 MAT REDIM X(9,Y),N(10,10)
0010 MAT REDIM K$(6,12)10
0010 MAT REDIM V$(4,4)12,X$(8,4)10,Z$(12)8

10 DIM A$(0)20, C(0)
 : READ X :; get list size
 : MAT REDIM A$(X)20, ;expand table of names
 C(X) :; and amounts.

Compatibility Issues:

Revisions prior to NPL Release IV do not allow MAT REDIM to redimension an array
larger than that of the original array.

References:

MAT REDIM LANGUAGE STATEMENTS

2-428 NPL Statements Guide

MAT SEARCH

Discussion:

The MAT SEARCH statement searches alpha-variable1 for substrings which satisfy the
specified relational operator when compared to alpha-value, and places the addresses of
these substrings in the receiver-variable.

If the receiver-variable is an alpha-variable, each address is stored as a two-byte binary
value that indicates the starting position in alpha-variable1. If the receiver-variable is a
numeric-array, each address is stored as a numeric value with the first address placed in
element one of the array, the second placed in element two, and so on.

If the receiver-variable is a numeric-variable or a numeric-array element, only the first lo-
cation or element in the string which matches the search condition is placed in the vari-
able, or a zero value is placed in the variable if no match is found.

General Form:

MAT SEARCH [ELEMENT] {alpha-variable1[<[s][,[n]]>],} rel-op
 {literal-string1, }

alpha-value TO receiver-variable [STEP numeric-expression]

Where:

s = numeric-expression

n = numeric-expression

rel-op = { <, <=, =, >, >=, <>}

alpha-value = {alpha-variable }
{literal }

receiver-variable = {alpha-variable }
{numeric-array }
{numeric-variable }
{numeric-array element}

LANGUAGE STATEMENTS MAT SEARCH

NPL Statements Guide 2-429

MAT SEARCH (cont.)

The keyword ELEMENT determines the actual values returned for "address". If ELE-
MENT is not specified, the address is the first byte number in alpha-variable1 that corre-
sponds to the start of a matching substring. The ELEMENT keyword is normally used
when searching an array of fixed size elements for a value that can occur at only one posi-
tion in an element. In this case, the STEP value would be the size of the array element
and the value returned in the receiver-variable is an element number rather than a byte ad-
dress. The non-zero values returned by MAT SEARCH and MAT SEARCH ELEMENT
are related by the formula:

e = (b-1)/s+1

where:

e is the element number returned by MAT SEARCH ELEMENT

b is the byte address returned by MAT SEARCH

s is the STEP value

If alpha-variable1 is an array, element boundaries are ignored and the address is specified
starting from byte one of the array.

The value of zero is placed in the receiver-variable just after the address of the last valid
substring found.

When MAT SEARCH is executed, substrings of alpha-variable1 are tested against the al-
pha-value for the relation specified. The length of the substring tested is the length of al-
pha-value.

NOTE: Trailing spaces in alpha-value are ignored unless alpha-value is a literal or STR()
function.

The portion of alpha-variable1 SEARCHed can be modified by use of the "s" and "n" pa-
rameters. The "s" parameter is a numeric-expression which specifies the position in alpha-
variable1 to begin the SEARCH operation. The "n" parameter is a numeric-expression
which specifies the number of bytes of alpha-variable1 (starting at byte 1 if "s" parameter
is not specified) to be searched.

MAT SEARCH LANGUAGE STATEMENTS

2-430 NPL Statements Guide

MAT SEARCH (cont.)

The optional "STEP" parameter is used to specify the number of bytes to skip in alpha-
variable1 in determining the starting address of the next field to search. The "STEP" pa-
rameter must be a positive integer. If no "STEP" parameter is indicated, a default of "1"
is used. The STEP parameter is useful for searching alpha-variables which contain field-
oriented data. For example, if an alpha-variable contains a series of 8-byte names, and the
purpose of the search was to find a particular name, a STEP value of 8 would be appropri-
ate. Failure to specify an appropriate STEP value could result in erroneous data being se-
lected by the search operation and in more lengthy execution time.

For example, assume that an array contains elements of length 20 where each element
contains a person’s name (first name first). The purpose of this program is to extract and
print all names where the first name is some variation of the name "MARY" (MARIE,
MARIANNE, etc.).

:05 DIM A$(5)20
:10 DIM X$(5)2 :REM POINTER VARIABLE
:15 A$(1)="MARY SMITH"
 : A$(2)="SUSAN JONES"
 : A$(3)="MARIANNE JACKSON"
 : A$(4)="SALLY MARGOLAN"
 : A$(5)="JANE ADAMS"
:20 MAT SEARCH A$(),="MAR" TO X$() STEP 20 :REM SEARCH FOR NAMES

 STARTING WITH "MAR"

:30 FOR X=1 TO 5
:IF X$(X)=HEX(0000) THEN 90 :REM NO MORE POINTERS
: PRINT STR(A$(),VAL(X$(X),2),20) :REM PRINT THE NAME

 BASED ON THE POINTER
 VALUE

: NEXT X :REM NEXT POINTER VALUE

:80 GOTO 100
:90 X=5: NEXT X :REM CLEAR THE LOOP
:100 REM DONE

:RUN

MARY SMITH
MARIANNE JACKSON

In this case, the pointer variable contains two addresses in binary - (0001) & (0029)
which are converted to decimal byte addresses by the VAL function in line 30.

LANGUAGE STATEMENTS MAT SEARCH

NPL Statements Guide 2-431

MAT SEARCH (cont.)

NOTE: If a step value was not specified in line 20, the "MAR" in the name SALLY MAR-
GOLAN would also meet the search criterion and the program would print:

MARY SMITH
MARIANNE JACKSON
MARGOLAN JANE A

In this case, the pointer variable contains three addresses in binary - (0001), (0029) and
(0043) which are converted to decimal byte addresses by the VAL function in line 30.

The above example could be modified to use the ELEMENT keyword and a numeric-ar-
ray as the receiver-variable as follows:

:10 DIM X(5) :REM POINTER VARIABLE
:15 A$(1)="MARY SMITH"
 : A$(2)="SUSAN JONES"
 : A$(3)="MARIANNE JACKSON"
 : A$(4)="SALLY MARGOLAN"
 : A$(5)="JANE ADAMS"
:20 MAT SEARCH ELEMENT A$(),="MAR" TO X() STEP 20

:REM SEARCH FOR NAMES STARTING WITH "MAR"
:30 FOR X=1 TO 5
 :IF X(X)0 THEN DO
 : PRINT A$(X(X)) :REM PRINT THE NAME
 : NEXT X :REM NEXT POINTER VALUE
 : ENDDO
 : ELSE
 : NEXT CLEAR :REM NO MORE POINTERS
:100 REM DONE

:RUN

MARY SMITH
MARIANNE JACKSON

NOTE: Use of the ELEMENT keyword in conjunction with a numeric-array as a receiver-
variable significantly simplifies the code. In particular, note that elements of A$ ar-
ray which match can be referenced using the receiver-variable (X()) as a subscript.

MAT SEARCH LANGUAGE STATEMENTS

2-432 NPL Statements Guide

MAT SEARCH (cont.)

Examples:
0010 MAT SEARCH A$(),=B$ TO L$
0010 MAT SEARCH STR(D$(),1,100), = STR(F$,1,2) TO B$()
0010 MAT SEARCH D$(),=M$() TO STR(P$(),30,10)
0010 MAT SEARCH A$(),<B$() TO C$()
0010 MAT SEARCH X$(),<=Y$ TO Z$ STEP 20
0010 MAT SEARCH A$(),=B$ TO L$
0010 MAT SEARCH STR(D$(),1,100), = STR(F$,1,2) TO B()
0010 MAT SEARCH D$(),=M$() TO STR(P$(),30,10)
0010 MAT SEARCH A$(),<B$() TO C$()
0010 MAT SEARCH ELEMENT X$(),<=Y$ TO Z() STEP 20

Compatibility Issues:

Use of numeric-arrays to receive the results of MAT SEARCH is supported only in NPL
Revision 3.0 or greater.

Use of numeric-arrays to receive the results of MAT SEARCH is not supported on the
Wang 2200.

Use of the ELEMENT keyword is supported only in NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

LANGUAGE STATEMENTS MAT SEARCH

NPL Statements Guide 2-433

MAT SORT

Discussion:

The MAT SORT statement is used to sort the specified source-array in ascending order.
Sorting is performed on a binary basis for each element of the source-array. Sorting may
be performed on a specified field within elements of the source-array by specifying the
starting byte number and number of bytes to use as the f1 and f2 parameters. If only f1 is
specified, the field is comprised of all bytes from the f1 position to the end of the element.

General Form:

MAT SORT source-array[(f1[,f2])] TO temp-variable, pointer-array

Where:

source-array = alpha-array

(f1,f2) = optional byte range (start & length) which de-
fines a field within each alpha-array element:

f1 = numeric expression which specifies the
 starting position of the field.

f2 = numeric expression which specifies the
 length of the field.

temp-variable = an alpha-variable used as a work area which must
be dimensioned with two bytes for every element
in the source-array, or four bytes per element if
the pointer-array element length is four bytes.

pointer-array = alpha-array of two or four byte elements.

MAT SORT LANGUAGE STATEMENTS

2-434 NPL Statements Guide

MAT SORT (cont.)

Output of the MAT SORT operation consists of a pointer-array where each element of
the pointer-array contains a subscript for one element of the source-array in order of the
specified sort.

NOTE: NPL allows a two-dimensional array to be defined with more than 255 rows or col-
umns (though the total elements may not exceed 65535). However, subscripts
greater than 255 cannot be stored in the pointer-array when a two-dimensional ar-
ray is used. If such an array is used, it must be redimensioned (REDIM) before sort-
ing.

The pointer-array must be dimensioned with at least as many elements as the source-ar-
ray with a length of two or four bytes. A four-byte element length is required to sort one-
dimensional arrays with more than 65535 elements, or two-dimensional arrays with more
than 255 rows or columns, but may also be used for smaller source-arrays. Two-dimen-
sional arrays with more than 65535 rows or columns cannot be sorted by MAT SORT.

For one-dimensional source-arrays, the subscript is a two or four byte binary number, de-
pending on the length of the pointer-array elements. For two dimensional source-arrays,
each subscript is stored as either a one-byte binary number within the two-byte pointer-ar-
ray element, or as a two-byte binary number within the four-byte pointer-array element.
If the number of pointer-array elements exceeds the number of source-array elements, the
first unused pointer-array element is set to a value of all HEX(00).

NOTE: Some versions of NPL allow a two-dimensional array to be defined with more than
65535 rows or columns. However, subscripts greater than 65535 can not be stored in
the pointer-array when a two-dimensional array is used.

The pointer-array produced by MAT SORT can be used in several ways:

1. It can be used in conjunction with a MAT MOVE statement to MOVE the source-ar-
ray to an output array in order of the pointer-array.

LANGUAGE STATEMENTS MAT SORT

NPL Statements Guide 2-435

MAT SORT (cont.)

2. It can be used to directly access the source-array by use of the subscripts stored. This
permits the programmer to access the source-array in more complex ways. One such
use would be to access the source-array in descending order.

For example, refer to the following:

:10 DIM I$(50)8, T$100, P$(50)2: REM T$=TEMP; P$(=POINTER
:20 MAT INPUT I$
:30 MAT SORT I$() TO T$,P$()
:40 FOR X=50 TO 1 STEP -1
: PRINT I$(VAL(P$(X),2))
: NEXT X

prints each element of I$() in descending sequence.

NOTE: This example uses a one-dimensional source array. For a two-dimensional array, the
logic for accessing the source-array directly based on the subscripts stored in the
pointer-array is slightly different because each element of the pointer-array con-
tains subscripts for both row and column rather than a single two-byte subscript:

:10 DIM I$(25,2)8, T$100, P$(50)2: REM T$=TEMP; P$(=POINTER
:20 MAT INPUT I$
:30 MAT SORT I$() TO T$,P$()
:40 FOR X=50 TO 1 STEP -1
: PRINT I$(VAL(STR(P$(X),,1)),VAL(STR(P$(X),2,1)))
: NEXT X

MAT SORT is also frequently used in conjunction with MAT MERGE to produce a
sorted output array based on multiple sorted source arrays.

Only alpha-arrays can be specified as the source-array to a MAT SORT operation. If sort-
ing of numeric arrays is required, the numeric array must first be moved to an alpha-array
with the same dimensions by use of the MAT MOVE statement. Then, after the sort, the
pointer-array indexes the numeric-array in sorted order. Example 2 below illustrates this
process. Refer to MAT MOVE for further details on conversion between numeric and al-
pha arrays.

MAT SORT LANGUAGE STATEMENTS

2-436 NPL Statements Guide

MAT SORT (cont.)

Examples:
10 MAT SORT A$() TO T$,P$()
10 MAT SORT A$() (2,3) TO T$,P$()

:0010 DIM A$(5,3)16,T$30,P$(15)2,X$(5,3)16
:0020 MAT INPUT A$
:0030 MAT SORT A$() TO T$,P$()
:0040 LIST DIM *A$(,P$(:REM List contents of array variables in the

 range of A$ to P$.
:0100 MAT MOVE A$(),P$(1) TO X$(1,1)
:0120 LIST DIM *X$(:REM List contents of resulting move-array
:0200 END
:RUN

Results: (after MAT INPUT A$ operation is performed)
DIM A$(5,3)16
(1,1) "AAAAAAAA " HEX(4141 4141 4141 4141 2020 2020 2020 2020)
(1,2) "CCCCCCCC " HEX(4343 4343 4343 4343 2020 2020 2020 2020)
(1,3) "JJJJJJJJJJ " HEX(4A4A 4A4A 4A4A 4A4A 4A4A 2020 2020 2020)
(2,1) "EEEEEEEEEEE " HEX(4545 4545 4545 4545 4545 4520 2020 2020)
(2,2) "IIIIIIII " HEX(4949 4949 4949 4949 2020 2020 2020 2020)
(2,3) "QQQQQQQQQQQQQ " HEX(5151 5151 5151 5151 5151 5151 5120 2020)
(3,1) "UUUUUUU " HEX(5555 5555 5555 5520 2020 2020 2020 2020)
(3,2) "IIIIIIIIII " HEX(4949 4949 4949 4949 4949 2020 2020 2020)
(3,3) "MMMMMMMMMM " HEX(4D4D 4D4D 4D4D 4D4D 4D4D 2020 2020 2020)
(4,1) "KKKKKKKKKK " HEX(4B4B 4B4B 4B4B 4B4B 4B4B 2020 2020 2020)
(4,2) "PPPPPPPPPPPPP " HEX(5050 5050 5050 5050 5050 5050 5020 2020)
(4,3) "XXXXXXXXXXX " HEX(5858 5858 5858 5858 5858 5820 2020 2020)
(5,1) "XXXXXXXXXXXXX " HEX(5858 5858 5858 5858 5858 5858 5820 2020)
(5,2) "JJJJJJJJJJ " HEX(4A4A 4A4A 4A4A 4A4A 4A4A 2020 2020 2020)
(5,3) "111111111111 " HEX(3131 3131 3131 3131 3131 3131 2020 2020)

DIM P$(15)2
(1) ".." HEX(0503)
(2) ".." HEX(0101)
(3) ".." HEX(0102)
(4) ".." HEX(0201)
(5) ".." HEX(0202)
(6) ".." HEX(0302)
(7) ".." HEX(0103)
(8) ".." HEX(0502)
(9) ".." HEX(0401)
(10) ".." HEX(0303)
(11) ".." HEX(0402)
(12) ".." HEX(0203)
(13) ".." HEX(0301)
(14) ".." HEX(0403)
(15) ".." HEX(0501)

LANGUAGE STATEMENTS MAT SORT

NPL Statements Guide 2-437

MAT SORT (cont.)

NOTE: A$() is the source-array
P$() is the pointer-array
T$ is the temp-variable

DIM X$(5,3)16
(1,1) "111111111111 " HEX(3131 3131 3131 3131 3131 3131 2020 2020)
(1,2) "AAAAAAAA " HEX(4141 4141 4141 4141 2020 2020 2020 2020)
(1,3) "CCCCCCCC " HEX(4343 4343 4343 4343 2020 2020 2020 2020)
(2,1) "EEEEEEEEEEE " HEX(4545 4545 4545 4545 4545 4520 2020 2020)
(2,2) "IIIIIIII " HEX(4949 4949 4949 4949 2020 2020 2020 2020)
(2,3) "IIIIIIIIII " HEX(4949 4949 4949 4949 4949 2020 2020 2020)
(3,1) "JJJJJJJJJJ " HEX(4A4A 4A4A 4A4A 4A4A 4A4A 2020 2020 2020)
(3,2) "JJJJJJJJJJ " HEX(4A4A 4A4A 4A4A 4A4A 4A4A 2020 2020 2020)
(3,3) "KKKKKKKKKK " HEX(4B4B 4B4B 4B4B 4B4B 4B4B 2020 2020 2020)
(4,1) "MMMMMMMMMM " HEX(4D4D 4D4D 4D4D 4D4D 4D4D 2020 2020 2020)
(4,2) "PPPPPPPPPPPPP " HEX(5050 5050 5050 5050 5050 5050 5020 2020)
(4,3) "QQQQQQQQQQQQQ " HEX(5151 5151 5151 5151 5151 5151 5120 2020)
(5,1) "UUUUUUU " HEX(5555 5555 5555 5520 2020 2020 2020 2020)
(5,2) "XXXXXXXXXXX " HEX(5858 5858 5858 5858 5858 5820 2020 2020)
(5,3) "XXXXXXXXXXXXX " HEX(5858 5858 5858 5858 5858 5858 5820 2020)

NOTE: X$() is the move-array which contains the A$() array in sorted order after being
filled using the MAT MOVE statement.

Example 2:
:0005 REM This example allows input into numeric array A, convert

 array A to alpha array A$, sort array A$, and move the sorted
 results into numeric array B

:0010 DIM A(5,4),B(5,4),A$(5,4)8,T$40,P$(20)2
:0020 MAT INPUT A
:0025 MAT MOVE A() TO A$() :REM Convert to alpha
:0030 MAT SORT A$() TO T$,P$()
:0040 MAT MOVE A(),P$() TO B() :REM Convert to numeric and
 move in sorted order
:0050 MAT PRINT A
:0060 MAT PRINT B
:0070 LIST DIM * P$(:REM Display the resulting pointer array

:RUN

NOTE: A() is source array entered in response to MAT INPUT:

 10.5 -9.4 0 12
298.784 -48.89 .001 -1.9
-10.5 98.45 -.001 76
 28 -9.98 .87 87
 16.5 7.8 -.78 9

MAT SORT LANGUAGE STATEMENTS

2-438 NPL Statements Guide

MAT SORT (cont.)

NOTE: B() is sorted output:

-48.89 -10.5 -9.98 -9.4
-1.9 -.78 -.001 0
 .001 .87 7.8 9
 10.5 12 16.5 28
 76 87 98.45 298.784

DIM P$(20)2
(1) ".." HEX(0202)
(2) ".." HEX(0301)
(3) ".." HEX(0402)
(4) ".." HEX(0102)
(5) ".." HEX(0204)
(6) ".." HEX(0503)
(7) ".." HEX(0303)
(8) ".." HEX(0103)
(9) ".." HEX(0203)
(10) ".." HEX(0403)
(11) ".." HEX(0502)
(12) ".." HEX(0504)
(13) ".." HEX(0101)
(14) ".." HEX(0104)
(15) ".." HEX(0501)
(16) ".." HEX(0401)
(17) ".." HEX(0304)
(18) ".." HEX(0404)
(19) ".." HEX(0302)
(20) ".." HEX(0201)

Compatibility Issues:

On the Wang 2200 MVP, if the array to be sorted contains duplicate values, the order in
which duplicate elements appear in the pointer-array is not defined. The NPL version of
the sort guarantees that the order of identically-valued elements is preserved in the
pointer-array.

It is very unlikely that a program might depend on the exact order produced by the Wang
2200 MVP when keys are identical, or might try to use the contents of the work-variable
(which are also undefined after the SORT operation) for some obscure purpose. Pro-
grams which do so will fail.

Use of 4-byte pointer arrays is supported in NPL Revision 4.0 or greater, but is not com-
patible with the Wang 2200.

LANGUAGE STATEMENTS MAT SORT

NPL Statements Guide 2-439

MAT SORT (cont.)

References:

MAT MOVE
MAT PRINT

MAT SORT LANGUAGE STATEMENTS

2-440 NPL Statements Guide

MAT TRN

Discussion:

The MAT TRN statement used to replace numeric-array1 with the transpose of numeric-
array2.

The receiving numeric-array1 is redimensioned to the same dimensions as the transpose
of numeric-array2. Numeric-array1 cannot appear on both sides of the equation or an er-
ror is generated.

Transposition takes place element by element. For example, element (2,3) of numeric-ar-
ray2 becomes element (3,2) of numeric-array1.

If array A has dimension (L,M), the statement MAT B=TRN(A) is equivalent to:

0010 MAT REDIM B(M,L)
 : FOR I=1 TO L
 : FOR J=1 TO M
 : B(J,I)=A(I,J)
 : NEXT J
 : NEXT I

Examples:
0010 MAT A = TRN(B)
0010 MAT C = TRN(X)
0010 MAT B1 = TRN(Y)

Compatibility Issues:

References:

General Form:

MAT numeric-array1 = TRN(numeric-array2)

LANGUAGE STATEMENTS MAT TRN

NPL Statements Guide 2-441

MAT ZER

Discussion:

The MAT ZER statement is used to set all elements of the specified numeric-array to the
numeric value of 0. In addition, the specified numeric-array is optionally redimensioned
according to the new dimension parameters.

If the redimensioning parameters are specified, the total elements must be less than or
equal to the original number of elements.

Examples:
0010 MAT Z = ZER
0010 MAT X = ZER(5,10)
0010 MAT P = ZER(Q,S)
0010 MAT K = ZER(15)

Compatibility Issues:

References:

General Form:

MAT numeric-array = ZER [(dim1[,dim2])]

Where:

dim1, dim2 = numeric-expressions specifying new dimensions of
the numeric-array.

MAT ZER LANGUAGE STATEMENTS

2-442 NPL Statements Guide

MAT Addition

Discussion:

The MAT addition statement is used to add together all elements of two equally dimen-
sioned numeric-arrays. The numeric sum is stored in the corresponding elements of nu-
meric-array1. Numeric-array1 is automatically redimensioned to the dimensions of the
arrays that are added to it. Either numeric-arrays 2 or 3 may appear on both sides of the
equation.

Examples:
0010 MAT Z = X + Y
0010 MAT X = X + A
0010 MAT P = P + P

:0010 DIM X(2,3),Y(3,2),Z(3,2)
:0020 MAT INPUT X
:0030 PRINT "AFTER INPUT MAT X = "
:0040 MAT PRINT X
:0050 MAT Y=X
:0060 MAT Z=X+Y
:0070 PRINT "AFTER MAT +, MAT Z = "
:0080 MAT PRINT Z
:RUN

AFTER INPUT MAT X =

 1 2 3
 4 5 6

AFTER MAT +, MAT Z =

 2 4 6
 8 10 12

Compatibility Issues:

References:

General Form:

MAT numeric-array1 = numeric-array2 + numeric-array3

LANGUAGE STATEMENTS MAT Addition

NPL Statements Guide 2-443

MAT Assignment

Discussion:

The MAT assignment statement is used to set all elements of numeric-array1 equal to the
values of the corresponding elements in numeric-array2. Numeric-array1 is automatically
redimensioned to the dimensions of numeric-array2.

Examples:
0010 MAT Z = X
0010 MAT X = A
0010 MAT P = Y

:0010 DIM X(2,3),Y(3,2),Z(3,2)
:0020 MAT INPUT X
:0030 PRINT "AFTER INPUT MAT X = "
:0040 MAT PRINT X
:0050 MAT Y=X
:0060 PRINT "AFTER MAT =, MAT Y = "
:0070 MAT PRINT Y
:RUN

AFTER INPUT MAT X =

 1 2 3
 4 5 6

AFTER MAT =, MAT Y =

 1 2 3
 4 5 6

Compatibility Issues:

References:

General Form:

MAT numeric-array1 = numeric-array2

MAT Assignment LANGUAGE STATEMENTS

2-444 NPL Statements Guide

MAT Scalar Multiplication

Discussion:

MAT scalar multiplication is used to multiply all elements of numeric-array2 by the
value of a numeric-expression. The numeric-array of multiplicative products is stored in
the elements of numeric-array1. Numeric-array1 is automatically redimensioned to the di-
mensions of numeric-array2.

Examples:
0010 MAT Z = (2) * X
0010 MAT X = (D+P*2) * Y
0010 MAT P = (X-4) * N

:0010 DIM X(2,3),Y(3,2),Z(3,2)
:0020 MAT INPUT X
:0030 PRINT "AFTER INPUT MAT X = "
:0040 MAT PRINT X
:0050 A=4
:0060 MAT Z=(A)*X
:0070 PRINT "AFTER MAT *, MAT Z = "
:0080 MAT PRINT Z
:RUN

AFTER INPUT MAT X =
 1 2 3
 4 5 6

AFTER MAT *, MAT Z =
 4 8 12
 16 20 24

Compatibility Issues:

References:

General Form:

MAT numeric-array1 = (numeric-expression) * numeric-array2

LANGUAGE STATEMENTS MAT Scalar Multiplication

NPL Statements Guide 2-445

MAT Subtraction

Discussion:

The MAT subtraction statement is used to subtract all elements of numeric-array3 from
the elements of numeric-array2, given that numeric-array2 and numeric-array3 are
equally dimensioned. The difference is stored in the corresponding elements of numeric-
array1. Numeric-array1 is automatically redimensioned to the dimensions of the arrays
that are involved in the subtraction.

Examples:
0010 MAT Z = X - Y
0010 MAT X = X - A
0010 MAT P = Q - T

:0010 DIM X(2,3),Y(3,2),Z(3,2)
:0020 MAT INPUT X
:0030 PRINT "AFTER INPUT MAT X = "
:0040 MAT INPUT Y
:0050 PRINT "AFTER INPUT MAT Y = "
:0060 MAT PRINT Y
:0070 MAT Z=Y-X
:0080 PRINT "AFTER MAT -, MAT Z = "
:0090 MAT PRINT Z
:RUN

AFTER INPUT MAT X =

 1 2 3
 4 5 6

AFTER INPUT MAT Y =

 3 5 7
 9 11 13

AFTER MAT -, MAT Z =

 2 3 4
 5 6 7

General Form:

MAT numeric-array1 = numeric-array2 - numeric-array3

MAT Subtraction LANGUAGE STATEMENTS

2-446 NPL Statements Guide

Compatibility Issues:

References:

LANGUAGE STATEMENTS MAT Subtraction

NPL Statements Guide 2-447

MAX Function

Discussion:

The MAX function returns the highest numeric value from the argument list. The argu-
ment list can consist of any number of numeric-expressions. If a numeric-array is speci-
fied, each element of the array is considered a separate argument for the function. This is
valid wherever a numeric-expression is legal.

Examples:
0010 X = MAX(A,Z)
0010 W = MAX(0,X(),Q)
0010 IF A = MAX(X(),10) THEN A = A + 1
0010 FOR I = 1 TO MAX(Q,20)
0010 X=MAX(Z/A,B(1)+3)
0010 High_Month=MAX(Monthly_Sales())
:0010 PRINT MAX(-100,2)
: PRINT MAX(59.2,2)
: PRINT MAX(50,-51,49,(29-10))
:RUN
 2
 59.2
 50

Compatibility Issues:

References:

MIN Function

General Form:

MAX ({numeric-expression} [,{numeric-expression}]...)
 {numeric-array-name} {numeric-array-name}

MAX Function LANGUAGE STATEMENTS

2-448 NPL Statements Guide

MIN Function

Discussion:

The MIN function returns the lowest numeric value from the argument list. The argument
list can consist of any number of numeric-expressions. If a numeric-array is specified,
each element of the array is considered a separate argument for the function. This is valid
wherever a numeric-expression is legal.

Examples:
0010 X = MIN(A,Z)
0010 W = MIN(0,X(),Q)
0010 IF A = MIN(X(),10) THEN A = A + 1
0010 FOR I = 1 TO MIN(Q,20)
0010 Y=MIN(J*K,VAL(A$),L(3)+G)
0010 Low_Month=MIN(Monthly_Sales())
:0010 PRINT MIN(-100,2)
 : PRINT MIN(-2,2)
 : PRINT MIN(50,141,49,(29-10))
:RUN
-100
-2
 19

Compatibility Issues:

References:

MAX Function

General Form:

 MIN ({numeric-expression} [,{numeric-expression}]...)
 {numeric-array-name} {numeric-array-name}

LANGUAGE STATEMENTS MIN Function

NPL Statements Guide 2-449

MOD Function

Discussion:

The MOD function computes the remainder (modulus) when numeric-expression1 is di-
vided by numeric-expression2. This is valid wherever a numeric-expression is legal.

NOTE: If X> 0, then 0 < = MOD(Y,X) < X
If X< 0, then X < MOD(Y,X) < = 0
If X= 0, then MOD(Y,X) = Y
In all cases, MOD(Y,X)= Y-INT(Y/X)*X.

Examples:
0010 Q = MOD(Y,10)
0010 R = MOD(15.6,-8)
0010 E = MOD(-3,X)

:0010 Q = MOD(8,3)
:0020 PRINT Q

:RUN

 2

Compatibility Issues:

References:

General Form:

MOD (numeric-expression1,numeric-expression2)

MOD Function LANGUAGE STATEMENTS

2-450 NPL Statements Guide

MODULE Command

Discussion:

The MODULE command may be used in Immediate Mode to change the current LIST
MODULE value to another module. This allows the user to view (using LIST com-
mands) and modify (using LOAD or editing commands) program text in a module other
than the one currently executing.

NOTE: The statement stays in effect only until the program is continued or restarted.

Examples:
:MODULE "AccountsReceivableSystemMenu": LIST
:MODULE "FIELDPCK"
:MODULE " " :; back to main module

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

LOAD
Refer to Chapter 6, "Debugging Code"

General Form:

MODULE {alpha-variable}
 {literal-string}

LANGUAGE STATEMENTS MODULE Command

NPL Statements Guide 2-451

MOVE

General Form:

 Form 1:

MOVE T [file-number,] TO T [file-number,][LS=val1,][END=val2]
 [disk-address,] [disk-address,]
 [<address-var>,] [<address-var>,]

 Form 2:

MOVE T [file-number,] filename1 TO T
 [disk-address,]
 [<address-var>,]

 [file-number,] [([filename2])]
 [disk-address,] [space]
 [<address-var>,]

Where:

val 1 = a numeric-expression which represents the required
size of the Catalog Index whose value is from 1 to
255.

val2 = a numeric-expression which represents the highest sec-
tor address in the Catalog area. The expression must
be less than or equal to the highest sector address
available on disk.

space = a numeric-expression indicating the number of extra
sectors to be saved with the file on the destination
diskimage.

filename1 = literal or alpha-variable containing the name of the
file to move.

filename2 = literal or alpha-variable containing the name of the
file to be overwritten.

MOVE LANGUAGE STATEMENTS

2-452 NPL Statements Guide

MOVE (cont.)

Discussion:

The MOVE statement is used to copy an entire diskimage (Form 1) or an individual cata-
loged disk file (Form 2) to a second specified diskimage.

Form 1:

In Form 1, MOVE copies the contents of one diskimage to another diskimage but ex-
cludes scratched files and temporary files from the copy. The catalog index is rebuilt on
the destination diskimage, and the input diskimage is not modified. The destination
diskimage is scratched before any files are moved. If the optional LS and/or END parame-
ters are specified, these values are applied to the output diskimage. Otherwise, the values
from the input diskimage are used. If LS and/or END are specified, the output diskimage
is created with the alternate hashing algorithm (equivalent to SCRATCHDISK’). Other-
wise, the hashing algorithm of the input diskimage is used.

Form 1 of the MOVE statement also updates file trailer fields for file name, status, and
type.

Form 2:

In Form 2, the MOVE statement copies a single cataloged file from one diskimage to an-
other.

MOVE may be used to add a new file to the output diskimage by specification of the
space parameter. Space determines the number of extra sectors to add to the new file. If
space is zero or no parenthesis expression is given, the new file is created as the size of
the input file. Alternatively, the input file may be written over an existing scratched file
in the output diskimage. The filename to overwrite is specified by the filename2 parame-
ter. If filename2 is not present (a set of empty parentheses), the filename of the input file
is used.

The Date/Time stamp of the file is not affected by the MOVE statement. The Date/Time
stamp of the file is the same after the MOVE operation as before the MOVE operation.

LANGUAGE STATEMENTS MOVE

NPL Statements Guide 2-453

MOVE (cont.)

Examples:
0010 MOVE T TO T/D20,
0010 MOVE T/D12, TO T/D23, LS=123,
0010 MOVE T#1, TO T#2, END=34600
0010 MOVE T<A$>, TO T/D12, LS=47, END=98400

0010 MOVE T/D22,"ARCU3" TO T<B$>,()

This statement copies file ARCU3 from diskimage D22 to the diskimage whose address
is contained in variable B$ overwriting scratched file ARCU3.

0010 MOVE T#1,"SACM1999" TO T/D20,("SACM1200")

This statement copies file SACM1999 from the diskimage selected as file-number 1
to diskimage D20 overwriting file SACM1200. The name of the file on D20 is
SACM1999.

0010 MOVE T/D31,B$ TO T

This statement copies the file whose name is contained in variable B$ from
diskimage D31 to the diskimage selected as file-number 0, creating it as a new file
with the same size and the same name.

0010 MOVE T/D23,"SASM3" TO T#2,(4)

This statement copies file SASM3 from diskimage D23 to the diskimage selected as
file-number 2, creating SASM3 as a new file with 4 additional sectors.

Compatibility Issues:

The optional LS and END parameters for form 1 of MOVE are supported only in NPL
Revision 3.0 or greater.

Update of the file trailer sector for form 1 of MOVE is supported only in NPL Revision
3.0 or greater and is not supported on the Wang 2200.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

SCRATCH DISK

MOVE LANGUAGE STATEMENTS

2-454 NPL Statements Guide

MOVE END

Discussion:

The MOVE END statement is used to alter the size of the catalog area of a diskimage.
The diskimage is specified along with a numeric-expression indicating the physical num-
ber of sectors.

MOVE END may be used to increase or decrease the catalog area of a diskimage. How-
ever, the catalog area may never be decreased to less than the Current End. On some oper-
ating systems, MOVE END may physically increase or decrease the size of the
diskimage file.

Examples:
0010 MOVE END T=19583
0010 MOVE END T/D20,=52607
0010 MOVE END T<A$>,=52607
0010 MOVE END T#3,=X2*512

Compatibility Issues:

The MOVE END command has been extended in NPL. In addition to the Wang Basic-2
function of defining the amount of a diskimage to be usable by the cataloged commands,
in NPL the MOVE END statement also performs the function of EXTENDING or RE-
DUCING the physical size of a diskimage file. The diskimage file is extended or trun-
cated to the size of the specified END= expression, provided physical disk space is
available.

NOTE: This feature does not apply to "raw" diskettes.

On some operating systems, when used to decrease the size of a diskimage file, MOVE
END does not release space. Refer to the appropriate NPL Supplement for hardware and
operating system-specific details.

General Form:

MOVE END T [file#,] = numeric-expression
 [disk-address,]
 [<address-var>,]

LANGUAGE STATEMENTS MOVE END

NPL Statements Guide 2-455

MOVE END (cont.)

Some operating systems may place limitations on the amount an existing diskimage file
can be expanded. Refer to the appropriate NPL Supplement for hardware and operating
system-specific details.

References:

Native Operating System Files as Diskimage Files - Section 7.3.4 of the Programmer’s
Guide
Native Operating System Files as "Raw" Devices - Section 7.3.5 of the Programmer’s
Guide
Catalog Access - Section 7.3.8 of the Programmer’s Guide

MOVE END LANGUAGE STATEMENTS

2-456 NPL Statements Guide

$MSG

Discussion:

Form 1 of the $MSG statement is used to set the status of the system message which is
displayed at terminals on line 0 whenever a RESET or CLEAR is performed at that termi-
nal.

Form 2 can be used to determine the current status of the $MSG system variable.

NOTE: Only terminals on the same processor share a single $MSG. Networked systems
have separate $MSG values.

Examples:
0010 $MSG = "SYSTEM SHUTDOWN 12:45 PM"
0010 $MSG = "*** INTERPRETIVE RUNTIME ***"
0010 A$=$MSG
0010 B$(2) = $MSG

Compatibility Issues:

Wang 2200 Basic-2 allows the $MSG system variable to be modified from terminal #1
only. NPL allows modification from any terminal on the system.

References:

Multi-user Functions - NPL Supplements

References:

Multi-user Functions - NPL Supplements

General Form:

Form 1

$MSG = alpha-expression

Form 2

alpha-variable = $MSG

LANGUAGE STATEMENTS $MSG

NPL Statements Guide 2-457

$NAMEOF() - Built-in String Function

Discussion:
The $NAMEOF string functions are used to retrieve the name of public identifiers as
string constants.

Use of the $NAMEOF string functions allow the developer to clearly identify string liter-
als that refer to names which will be used indirectly (i.e., passed to another function to be
used as callbacks).

Literals specified in this manner are automatically changed when a specified function
name is changed using a corresponding RENAME function statement.

NPL requires (at resolve time) that the named function/ procedure/ field/ deffn must be
previously declared as a PUBLIC item or an error is generated. This will avoid the com-
mon mistake of attempting to use the name of a non-PUBLIC item as an indirect refer-
ence.

Compiled code for a literal derived from the $NAMEOF string function is smaller than a
literal containing the same name, if the name is 5 characters or longer.

General Form:

$NAMEOF (identifier)

Where:

identifier = { FUNCTION ’function_name[$]}
{ PROCEDURE ’procedure_name }
{ DEFFN’ deffn_name }
{ FIELD .field_name[$][()] }
{ RECORD record_name }

LANGUAGE STATEMENTS $NAMEOF() - Built-in String Function

NPL Statements Guide 2-456

$NAMEOF (cont.)

Examples:

0010 FUNCTION ’ScreenUpdate(A)/PUBLIC
 : A=79
 : RETURN(A)
 : END FUNCTION
0020 PRINT $NAMEOF(FUNCTION ’ScreenUpdate)

 :RUN

 ScreenUpdate

 :RENAME FUNCTION ’ScreenUpdate TO ’VideoUpdate

:LIST

0010 FUNCTION ’VideoUpdate(A)/PUBLIC
 : A=79
 : RETURN(A)
 : END FUNCTION
0020 PRINT $NAMEOF(FUNCTION ’VideoUpdate)

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
RENAME FUNCTION
RENAME PROCEDURE
RENAME DEFFN’
RENAME FIELD
RENAME RECORD

$NAMEOF() - Built-in String Function LANGUAGE STATEMENTS

2-457 NPL Statements Guide

$NETID

Discussion:
The $NETID function returns the full network physical station number on those operat-
ing environments that support this option. This is a displayable 12-hex digit number and
may be used wherever string literals are legal.

Examples:
10 PRINT $NETID

Compatibility Issues:
This statement is only supported with Release IV or greater.

This statement returns meaningful values only on Novell NetWare installation.

References:

General Form:

alpha-receiver = $NETID

LANGUAGE STATEMENTS $NETID

NPL Statements Guide 2-458

NEXT

Discussion:
The NEXT statement is used to indicate the end of a related structured FOR/TO/BEGIN
or FOR/TO loop. One or more index-variables may be specified that must relate to one or
more prior FOR/TO statements. Execution of a NEXT statement without having pre-
viously executed a related FOR/TO statement is diagnosed as a RunTime error.

If a positive STEP value is used, the index-variable is tested to determine if the index-
variable (+ STEP value) exceeds the final loop value. If a negative STEP value is used,
the index-variable is tested to determine if the index-variable (- STEP value) is less than
the final loop value. In either case, if the test is true, program execution continues with
the program statement following the NEXT statement and the increment (or decrement)
is not performed. If not, the index-variable is incremented (or decremented) and execu-
tion continues with the statement following the corresponding FOR statement.

If the STEP value in a FOR/TO statement is 0, upon execution of the corresponding
NEXT statement, the loop ends and program execution continues with the statement fol-
lowing the corresponding FOR statement.

If more than one index-variable is specified, the first is evaluated against its related
FOR/TO loop as indicated above. If that loop is terminated, the next index-variable is
evaluated. The process is repeated until an index-variable is found with a loop which
does not terminate, or there are no more index-variables.

Examples:
:0010 FOR I=1 TO 10
:0020 FOR J=1 TO 50
:0030 FOR K=I TO J+10 STEP 2
:0200 NEXT K,J
:0300 NEXT I

General Form:

NEXT index-variable [,index-variable]...

Where:

index-variable = the numeric-scalar variable(s) which corre-
sponds to active FOR/NEXT loop(s).

NEXT LANGUAGE STATEMENTS

2-459 NPL Statements Guide

NEXT (cont.)

Compatibility Issues:

References:
BREAK
FOR/TO
FOR/BEGIN

LANGUAGE STATEMENTS NEXT

NPL Statements Guide 2-460

NEXT CLEAR

NOTE: The use of this statement is not recommended. Use BREAK inside a FOR/BEGIN as
a better alternative.

Discussion:
The NEXT CLEAR statement is used to perform the same function as the NEXT state-
ment, except that the currently executing FOR/TO loop is terminated, regardless of the
value of the index-variable. Execution continues with the statement following NEXT
CLEAR.

NEXT CLEAR is valid only where NEXT would be valid. If a FOR/NEXT loop is not
the top entry in the return stack, NEXT CLEAR results in a P40 (No Corresponding FOR
for NEXT Statement) error.

Examples:
0010 NEXT CLEAR

:0010 A=1
:0020 FOR X=1 TO 10
:0030 PRINT X
:0040 A=A*X
:0050 PRINT X,A
:0060 IF A<50 THEN NEXT X<
: ELSE DO<
: NEXT CLEAR<
: PRINT "VALUE OF A EXCEEDS 50 - FOR/NEXT LOOP TERMINATED"<
: ENDDO
:0070 PRINT "NUMBER OF LOOPS COMPLETE = ";X

:RUN

1 1
2 2
3 6
4 24

T5 120
VALUE OF A EXCEEDS 50 - FOR/NEXT LOOP TERMINATED EARLY
NUMBER OF LOOPS COMPLETE = 5

General Form:

NEXT CLEAR

NEXT CLEAR LANGUAGE STATEMENTS

2-461 NPL Statements Guide

NEXT CLEAR (cont.)

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.
NEXT CLEAR is not supported on the Wang 2200.

References:
FOR/TO
NEXT

LANGUAGE STATEMENTS NEXT CLEAR

NPL Statements Guide 2-462

NUM Function

Discussion:
The NUM function returns the number of numeric characters in an alpha-variable. This is
valid wherever a numeric-expression is legal.

Characters considered to be numeric are "0-9", ".", "+", "-", "E", and blank spaces. These
characters must also be in a logical order to form a number. The NUM function returns
the value up to the first non-numeric character.

NUM is particularly useful before numeric conversions to assure that only numeric char-
acters are converted.

Examples:
0010 X = NUM(A$)
0010 IF NUM(W$) = 0 THEN GOTO 1000
0010 FOR I = 1 TO NUM(W$)

:0010 INPUT N$
 : IF NUM(N$)>=LEN(N$) THEN PRINT "NUMERIC"
 : ELSE PRINT "NOT NUMERIC"
:RUN
? ABC
NOT NUMERIC
:RUN
? 49
NUMERIC

:0010 X$="21458#ID" : PRINT NUM(X$)
:RUN
5

Compatibility Issues:

References:

General Form:

NUM(alpha-variable)

NUM Function LANGUAGE STATEMENTS

2-463 NPL Statements Guide

$NUMBERS

Discussion:
Form 1 of the statement is used to set the status of the $NUMBERS system variable.

Form 2 can be used to determine the current status of the $NUMBERS system variable.

$NUMBERS is a one-byte system variable used in the interpretive RunTime to control
generation of statement numbers in p-code program lines. If $NUMBERS contains a
value of HEX(00) (the default) then statement numbers are not generated. If $NUM-
BERS contains a value of HEX(01) then statement numbers are generated.

The $NUMBERS statement is functionally equivalent to the NUMBERS option in the
compiler (B2C). A value of HEX(00) is equivalent to NUMBERS OFF; a value of
HEX(01) is equivalent to NUMBERS ON.

$NUMBERS affects the generation of p-code as program lines are entered using the line
editor or processed by the $OBJECT function. It has no effect when programs are saved
to disk.

Statement numbers are used on the error display of the non-interpretive RunTime to pro-
vide better error diagnostics. If statement numbers are present, the non-interpretive Run-
Time displays the statement number along with the program line number when an error
occurs. Otherwise, an offset in hexadecimal byte location from the start of the program
line is displayed.

General Form:

Form 1

$NUMBERS = alpha-expression

Form 2

alpha-variable = $NUMBERS

LANGUAGE STATEMENTS $NUMBERS

NPL Statements Guide 2-464

$NUMBERS (cont.)

Statement numbers, if generated, occupy two bytes per statement in the p-code file.

$NUMBERS performs no operation (NOP) on the non-interpretive RunTime (RTP).

Examples:
0010 X$=$NUMBERS
0010 $NUMBERS=BIN(0)
0010 $NUMBERS=HEX(01)

Compatibility Issues:
The $NUMBERS statement is not valid in Wang 2200 Basic-2.
This statement is supported only with Release 2.0 or greater

References:
$OBJECT
NUMBERS Option - Section 14.13 of the NPL Programmer’s Guide

$NUMBERS LANGUAGE STATEMENTS

2-465 NPL Statements Guide

$OBJECT

Discussion:
The $OBJECT function is used to generate NPL compatible p-code from single lines of
ASCII program text. $OBJECT is useful for the dynamic generation of NPL programs.

$OBJECT is executable only in the interpretive version of the RunTime (RTI). The syn-
tax is supported in the non-interpretive version (RTP) but no operation takes place.

Input to $OBJECT (alpha-variable2) must be ASCII text as it would normally be submit-
ted to the line editor of the interpreter. If the source code may contain long identifier
names, a long identifier table (alpha-variable3) must be specified.

NOTE: The p-code generated by $OBJECT is affected by the status of $KEEPREMS and
$NUMBERS just as is code entered from the editor. Refer to $KEEPREMS and
$NUMBERS for details.

The output produced is the single line record as it appears in the p-code files, followed by
5 bytes of status information, which reflects the syntactical correctness of the line. Bytes
(1) one and (2) two of the status information, contain (low byte first) a pointer to the byte
from the alpha-variable which was being processed when the syntax error was generated.
Bytes (3) three and (4) four of the status information contain (low byte first) the error
code of the error produced. Byte 5 of the status unformation contains a binary count of
the number of errors in the line. A value of HEX(00) indicates no syntax errors.

Any unused portion before the last 5 bytes of the receiver-variable status information, is
filled with spaces (HEX(20)).

General Form:

 receiver-variable1 = $OBJECT(alpha-variable2 [,alpha- varible3])

Where:

alpha-variable2 = ASCII text to be converted to p-code.

alpha-variable3 = a long identifier table, if long
 identifiers are to be used.

LANGUAGE STATEMENTS $OBJECT

NPL Statements Guide 2-466

$OBJECT (cont.)

The output from $OBJECT is limited by the size of internal buffers used by the Run-
Time. This buffer size is at least 512 bytes and may be larger on some hardware versions.
In cases where the internal buffer size is exceeded, the last 5 bytes returned still contain
the status information described above and an error is indicated in the error status bytes.

If new long identifiers are present, they are added to the specified long identifier table.

Practical use of $OBJECT requires the assembly of a p-code file from its component p-
code lines after use of $OBJECT, with the addition of a suitable label, end of file mark
and long identifier table. As of Release IV it is no longer possible for the developer to di-
rectly manipulate p-code files directly. As such, Niakwa has provided a set of Library
routines to help manipulate these files. Please refer to Chapter 3 of the Statements Guide
for information on these Library files and an example of the use of $OBJECT and
$SOURCE. Also refer to Chapter 5 of the Programmers Guide for more details on
$SOURCE and $OBJECT.

WARNING--If the label is 2.00.0x or higher, long identifier names require use of the li-
brary functions to decompile. Refer to Section 3.2 for an example of the use of $OBJECT.

NOTE: Refer to Chapter 3 for further information.

Examples:

0010 PcodeLine$=$OBJECT(SourceLine$,IdentifierTable$)

Compatibility Issues:
The alpha-variable3 option is only available with Release IV or later, and is required to
use long identifiers.

This statement is not valid in Wang 2200 Basic-2.

This statement requires Revision 2.00 or higher of the Interpreter.

References:
$SOURCE
$KEEPREMS
$NUMBERS
Chaper 5 Programmers Guide
Chaper 3 Statements Guide

$OBJECT LANGUAGE STATEMENTS

2-467 NPL Statements Guide

ON ERROR

Discussion:
The ON ERROR statement captures recoverable and non-recoverable errors (error codes
S10 and above, excluding any computational errors suppressed by SELECT ERROR).

When an error occurs which is captured by the ON ERROR statement, the following se-
quence of events occurs:

• RETURN information for GOSUB and GOSUB’ and FOR/TO information since
the last FUNCTION or PROCEDURE call is cleared from the system stacks.
Consequently, subroutines and loops which were in progress when the error oc-
curred may not normally be resumed.

• Alpha-variable1 is assigned the value of the error code which occurred. The
value is a 3-character code. For errors in the range of 1-99, the three-character
code consists of a one-byte error class followed by the two-byte error code. For
error codes of 100 or greater, the three-character code is the error code with no
preceding error class specification.

• Alpha-variable2 is assigned the value of the line number on which the error oc-
curred. The value assigned is a 5-character displayable format with leading ze-
roes added if the line number is less than 1000 (e.g., "0600").

• Program execution continues at the start of the line-number specified in the ON
ERROR statement.

The ON ERROR statement may not appear inside the body of a FUNCTION or a PRO-
CEDURE.

General Form:

ON ERROR alpha-variable1, alpha-variable2 GOTO line-number

LANGUAGE STATEMENTS ON ERROR

NPL Statements Guide 2-468

ON ERROR (cont.)

Use of the ON ERROR statement is discouraged in modules that define FUNCTION’s,
PROCEDURES or PUBLIC DEFFNs, since execution of the statement causes an unstruc-
tured exit from any exiting FUNCTION or PROCEDURE body, and loses the return in-
formation that is required to return to the caller of a DEFFN’.

Where possible, the ERROR statement should be used instead to catch specific errors.

ON ERROR may be used to catch non-recoverable errors (especially programmer errors
such as invalid subscripts) which should not be occurring in an operational program. The
program may need to perform cleanup work (if the problem has occurred in a critical sec-
tion of the program) before advising the operator that an error has occurred.

NOTE: For most error conditions, use of the ERROR statement is preferred because:

• After processing errors which occur during the execution of a subroutine or
FOR/TO loop, it may be necessary to resume execution of the subroutine or
loop after recovering from the error. This is possible with the ERROR state-
ment, but it is not possible if the error is captured by an ON ERROR state-
ment.

• Error recovery procedures may more easily be written to handle specific er-
ror conditions which occur on a given statement (e.g., PACK statements
would check for numbers which are too large, etc.). The program text which
is branched to by the ON ERROR may only do specific corrections based on
the value in the two alpha-variables. Any conditions which compare the line
number value in alpha-variable2 may become incorrect if the program lines
are moved or renumbered.

• Because the ERROR statement appears next to the statement with the possi-
ble error condition, if revisions are made to that statement it is obvious to
the programmer that consideration should be given to error handling. By
contrast, an ON ERROR statement may be located far away from the state-
ments whose errors it is intended to capture.

ON ERROR LANGUAGE STATEMENTS

2-469 NPL Statements Guide

ON ERROR (cont.)

Examples:

0010 ON ERROR A$,B$ GOTO 1000
0010 ON ERROR X1$,X2$ GOTO 100

:0010 ON ERROR A$,B$ GOTO 100
:0020 DIM X$256
:0030 DATA LOAD BA T (30000) X$
 : REM No such sector number
 : STOP
:0100 PRINT "Error ";A$;" on Line ";B$

:RUN
Error I98 on Line 0020

Additional information about errors may be obtained under program control by use of the
ERR$ and $OSERR statements.

Compatibility Issues:

References:
ERROR
SELECT ERROR
ERR$
$OSERR
NPL Error Codes - Appendix B of the Programmer’s Guide

LANGUAGE STATEMENTS ON ERROR

NPL Statements Guide 2-470

ON/GOSUB

NOTE: The use of this statement is not recommended. Refer to SWITCH as a better alterna-
tive.

Discussion:
The ON/GOSUB statement is used to execute one of several possible subroutines based
on the integer portion of the value of the numeric-expression.

When the ON/GOSUB statement is executed, program control is branched to the corre-
sponding subroutine in the GOSUB list. A subroutine may be specified as either a line
number or a statement label. A null entry is specified in the GOSUB list by consecutive
commas. A null entry specifies that no subroutine branch is to be executed for that par-
ticular value in the GOSUB list. For example, if the numeric-expression in an ON/GO-
SUB statement were equal to 4, program execution would branch to the subroutine
specified by the fourth line-number in the ON/GOSUB list. If a fourth subroutine does
not exist (a null entry or fewer than 4 subroutines in the list), a subroutine call is not per-
formed and program execution continues with the next program statement following the
ON/GOSUB statement.

If the target line-number or statement-label is located in a function body, this statement
must also be in the body of the same function.

If the ON/GOSUB statement is located inside a function body, all target line-numbers
and statement-labels must also be located in the body of the same function.

If the value of the numeric-expression is less than or equal to zero, a subroutine call is not
performed and program execution continues with the next program statement following
the ON/GOSUB statement.

General Form:

ON numeric-expression GOSUB [[target],]...target
 [:ELSE {simple-statement }]
 {DO[:statement]...:ENDDO }]

Where:

target = {line-number }
{statement-label }

ON/GOSUB LANGUAGE STATEMENTS

2-471 NPL Statements Guide

ON/GOSUB (cont.)

The statement or DO group following the optional ELSE clause is only executed if a sub-
routine call is not executed. That is, if the value of the numeric-expression points to a null
entry (or non-existing entry) in the GOSUB list, the ELSE clause is executed.

Examples:
0010 ON X GOSUB Code_1,Code_2,Code_3,Code_4,,Code_6,Code_7
0020 ON Button+1 GOSUB OK,Cancel,Retry,9999:ELSE STOP

0010 ON X+1 GOSUB 100,200,300,400
0010 ON I*.333 GOSUB 1000,,1200
0010 ON VAL(STR(V$(),34)) GOSUB ,,,1000,2000,1000,2000

:0010 INPUT A
:0020 ON A GOSUB 100,200,300,,,600,900
 : ELSE GOSUB 1000
:0030 GOTO 2000: REM DONE
:0100 PRINT "LINE 100": RETURN
:0200 PRINT "LINE 200": RETURN
:0300 PRINT "LINE 300": RETURN
:0600 PRINT "LINE 600": RETURN
:0900 PRINT "LINE 900": RETURN
:1000 PRINT "NO LISTED SUBROUTINE": RETURN
:2000 REM DONE

:RUN
? 2
LINE 200

:RUN
? 10
NO LISTED SUBROUTINE

:RUN
? 5
NO LISTED SUBROUTINE

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

Statement labels are supported only on NPL Revision 4.0 or greater.

References:
DO/ENDDO
ELSE

LANGUAGE STATEMENTS ON/GOSUB

NPL Statements Guide 2-472

ON/GOTO

NOTE: The use of this statement is not recommended. Refer to SWITCH as a better alterna-
tive.

Discussion:
The ON/GOTO statement is used to transfer program execution to one of several possible
lines based on the integer portion of the value of the numeric-expression.

When the ON/GOTO statement is executed, program control is transferred to the corre-
sponding line-number or statement-label in the ON/GOTO list.

If the target line-number or statement-label is located in a function body, this statement
must also be in the body of the same function.

If the ON/GOTO statement is located inside a function body, all target line-numbers and
statement-labels must also be located in the body of the same function.

If the numeric-expression is less than or equal to zero, a transfer is not performed and pro-
gram execution continues with the next program statement following the ON/GOTO
statement.

Examples:
0010 ON X GOTO Case_1,Case_2,Case_3,Case_4,,Case_6,Case_7
0020 ON Button+1 GOTO OK,Cancel,Retry,9999:ELSE STOP

0010 ON X+1 GOTO 100,200,300,400
0010 ON I*.333 GOTO 10000,,12000
0010 ON VAL(T$) GOTO ,,,,1000,2000,1000,2000
0010 ON VAL(STR(A$,12) GOTO ,,100,200,,9999

General Form:

ON numeric-expression GOTO [[target],]...target
 [:ELSE {simple-statement }]
 {DO[:statement]...:ENDDO }]

Where:

target = {line-number }
{statement-label }

ON/GOTO LANGUAGE STATEMENTS

2-473 NPL Statements Guide

ON/GOTO (cont.)
:0010 INPUT A
:0020 ON A GOTO ,,100,200,300,,,600,900
:0030 PRINT "NO TRANSFER": GOTO 1000
:0100 PRINT "line 100": GOTO 1000
:0200 PRINT "line 200": GOTO 1000
:0300 PRINT "line 300": GOTO 1000
:0600 PRINT "line 600": GOTO 1000
:0900 PRINT "line 900": GOTO 1000
:1000 REM DONE

RUN
? 1
NO TRANSFER

:RUN
? 3
line 100

:RUN
? 10
NO TRANSFER

:RUN
? 4
line 200

Compatibility Issues:
Statement labels are supported only in NPL Revision 4.0 or greater.

References:

LANGUAGE STATEMENTS ON/GOTO

NPL Statements Guide 2-474

ON/SELECT

NOTE: The use of this statement is not recommended. Refer to SWITCH as a better alterna-
tive.

Discussion:
The ON/SELECT statement is used to conditionally assign a list of device-addresses or
other SELECT parameters to corresponding internal device table entries, based on the in-
teger portion of the value of the numeric-expression.

One or more devices may be selected on a given numeric-expression by assigning them
to the same item-list (separated by comma (,)).

When the ON/SELECT statement is executed, select-items within an item-list are as-
signed based on the value of the numeric-expression. A null item-list is specified by con-
secutive semicolons. A null item-list specifies that no assignment is to be executed for
that particular value of numeric-expression. For example, if the numeric-expression in an
ON/SELECT statement were equal to 4, select-items in the fourth item-list of the ON/SE-
LECT statement would be assigned. If a fourth item-list does not exist (a null entry or
less than 4 item-lists in the ON/SELECT statement), a SELECT operation is not per-
formed.

If the numeric-expression is less than or equal to zero, a SELECT operation is not per-
formed.

General Form:

ON numeric-expression SELECT [[item-list];]...item-list
 [:ELSE {statement }]
 {DO [:statement] ...: ENDDO}

Where:

item-list = select-item [,select-item]...

select-item = as defined in SELECT statement general form.

ON/SELECT LANGUAGE STATEMENTS

2-475 NPL Statements Guide

ON/SELECT (cont.)

The statement or Do Group which follows the optional ELSE clause is only executed if
no item-list of select-items is assigned. That is, if the value of the numeric-expression
points to a null item-list (or non-existing item-list) in the statement, the ELSE clause is
executed.

Examples:

0010 ON I SELECT DISK/D10,PRINT/215,LIST/215;PRINT/005,LIST/005

If INT(I)= 1, then disk address D10, printer address 215, and list output address 215
would all be selected. If INT(I)= 2, print address 005, and list address 005 would be se-
lected. If I or I= 3, then no SELECT is performed.

0010 ON VAL(A$) SELECT DISK/D10; DISK/D11,PRINT 217;; DISK/D12;
 DISK/D13
 : ELSE SELECT DISK/D14

If VAL(A$)= 1 disk address D10 is selected.
If VAL(A$)= 2 disk address D11 and PRINT address 217 are selected.
If VAL(A$)= 4 disk address D12 is selected.
If VAL(A$)= 5 disk address D13 is selected.
If VAL(A$) has any other value, disk address D14 is selected (in the ELSE clause).

0010 ON X SELECT D;R;G

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

References:
Internal Device Table - Section 7.2.3 of the Programmer’s Guide
Printer Devices - Section 7.7 of the Programmer’s Guide
DO/ENDDO
ELSE
SELECT

LANGUAGE STATEMENTS ON/SELECT

NPL Statements Guide 2-476

$OPEN

Discussion:
The $OPEN statement is used to reserve a diskimage or printer for exclusive access so
that it cannot be accessed by any other NPL process on the system.

$OPEN is typically used with diskimages to ensure that critical updates are performed to
completion without intervening access from other NPL processes. $OPEN is also used
with PRINT type devices to ensure that output is not intermingled with output from an-
other NPL process during printing of a report.

If any of the devices in the list are already reserved for exclusive access by another NPL
process, the system either: branches to the specified line-number with no devices in the
list being reserved or, if no line-number is specified, waits until the device becomes avail-
able.

A device remains reserved for exclusive access until the execution of a $CLOSE, END,
or $END statement.

NOTE: Pressing the HELP key causes all exclusive access to be relinquished. When HELP
is then exited, exclusive access is not automatically regained.

Examples:
0010 $OPEN #A,#B
0010 $OPEN /D11, /D23, /D24
0010 $OPEN 100, #2
0010 $OPEN 8010, #C
0010 $OPEN /215
0010 $OPEN <A$>

General Form:

$OPEN [line-number,]{file-number } [,file-number]...
 {device-address} [,device-address]
 {<address-var> } [,<address-var>]

$OPEN LANGUAGE STATEMENTS

2-477 NPL Statements Guide

$OPEN (cont.)

Compatibility Issues:
In a multi-user environment, the $OPEN statement emulates the Wang 2200 except in the
case of disk devices. In this case, $OPEN on a disk address is DISKIMAGE-specific, not
DEVICE-specific.

For example, on a Wang 2200, assuming D20 is the removable platter on a Wang 2200
phoenix drive, $OPEN /D20 "hogs" the entire device (platters /D20 - /D25). However, un-
der NPL, $OPEN /D20 "hogs" only the diskimage equivalent to /D20.

References:
$CLOSE
NPL Diskimages - Section 7.3.1 of the Programmer’s Guide
Printer Devices - Section 7.7 of the Programmer’s Guide
Exclusive Access - Section 7.2.4 of the Programmer’s Guide

LANGUAGE STATEMENTS $OPEN

NPL Statements Guide 2-478

$OPTIONS

Discussion:

Form 1

Form 1 of the $OPTIONS statement allows the NPL application program to modify the
contents of the $OPTIONS system variable.

Form 2

Form 2 allows examination of the current status of the $OPTIONS system variable.

$OPTIONS is a 64-byte system variable containing option selection values that allows
NPL to take advantage of various native operating environment features and screen han-
dling routines, where applicable. Specifically it contains:

Byte 1: Replacement attribute for the underline character to be used on color
monitors by the IBM version of the RunTime Program.
HEX(1F) Default Bright white on blue background.

Byte 2: Switch to determine whether or not keyboard status information (CAPS
LOCK and NUM LOCK indicators) is to be displayed on line 25 of the
monitor (IBM version only).
HEX(00) Default Disables the status display.
HEX(01) Enables the status display.

General Form:

 Form 1

$OPTIONS = alpha-expression

 Form 2

alpha-receiver = $OPTIONS

Where:

alpha-receiver = a minimum of 64 characters.

$OPTIONS LANGUAGE STATEMENTS

2-479 NPL Statements Guide

Byte 3: Switch for "noise" suppression option on IBM color monitors.
HEX(00) Default Indicates that no "noise" suppression is to take place.
HEX(01) Indicates that noise suppression is to take place.

Byte 4: Replacement character for the "$" character in PRINTUSING image
statements. When a "$" is specified in a PRINTUSING image as a currency
sign, this value appears on output.
HEX(24) Default Prints a "$".

Byte 5: Replacement character for the "," (comma) character in PRINTUSING
image statements. When a comma is specified in a PRINTUSING image as
a digit separator, this value appears on output.
HEX(2C) Default Prints a ",".

Byte 6: Replacement character for the "." (decimal point) character in
PRINTUSING image statements. When a "." is specified as a decimal point
in a PRINTUSING image, this value appears on output.
HEX(2E) Default Prints a ".". The "$", ","(comma), and "." decimal point

replacements are used primarily for foreign currency
applications.

Byte 7: Keyboard translation complex key lead value. When this value is received
by the keyboard handlers from the native operating system, a complex key
sequence is assumed to follow.

Byte 8: ANSI output mode flag. Defines terminal functionality type. Values of this
byte have the same meaning as byte 9 of $MACHINE. Refer to the NPL
Supplements for details on acceptable values for the operating system in use.

Byte 9: Keyboard translation complex key trailing value. After receiving a complex
key sequence from the native operating system, if this byte is not HEX(00),
the keyboard handlers wait for a trailing code to finish the sequence.
HEX(00) Default

Byte 10: Alternate keyboard translation complex key lead value. When this alternate
value is received by the keyboard handlers from the native operating system,
a complex key sequence is assumed to follow.
HEX(00) Default No alternate code is allowed.

Byte 11: Alternate keyboard translation complex key trailing value. After receiving
an alternate complex key sequence from the native operating system, if this
byte is not HEX(00), the keyboard handlers wait for a trailing code to finish
the sequence.
HEX(00) Default

Byte 12: Switch for suppression of the "Reset", "Step", and "Continue" options from
the HELP display.

LANGUAGE STATEMENTS $OPTIONS

NPL Statements Guide 2-480

HEX(00) Default Options enabled.
HEX(01) Suppresses these options from the HELP display.

Resetting byte 12 to HEX(00) reenables these options on
the HELP display.

Byte 13: Switch for suppression of the "HALT" key.
HEX(00) Default Key enabled.
HEX(01) Suppresses the "HALT" key. Resetting byte 13 to

HEX(00) reenables the "HALT" key.
Byte 14: Perform implicit $BREAK after disk I/O.

HEX(00) Default Indicates that no break is to take place.
HEX(01) Indicates that the remaining timeslice for the task is

released after each disk I/O statement. This feature is
used to improve performance on some operating
systems. Refer to the NPL Supplements for details.

Byte 15: Alternate font selection on VT100/VT200 and Altos 3 terminals. Refer to
Appendix D of the Programmer’s Guide for acceptable values for specific
terminals.
HEX(41) Default Hexcode for A--use BRITISH character set

Byte 16: Not all math operations use the co-processor. Refer to Chapter 5 of the NPL
Supplements for details on the availability and functionality of the math co-
processor on specific hardware versions of NPL.
HEX(00) Default Indicates that the math co-processor should not be used

for any NPL math operations.
HEX(01) Indicates that the math co-processor should be used

when available for NPL math operations.
Byte 17: 132-column screen support. Refer to Section 7.3.23 of the Programmer’s

Guide for further details on 132-column mode.
HEX(00) Default Indicates that dynamic switching between 80-column

mode and 132 column mode is not enabled.
HEX(01) Indicates that this feature is enabled.

Byte 18/19 Extended range for LINPUT/INPUT. Byte 18 defines the low value of the
extended range. Byte 19 defines the high value of the extended range. Refer
to Section 7.5.5 of the Programmer’s Guide for further details on extended
range for LINPUT/INPUT.
HEX(00) Default In both bytes

$OPTIONS LANGUAGE STATEMENTS

2-481 NPL Statements Guide

Byte 20: "Raw" output in remote mode. "Raw" output mode is applicable only on PC
monitors under MS-DOS when the non-interpretive RunTime is operating in
"remote" mode. Remote mode is used when the "R" startup option is
specified
HEX(00) Default Indicates that "raw" output mode should not be used.
HEX(01) Indicates that "raw" output mode should be used.

Byte 21: Controls display of "bright" attribute on terminals where "normal" is
actually "dim". Refer to Appendix D of the Programmer’s Guide for
information on specific terminals where this feature is supported.
HEX(00) Default Indicates that "bright" is displayed as "bright" and

"normal" is displayed as "dim".
HEX(01) Indicates that "bright" is displayed as "dim" and

"normal" is displayed as "bright".
Byte 22: Provides power-on default background/foreground color selection for

supported color terminals. Refer to Section 7.3.18 of the Programmer’s
Guide for details.
HEX(00) Default

Byte 23: Provides power-on default perimeter/underline color selection for supported
color terminals. Refer to Section 7.3.18 of the Programmer’s Guide for
details.
HEX(00) Default

Byte 24: Controls attribute display on IBM PC monitors in graphics (/G) mode. Refer
to Chapter 6 of the DOS Supplement for details.

Byte 25: Color replacement value for no bright, no blink in EGA graphics mode.
HEX(07) Default Indicates white on black. Refer to Chapter 6 of the DOS

Supplement for details.
Byte 26: Color replacement value for bright, no blink in EGA graphics mode. Refer

to Chapter 6 of the DOS Supplement for details.
HEX(01) Default Indicates bright white on black.

Byte 27: Color replacement value for no bright
HEX(04) Default

Byte 28: Color replacement value for bright
HEX(14) Default

Byte 29: Allows for remapping of available colors for video attribute replacement in
graphics mode on terminals with less than 64K that have only four colors.
Refer to Chapter 6 of the appropriate NPL Supplement.
HEX(xy) Where x replaces color for black and y replaces blue.
HEX(0F) Default Replaces blue with bright white.

LANGUAGE STATEMENTS $OPTIONS

NPL Statements Guide 2-482

Byte 30: Allows for remapping of available colors for video attribute replacement in
graphics mode on terminals with less than 64K that have only four colors.
HEX(xy) Where x replaces red and y replaces white.
HEX47) Default

Byte 31: Controls certain features for terminal emulators which do not provide 100%
support of the terminal being emulated. This feature is provided strictly as a
convenience for those users who must use emulation products. These
emulation products are not supported for use with NPL. Each defined bit can
be used to suppress a NPL feature for the terminal in use. Defined bits are:
HEX(00) Default No features supplied.
HEX(01) The HELP display highlights only the "current" field

(which would normally appear as inverse video). Other
fields which would display as bright are not highlighted.
This feature is useful on terminal emulators which do
not support multiple video modes. Only the HELP
display is affected by this option. Programs which use
multiple attributes may not display well on these
terminals.

HEX(02) The terminal has no local printer capability. If this bit is
set, printers with the LCL=Y $DEVICE clause are not
supported and attempting to access such printers yields a
P48 error (Illegal Device Specification).

HEX(04) 132-column mode is not supported. If this bit is set, the
dynamic screen size option is ignored and the current
width is not changed. Other bits are reserved and should
not be modified.

$OPTIONS LANGUAGE STATEMENTS

2-483 NPL Statements Guide

Byte 32: Cursor style selection. For terminals where the cursor style must be set
under program control, this byte may be used to instruct the non-interpretive
RunTime which cursor style to set. Possible values:
HEX(00) Default Use current cursor style or built in defaults.
HEX(01) Set cursor style to line.
HEX(02) Set cursor style to block. When a non-zero value is

specified, the cursor style is set permanently to the
specified style and is not reset when the non-interpretive
RunTime is exited. The cursor style is changed on the
first cursor on (HEX(05)) or cursor blink
(HEX(02050E)) sequence sent to the terminal. Refer to
Appendix D of the Programmer’s Guide for details on
the effect of this option on specific terminals.

Byte 33: Byte 33 of $OPTIONS is used to determine the availability of the Native
Operating System, Kill NPL, Enable/Disable Keyboard Logging, and Diag
options on the HELP processor. The options are controlled as follows:
HEX(00) Default Indicates that all options are displayed.
HEX(01) bit - 0 Display Native Operating System option
HEX(01) bit - 1 Suppress Native Operating System option
HEX(02) bit - 0 Display Kill NPL option
HEX(02) bit - 1 Suppress Kill NPL option
HEX(04) bit - 0 Display Enable/Disable Keyboard Logging options
HEX(04) bit - 1 Suppress Enable/Disable Keyboard Logging options
HEX(08) bit - 0 Display Diag option
HEX(08) bit - 1 Suppress Diag option
Other bits reserved and must be zero.

Programmers are advised to preserve the reserved bits by using a logical operation such
as OR to assign values to this byte.

For example:
0010 DIM O$64
0020 O$=$OPTIONS
0030 STR(O$,33,1)=STR(O$,33,1) OR HEX(05):REM Suppress all three
0040 $OPTIONS=O$

NOTE: If the Kill NPL option is suppressed, it may be necessary to kill the task from an-
other terminal or reboot the system if certain fatal conditions are encountered dur-
ing RunTime execution. An example of this would be an error occurring during
execution of the non-interpretive RunTime.

LANGUAGE STATEMENTS $OPTIONS

NPL Statements Guide 2-484

$OPTIONS (cont.)

Also, if the Diag option is suppressed, Enable/Disable Keyboard Logging is implic-
itly suppressed regardless of the value of the HEX(04) bit since these options appear
only on the Diag screen.

Refer to SELECT LOG for further details on Keyboard Logging.

Refer to Chapter 11 of the Programmer’s Guide, for further details on the Help Processor
display.

Byte 34: Value of #PI
HEX(00) Default Indicates that the value assigned to #PI should be

3.1415926535898. This is the most accurate value
possible in NPL.

HEX(01) Indicates that the value assigned to #PI should be
3.141592653590. This is the value that was returned on
revisions of NPL prior to revision 2.01. This value
should typically only be used by applications that
compare #PI to values that may have been stored using
older versions of NPL.

Other values are reserved and should not be set by the application.
Regardless of the value of byte 34, the default value for #PI is still used for
all transcendental functions that deal with radians.

Byte 35: To apply either Wang logic or Niakwa logic to the $OPEN operation.

$OPTIONS LANGUAGE STATEMENTS

2-485 NPL Statements Guide

HEX(00) Default When $OPEN encounters a device "hogged" by another
task, devices lower on the list remain hogged by the task
issuing the $OPEN. This logic was used by all releases
prior to 3.01.

HEX(01) When $OPEN encounters a device "hogged" by another
task, devices lower on the list are released, even if they
were previously hogged by an earlier $OPEN statement.
This is consistent with Wang 2200 Basic-2.

Byte 36: Indicates the number of $BREAK units released is to be accumulated and
that a UNIX timeslice should occur when the number of units accumulated
is equal to or greater than the binary value specified in this byte.
HEX(00) Default No UNIX timeslice is ever released.

Byte 37: Specifies if the characters input as response to LINPUT and INPUT
statements are echoed by NPL. If set to HEX(01) and the UNIX echo
parameter is set OFF before entering the Niakwa RunTime, no characters
are echoed to the screen when keys are pressed in response to the LINPUT
or INPUT statements. If echo is on before entering the Niakwa RunTime,
then the standard LINPUT or INPUT is used despite the value of this byte.
When this byte is set to any value other than HEX(01), the standard
LINPUT or INPUT is used despite the status of UNIX echo parameter. No
other NPL statements are modified. The operation of KEYIN is not affected
by this byte. HEX(00)-no suppression takes place.
HEX(00) Default Standard input.
HEX(01) No characters echoed.
By using the status command on the echo parameter, the developer is able to
avoid complex logic in determining whether to set byte 37 of $OPTIONS on
sites where some terminals are local and should echo characters normally
while others are operating remotely and the echoing should be suppressed.
The normal setting for the echo parameter is ON in UNIX environments.

Byte 38: Used to require all numeric and alpha-scalar variables to be explicitly
dimensioned prior to first reference.
HEX(00) Default Numeric and alpha-scalar variables are implicitly

dimensioned upon first reference
HEX(01) Numeric and alpha-scalar variables must be explicitly

dimensioned prior to first reference. NPL flags all
undeclared variables with a P55 error (Undefined
Variable).

LANGUAGE STATEMENTS $OPTIONS

NPL Statements Guide 2-486

If the default value (HEX(00)) is used, a variable may be declared implicitly,
depending on the context in which the first variable reference in the program
appears, according to the following table:
Location of First Reference Default Allocation Type
Within a function body Not legal; error occurs
Outside all function bodies DIM/STATIC
NOTE: Constant variables must always be explicitly declared.

Byte 39: Used to specify that no implicit $OPEN is to be performed on DATA LOAD BA
and DATA LOAD BM when the platter has not been explicitly hogged by any
$OPEN.
HEX(00) Default Implicit $OPENs are to occur as they have in prior releases.
HEX(01) Implicit $OPENs are suppressed.

Byte 40: Specify whether bytes 4 to 35 of the file trailer sector are used by the NPL to
store a date and time stamp, filename, and other information for data files.
HEX(00) Default NPL stores this information as done in previous releases.
HEX(01)

Byte 41: Specify that $SOURCE should retain soft carriage returns embedded in the
object code being translated to ASCII.
HEX(00) Default Soft carriage returns are not to be retained as done in

previous releases.
HEX(01) Soft carriage returns are retained

$OPTIONS LANGUAGE STATEMENTS

2-487 NPL Statements Guide

Byte 42 Used to modify the interpretive Runtime’s behavior when unhandled program
errors are encountered and immediate mode is entered (RTI only):
Bit Position/ Bit=1
HEX(00) Default Same behavior as older versions (prior to NPL Revision

4.0). Beeps and $DEMO scripts keep running.
HEX(01) Suppresses beep when an error message is displayed.
HEX(02) Stops any running $DEMO script if an error occurs.
Other bits Reserved; should always be set to zero (0).

Byte 43 Specifies that RunTime will not yield to another Windows task while an $OPEN is active.
HEX(00) Default Yield to other Windows tasks even if $OPEN’s are

outstanding.
HEX(01) Yield to other Windows tasks only if no $OPEN’s to

network files have been granted.
Byte 44 Used to control the startup editing characteristics of LINPUT/INPUT statements

and immediate mode and program lines, and the characteristics of the "insert"
key.
The following defines each bit position’s startup mode of operation.
BIT Position BIT = 0 BIT = 1
Immediate Mode
Commands and
Program Lines
HEX(01) Overstrike Mode Insert Mode
HEX(02) Insert key = insert char Insert key

toggles mode
LINPUT Statements
HEX(04) Overstrike Mode Insert Mode
HEX(08) Insert key = insert char Insert key

toggles mode
INPUT Statements
HEX(10) Overstrike Mode Insert Mode
HEX(20) Insert key = insert char Insert key

toggles mode
RESERVED bits
HEX(40) Should always be 0
HEX(80) Should always be 0

Byte 45 Suppresses or replaces the statement separators (":") at the start of multi-
statement lines.

LANGUAGE STATEMENTS $OPTIONS

NPL Statements Guide 2-488

HEX(00) Default Displays the statement separator (":") at the start of multi-
statement lines.

HEX(01) Suppress when recalling lines for EDIT.
HEX(02) Suppress when displaying text in LIST (except LIST D).
HEX(04) Suppress when displaying text in LIST D.
HEX(08) Suppress when displaying source via $SOURCE function.
HEX(10) Display space instead of retrun graphic when editing lines.

Bytes 46-64: Currently undefined.. Reserved for future use.

When the $OPTIONS system variable is modified, specified options become effective im-
mediately. They remain in effect until further modifications are made or until the current
session is ended. Modifications are not carried over from one RunTime session to the
next. At each execution of the RunTime program, the $OPTIONS variable is set to the
specified default values.

Examples:
0010 DIM X$64
0020 X$=$OPTIONS : REM GET CURRENT VALUES
0030 STR(X$,1,1)=HEX(4F) : REM SET UNDERLINE OPTION TO BRIGHT
 WHITE ON RED BACKGROUND
0040 STR(X$,2,1)=HEX(00) : REM SET KEYBOARD STATUS DISPLAY OFF
0050 STR(X$,3,1)=HEX(01) : REM SET ’NOISE’ SUPPRESSION ON
0060 $OPTIONS=X$: REM PUT OPTIONS INTO EFFECT

NOTE: Programs which modify $OPTIONS should always fetch the current contents into a
work variable, modify the work variable, and then reset $OPTIONS. The work vari-
able should always be dimensioned to 64 bytes. This prevents problems in the fu-
ture, should additional bytes of $OPTIONS be implemented.

In many cases, it may be desirable to modify $OPTIONS based upon what machine
is being used and what revision of the RunTime Program is being used. Refer to
$MACHINE system variable and the appropriate NPL Supplement for details.

Compatibility Issues:
This statement is not valid in Wang 2200 Basic-2.

Refer to NPL Supplement(s) for hardware-specific details concerning the $OPTIONS
statement.

Bytes 14-30 are valid only in NPL Revision 2.01 or greater.

Bytes 31-34 are valid only in NPL Revision 3.00 or greater.

$OPTIONS LANGUAGE STATEMENTS

2-489 NPL Statements Guide

$OPTIONS (cont.)

Bytes 35-41 are valid only in NPL Revision 3.20 or greater.

Bytes 42-45 are valid only in NPL Revision 4.0 or greater.

References:

LANGUAGE STATEMENTS $OPTIONS

NPL Statements Guide 2-490

OR Alpha-operator

Discussion:
The OR logical alpha-operator performs a logical OR operation on the alpha-operand and
the contents of the alpha-receiver, the result of which is then assigned to the alpha-re-
ceiver. The OR alpha-operator is legal only in an alpha-expression in an alpha-assign-
ment statement.

The OR operation is performed on a byte-by-byte basis, moving from left to right in each
field, for a number of bytes equal to the shorter of;

• The defined length of the alpha-receiver.

• The defined length of the alpha-operand (if the alpha-operand is an alpha-vari-
able or system-variable, trailing spaces are included in the operation).

If the defined length of the alpha-operand is shorter than the defined length of the alpha-
receiver, then the remaining bytes of the alpha-receiver remains unchanged (i.e., padding
with spaces is not performed).

NOTE: With regard to the "OR" syntactic unit, this may also appear in conditional-expres-
sions. However, the similarity is syntactical only and its use in a conditional-expres-
sion has a completely different meaning.

General Form:

alpha-receiver = [...] OR alpha-operand [...]

Where:

alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }

OR Alpha-operator LANGUAGE STATEMENTS

2-491 NPL Statements Guide

OR Alpha-operator (cont.)

Examples:
0010 STR((A$,4,5) = OR B$
0010 A$=C$ OR "0"
0010 B$=OR ALL(10)
0010 STR(A$,4,5)=OR B$

:0010 DIM A$5
:0020 A$="AbCdE"
:0030 A$=OR ALL(60)
:0040 PRINT A$
:RUN
abcde

Compatibility Issues:

References:

LANGUAGE STATEMENTS OR Alpha-operator

NPL Statements Guide 2-492

$OSERR

Discussion:
The $OSERR function returns a string of text which contains the most recent native oper-
ating system error code and message received when a NPL error has occurred. $OSERR
can not appear on the left side of an equivalence statement.

The text returned is comprised of two parts:

1. The native operating system error code.

2. A descriptive message based on this code. The descriptive message is obtained from
the file RTIxERR.HLP (where x is a single letter representing the host operating sys-
tem--"S" for SuperDOS for example). If the correct file for the operating system in
use, along with the associated RTIxERR.IDX file, is not present or cannot be ac-
cessed, a descriptive message is not be returned by $OSERR.

NOTE: The RTIxERR.HLP file may be modified. If modified, it is necessary to execute the
Indexed Help File Creation utility to create the associated RTIxERR.IDX file before
the modified RTIxERR.HLP file can be properly accessed. Refer to Chapter 8 of the
Programmer’s Guide, for further information on indexed help files. Refer to the
NPL Supplement for further information on the name and required location of
RTIxERR files for the operating system.

The $OSERR value is returned even if the NPL error is trapped by ERROR on ON ER-
ROR.

Typically, native operating system errors are generated only on I/O operations. If the
NPL error was for a non-I/O related operation (X75 (Illegal Number) for example),
$OSERR is typically blank.

General Form:

alpha-receiver = $OSERR

$OSERR LANGUAGE STATEMENTS

2-493 NPL Statements Guide

$OSERR (cont.)

$OSERR is intended to be used only for informational purposes. Programmers are ad-
vised against attempting to base any logic decisions on the values returned by $OSERR.
These values vary widely among different operating systems and may even vary widely
on different revisions of the same operating system.

Examples:
0010 $FORMAT DISK T/D10,
 :ERROR E=ERR
 :E$=ERR$(E)
 :PRINT "Error ";&E;" - ";E$;" occurred"
 :N$=$OSERR
 :IF N$<>" " THEN PRINT "Native operating system error - ";N$

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

This statement is not supported on the Wang 2200.

References:
ERR
ERROR
ERR$
Chapter 8 of the Programmer’s Guide - NPL Error Codes

LANGUAGE STATEMENTS $OSERR

NPL Statements Guide 2-494

PACK

Discussion:
The PACK statement stores a list of numeric values in an alpha-variable in a packed deci-
mal format specified by the image. The numeric values are packed in sequential order
into the receiving alpha-variable. If the numeric values to be packed require more storage
space than is provided by the alpha-variable which is to receive them, an error results.

The image determines the method by which the numeric information is stored. It provides
a mechanism for retaining the original sign of the number as well as the decimal position.
The image controls the storage of numeric values as follows:

1. Data is left-justified within the alpha-variable, and the decimal point is not stored dur-
ing the PACK operation.

2. For each "#" character specified in the image, one digit is stored. Each individual byte
of the alpha-variable contains two packed digits.

3. Fractions are truncated or extended with zeros according to the image specification.
The integer portion is extended with leading zeros, if required. If the integer portion
cannot be contained by the image, an error results.

General Form:

PACK (image) alpha-variable FROM

 {numeric-array } [,{numeric-array }]...
 {numeric-expression} {numeric-expression}

Where:

image = {[+] [#]...[.][#]...[^^^^] }
 [-]
{alpha-variable containing image}

 the length of image <= 254

PACK LANGUAGE STATEMENTS

2-495 NPL Statements Guide

PACK (cont.)

4. If a sign is specified in the image, sign information is placed in the high-order half-
byte of the first byte of the receiving variable. This may contain the following values:

0 if number is positive and exponent is positive
1 if number is negative and exponent is positive
8 if number is positive and exponent is negative
9 if number is negative and exponent is negative

If no sign is specified, actual data is stored in this location.

5. The exponent, if present, is stored following the number as two hex-digits. In order to
accurately represent a number, numbers in exponent format should include a sign.

6. The same image should be used to UNPACK data. Otherwise, discrepancies could oc-
cur.

7. Each packed number uses a whole number of bytes. If an image specification is used
which requires only one half of the last byte, the remaining half-digit is not affected.

The PACK statement provides a method of storing large groups of numeric data to disk
as alpha-variables or alpha-arrays which require less storage space if the full 14-digit pre-
cision of numbers is not a requirement for the data.

Examples:
0010 PACK(######) B$ FROM A8
0010 PACK(-########.####) A$() FROM B()
0010 PACK(####) STR(C$,1,6) FROM A,B,C(3)+10
0010 A$="+###.##^^^^": PACK(A$) B$ FROM A8

:0010 DIM A(2)
:0020 PACK(+####.##) A$ FROM 12.354,-123.45,1234.56
:0030 HEXPRINT A$
:0040 UNPACK(+####.##) A$ TO A,A()
:0050 PRINT A,A(1),A(2)
:RUN

00012350101234500123456020202020

12.35 -123.45 1234.56

Compatibility Issues:

References:
UNPACK

LANGUAGE STATEMENTS PACK

NPL Statements Guide 2-496

$PACK

Discussion:
The $PACK statement is used to pack a buffer-variable with any number of values in
various formats.

There are three forms of the $PACK statement:

• Delimiter Form (D parameter) each value to be packed is separated by a delim-
iter character in the buffer-variable.

• Field Form (F parameter) each value occupies a specified number of bytes in the
buffer-variable.

General Form:

$PACK [({F} = pack-specification] buffer-variable FROM
 {D}

 input-value [,input-value]...

Where:

pack-specification = {alpha-variable}
{literal-string}

buffer-variable = alpha-variable

input-value = {literal-string }
{alpha-variable }
{alpha array-variable }
{numeric-expression }
{numeric array-variable}

$PACK LANGUAGE STATEMENTS

2-497 NPL Statements Guide

$PACK (cont.)

• Internal Form (neither F nor D is specified) data is stored in standard logical re-
cord format in the buffer-variable.

Delimiter Form
In the Delimiter form, the pack-specification contains two bytes. The first byte is a con-
trol byte that must be set to a value from HEX(00) to HEX(03). This value is not used by
the $PACK statement but is used by the $UNPACK statement. Refer to the $UNPACK
statement for details. The second byte is a delimiter character. As the packing occurs, this
delimiter character is placed between each value.

When the delimiter form is used, data values may be either alpha or numeric. Alpha data
values are stored using their full dimensions or referenced length (including trailing
spaces).

Numeric data values are stored in ASCII free format. Refer below (Field Form) for de-
tails on the internal structure of ASCII free format.

Examples:
0010 $PACK(D=HEX(032C)) Q$() FROM V$()
0010 B$=HEX(00FF)<
 :$PACK(D=B$)STR(A$(),40) FROM A$,B$,F$()

:0010 DIM X$32,A$5,B$5
:0020 A$="ABC"<
: A=1.03<
: B$="DEFG"<
: B=-3.2
:0030 $PACK(D=HEX(002C)) X$ FROM A$,A,B$,B
:0040 PRINT X$

:RUN

ABC , 1.03,DEFG ,-3.2

Field Form
In the Field form, the pack-specification contains a series of two-byte format specifica-
tions for packing each value into the buffer. The first byte contains the format type. The
second byte contains the length of the field.

0 0 x x

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-498

$PACK (cont.)

The following types are allowed:

00xx Skip xx bytes in buffer-variable
10xx ASCII free format
2dxx ASCII integer format
3dxx IBM display format
4dxx IBM USASCII - 8 format
5dxx IBM packed decimal format
6dxx Unsigned, packed decimal format
Axxx Alpha field (length = xxx bytes)
Bd0x Unsigned Binary format
Cd0x Signed Binary format
Dd0x Unsigned small endian
Ed0x Signed small endian
Ft0x Floating Point format

Where: x, xx or xxx = field width in binary (x, xx, or xxx 0)
 d = implied decimal position in binary
 t = class of floating point format (refer below)

An individual field specification must be specified for each input-value in the list. One
field specification is specified for an array, with each element in the array being packed
using that specification.

Alpha fields (Axxx) are treated as a character string with the length specified by xxx, al-
lowing a field size up to 4075 bytes (4K-1).

The internal format of numeric fields is different for each of the numeric field specifica-
tions. In all cases, the length of the field is specified by byte two of the specification and
the location of the implied decimal point (except for ASCII Free Format) is specified by
the second digit of the first byte.

The $PACK statement may be used to define an entire record from a list of values. In
many circumstances it is more convenient to define a RECORD structure which defines
the order and FIELD format of fields within the record. This allows a program assign or
inspect individual fields in the record buffer using numeric or string FIELD expressions,
without any need to define or extract the entire list of fields.

$PACK LANGUAGE STATEMENTS

2-499 NPL Statements Guide

$PACK (cont.)

ASCII Free Format - (10xx)
This is a displayable format equivalent to that produced by PRINTing the numeric value.

- 1.23456789 E 28

Byte 1 is the sign byte. It may be an ASCII +, - or blank.

The next series of bytes store the mantissa which may contain up to 15 digits. Digits are
stored in their ASCII representation. An imbedded decimal point may be present.

Following the mantissa is the optional exponent. The exponent is represented by the letter
E, followed by a sign byte (+ or -), followed by one or two ASCII digits.

The remainder of the field is filled with blanks.

For example:

:0010 DIM X$32
:0020 $PACK(F=HEX(10101010)) X$ FROM 1.2345678901E28,-1234567890123
:0030 PRINT X$

:RUN

1.23456789+E28 -1234567890123

ASCII Integer Format - (2dxx)
In this displayable format, all digits are stored as the ASCII representation of a number.
The sign is contained on byte 1 of the field. The location of the decimal point is specified
implicitly by the "d" parameter.

- 0010065

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-500

$PACK (cont.)

For example:

:0010 DIM X$32,A(3)
:0020 A(1)=-100.65
 : A(2)=33.514
 : A(3)=16.4
:0030 $PACK(F=HEX(2208)) X$ FROM A()
:0040 PRINT X$

:RUN

-0010065+0003351+0001640

NOTE: The decimal point is implied at two positions from the end of each field.

IBM Display Format - (3dxx)
In this form, digits are stored 1 digit per byte in the format HEX(Fd) where "d" is the
digit (0-9). The sign is stored in the high-order nibble of the last byte of the field and may
be "C" for positive or "D" for negative.

F0 F0 F1 F2 D3

For example:

:0010 DIM A$5
:0020 $PACK (F=HEX(3205))A$ FROM -1.23
:0030 HEXPRINT A$
:RUN

F0F0F1F2D3

IBM USASCII Format - (4dxx)
In this form, digits are stored 1 digit per byte in the format HEX(5d) where d is the digit
(0-9). The sign is stored in the high-order nibble of the last byte of the field and may be A
for positive or B for negative.

50 50 51 52 A3

For example:

:0010 DIM A$5
:0020 $PACK (F=HEX(4205))A$ FROM 1.23
:0030 HEXPRINT A$
:RUN

50505152A3

$PACK LANGUAGE STATEMENTS

2-501 NPL Statements Guide

$PACK (cont.)

IBM Packed Decimal Format - (5dxx)
In this form, digits are stored two digits per byte in the format HEX(dd) where "d" is the
digit (0-9). The sign is stored in the low-order nibble of the last byte of the field and may
be C for positive or D for negative.

00 00 00 12 3D

For example:

:0010 DIM A$5
:0020 $PACK (F=HEX(5205))A$ FROM -1.23
:0030 HEXPRINT A$
:RUN

000000123D

Unsigned Packed Decimal Format - (6dxx)
In this form, digits are stored 2 digits per byte in the format HEX(dd) where d is the digit
(0-9). No sign is stored.

00 00 12 34 00

For example:

:0010 DIM A$5
:0020 $PACK (F=HEX(6405))A$ FROM 12.34
:0030 HEXPRINT A$
:RUN

0000123400

Unsigned Binary Format (Bd0x)
Unsigned binary numbers may be specified using the format code HEX(Bd0x) where:

B d 0 x

• "B" indicates that the field is binary

• "d" is a hexadecimal digit from 0 to F, indicating a number of implied decimal
places in the field.

• "x" is the length of the field in bytes (values 1 to 5 permitted).

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-502

$PACK (cont.)

The following table indicates the range of values which may be stored using this format.
If an implied decimal of "d" places is assumed, divide all numbers by 10^d.

Field length Minimum Maximum
1 0 255
2 0 65535
3 0 16777215
4 0 4294967295
5 0 1099511627775

The value stored in the field for a number "Z" is the same as that returned by
BIN(INT(Z*1Ed),x).

Example:
:LIST
1000 DIM Z(4),Z1(4),X$14
 : Y=16000
 : Z(1)=196.32
 : Z(2)=100.305
 : Z(3)=1200
 : Z(4)=0
 : $PACK(F=HEX(B002B203)) X$ FROM Y,Z()
 : HEXPRINT X$
 : $UNPACK(F=HEX(B002B203)) X$ TO Y1,Z1()
 : PRINT Y1,Z1(1),Z1(2),Z1(3),Z1(4)
:RUN
3E80004CB000272E01D4C0000000R16000 196.32 100.3 1200
0

Signed Binary Format (Cd0x)
Signed binary numbers may be specified using the format code HEX(Cd0x) where:

C0 00 02 03

• "C" indicates that the field is signed binary.

• "d" is a hexadecimal digit from 0 to F indicating a number of implied decimal
places in the field.

• "x" is the length of the field in bytes (values 1 to 6 permitted).

$PACK LANGUAGE STATEMENTS

2-503 NPL Statements Guide

$PACK (cont.)

The following table indicates the range of values which may be stored using this format.
If an implied decimal of "d" places is assumed, divide all numbers by 10^d.

Field length Minimum Maximum
1 -128 127
2 -32768 32767
3 -8388608 8388607
4 -2147483648 2147483647
5 -549755813888 549755813887
6 -140737488355328 140737488355327

The value stored in the field for a number "Z" is the same as that returned by
BIN(INT(Z*1Ed),-x).

NOTE: Due to the way the INT() function operates on negative numbers, excess digits after
those specified by the implied decimal are not truncated for negative values as
would be the case for other numeric $PACK field specifications.

This difference is illustrated by the values 100.304 and -100.304 in the following ex-
ample.

Example:
:LIST
1010 DIM Z(4),Z1(4),X$14
 : Y=16000
 : Z(1)=196.32
 : Z(2)=-100.304
 : Z(3)=100.304
 : Z(4)=1200
 :$PACK(F=HEX(C002C203)) X$ FROM Y,Z()
 :HEXPRINT X$
 :$UNPACK(F=HEX(C002C203)) X$ TO Y1,Z1()
 :PRINT Y1,Z1(1),Z1(2),Z1(3),Z1(4)
:RUN
3E80004CB0FFD8D100272E01D4C0R16000 196.32 -100.31
100.3 1200

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-504

$PACK (cont.)

Unsigned Small-Endian (Dd0x)

The format Dd0x is used for unsigned small-endian format, where d denotes the number
of implied decimal positions and x denotes the number of bytes to be used. The number
of bytes to be used may range from 1 to 5.

For example:

10 $PACK (F=HEX(D202)) X$ FROM 1.23
20 $UNPACK (F=HEX(D202)) X$ TO A

Signed Small-Endian (Ed0x)

The format Ed0x is used for signed small-endian format, where d denotes the number of
implied decimal positions and x denotes the number of bytes to be used. The number of
bytes to be used may range from 1 to 6.

For example:

10 $PACK (F=HEX(E202)) X4 FROM 1.23
20 $UNPACK (F=HEX(E202)) X$ to A

NOTE: "Small-endian" format is equivalent to Intel integer format.

Floating Point Format - (Ft0x)
As of Revision 3.0 of NPL, field specifications of the form HEX(Ft0x) indicate the use of
a floating point field "x" bytes in length. The "t" is used to distinguish between 5 classes
of floating point formats.

F 2 0 4

NOTE: This differs from other previously supported numeric field format specifications,
which only supported fixed point data formats and used this hex digit to indicate an
implied decimal position. In addition, only a few values of the field length "x" are
supported, unlike previously supported numeric field format specifications, which
allow any non-zero value for the field length. The following is a summary of the sup-
ported floating point formats:

$PACK LANGUAGE STATEMENTS

2-505 NPL Statements Guide

$PACK (cont.)

"t" Format Acceptable values for "x"
0 Wang Internal Numeric Format 8
1 NPL Internal Numeric Format 8
2 IEEE Binary Real H-L format
3 IEEE Binary Real L-H format
4 DEC VAX floating point format 4, 8
5 Sortable MAT MOVE format 2,,8

In general, where both 4 and 8 are supported as a field length, the 4-byte format corre-
sponds to a single-precision value, and the 8-byte format to a double-precision value.

NOTE: Each individual class ("t") is discussed in greater detail in following sections.

Purpose of the New Format
These formats have been implemented to allow NPL applications to read or generate nu-
meric data in a format compatible with programs written in other languages, such as C.

Application Notes
Different computer systems use slightly different methods of representing floating point
numbers internally. In addition, NPL uses its own internal format. For this reason, it is
necessary to permit several different types of floating point formats.

Due to the differences between the formats, it is not always possible to store a number
with complete accuracy. In such cases, the number is rounded to the nearest possible
value that can be stored. If exponent underflow occurs, i.e., the number is too close to
zero to be stored, the number is rounded off to zero.

Like other $PACK format codes, attempting to store numbers which are out of range for
the field produces an error X71--Value exceeds format.

The following table indicates the approximate ranges of positive values that may be
stored using these formats. Negative numbers have the same ranges as positive numbers,
differing only in sign.

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-506

$PACK (cont.)

Format
Type

Significant
Digits

Minimum
Denormalized

Minimum
Normalized

Maximum
Value

F008 13 --- 1.0 E-99 9.9 E+99
F108 14 1.0 E-32768 --- 1.4 E+32781
F204 7 1.4 E-45 1.2 E-38 3.4 E+38
F208 15 4.9 E-324 2.2 E-308 1.8 E+308
F304 7 1.4 E-45 1.2 E-38 3.4 E+38
F308 15 4.9 E-324 2.2 E-308 1.8 E+308
F404 7 --- 2.9 E-39 1.7 E+38
F408 16 --- 2.9 E-39 1.7 E+38

Note on Precision
Due to the differences between the floating point formats, there may be some loss of pre-
cision when $PACKing and $UNPACKing these formats. In particular, if a value is
$PACKed into a string using any floating point binary format, $UNPACKing the string
may not produce the original value. This is more likely to be noticeable when using the
single-precision (4-byte) formats or when dealing with extremely small (denormalized)
values.

Examples:
:10 DIM A$4
:20 X=123.45
:30 $PACK(F=HEX(F204)) A$ FROM X :REM note single precision floating
:40 $UNPACK(F=HEX(F204)) A$ TO Y
:50 PRINT "X = ";X
:60 PRINT "A$ = ";: HEXPRINT A$
:70 PRINT "Y = ";Y :REM stored result only accurate to about 7 digits
:RUN
X = 123.45
A$ = 42F6E666
Y = 123.449996948242

:10 DIM X$8,Y$8
:20 A=1E-322 : REM note denormalized value
:30 $PACK(F=HEX(F208)) Y$ FROM A : REM precision is less than
:40 $UNPACK(F=HEX(F208)) Y$ TO B : REM normal values (15) digits
:50 PRINT "A = ";A
:60 PRINT "Y$ = "; : HEXPRINT Y$
:70 PRINT "B = ";B
:RUN
A = 1.0000000E-322
Y$ = 0000000000000014
B = 9.8813129E-323

$PACK LANGUAGE STATEMENTS

2-507 NPL Statements Guide

$PACK (cont.)

When dealing with floating point forms with precision exceeding that of the internal form
of the RTP (14), loss of precision occurs on a $UNPACK instruction. In general, the
$UNPACK routines rounds the correct number to the nearest RTP internal form value.
When dealing with values very close to the maximum limits of the floating point formats,
this loss of precision may cause $UNPACK to return a number which has been rounded
up to a number that is actually beyond the maximum floating point limit. An attempt to
$PACK the same value would produce an error X71 (value exceeds format) in this case.

Wang Internal Numeric Format - (F008)
The Wang Internal Numeric Format uses the same format used by the DATASAVE DC
statement and the Internal Form of $PACK/$UNPACK. It can store decimal numbers up
to 13 digits long with no errors. The size specification must be 8. The numeric value is
stored as:

HEX s a b c d d d d d d d d d d d d

Where:

s = signs:
0 if mantissa +, exponent +
1 if mantissa -, exponent +
8 if mantissa +, exponent -
9 if mantissa -, exponent -

E = +/- ba = exponent (2 digits)

M = +/- c.dddddddddddd = mantissa (13 digits)

The value represented is:

M * 10E

All digits must be 0-9. Numbers are always normalized so that "c" is not zero. The num-
ber zero is stored as:

HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-508

$PACK (cont.)

Example:
:0010 DIM A$(4)8
:0020 $PACK(F=HEX(F008)) A$(1) FROM 178.125
:0030 $PACK(F=HEX(F008)) A$(2) FROM -178.125
:0040 $PACK(F=HEX(F008)) A$(3) FROM 567E-11
:0050 $PACK(F=HEX(F008)) A$(4) FROM -0.000567
:0060 LIST DIM * A$(
:RUN

(1) "..xiP..." HEX(0201 7812 5000 0000)
(2) "..xiP..." HEX(1201 7812 5000 0000)
(3) "’.g....." HEX(8905 6700 0000 0000)
(4) "u.g....." HEX(9405 6700 0000 0000)

NPL Internal Numeric Format - (F108)
NPL uses an internal numeric format with the advantages of Wang Internal Numeric For-
mat, with the added benefit of faster computation times when operating on integers. Num-
bers are stored in the form:

HEX m m m m m m m m m m m m e e e e

Where:

M = VAL(HEX(mmmmmmmmmmmm),-6) = mantissa (12 hex digits)

E = VAL(HEX(eeee),-2) = exponent (4 hexadecimal digits)

The value represented is:

M * 10E

The number is not normalized, so the same value may be represented in several ways.
For details, refer to the VAL function.

$PACK LANGUAGE STATEMENTS

2-509 NPL Statements Guide

$PACK (cont.)

Example:
:0010 DIM A$(4)8,B$8,C$8
:0020 $PACK(F=HEX(F108)) A$(1) FROM 178E42
:0030 $PACK(F=HEX(F108)) A$(2) FROM -178E42
:0040 $PACK(F=HEX(F108)) A$(3) FROM 567E-11
:0050 $PACK(F=HEX(F108)) A$(4) FROM -0.000567
:0060 LIST DIM * A$(
:0070 PRINT
:0080 PRINT "Mantissa","Exponent","Value"
:0090 B$=HEX(000000003039FFFD)
:0100 C$=HEX(00000012D644FFFB)
:0110 $UNPACK(F=HEX(F108)) B$ TO B
:0120 M=VAL(STR(B$,1,6),-6)
:0130 E=VAL(STR(B$,7,2),-2)
:0140 PRINT M,E,B
:0150 $UNPACK(F=HEX(F108)) C$ TO B
:0160 M=VAL(STR(B$,1,6),-6)
:0170 E=VAL(STR(B$,7,2),-2)
:0180 PRINT M,E,B
:RUN
(1) "..xiP..." HEX(0000 0002 B7CD 002A)
(2) "..xiP..." HEX(FFFF FFFD 4833 002A)
(3) "’.g....." HEX(0000 0000 0237 FFF5)
(4) "u.g....." HEX(FFFF FFFF FDC9 FFFA)
Mantissa Exponent Value
12345 -3 12.345
1234500 -5 12.345

IEEE Binary Real Formats - (F20x and F30x)
The IEEE P754 Standard specifies the formats of binary floating point numbers as a se-
ries of binary bits, but does not specify in what order the bytes containing those bits are
to be stored in memory. Hence, computer systems may store the bytes in either H-L
(High-Low) order, or in L-H (Low-High) order. The $PACK and $UNPACK statements
permit either order to be specified, regardless of the computer system.

The size specification for IEEE floating point formats may be either 4 (single precision)
or 8 (double precision). Double precision is capable of storing larger numbers, with
greater accuracy, than single-precision numbers.

The IEEE standard defines Binary Floating point numbers as a series of binary bits in the
following formats (the storage of these bits within the bytes of a string is described later):

Single precision: S E7 ... E2 E1 E0 F0 F1 F2 ... F22
bit 31 bit 0

Double precision: S E10 ... E2 E1 E0 F0 F1 F2 ... F51
bit 63 bit 0

Where:

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-510

$PACK (cont.)

S = sign:
0 if positive,
1 if negative

Ei ... E2 E1 E0 = biased exponent (binary)

F0 F1 F2 ... Fj = fraction part of mantissa (binary)

This represents the value:

(-1)S * 2E-B * (1 . F0 F1 F2... Fj)

Where:

S = sign
E = biased exponent = Ei ... E2 E1 E0 (binary)
B = exponent bias:
 127 for single precision reals,

 1023 for double precision reals

1 . F0 F1 F2 ... Fj = mantissa (binary)

This is called the normalized form.

NOTE: The "binary point" is placed immediately to the right of the leading "1". The lead-
ing "1" is implicit and is not stored.

There are four types of values which cannot be stored as normalized numbers. Their signs
may be either positive or negative:

Zero: E = 000... , F = 000...
Denormalized: E = 000... , F = any non-zero bit pattern
NaN: E = 111... , F = any non-zero bit pattern
Infinity: E = 111... , F = 000...

$PACK LANGUAGE STATEMENTS

2-511 NPL Statements Guide

$PACK (cont.)

Where:

F = F0 F1 F2 ... Fj (binary)

E = Ei ... E2 E1 E0 (binary)

"non-zero bit pattern" means at least one bit must be a "1".

NPL does not distinguish between positive and negative zero. $PACK stores zero as a
"positive" zero; $UNPACK ignores the sign of zero values.

"Denormalized" numbers represent values very close to zero. They have an implied lead-
ing bit of "0", and represent the value:

(-1)S * 2K * (0 . F0 F1 F2... Fj)

Where:

S = sign
K = minimum exponent:

-126 for single-precision reals,
-1022 for double-precision reals

"Infinity" may be generated by a coprocessor as the result of operations such as division
by zero.

"NaN" (Not-a-Number) may be generated by a coprocessor as the result of meaningless
operations such as infinity subtracted from infinity.

NPL does not have internal numeric values equivalent to Infinity or NaN, so $PACK
does not generate those values. An attempt to $UNPACK a NaN or Infinity produces an
error X75-Illegal number.

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-512

$PACK (cont.)

IEEE Binary Real H-L Format, Single Precision - (F204)
IEEE Binary Real Single Precision H-L Format is normally used on 68000-series comput-
ers and floating point coprocessors such as the MC68881. The number is stored in 4
bytes in the following format:

bit 7 bit 0
1st byte S E7 E6 E5 E4 E3 E2 E1
2nd byte E0 F0 F1 F2 F3 F4 F5 F6
3rd byte F7 F8 F9 F10 F11 F12 F13 F14
4th byte F15 F16 F17 F18 F19 F20 F21 F22

Examples:
:0010 DIM A$(4)4
:0020 $PACK(F=HEX(F204)) A$(1) FROM 178.125
:0030 $PACK(F=HEX(F204)) A$(2) FROM -178.125
:0040 $PACK(F=HEX(F204)) A$(3) FROM (250020/2048)
:0050 $PACK(F=HEX(F204)) A$(4) FROM (-7/1024)
:0060 LIST DIM * A$(
:RUN

(1) "C2 ." HEX(4332 2000)
(2) "C2 ." HEX(C332 2000)
(3) "Bt)." HEX(42F4 2900)
(4) ";‘.." HEX(BBE0 0000)

$PACKed strings in this format may be compared directly without $UNPACKing them.
If both values are positive, the result of the comparison correctly reflects the relative val-
ues of the $PACKed numbers. If one or both of the values is negative, the meaning of ">"
and "<" is reversed.

IEEE Binary Real L-H Format, Single Precision - (F304)
IEEE Binary Real Single Precision L-H Format is normally used on 80286/80386 based
computers and floating point coprocessors such as the 80287/80387 and the NS32081.
The number is stored in 4 bytes in the following format:

bit 7 bit 0
1st byte F15 F16 F17 F18 F19 F20 F21 F22
2nd byte F7 F8 F9 F10 F11 F12 F13 F14
3rd byte E0 F0 F1 F2 F3 F4 F5 F6
4th byte S E7 E6 E5 E4 E3 E2 E1

$PACK LANGUAGE STATEMENTS

2-513 NPL Statements Guide

$PACK (cont.)

NOTE: This is similar to the (F204) format, except that the order of the bytes is reversed.
Because the order is reversed, string comparisons have no meaningful results.

Examples:
:0010 DIM A$(4)4
:0020 $PACK(F=HEX(F304)) A$(1) FROM 178.125
:0030 $PACK(F=HEX(F304)) A$(2) FROM -178.125
:0040 $PACK(F=HEX(F304)) A$(3) FROM (250020/2048)
:0050 $PACK(F=HEX(F304)) A$(4) FROM (-7/1024)
:0060 LIST DIM * A$(
:RUN

(1) ". 2C" HEX(0020 3243)
(2) ". 2C" HEX(0020 32C3)
(3) ".)tB" HEX(0029 F442)
(4) "..‘;" HEX(0000 E0BB)

IEEE Binary Real H-L Format, Double Precision - (F208)
IEEE Binary Real Double Precision H-L Format is normally used on 68000-series com-
puters and floating point coprocessors such as the MC68881. The number is stored in 8
bytes in the following format:

bit 7 bit 0
1st byte S E10 E9 E8 E7 E6 E5 E4
2nd byte E3 E2 E1 E0 F0 F1 F2 F3
3rd byte F4 F5 F6 F7 F8 F9 F10 F11
4th byte F12 F13 F14 F15 F16 F17 F18 F19
5th byte F20 F21 F22 F23 F24 F25 F26 F27
6th byte F28 F29 F30 F31 F32 F33 F34 F35
7th byte F36 F37 F38 F39 F40 F41 F42 F43
8th byte F44 F45 F46 F47 F48 F49 F50 F51

Examples:
:0010 DIM A$(4)8
:0020 $PACK(F=HEX(F208)) A$(1) FROM 178.125
:0030 $PACK(F=HEX(F208)) A$(2) FROM -178.125
:0040 $PACK(F=HEX(F208)) A$(3) FROM (250020/2048)
:0050 $PACK(F=HEX(F208)) A$(4) FROM (-7/1024)
:0060 LIST DIM * A$(

:RUN

(1) "@fD....." HEX(4066 4400 0000 0000)
(2) "@fD....." HEX(C066 4400 0000 0000)
(3) "@^......" HEX(405E 8520 0000 0000)
(4) "?......." HEX(BF7C 0000 0000 0000)

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-514

$PACK (cont.)

$PACKed strings in this format may be compared directly without $UNPACKing them.
If both values are positive, the result of the comparison correctly reflects the relative val-
ues of the $PACKed numbers. If one or both of the values is negative, the meaning of ">"
and "<" is reversed.

IEEE Binary Real L-H Format, Double Precision - (F308)
IEEE Binary Real Double Precision L-H Format is normally used on 80286/80386 based
computers and floating point coprocessors such as the 80287/80387 and the NS32081.
The number is stored in 4 bytes in the following format:

bit 7 bit 0
1st byte F44 F45 F46 F47 F48 F49 F50 F51
2nd byte F36 F37 F38 F39 F40 F41 F42 F43
3rd byte F28 F29 F30 F31 F32 F33 F34 F35
4th byte F20 F21 F22 F23 F24 F25 F26 F27
5th byte F12 F13 F14 F15 F16 F17 F18 F19
6th byte F4 F5 F6 F7 F8 F9 F10 F11
7th byte E3 E2 E1 E0 F0 F1 F2 F3
8th byte S E10 E9 E8 E7 E6 E5 E4

NOTE: This is similar to the (F208) format, except that the order of the bytes is reversed.
Because the order is reversed, string comparisons have no meaningful results.

Examples:
:0010 DIM A$(4)8
:0020 $PACK(F=HEX(F308)) A$(1) FROM 178.125
:0030 $PACK(F=HEX(F308)) A$(2) FROM -178.125
:0040 $PACK(F=HEX(F308)) A$(3) FROM (250020/2048)
:0050 $PACK(F=HEX(F308)) A$(4) FROM (-7/1024)
:0060 LIST DIM * A$(
 :RUN

(1) ".....Df@" HEX(0000 0000 0044 6640)
(2) ".....Df@" HEX(0000 0000 0044 66C0)
(3) "......^@" HEX(0000 0000 2085 5E40)
(4) ".......?" HEX(0000 0000 0000 7CBF)

$PACK LANGUAGE STATEMENTS

2-515 NPL Statements Guide

$PACK (cont.)

DEC VAX Floating Point Format - (F40x)
The size specification for DEC VAX floating point formats may be either 4 (F_floating)
or 8 (D_floating). D_floating is capable of storing numbers with greater accuracy than
F_floating numbers. Floating point numbers on the DEC VAX are defined as a series of
binary bits in the following formats (the storage of these bits within the bytes of a string
is described later):

F_float: S E7 ... E2 E1 E0 F0 F1 F2 ... F22
bit 31 bit 0

D_float: S E7 ... E2 E1 E0 F0 F1 F2 ... F54
bit 63 bit 0

This represents the value:

(-1)S * 2E-128 * (0 . 1 F0 F1 F2 ... Fj)

Where:

S = sign:
0 if positive,
1 if negative

E = biased exponent = Ei ... E2 E1 E0 (binary)

 0 . 1 F0 F1 F2 ... Fj = mantissa (binary)

NOTE: The "binary point" is immediately to the left of the first "1" bit. The leading "0.1"
is implied and is not stored.

A floating point number with a biased exponent of 0 is a special case. If the sign bit is 0,
it represents the number zero, regardless of what is in the mantissa. If the sign bit is 1, it
is an invalid number, and attempting to $UNPACK it produces an error X75-Illegal Num-
ber.

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-516

$PACK (cont.)

DEC VAX F_floating Format - (F404)
An F_floating number is stored in 4 bytes in the following format:

bit 7 bit 0
1st byte E0 F0 F1 F2 F3 F4 F5 F6
2nd byte S E7 E6 E5 E4 E3 E2 E1
3rd byte F15 F16 F17 F18 F19 F20 F21 F22
4th byte F7 F8 F9 F10 F11 F12 F13 F14

Examples:

:0010 DIM A$(4)4
:0020 $PACK(F=HEX(F404)) A$(1) FROM 178.125
:0030 $PACK(F=HEX(F404)) A$(2) FROM -178.125
:0040 $PACK(F=HEX(F404)) A$(3) FROM (250020/2048)
:0050 $PACK(F=HEX(F404)) A$(4) FROM (-7/1024)
:0060 LIST DIM * A$(
:RUN

(1) "2D. " HEX(3244 0020)
(2) "2D. " HEX(32C4 0020)
(3) "tC.)" HEX(F443 0029)
(4) "‘.<." HEX(E0BC 0000)

DEC VAX D_floating Format - (F408)
An D_floating number is stored in 8 bytes in the following format:

bit 7
1st byte E0 F0 F1 F2 F3 F4 F5 F6
2nd byte S E7 E6 E5 E4 E3 E2 E1
3rd byte F15 F16 F17 F18 F19 F20 F21 F22
4th byte F7 F8 F9 F10 F11 F12 F13 F14
5th byte F31 F32 F33 F34 F35 F36 F37 F38
6th byte F23 F24 F25 F26 F27 F28 F29 F30
7th byte F47 F48 F49 F50 F51 F52 F53 F54
8th byte F39 F40 F41 F42 F43 F44 F45 F46

$PACK LANGUAGE STATEMENTS

2-517 NPL Statements Guide

$PACK (cont.)

Examples:

:0010 DIM A$(4)8
:0020 $PACK(F=HEX(F408)) A$(1) FROM 178.125
:0030 $PACK(F=HEX(F408)) A$(2) FROM -178.125
:0040 $PACK(F=HEX(F408)) A$(3) FROM (250020/2048)
:0050 $PACK(F=HEX(F408)) A$(4) FROM (-7/1024)
:0060 LIST DIM * A$(
:RUN

(1) "2D." HEX(3244 0020 0000 0000)
(2) "2D." HEX(32C4 0020 0000 0000)
(3) "tC.)...." HEX(F443 0029 0000 0000)
(4) "‘<......" HEX(E0BC 0000 0000 0000)

Examples:
0010 Q$=HEX(A004A0105209): $PACK(F=Q$) Q1$() FROM A$,A0$,A
0010 $PACK(F=HEX(5001)) T1$() FROM A2
0010 $PACK(F=HEX(0001A00500085204)) Q1$() FROM A0$,A0

:0010 DIM X$32,Y$32,Y(5),A$3,B$(3)5
:0020 $PACK(F=HEX(52055205520552055205)) X$ FROM -123.45,123.456,99,- 99,34
:0030 LIST DIM *X$
:0040 Y$=ALL(FF)
:0050 $PACK(F=HEX(A00300045205A005A005A005A005)) Y$ FROM
"abc",123.45,"defg","hijk","lmno"
:0050 LIST DIM *Y$

:RUN

DIM X$32
 "..?4]..?4\......" HEX(0000 1234 5D00 0012 345C 0000 0990 0C00)

STR(17)".......@. " HEX(0009 900D 0000 0340 0C20 2020 2020 2020)

DIM Y$32
 "abc ..?4\defg" HEX(6162 63FF FFFF FF00 0012 345C 6465 6667)
STR(17)" hijk lmno " HEX(2068 696A 6B20 6C6D 6E6F 20FF FFFF FFFF)

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-518

$PACK (cont.)

Field Format (F50x)

In this format, x represents the number of bytes in the alpha variable to be used.

The alpha representation of numeric values by this format is identical to that produced by
MAT MOVE. Refer to the MAT MOVE discussion for details. The advantage of this for-
mat is that it produces alphanumeric values that can be sorted even if the numeric values
contain both positive and negative values.

For example:

10 DIM A$8
20 $PACK(F=HEX(F508)) A$ FROM -1.234
30 $UNPACK(F=HEX(F508)) A$ to A

The size of the alpha variable used to store the result affects the precision of the opera-
tion. A size of eight bytes ensures full precision (13 digits). For smaller values, the preci-
sion can be calculated by the formula D= n*2-3 where n is the number of bytes in the
alpha variable and D is the number of digits of precision.

The Internal Form
The Internal form of $PACK uses the same format used by the DATASAVE DC state-
ment when saving a record to disk. The $PACK operation is terminated when all values
in the list have been sequentially packed. Refer to Section 7.3.7 of the Programmer’s
Guide for further details on the internal logical disk record format.

0010 $PACK A$() FROM B$,C(),D$(3),E
 0010 $PACK X$ FROM Z(2),Z(3),Z$,Z(4)

 :0010 DIM A$(1)20
 :0020 $PACK A$() FROM 12.345, "ABCD"
 :0030 LIST DIM *A$()
 :RUN

DIM A$(1)20
(1) ".....#E....ABCD" HEX(8001 0801 0123 4500 0000 0084 4142 4344)
STR(17)". " HEX(FD20 2020)

NOTE: Refer to Chapter 4, Library Functions, for further information about $PACK.

Compatibility Issues:
The unsigned binary (Bd0x) and signed binary (Cd0x) field format specifications are sup-
ported only on NPL Revision 2.1 or greater and are not supported on the Wang 2200.

The floating point (Ft0x) field format specification is supported only on NPL Revision
3.0 or greater and is not supported on the Wang 2200.

$PACK LANGUAGE STATEMENTS

2-519 NPL Statements Guide

$PACK (cont.)

The extended alpha field format (Axxx) is supported in Release IV of NPL or greater.
Previous releases of NPL support an alpha format of (A0xx).

Floating point format F50x is supported only by NPL revision 3.01.11 or later.

Little-endian formats (Dxxx and Cxxx) are supported only by NPL Revision 3.01.13 or
later.

References:
DATA SAVE DC
FIELD
Numeric FIELD Assignment
Numeric FIELD Expression
String FIELD Assignment
String FIELD Expression
MAT MOVE
RECORD
$UNPACK

LANGUAGE STATEMENTS $PACK

NPL Statements Guide 2-520

#PART Function

Discussion:
The #PART function returns the partition number of the current user partition. #PART is
typically used to distinguish between users in a multi-user environment. This is valid
wherever a numeric-expression is legal.

Examples:
0010 A=B+#PART
0010 C1(1)=#PART

Compatibility Issues:
The generation of #PART is hardware-specific. Refer to appropriate NPL Supplement for
details on the hardware system.

References:

General Form:

#PART

#PART Function LANGUAGE STATEMENTS

2-521 NPL Statements Guide

#PI Function

Discussion:
The #PI function returns the mathematical constant "pi", which has a value
3.1415926535898. This is valid wherever a numeric-expression is legal.

Examples:
0010 M5 = #PI*R4*2
0010 A = 90/#PI

Compatibility Issues:
The value of #PI on the Wang 2200 is 3.14159265359.

The value of #PI may be modified by byte 34 of the $OPTIONS system variable. Refer
to $OPTIONS for details.

References:
$OPTIONS

General Form:

#PI

LANGUAGE STATEMENTS #PI Function

NPL Statements Guide 2-522

POS Function

Discussion:
The POS function returns the position of the first occurrence of a character value in the
search-value that satisfies the specified relationship. This is valid wherever a numeric ex-
pression is legal.

A search can be made for the first character equal to, less than, greater than, less than or
equal to, greater than or equal to, or not equal to a character. The character used is the
first character of the character-value, or HEX(hh) if character-value is expressed as two
hex-digits.

The "-" parameter is used to return the position of the last occurrence of a character-value
in the search-value that satisfies the specified relationship. For either search direction, if a
character that satisfies the specified relationship cannot be found, a value of zero is re-
turned.

The POS function is a numeric function (returns a numeric value) which can be used
wherever a numeric-expression is legal.

General Form:

POS ([-] search-value rel-op character-value)

Where:

search-value = {alpha-variable}
{literal-string}

character-value = {alpha-variable}
{literal-string}
{hh }

rel-op = relational operator { <,=,>,<=,>=,<> }

h = hexadecimal digit (0-9 or A-F)

POS Function LANGUAGE STATEMENTS

2-523 NPL Statements Guide

POS Function (cont.)

Examples:
0010 X = POS(X$<>"A")
0010 W = POS(STR(A$,3)>Q$)
0010 Q=POS("12340"=C$)
0010 IF POS("ABCDEF"=W$)=0 THEN 1000
0010 R = POS(STR(W$(4),15,4)=STR(P9$,,4))
0010 A = POS(’employee$="Smith")
0010 A = POS("ABCDE" = ’whatchar$)
0010 A = POS (employee.record$.Name$ = "Green")
:0010 A$="Niakwa NPL"
 : B$="a"
 : PRINT POS (A$=B$)
 : PRINT POS (-A$=B$)
 : PRINT POS (STR(A$,8)<"A")
 : PRINT POS ("ABCDEabcde">=B$)

:RUN
 3
 9
 6
 6

Compatibility Issues:

References:

LANGUAGE STATEMENTS POS Function

NPL Statements Guide 2-524

PRINT

Discussion:
The PRINT statement is used to print the specified item(s) to the currently selected
PRINT device.

During program execution, PRINT output is sent to the current default PRINT address in
the Internal Device Table. The line width value assigned to the default PRINT address is
used. From Immediate Mode, PRINT output is sent to the screen (as a convenience for de-
bugging). Line width for output from Immediate Mode PRINT commands is always 80
columns.

The comma and semicolon delimiters may be used to control print output. A comma
forces a tab to the next "column", where columns are started every 16 characters on the
output line. A semicolon suppresses tabbing and places consecutive items immediately af-
ter one another. At the end of a print statement, either delimiter suppresses the start of a
new line; therefore, PRINT output from subsequent statements would follow that of the
current PRINT statement on the same output line.

Numeric values are always printed or displayed in one of two ways:

1. Normal Numeric Format

2. Scientific Notation Format

General Form:

PRINT [item] [{,} [item]]...
 {;}

Where:

item = {AT Function }
{BOX Function }
{HEXOF Function }
{TAB Function }
{numeric-expression}
{alpha-variable }
{literal-string }

PRINT LANGUAGE STATEMENTS

2-525 NPL Statements Guide

PRINT (cont.)

Normal Numeric Format is used for numeric values whose absolute value is greater
than .1 and is 1 to 15 digits in length (plus the decimal point), or which can be repre-
sented by a non-exponential format with 15 digits or less (e.g., .001). Numeric values
printed in normal numeric format occupy a maximum of 18 character spaces:

1 character a leading space for either a minus sign or blank
up to 15 characters 15 digits
up to 1 character a decimal point
1 character the trailing space
up to 18 characters maximum

Numeric values printed in normal numeric format occupy a minimum of 3 character
spaces (the leading space, the digit, and the trailing blank).

When a numeric value has an absolute value less than .1, and cannot be represented by a
non-exponential format with 15 or fewer digits, Scientific notation format is used.

A numeric value printed in scientific notation format occupies exactly 16 character
spaces: a leading space for either a minus sign for negative values or blank for positive
values, one integer digit, a decimal point, 8 decimal digits, the letter "E", the sign of the
exponent, a two-digit exponent, and a trailing blank.

NOTE: Only 9 significant digits can be displayed when printing in scientific notation format
(e.g., 1.23456789E+12).

The rate of PRINT output when printing to the screen can be reduced by using the SE-
LECT P statement. SELECT P allows the user to insert a pause while printing to the
screen in the range of 1/6 second to 1 1/2 seconds (SELECT P1 through SELECT P9).

Generation of Carriage Returns:

A carriage return (HEX(0D)) is automatically inserted into PRINT output under the fol-
lowing circumstances:

1. Following the last item in the PRINT statement, unless a trailing comma or semicolon
is present.

LANGUAGE STATEMENTS PRINT

NPL Statements Guide 2-526

PRINT (cont.)

2. Before printing a numeric-expression, literal, or alpha-variable, if the length causes
the value to "wrap" onto a new line, based on the currently defined line width.

Effect of Device Type:
The device type (first character of device address) affects print output as follows:

• Device Type "0" - A linefeed (HEX(0A)) is automatically output following each
carriage return (HEX(0D)). This device type is normally used in PRINTing to the
screen (/005).

• Device Type "2" - No extra character is inserted following each carriage return.
This device type is normally used for printers (/215 for example).

• Device Type "4" - A linefeed (HEX(0A)) is automatically output following each
carriage return (HEX(0D)). However, the automatic generation of a linefeed is
suppressed at the end of PRINT statements.

• Device Type "7" - No character is appended following a carriage return.

NOTE: The RunTime Package normally adds a line feed to each carriage return (HEX(0D))
sent to a printer type device selected as 2xx. This ensures that /2xx output is single
spaced. Printer conventions on a Wang 2200 system assume that the printer does its
own line feed. To overstrike a line, use a 2xx device address in conjunction with the
ALF=N option in the $DEVICE specification.

The PRINT functions AT, BOX, TAB and HEXOF are discussed in separate sections.

Examples:
0010 PRINT STR(Q1$(),40,10);
0010 PRINT A$,B$,C$
0010 PRINT "Niakwa NPL wants you!!!"
0010 PRINT A+B+C/D
0010 PRINT HEX(0E);TAB(10);"The Amount is ";A
0010 PRINT A,B,C$,D,
0010 PRINT "Mr. ";A$;" you have just won $1,000,000 dollars!!"

:0010 A=10
 : B=20
 : C$="Niakwa"
:0020 PRINT A,B,C$
 : PRINT A;B;C$
:RUN
10 20 Niakwa
10 20 Niakwa

PRINT LANGUAGE STATEMENTS

2-527 NPL Statements Guide

PRINT (cont.)

Compatibility Issues:
The effect of the PRINT statement may vary on different hardware systems. On the
Wang 2200, the maximum default print size is 16 positions since numbers have, at most,
13-digit precision. Refer to the appropriate NPL Supplement for details.

References:
PRINT AT function
PRINT BOX function
PRINT HEXOF function
PRINT TAB function
SELECT function
Internal Device Table - Section 7.2.3 of the Programmer’s Guide

LANGUAGE STATEMENTS PRINT

NPL Statements Guide 2-528

PRINT AT Function

Discussion:
The PRINT AT function is used to position the cursor at the specified row and column on
the screen, optionally erasing all or part of the remaining screen. The destination position
is specified by giving the row and column of the desired location. The rows and columns
are numbered starting at 0. All terminals supported by NPL support at least rows 0-23
and columns 0-131. Some terminals may support additional rows or columns. Refer to
Appendix D of the Programmer’s Guide for information on supported terminals.

The optional length parameter specifies the number of characters to be erased on the
screen starting from the destination position of the cursor. The cursor is first positioned
by the first two expressions, the number of characters specified is then blanked out, and
the cursor is repositioned to the start of the blanked-out area.

If the length parameter is omitted but the second comma is present, the remainder of the
screen is erased beginning at the destination position of the cursor.

The size of the screen should be correctly set by the SELECT LINE parameter and the
width as the current SELECT PRINT, since these are used by the system when erasing
the "rest of screen".

Multiple PRINT functions, such as PRINT AT, BOX, TAB and HEXOF may be com-
bined into one PRINT statement, separated by semicolons.

General Form

PRINT AT(row,column[,[length]])

Where:

row = a numeric-expression specifying screen row.

column = a numeric-expression specifying screen column.

length = a numeric-expression specifying number of characters to
be erased.

PRINT AT Function LANGUAGE STATEMENTS

2-529 NPL Statements Guide

PRINT AT Function (cont.)

Examples:
0010 PRINT AT(10,20,30);A$
0010 PRINT C$;AT(5,A);
0010 PRINT AT(3,0,80);
0010 PRINT B$;AT(A,B,C);A$
0010 PRINT AT(8,0,);A$;B$;C$
0010 PRINT AT(12,22);A$

Compatibility Issues:

References:
PRINT
PRINT BOX function
PRINT HEXOF function
PRINT TAB function

LANGUAGE STATEMENTS PRINT AT Function

NPL Statements Guide 2-530

PRINT BOX Function

Discussion:
The PRINT BOX function is used to draw or erase a box of the specified height and
width on a screen. The PRINT BOX function uses the current cursor position as the up-
per-left corner of the box.

The box is drawn or erased depending upon the sign of the expressions. If both expres-
sions are positive, the box is drawn. If both expressions are negative, the box is erased. If
one expression is positive and the other expression is negative, a RunTime error is gener-
ated (P34). Specifying a height of 0 causes a horizontal line to be drawn (or erased de-
pending on the specified width), while specifying a width of 0 causes a vertical line to be
drawn (or erased depending on the sign of specified height).

Boxes which are too large to fit on the screen are suppressed from printing.

If printing a box would cause the screen to scroll, the screen is scrolled enough to print
the box, assuming "true" box graphics are available.

There are two kinds of boxes which may be displayed: "true" boxes and "character"
boxes.

General Form:

PRINT BOX(height,width)

Where:

height = numeric-expression which specifies the height of the box
(in lines).

 width = numeric-expression which specifies the width of the box
(in character positions).

PRINT BOX Function LANGUAGE STATEMENTS

2-531 NPL Statements Guide

PRINT BOX Function (cont.)

"True" boxes require a monitor which can support dual text and graphics mode. "Charac-
ter" boxes are printed when the dual text and graphics mode is not available, and prints
boxes with a selectable replacement character. The primary difference between "true"
boxes and "character" boxes is that horizontal lines print between character rows when
"true" boxes are used. However, when "character" boxes are used, horizontal lines must
occupy a full character row, which means that a blank row above and below the text to be
boxed must be allocated, or screen scrolling may occur when the character box is printed.
Refer to the $BOXTABLE system variable for details on selecting the type of boxes to
print, and the replacement character for the boxes.

Multiple PRINT functions, such as PRINT AT, BOX, TAB and HEXOF may be com-
bined into one PRINT statement, separated by semicolons.

Examples:
0010 PRINT AT(5,10);BOX(5,5)
0010 PRINT BOX(-4,-8)
0010 PRINT BOX(23,0)
0010 PRINT BOX(0,12)

Compatibility Issues:
The implementation of box graphics is highly operating system-dependent. Refer to the
NPL Supplement(s) for details on the availability of "true" boxes and character set used
for "character" boxes.

In NPL, boxes which would cause the screen to scroll up are suppressed from printing.
Prior to Revision 2.00, boxes which would cause the screen to scroll were suppressed.
Should a PRINT BOX statement which would cause the screen to scroll be executed, it is
treated as no operation. The Wang 2200 would actually scroll the screen to print the
specified box.

References:
$BOXTABLE
PRINT
PRINT AT function
PRINT HEXOF function
PRINT TAB function

LANGUAGE STATEMENTS PRINT BOX Function

NPL Statements Guide 2-532

PRINT HEXOF Function

Discussion:
The PRINT HEXOF function is used to print the hexadecimal value of an alpha-variable
or literal-string. All characters of an alpha-variable are displayed, including trailing
spaces.

Multiple PRINT functions, such as PRINT AT, BOX, TAB and HEXOF may be com-
bined into one PRINT statement, separated by semicolons.

Examples:
0010 PRINT HEXOF("?")
0010 PRINT HEXOF(STR(Q1$(),20,40))
0010 PRINT "disk device",HEXOF(D$)
0010 PRINT HEXOF(A$())
0010 PRINT HEXOF(’anyString$(1))
0010 PRINT HEXOF(menu$.option$)
:0010 X$="Niakwa"
:0020 PRINT X$
:0030 PRINT HEXOF(X$)
:RUN
Niakwa
4E69616B776120202020202020202020

Compatibility Issues:

References:
PRINT
PRINT AT function
PRINT BOX function
PRINT TAB function
HEXPRINT

General Form:

PRINT HEXOF ({literal-string})
 {alpha-variable}

PRINT HEXOF Function LANGUAGE STATEMENTS

2-533 NPL Statements Guide

PRINT SCREEN

Discussion:
PRINT SCREEN is used to print the specified portion of the screen from the specified
variable. The screen is printed row by row starting at the specified x,y coordinates for the
specified number of rows and columns.

Information in the specified variable is assumed to be in a format compatible with that
produced by INPUT SCREEN (refer to INPUT SCREEN for a detailed description of
this format). PRINT SCREEN is automatically set current video parameters to those
stored in the header information fields of the specified variable. In addition, AT and BOX
values stored in the header information field are automatically be used unless explicit AT
or BOX values are specified.

NOTE: Care must be taken if explicit AT or BOX values are specified. If AT and BOX val-
ues specified would cause the displayed area to exceed the screen size (either rows or
columns), a P34 error (Illegal Value) results.

General Form:

PRINT SCREEN alpha-variable [,AT (x,y)][,BOX (r,c)]

Where:

x = a numeric-expression specifying the starting row.

y = a numeric-expression specifying the starting column.

r = a numeric-expression specifying the number of rows to
print. For any value r, r+1 rows are input.

c = a numeric-expression specifying the number of columns per row
to print. For any value c, c+1 columns are printed for each
row printed.

LANGUAGE STATEMENTS PRINT SCREEN

NPL Statements Guide 2-534

PRINT SCREEN (cont.)

PRINT SCREEN displays only complete sections (refer to INPUT SCREEN for a de-
tailed description of the size and contents of all sections). If the specified variable is not
large enough to contain all sections, partial sections are not used. If the color section is
not used, background/foreground colors are not those used at the time of the most recent
terminal reset. If the attributes/box graphics section is not used, the "normal" video mode
is used and no boxes are displayed. If the character section is not used, all spaces are dis-
played.

NOTE: Calculation of section sizes is based on BOX values specified to PRINT SCREEN.
Therefore, if explicit BOX values are specified and these values do not match the
BOX values used when the variable containing the screen image was generated, un-
predictable results occur.

PRINT SCREEN always clears the specified portion of the screen before displaying any
new contents.

PRINT SCREEN is primarily intended to be used in conjunction with INPUT SCREEN
to temporarily save and then redisplay a portion of the screen. This capability allows new
"pop-up" type features to be added to existing applications.

For example, the following routine could be added to an existing program:

0010 DIM A$80+(10+1)*(20+1)*3,B$1
 : REM Dimension A$ large enough to hold a 10 by 20 area.
0020 INPUT SCREEN A$, AT(0,50),BOX(10,20)
 : REM Save existing screen portion
0030 PRINT SCREEN STR(A$,,80)
 : REM Blank out the area
0040 PRINT AT(0,50);BOX(10,20);AT(1,51);"POP-UP Area"
0050 REM Perform other work in the "pop-up" area
0090 KEYIN B$
 : REM Display "pop-up" area until a key is pressed
0100 PRINT SCREEN A$
 : REM Restore original area

In the example above, the following points are worth noting:

1. Variable A$ is dimensioned to exactly the size required to store all sections for the
BOX values to be used (10 by 20).

2. The use of PRINT SCREEN to clear an area of the screen is shown on line 30.

PRINT SCREEN LANGUAGE STATEMENTS

2-535 NPL Statements Guide

PRINT SCREEN (cont.)

NOTE: The area cleared corresponds exactly to the AT and BOX values specified for IN-
PUT SCREEN at line 20. This is because the values stored in the header fields of A$
(as established by INPUT SCREEN at line 20) are used to determine the area to
clear.

3. The PRINT BOX statement at line 40 is used to draw a box around the "pop-up" area
of the screen.

NOTE: In cases where the size and location of the pop-up area are not known, this informa-
tion could be extracted from the header fields of the variable used in INPUT
SCREEN at line 20.

Also, the values for PRINT AT and BOX on line 40 correspond exactly to the AT
and BOX values used for INPUT SCREEN.

4. While displaying information in the "pop-up" area, the application may freely use
video attributes and colors. Previously used attributes and colors are automatically re-
generated by PRINT SCREEN at line 100 when the original screen area is restored.

Another typical use of INPUT SCREEN/PRINT SCREEN is to preserve the screen con-
tents for redisplay after $SHELL.

For example:

:0010 DIM A$80+25*80*3 :REM La rge enough for 24*80 screen, all 3 sections
:0020 DIM X$50
:0030 PRINT AT(12,0,80);
:0040 LINPUT "Enter command "-X$
:0050 INPUT SCREEN A$
:0060 $SHELL X$
:0070 PRINT SCREEN A$
:0080 GOTO 30
:PRINT HEX(03)
:LIST
:RUN

PRINT SCREEN may be used to display screen images that have been created by INPUT
SCREEN and stored on disk. However, some special considerations apply to this tech-
nique:

1. If different screen translation is in effect when PRINT SCREEN is executed, the char-
acters displayed by PRINT SCREEN may be different from the characters displayed
when INPUT SCREEN was executed.

LANGUAGE STATEMENTS PRINT SCREEN

NPL Statements Guide 2-536

PRINT SCREEN (cont.)

2. If PRINT SCREEN is executed on a different monitor type from the one on which IN-
PUT SCREEN was executed, the resulting screen display may be different due to ter-
minal differences. Refer to Appendex D of the Programmer’s Guide for details on
terminal characteristics.

3. Future releases of the non-interpretive RunTime do not necessarily accept older level
versions of INPUT SCREEN as data to PRINT SCREEN. Therefore, the application
must check to make sure that the proper revision of the RunTime is in use when at-
tempting to display stored data.

Because of the above restrictions, use of INPUT SCREEN/PRINT SCREEN as a quick
method for generating complex screens is not a good technique.

HINT: It is recommended that INPUT SCREEN/PRINT SCREEN be used to temporarily store
and then redisplay a portion of the screen, allowing that portion of the screen to be tempo-
rarily used for some other purpose, as illustrated in the example above.

Examples:
0010 PRINT SCREEN A$
0010 PRINT SCREEN A$, BOX(5,10)
0010 PRINT SCREEN A$, AT(3,20), BOX(5,10)
0010 PRINT SCREEN STR(A$,,80)
0010 PRINT SCREEN STR(A$,24,236), AT(B-A+1,C-D+1), BOX(3,12)

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

PRINT SCREEN is not supported in the Wang 2200.

References:
INPUT SCREEN
Screen Handling - Chapter 7 of the Programmer’s Guide
Terminal Characteristics - Appendix D of the Programmer’s Guide

PRINT SCREEN LANGUAGE STATEMENTS

2-537 NPL Statements Guide

PRINT TAB Function

Discussion:
The PRINT TAB function positions the cursor or column counter to the specified column
position. If the specified column is larger than the selected output line width, the counter
is positioned to the first column of the next line. If the specified position is less than the
current output tabs, the TAB() is ignored.

On the screen, blanks are displayed up to the desired tab position. Consequently, interven-
ing values displayed on the line are erased.

NOTE: The system maintains an internal TAB() counter for printed output. This counter is
cleared to 0 by each SELECT PRINT statement, and incremented for each charac-
ter printed in the range HEX(10) to HEX(FF). It is cleared to 0 when a carriage re-
turn (HEX(0D)) is printed. Sending control sequences to a printer with codes
outside the range HEX(00-0F) may cause the TAB counter to disagree with the ac-
tual print position.

Multiple PRINT functions, such as PRINT AT, BOX, TAB and HEXOF may be com-
bined into one PRINT statement, separated by semicolons.

Examples:
0010 PRINT TAB(30);
0010 PRINT TAB(X+Y)
0010 PRINT X;TAB(20);Y
0010 PRINT X$;TAB(20);HEXOF(Y$)

Compatibility Issues:

References:
PRINT
PRINT AT function
PRINT BOX function
PRINT HEXOF function

General Form:

PRINT TAB (expression)

Where:

0 <= expression <= 255

LANGUAGE STATEMENTS PRINT TAB Function

NPL Statements Guide 2-538

PRINT TO

Discussion:
The PRINT TO statement formats a list of variables according to the referenced function,
using the same logic as the PRINT statement. However, instead of printing the result, this
statement stores the result in an alpha-variable for later use.

The first two bytes of the alpha-variable are used to store a count of characters (in binary)
placed in the alpha-variable by the PRINT TO statement. Whenever the PRINT TO state-
ment is executed, this count is retrieved to determine the starting location within the al-
pha-variable to begin storing output. The count is then updated to reflect the new count of
characters in the alpha-variable. This allows multiple PRINT TO operations to place suc-
cessive buffered output in the correct location. PRINT TO statements may be intermixed
with PRINTUSING TO statements referencing the same receiver-variable.

The count should be initialized to HEX(0000) before using an alpha-variable for the first
time or before reusing an alpha-variable.

If the total number of characters to be stored in the alpha-variable would exceed the
length of the alpha-variable, output is truncated and the count is set to the length of the al-
pha-variable.

If the buffer count value exceeds the actual size of the specified buffer variable at the
start of the statement, a P52 error (Variable or Value Too Short) is generated.

General Form:

PRINT TO alpha-variable [{,} [item]]...
 {;}

Where:

item = {AT Function }
{BOX Function }
{HEXOF Function }
{TAB Function }
{numeric-expression}
{alpha-variable }
{literal-string }

PRINT TO LANGUAGE STATEMENTS

2-539 NPL Statements Guide

PRINT TO (cont.)

If an error occurs when evaluating arguments in the PRINT TO statement, the count
value in the first two bytes of the alpha-variable may not include previous arguments in
the same statement.

NOTE: No character is inserted following carriage returns, and that carriage returns are
not automatically generated when line width is exceeded.

PRINT TO would typically be used to capture output which otherwise would have been
printed to a print class device other than the screen.

HINT: The recommended technique for capturing output to the screen is to PRINT the output to
the screen in a normal fashion and then use INPUT SCREEN to read the screen contents
into a variable.

NOTE: Use of AT and BOX functions (which are intended for screen output) is supported
for syntactical compatibility with the standard PRINT statement. However, use of
these functions in PRINT TO produces unreliable results.

Use of the TAB function is implemented as follows:

• Start of line is determined by scanning backward through the used portion of the
buffer for a HEX(00).

• From that point, the buffer is scanned forward and the current tab position is de-
termined by counting all characters greater than or equal to HEX(10).

• If the specified TAB position is greater than the current TAB counter as calcu-
lated above, sufficient spaces are appended to the end of the buffer to set the
TAB position as specified.

If the specified TAB position is less than the current TAB position, no spaces are gener-
ated and the current location is unchanged; do not backspace in the buffer by use of TAB.

Use of a comma as a delimiter between items tabs to the next 16-character zone, based on
the current TAB position. Use of the semicolon as a delimiter produces no actual output.

LANGUAGE STATEMENTS PRINT TO

NPL Statements Guide 2-540

PRINT TO (cont.)

NOTE: The slight difference produced by printing HEX(0D) as a hex literal versus printing
the HEX(0D) in a variable is not preserved by PRINT TO.

For example:
0010 SELECT PRINT 005(80)
0020 DIM L$256
0030 A$=HEX(0D)
0040 PRINT "X";HEX(0D);"Y"
0050 PRINT "A";A$;"B"
0060 L$=BIN(0,2)
0070 PRINT TO L$;"X;HEX(0D);"Y"
0080 PRINT TO L$;"A";A$;"B"
0090 PRINT STR(L$,3,VAL(L$,2));

PRINT overstrikes X with Y. PRINT TO does not.

Examples:
0010 PRINT TO Q1$();A$;TAB(10);B$;" ";D
0010 PRINT TO Q1$();"ABCDEF",X+Y-F
0010 PRINT TO X$;1,1*J
0010 PRINT TO A$;B$,1,2,3,4;

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

PRINT TO is not supported on the Wang 2200.

References:
PRINT
PRINT TAB
PRINTUSING TO

PRINT TO LANGUAGE STATEMENTS

2-541 NPL Statements Guide

$PRINTER

Discussion:
This statement allows a NPL application program to examine or modify the current
printer translation table. Form 1 allows the $PRINTER system variable to be modified.
Form 2 allows the $PRINTER system variable to be examined.

The $PRINTER system variable contains the 256-byte printer translation table currently
in effect. The printer translation table contains the character equivalents to be sent to the
print device in place of the character received from the NPL program. Byte 1 contains the
replacement character for HEX(00), byte 256 contains the replacement character for
HEX(FF), etc.

NOTE: Printer translation is only used for print class devices where the XLA=Y clause is
specified in the $DEVICE statement for that device. Refer to Section 7.8.6 for de-
tails.

For example:
10 DIM X$(256)1
20 X$()=$PRINTER : REM PLACE CURRENT TABLE IN X$
30 PRINT STR(X$(),66,2): REM RESULTS WOULD BE "AB"
40 STR(X$(),66,1)="B" : REM REPLACE CHARACTER IN POSITION 66
 (VAL(HEX(41))+1) WITH THE CHARACTER "B"
50 $PRINTER=X$() : REM MODIFY PRINTER TRANSLATION TABLE

The effect of this character is that whenever the character "A" is sent to the printer, the
character "B" appears.

General Form:

Form 1:

$PRINTER = alpha-expression

Form 2:

alpha-receiver = $PRINTER

Where:

alpha-expression = length of 256 characters.

LANGUAGE STATEMENTS $PRINTER

NPL Statements Guide 2-542

$PRINTER (cont.)

Changes made to the printer translation table using the $PRINTER statement go into ef-
fect immediately and remain in effect, unless further modifications are made or until the
end of the current RunTime session. Changes are not retained from one session to the
next. To make more permanent modifications to the printer translation table, please use
the Printer Translation Table Editor Utility. However, when different printer translation
values are required for different printers on the same system, use of the printer translation
table may not be adequate. In these cases, the user of $PRINTER is required to set differ-
ent values by the program when different printers are in use. Refer to Section 13.20 of the
Programmer’s Guide for further details.

NOTE: The values of characters in the $PRINTER system variable refer to the character
set of the native operating system. Available character sets vary from one machine
to another. Refer to the appropriate NPL Supplement for details.

Refer to Section 7.7.7 of the Programmer’s Guide for further details on printer translation.

Examples:

Compatibility Issues:
$PRINTER statement is not a valid instruction in Wang 2200 Basic-2.

This statement is supported only with Release 2.01 or greater.

Default values for $PRINTER vary from one machine to another. Refer to the appropri-
ate NPL Supplement for hardware-specific details.

References:
$DEVICE
Printer Translation Table Editor Utility - Section 13.20 of the Programmer’s Guide
Printer Handling - Section 7.7 of the Programmer’s Guide

$PRINTER LANGUAGE STATEMENTS

2-543 NPL Statements Guide

PRINTUSING

Discussion:
The PRINTUSING statement is used to print output data according to a specially format-
ted output image to the currently selected PRINT device.

The image-spec defines the output format for items in the PRINTUSING statement. The
image-spec is specified in one of three ways: as a literal-string, as an alpha-variable
(which can be used by more than one PRINTUSING statement), or as a separate image-
spec statement referenced by a line number (which can also be used by more than one
PRINTUSING statement).

Individual print items are printed in the format specified by the corresponding image in
the image-spec. That is, item #1 is formatted by the first image, item #2 by the second im-
age, and so on. If more items are supplied than there are image locations, the image loca-
tions are reused from the beginning of the image-spec.

General Form:

PRINTUSING image-spec [{;}item]...[;]
 {,}

Where:

item = {numeric-expression}
{alpha-variable }
{literal-string }

image-spec = {literal-string specifying image-spec}
{alpha-variable containing image-spec}
{line-number of image-spec statement }

which can consist of one or more images separated by character strings where:

image = {[+] [$] [#[,]]...[.][#]...[^^^^] [+]}
 [-]
 [-]
 [++]
 [--]

LANGUAGE STATEMENTS PRINTUSING

NPL Statements Guide 2-544

PRINTUSING (cont.)

The number of characters printed for an item always equals the number of characters in
the image for that item.

Any character strings contained in the image are printed relative to the position of the im-
ages. That is, a character string preceding image1 prints before item #1, and a character
string following item #1 prints after item #1. Character strings are printed only up to the
end of the string following the last item printed. Strings following unused images are not
printed.

The image controls the formatted output of numeric data as follows:

1. When using Integer format (###), if the value to be printed is shorter than the speci-
fied format, the output is padded with leading spaces. If the value is larger than the
specified image, the image is printed in place of the value.

2. When using Fixed-Point format (###.##), both the integer and decimal part of the
value are printed according to the image. If the integer value is shorter than the speci-
fied image, the output is padded with leading spaces. If the integer value is larger than
the specified image, the image is printed in place of the value. The decimal part is
either padded with trailing zeroes or truncated to fit the image.

3. When using Exponential format (###.#^^^^), the exponent is printed in the form
"E+ee" where "ee" are the exponential digits. If the value is larger than the specified
image, the image is printed in place of the value.

4. If the image begins or ends with a "+" or "-" sign, the proper sign of the value (posi-
tive or negative) is printed at the beginning or end of the output. A "+" prints a "+" or
"-" and a "-" prints a "(blank)" or "-". If the image uses a leading sign, the sign is
printed before the first digit.

5. If the image ends with a "++" or "--" sign, a "CR" or "DB", respectively, is placed at
the end of the output for any negative values. Positive values end with two spaces.

6. If the image contains a dollar sign ($), the dollar sign is printed immediately preced-
ing the first digit before the decimal, following the sign of the value (if a sign designa-
tor is specified at the beginning of the image).

PRINTUSING LANGUAGE STATEMENTS

2-545 NPL Statements Guide

PRINTUSING (cont.)

NOTE: The dollar sign ($) character in an image may be replaced with another character
by setting byte 4 of the $OPTIONS system variable to the hex value of the desired
character. Refer to the $OPTIONS statement for details.

7. If the image contains a comma (,) or decimal point (.), the character is printed in the
corresponding output position if required to separate preceding and following digits.

NOTE: The comma (,) or decimal point (.) characters in an image may be replaced with an-
other character by setting byte 5 or 6, respectively, of the $OPTIONS system vari-
able to the hex value of the desired character. Refer to the $OPTIONS statement for
details.

The image controls the formatted output of alpha-numeric data as follows:

1. Each image character is replaced by one item character from the alpha value. The al-
pha-item is left-justified in the image, and either extended with trailing blanks or trun-
cated to fit the image. If the alpha-item is too long, it is right-truncated.

Example:
:0010 X$="##.#####^^^^"
 : Y$="############"
:0020 PRINTUSING X$,"Niakwa NPL"
 : PRINTUSING Y$,"Niakwa NPL"
:RUN
Niakwa NPL
Niakwa NPL

Suppression of Carriage Return

Normally when using a single-format specification to print more than one value, a car-
riage return is performed after each value is printed. The comma and semicolon delimit-
ers may be used to control print output. A comma following an item causes a carriage
return to be performed if the value uses the last image in the image-spec. A semicolon
suppresses this carriage return and places consecutive items immediately after one an-
other. At the end of the statement, a semicolon suppresses the start of a new line, there-
fore, PRINT or PRINTUSING output from subsequent statements would follow that of
the current statement on the same output line.

LANGUAGE STATEMENTS PRINTUSING

NPL Statements Guide 2-546

PRINTUSING (cont.)

For example:
:0010 X$="#####"
:0020 PRINTUSING X$, 11; 12; 13
:RUN
 11 12 13

Examples:
0010 PRINTUSING "my name is #####";A$
0010 PRINTUSING X$,1234
0010 PRINTUSING 50,A,B,C,D
0050% $###,###.## ###### ###### ###,###.##

:0010 %The balance in your account is $##,###.##
:0020 T=1234.56: R=54.39
:0030 PRINTUSING 10,T+R
:RUN
The balance in your account is $ 1,288.95

:0010 A$="TOTAL QUANTITY"
:0020 B$="PRODUCED"
:0030 C=91
:0040%THE ############## OF ITEMS ######## = ####
:0050 PRINTUSING 40,A$,B$,C
:RUN
 THE TOTAL QUANTITY OF ITEMS PRODUCED = 91

:0010 A$="PAY TO"
:0020 B$="BEARER"
:0030%##### ###### $#,###.##
:0040% FROM ##########
:0050 PRINTUSING 30,A$,B$,500;
:0060 PRINTUSING 40,"JOHN SMITH"
:RUN
PAY TO BEARER $500.00 FROM JOHN SMITH

Compatibility Issues:
NPL allows the characters output from an image specification for the dollar sign ($),
comma (,), and the decimal point (.) to be replaced by another character specified in the
$OPTIONS system variable. These characters cannot be modified in Wang 2200 Basic-2.

References:
IMAGE
$OPTION

PRINTUSING LANGUAGE STATEMENTS

2-547 NPL Statements Guide

PRINTUSING TO

Discussion:
The PRINTUSING TO statement formats a list of variables according to the referenced
image-spec using the same logic as the PRINTUSING statement. However, instead of
printing the result, it is stored in an alpha-variable for later use.

The first two bytes of the alpha-variable are used to store a count of characters (in binary)
placed in the alpha-variable by the PRINTUSING TO statement. Whenever the
PRINTUSING TO statement is executed, this count is retrieved to determine the starting
location within the alpha-variable to begin storing output. The count is then updated to re-
flect the new count of characters in the alpha-variable. This allows multiple
PRINTUSING TO operations to place successive buffered output in the correct location.
PRINTUSING TO statements may be intermixed with PRINT TO statements referencing
the same receiver-variable.

The count should be initialized to HEX(0000) before using an alpha-variable for the first
time or before reusing an alpha-variable.

General Form:

PRINTUSING TO alpha-variable,image-spec [{;}item]...[;]
 {,}

Where:

item = {numeric-expression}
{alpha-variable }
{literal-string }

image-spec = {literal-string specifying image-spec}
{alpha-variable containing image-spec}
{line-number of image statement }

which can consist of one or more images separated by character strings where:

image = {[+] [$] [#[,]]...[.][#]...[^^^^] [+]}
 [-] [-]
 [++]
 [--]

LANGUAGE STATEMENTS PRINTUSING TO

NPL Statements Guide 2-548

PRINTUSING TO (cont.)

If the total number of characters to be stored in the alpha-variable would exceed the
length of the alpha-variable, output is truncated and the count is set to the length of the al-
pha-variable.

NOTE: No character is inserted following carriage returns, and that carriage returns are
not automatically generated when line width is exceeded.

Examples:
0010 PRINTUSING TO Q1$(),"### ",A,B,C,D
0010 PRINTUSING TO Q1$(),8320,"ABCDEF",X
0010 PRINTUSING TO X$,"##",1,1*J
0010 PRINTUSING TO A$,B$,1,2,3,4;

Compatibility Issues:
Wang 2200 Basic-2 permits invalid initial values in the count characters of the receiving
alpha-variable. NPL flags bad initial values with a runtime error.

References:
PRINTUSING
PRINT TO

PRINTUSING TO LANGUAGE STATEMENTS

2-549 NPL Statements Guide

PROCEDURE

Discussion:
This statement declares the entry point of a named procedure, and the parameters to that
procedure (if any). If the /FORWARD keyword is not specified, statements following the
PROCEDURE statement define the body of the procedure. These must be followed by a
matching END PROCEDURE statement.

For a discussion of PROCEDURE parameters, refer to "Common Properties of FUNC-
TIONs and PROCEDUREs", Section 4.8 of the Programmer’s Guide.

Procedures declared with the attributes MAIN and EXIT are special purpose procedures
used to ensure orderly initialization and shutdown of a module. At most one of these
types of procedures may be declared in a module. The MAIN procedure (if any) is al-
ways executed first, whenever the module is resolved. The EXIT procedure is always exe-
cuted last, whenever the module is about to be deresolved. Both the MAIN and EXIT
procedures have no parameters.

General Form:

PROCEDURE ’name [(parameter[,parameter]...)][attribute]...

Where:

name = identifier

paramerter = /POINTER] [_]variable [([dim1[,dim2]])][length]
[_]variable([dim1,[dim2]])

attribute = {/PUBLIC }
{/FORWARD }
{/EXTERNAL }
{/BEGINS }
{/MAIN }
{/EXIT }

LANGUAGE STATEMENTS PROCEDURE

NPL Statements Guide 2-550

PROCEDURE (cont.)

NOTE: If a library contains a /MAIN procedure, this is automatically called immediately af-
ter the module is resolved. This only occurs once. If the procedure is halted and can-
celled or does a RETURN ERROR, NPL will not call the procedure automatically a
second time.

Exiting the RunTime deresolves all modules, in order to ensure all /EXIT proce-
dures are run.

Calling PROCEDUREs

Procedures have no return values and may not appear in expressions, but may be invoked
by the statement ’identifier[(parameters)]. When the statement is executed, parameter val-
ues are passed and execution proceeds with the first executable statement in the function.
Execution of a RETURN statement in the PROCEDURE body causes execution to pro-
ceed on the statement following the procedure call.

Calls to functions or procedures are permitted from immediate mode.

There is no implied HALT before functions or procedures are executed.

To step through the function, use the STEP mode.

If a function is called from immediate mode, then, even if the function is halted or
STOPped for debugging, any immediate mode statements following the function are
eventually executed when the function returns.

The scoping requirements for calls to functions from immediate mode are relaxed to
make it easier to define and use "resident" modules of public functions. The normal scop-
ing rules are first applied to any function name used in immediate mode. In immediate
mode only, if the named function is not in scope, the public function list is then searched
for a match.

Examples:
0010 PROCEDURE ’ProcessRecord
0010 PROCEDURE ’Initialize/MAIN
0010 PROCEDURE ’Shutdown/EXIT
0010 PROCEDURE ’MoveWindow(/POINTER Window_POS)

Compatibility Issues:
This statement is supported only with Release IV or greater.

PROCEDURE LANGUAGE STATEMENTS

2-551 NPL Statements Guide

PROCEDURE (cont.)

References:
END PROCEDURE
CLEAR
Functions and Procedures - Section 4.8 of the NPL Programmer’s Guide

LANGUAGE STATEMENTS PROCEDURE

NPL Statements Guide 2-552

’Procedure-name (Call PROCEDURE)

Discussion:
PROCEDUREs may be called by specifying the Identifier preceded by "’" and followed
by an argument list in parentheses (if required).

NOTE: FUNCTIONs have return values and may not be called in this way. They may only
appear in expressions of the appropriate type.

Examples:
0010 ’Initialize
0010 ’ResetTerminal(_WHITE,_BRIGHT_CYAN,3,HEX(020D0C030E))

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
Refer to Section 4.8 of the Programmer’s Guide for more information.

General Form:

’procedure-name[(argument[,argument]...)]

Where:

procedure-name = {Identifier }
{<alpha-variable> }

argument = {numeric-expression }
{alpha-variable }
{literal-string }

’Procedure-name (Call PROCEDURE) LANGUAGE STATEMENTS

2-553 NPL Statements Guide

$PROGRAM

Discussion:
The $PROGRAM system variable contains the same text string that is returned by the
Program Load Sequence section of LISTDT. This text string contains the names of up to
6 program modules currently residing in partition memory. The first program name is the
first program loaded since the most recent CLEAR or LOAD RUN statement. The next 5
program names are the last programs loaded since the most recent CLEAR or LOAD
RUN statement. The text string may also contain certain indicators:

The value returned by $PROGRAM only shows the program loaded or overlaid into the
RUN module. Modules loaded using INCLUDE directives do not affect the value of
$PROGRAM.

+ indicates that following program was the next module loaded.

... indicates that there were modules loaded that are not listed (because the total number
of modules in memory exceeds 6).

The information returned by $PROGRAM is updated only by LOAD, LOAD RUN, and
LOAD BOOT statements or commands. It is not updated by LOAD DA.

$PROGRAM cannot appear on the left side of an equivalence statement. $PROGRAM is
intended to provide information only. Typical use of $PROGRAM would be to display a
message to the operator in the event of certain types of errors.

Examples:
0010 X$=$PROGRAM
0010 Y$()=$PROGRAM

Compatibility Issues:
This statement is supported only with Release 3.0 or greater.

This statement is not supported on the Wang 2200.

General Form:

alpha-receiver = $PROGRAM

LANGUAGE STATEMENTS $PROGRAM

NPL Statements Guide 2-554

$PROGRAM (cont.)

References:
LISTDT

$PROGRAM LANGUAGE STATEMENTS

2-555 NPL Statements Guide

$PSTAT

Discussion:
The $PSTAT statement is a special instruction which returns various status information
for the partition specified in the expression. The argument for the function must be speci-
fied as a numeric-expression equal to the partition number. $PSTAT contains eight bytes
that can be set by form 1 of the statement and accessed by the user by using form 2 of the
$PSTAT statement.

An alpha-variable can be set to the contents of $PSTAT. This variable contains the fol-
lowing:

Byte Contents
1-8 User-defined area.
9 Operating system type (always "C", for NPL).

10 RunTime revision number. Acceptable values are:
Revision 3.00.xx - HEX(30)
Revision 2.01.xx - HEX(21)
Revision 2.00.xx - HEX(20)
Revision 1.03 - HEX(13).

11 Since global partitioning is not supported in NPL, the Bank # is set to
#PART in packed (##) format.

12-13 Always contains SPACEK in packed (##.##) format. If SPACEK>99, this
field contains 99.00 (in packed decimal format).

14 Programmability ("P" or " ").
15 Terminal number in packed (##) format.

General Form:

Form 1:

$PSTAT = alpha-expression

Form 2:

alpha-receiver = $PSTAT(numeric-expression)

LANGUAGE STATEMENTS $PSTAT

NPL Statements Guide 2-556

$PSTAT (cont.)

Byte Contents
16 Partition status ("A" for active, "D" for partitions in background that

are not waiting for a terminal to be attached, "W" for partitions in
background that are waiting for a terminal to be attached).

17-24 Blank.
25 ERR function value (numeric portion of the last error encountered (in

Hex)).
26-28 These 3 bytes indicate the following partition # assignments,

respectively: Text (containing program text), Global (containing
global operations), and DATA (containing DATA statements
referenced by a current READ). Since global partitioning is not
supported in NPL, this only contains #PART in packed (##) format.

29 Device-address (address of device which the partition is currently
using or which it is currently waiting).

Examples:
0010 Q$ = $PSTAT(#PART)
0010 B$(),STR(A$,1,30) = $PSTAT(#PART)

Compatibility Issues:
Information retained by $PSTAT is different than on a Wang 2200. However, it is consis-
tent with practical use of $PSTAT.

Generation of background partition status (byte 16) is a feature that is supported only on
NPL Revision 3.0 or greater and is highly operating system-specific. Refer to the NPL
Supplement for details on background partition support on the operating system.

References:

$PSTAT LANGUAGE STATEMENTS

2-557 NPL Statements Guide

PUBLIC

Discussion:
The PUBLIC statement specifies the start of a set of statements which define the inter-
face to publicly visible components of a module. The PUBLIC section includes all state-
ments up to a matching END PUBLIC statement, which is required.

If a PackageIdentifier is not specified, the PUBLIC section defines the default interface
to the module, which is automatically USED by any module which references the module
using an INCLUDE statement.

All statements are permitted in a PUBLIC section; however, only certain declarative state-
ments become "visible" to other modules which reference the interface section (using a
USES statement). In particular:

• DIM /PUBLIC variable declarations

• RECORD /PUBLIC record declarations

• FUNCTION /PUBLIC function prototypes (usually FORWARD)

• PROCEDURE /PUBLIC function prototypes (usually FORWARD)

• DEFFN /PUBLIC marked subroutine declarations (usually FORWARD)

• USES statements

• INCLUDE statements

General Form:

PUBLIC [PackageIdentifier]

LANGUAGE STATEMENTS PUBLIC

NPL Statements Guide 2-558

PUBLIC (cont.)

NOTE: For each of the above statements, the /PUBLIC attribute is implied when the state-
ment occurs within a PUBLIC section.

Consequently, it is good programming practice to restrict statements within the PUBLIC
section to the above statements and any relevant comments.

A module may contain more than one PUBLIC statement, and these may be nested.

USES and INCLUDE statements should only be part of a PUBLIC section if it is neces-
sary for information referenced by these statements to be treated as if it is part of the inter-
face to the module.

NOTE: The declaration statements for PUBLIC items are visible to NPL programmers us-
ing the LIST PUBLIC statements, even if they appear in a library module which is
scramble-protected. Proprietary or sensitive information should never be placed
within a PUBLIC section.

The PackageIdentifier, if used, must be unique within the workspace. PUBLIC entities
within a PUBLIC section where PackageIdentifier is used are visible only to other mod-
ules that execute a USES statement within a matching PackageIdentifier.

Examples:
0010 PUBLIC
0010 PUBLIC StringFunctions
0010 PUBLIC StandardColorNames

Compatibility Issues:
This statement is supported only with Release IV or greater.

References:
END PUBLIC
INCLUDE
USES
Program Modules - Section 4.10 of the NPL Programmer’s Guide

PUBLIC LANGUAGE STATEMENTS

2-559 NPL Statements Guide

READ

Discussion:

The READ statement is used to assign a list of values from a DATA statement(s) to a list
of variables in the READ statement. The process uses the data values sequentially, begin-
ning with the DATA statement with the lowest line number, using each value on that
statement, then those (in order) from the next DATA statement in the program. An error
occurs if a READ is executed and the list has been exhausted. An error also occurs if the
value being transferred does not match the variable type required by the list.

As each value from a DATA statement is used by a READ statement, a DATA pointer is
incremented by one. DATA values may be reused through use of the RESTORE state-
ment, which also allows for setting the DATA pointer to a specified value within a par-
ticular DATA statement. Refer to the discussion on RESTORE in this section.

Each module has its own separate list of DATA items. However, all modules share a sin-
gle global data pointer.

The data pointer is set by default to the start of a module when resolution of that module
completes. A RUN statement will set the data pointer to the start of the RUN module’s
DATA list. Data items in other modules may not be read, until a RESTORE statement is
executed in the other module.

Examples:
0010 READ A,B,STR(C$(),1,10)
0010 READ B,C,D,E
0010 READ A$,B
0010 READ C(1,2),C(1,3),D$(2)

:0010 READ A,B,C$,D
:0020 PRINT A;B;C$;D

General Form:

READ variable [,variable]...

Where:

variable = {numeric-receiver}
{alpha-variable }

READ LANGUAGE STATEMENTS

2-560 NPL Statements Guide

:0030 DATA 1,2,"NPL",3,34,"ABC",1234
:RUN
 1 2 NPL 3

LANGUAGE STATEMENTS READ

NPL Statements Guide 2-561

READ (cont.)

Compatibility Issues:

References:

DATA
RESTORE

READ LANGUAGE STATEMENTS

2-562 NPL Statements Guide

READ DC

Discussion:

The READ DC statement scans the file names contained in the index area of a specified
diskimage, starting after the filename slot number indicated by the specified numeric-vari-
able, and matches filenames found against specified restrictions. The first filename found
is returned in the specified alpha-variable and the specified numeric-variable is set to the
number of the filename slot where the filename was found. This allows subsequent itera-
tions of READ DC to find the next matching filename. If no filename meeting the restric-
tion requirements is located, the alpha-receiver is set to spaces and the numeric-receiver
is set to zero.

There are 16 filename slots per index sector (the first slot of the first sector is reserved for
diskimage level parameters).

General Form:

READ DC T [device-address,] alpha-receiver, numeric-receiver
 [disk-address,] [,restrict] ...
 [<alpha-variable>,]

Where:

restrict = {[FILE rel-op] alpha-mask }
{ TYPE rel-op alpha-mask }
{ START rel-op numeric-expression }
{ END rel-op numeric-expression }
{ USED rel-op numeric-expression }
{ FREE rel-op numeric-expression }
{ DATE rel-op alpha-mask }
{ TIME rel-op alpha-mask }

rel-op = relational operator {<,=,>,<=,>=,<>}.

alpha-mask = alpha-variable or alpha-literal.

LANGUAGE STATEMENTS READ DC

NPL Statements Guide 2-563

READ DC (cont.)

READ DC is intended to be used as an alternative to direct access to the index area for
applications which need to locate filenames without knowing the exact name(s) of the
files. Typical use of READ DC requires that READ DC be executed within a loop with
the numeric-variable set to zero before starting the loop (refer to example below). After
the value of the numeric-receiver is set to zero outside of the loop, it should not be set
again. Rather, it should just be examined after each iteration for a returned value of zero
which indicates no files found.

Filenames are returned regardless of their status (unless the TYPE restriction is speci-
fied). The programmer may wish to use the LIMITS statement on filenames returned in
order to access other information about the file including type, status, and sector loca-
tions.

Specifying Files

The READ DC command allows restriction of the file scan by specification of key words
related to information about the file followed by a relational operator followed by a
mask. As the catalog index is read, file parameters are matched against the specified
mask as required by the relational operator. Only files meeting the specified requirements
are returned by READ DC. Multiple restrictions may be specified, in which case only
files meeting all requirements are returned by READ DC.

For keywords which represent alpha data, the mask must be a literal or alpha-variable.
For keywords which represent numeric data, the mask must be a valid numeric expres-
sion of which the integer portion is used.

For alpha masks, standard wildcard usage is supported. That is, a "?" in any position
matches any character in that position. An "*" indicates that any characters from the posi-
tion of the asterisk to the end of the field match.

The key words available for file specification are:

FILE Eight byte alpha

TYPE Two byte alpha. Byte one is "S" if the file is scratched;
blank if not scratched. Byte 2 is "P" for program files; "D"
for data files.

START Numeric

READ DC LANGUAGE STATEMENTS

2-564 NPL Statements Guide

READ DC (cont.)

USED Numeric

FREE Numeric

DATE 8-byte alpha in the format yy/mm/dd

TIME 8-byte alpha in the format hh:mm:ss

NOTE: If no keyword is specified, the keyword FILE and the relational operator = are as-
sumed.

Examples:
0010 READ DCT/D35,A$,A,"2C*"
0010 READ DCT<D$>,B$,X(1),TYPE="SP"

:0010 DIM A$8
:0020 A=0 :REM Start at filename slot number zero
:0030 READ DCT/D35,A$,A,FILE="2C*" :REM Find files that start with "2C"
:0040 IF A=0 THEN 100 :REM No more matching files
:0050 PRINT A$,A
:0060 GOTO 30
:0100 STOP "DONE"
:RUN

2CCOPY 25
2CRCVR 26
2CBCKP 38
2CMENU 51
2CMNDATA 52

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

READ DC is not supported on the Wang 2200.

References:

LISTDC
LIMITS

LANGUAGE STATEMENTS READ DC

NPL Statements Guide 2-565

RECORD

Discussion:

The RECORD statement declares a record identifier with the given name. The statement
begins the body of a logical record containing one or more fields declared with the
FIELD statement. The complete record declaration ends with an END RECORD state-
ment.

Records serve as templates for an abstract data type. The number of bytes required by an
instance of the record is returned by the #RECORDLENGTH(record-identifier) built-in
function. To declare a buffer for the record, declare a string variable with a length at least
this large. This string variable may then be used as a buffer for the record.

NPL does not perform type-checking when field identifiers are attached to buffers. Any
field name may be attached to any alpha-variable. NPL treats the alpha-variable as a buff-
er for the record to which the field identifier belongs.

All field-identifiers must be unique within the scope (STATIC/ PUBLIC) specified.

A RECORD identifier which occurs within a PUBLIC section is PUBLIC by default.

A RECORD statement may not occur within the body of another record specification.

Examples:

The following is an example of valid syntax.

0010 RECORD Payroll
0010 RECORD /PUBLIC Employee
0010 RECORD /STATIC Passwords

General Form:

RECORD [/PUBLIC] record-identifier
 [/STATIC]

RECORD LANGUAGE STATEMENTS

2-566 NPL Statements Guide

RECORD (cont.)

The following is a practical example of statement usage.

0010 RECORD Book_Record
 : FIELD Title$30
 : FIELD Author$30
 : FIELD Publisher$30
 : FIELD ISBN$30
 : FIELD Edition = HEX(B004)
 : END RECORD
0020 DIM book_stats$#RECORDLENGTH(Book_Record)
 : book_stats$.Title$ = "Mouse In The House"
 : book_stats$.Author$ = "Dr. Seuss"
 : book_stats$.Edition = 4
 : book_stats$.ISBN$ = "0-12-011818-4"

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

FIELD
END RECORD
#RECORDLENGTH

LANGUAGE STATEMENTS RECORD

NPL Statements Guide 2-567

#RECORDLENGTH Function

Discussion:

The #RECORDLENGTH intrinsic function returns the record length in bytes for a given
record identifier. This length can then be used to dimension an alpha-variable to be used
as a record buffer for referencing and manipulating fields associated with the record-iden-
tifier. The use of the #RECORDLENGTH function in expressions used by declarations
should only occur after the END RECORD statement for the record.

Examples:
0010 DIM PayrollRecord$#RECORDLENGTH(Payroll)
0010 DIM EmployeeRecord$#RECORDLENGTH(Employee)
0010 DIM PasswordsRecord$#RECORDLENGTH(Passwords)
0010 G=#RECORDLENGTH(BoxInfo)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

END RECORD
RECORD

General Form:

#RECORDLENGTH (record-identifier)

#RECORDLENGTH Function LANGUAGE STATEMENTS

2-568 NPL Statements Guide

$RELEASE PART

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
When executed under NPL, $RELEASE PART performs no operation.

Examples:

Compatibility Issues:

In Wang 2200 Basic-2, the $RELEASE PART instruction can be used to relinquish con-
trol of the current partition $RELEASE PART is executed from. NPL does not support
operation of the $RELEASE PART instruction.

References:

General Form:

$RELEASE PART

LANGUAGE STATEMENTS $RELEASE PART

NPL Statements Guide 2-569

$RELEASE TERMINAL

.
Discussion:

$RELEASE TERMINAL detaches the terminal from the current foreground partition and
attaches the terminal to a background partition as follows:

1. If no background partition is present, $RELEASE TERMINAL performs no opera-
tion.

2. If no specific partition is specified in the TO clause, the terminal is attached to the
next higher-numbered partition assigned to that terminal that is waiting for the termi-
nal (where byte 16 of $PSTAT = "W"). If no higher-numbered partitions assigned to
the same terminal are waiting, the lowest-numbered waiting partition is activated.

3. If the TO clause is specified with a partition-number, the terminal is attached to that
specific partition. If the partition-number specified is not assigned to the terminal or is
not waiting for the terminal (where byte 16 of $PSTAT = "W"), an X77 (Invalid Parti-
tion Reference) error results.

The STOP clause indicates that processing should be halted once the background parti-
tion is attached. Since the background partition can only be attached when it is waiting
for keyboard input, the STOP clause performs no operation in NPL.

Examples:

10 $RELEASE TERMINAL TO 10
10 $RELEASE TERMINAL BACKGROUND

General Form:

$RELEASE TERMINAL [TO partition-number [,STOP]]

Where:

partition-number = a numeric expression containing the parti-
tion number to assign to foreground.

$RELEASE TERMINAL LANGUAGE STATEMENTS

2-570 NPL Statements Guide

$RELEASE TERMINAL (cont.)

Compatibility Issues:

$RELEASE TERMINAL performs no operation on all revisions of NPL prior to Revi-
sion 3.0.

On the Wang 2200, $RELEASE TERMINAL TO partition-number succeeds even if the
specified background partition is not waiting for the terminal.

Functionality of $RELEASE TERMINAL is extremely operating system dependent. On
some operating systems, background partitions are not supported at all. On other operat-
ing systems, various limitations may be present. Refer to the NPL Supplements for de-
tails about the availability and functionality of background partitions on the operating
system.

References:

$IF
$PSTAT

LANGUAGE STATEMENTS $RELEASE TERMINAL

NPL Statements Guide 2-571

REM

Discussion:

The REM statement is used to insert comments into a NPL program. Any characters ex-
cept a colon may be used. A colon or end of program line terminates the REM statement.

The optional % parameter causes text within the REM to be listed on a separate line
when the LIST D command is used. In addition, if the output device is the screen, text are
printed bright. This allows a convenient way of adding program headings to program list-
ings.

The optional "^" parameter causes a top-of-form to be performed to the printer before a
program listing is performed when using the LISTD command.

NOTE: The "^" displays as an up-arrow (HEX(5E)) on standard displays.

REM statements are retained only if the $KEEPREMS system variable is set to
HEX(01) or HEX(02), or by the compiler if KEEPREMS ON option is specified.

LINE REMs allow remark statements to include colons. This is particularly useful for de-
velopers who wish to maintain source code in ASCII format and use third-party source
code control programs. LINE REMs are specified by a semicolon (";") as the first charac-
ter in a statement. LINE REMs are terminated only by a soft carriage return or by the end
of the program line. LINE REMs are NOT terminated by a colon.

For example:

0010 ; This is a remark. It can have a : embedded in it<
 :PRINT "THIS IS EXECUTABLE"<
 :; This is another remark: This is still part of the remark.

 The remark can span multiple physical lines. It is terminated
 by a soft carriage return<

 : PRINT "THIS IS ALSO EXECUTABLE"

General Form:

REM [%[^]] [text]

REM LANGUAGE STATEMENTS

2-572 NPL Statements Guide

REM (cont.)

WARNING--The LINE REM and the IMAGE statement are the only statements that are
affected by soft carriage returns. Care must be taken--deleting a soft carriage return fol-
lowing a LINE REM makes the subsequent statement non-executable (it is treated as
part of the remark). For further information on soft carriage returns (sometimes referred
to as "Return Graphics"), refer to Section 5.4 of the NPL Programmer’s Guide.

All batch compiler (B2C) options that apply to standard REMs also apply to LINE
REMs. In addition, the $PC clause (REM $PC) and the $KEEPREMS system variable ap-
ply to LINE REMs as they do to REM statements.

Examples:

0010 REM "START" Start-up Program
0010 REM
0010 REM This program updates the file.
0010 REM %^ Test Program BOOT1
0010 REM % Last Modification - 7/24/86

Compatibility Issues:

In Wang 2200 Basic-2, REM% causes text to print in expanded format when sent to the
printer.

The REM statement is implemented in Revision 2.00 and greater of NPL. Prior revisions
of the RunTime Program cannot load modules containing compiled REMs. Compilers for
previous revisions removed REM statements.

References:

REM $PC

LANGUAGE STATEMENTS REM

NPL Statements Guide 2-573

REM $PC

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not recommended.

Discussion:

Statements which follow the special designation of REM $PC are executable in NPL.
The REM $PC statement allows programs written for the Wang 2200 to be upgraded to
make use of extensions added for the NPL version, yet while maintaining compatibility
with the 2200 system. This is done by coding statements whose syntax is not 2200 com-
patible within special types of REM (remark) statements. Since all REM statements are
ignored on the Wang 2200, the program code in these REM statements does not cause dif-
ficulties on the 2200.

Under the interpretive RunTime Program, setting the $KEEPREMS system variable to
hex(00) causes the REM $PC prefix to be removed upon entering the line. For example,
the following statement:

0010 REM $PC $HELP="ARCODE"

with $KEEPREMS=HEX(00) would actually be stored as:

0010 $HELP="APCODE"

Refer to the $KEEPREMS system variable for details.

Using the REM$ ON compiler option, the NPL compiler can be instructed to compile
statements within REM $PC statements for use under NPL. Refer to Chapter 9, Compiler
Options, of the NPL Supplements for details on the format of compiler options.

General Form:

REM $PC statement

REM $PC LANGUAGE STATEMENTS

2-574 NPL Statements Guide

REM $PC (cont.)

Examples:
10 REM $PC $HELP="ARCODE"
: REM $PC PRINT "Help information is available."
: LINPUT "ENTER THE APPROPRIATE A/R CODE",-C$

The example shows how on-line help screens might be added to a Wang 2200-compat-
ible program. The $HELP statement (which is not a Wang 2200 Basic-2 instruction) exe-
cutes only in NPL. The PRINT statement executes only in NPL.

Comments and Cautions:

It is recommended that the use of the REM $PC statement be limited. In particular, be
aware of the following potential problems:

• Since references to LINE numbers within a REM $PC are not be RENUMBERed
by the Wang 2200, avoid using them within a REM $PC.

• Colons (":") within quote strings should not appear in REM $PC statements.

• Additional software testing time on the Wang 2200 should be allocated to ensure
that no errors were introduced by REM $PC statements on the NPL version.

Compatibility Issues:

REM $PC statements are functionally the same as REM statements in Wang 2200
Basic-2.

Revisions prior to Revision 2.00 of NPL allowed the "PC" portion of REM $PC to be op-
tional for some statements.

References:

$KEEPREMS
REM

LANGUAGE STATEMENTS REM $PC

NPL Statements Guide 2-575

RENAME

Discussion:

RENAME changes the name of an existing file (old-file-name) to the specified new-file-
name. The contents of the file are not affected. Only the diskimage catalog index is af-
fected. The specified old-file-name may be either scratched or not scratched and may be
either a program or a data file. The file type of the new-file-name is identical to the old-
file-name.

Once a file has been successfully RENAMEd, it may no longer be accessed by its old
name.

If the new-file-name already exists, or if the index is full, an error occurs and the index
entry for the old-file-name remains unmodified.

Examples:
0010 RENAME T/D11,"PROG1" TO "PROGA"
0010 RENAME T#Y,A$ TO B$
:RENAME T"OLDPROG" TO "NEWPROG"
:RENAME T<A$>,"ARDATA TO ARDATASV"

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

References:

General Form:

RENAME T [file-number,] old-file-name TO new-file-name
 [disk-address,]
 [<address-var>,]

Where:

old-file-name = an alpha-variable or literal-string containing
the old name of the file.

new-file-name = an alpha-variable or literal string containing
the new name of the file.

RENAME LANGUAGE STATEMENTS

2-576 NPL Statements Guide

RENAME DEFFN’

Discussion:

RENAME DEFFN’ is an immediate mode command that is used to RENAME all occur-
rences of a DEFFN’ identifier in the currently selected LIST module to a new or existing
DEFFN’ identifier.

For example:

RENAME DEFFN ’Get_Blue TO ’Get_Red

renames all occurrences of the DEFFN identifier ’Get_Blue in the current LIST module
to DEFFN’ identifier ’Get_Red.

NOTE: RENAME DEFFN may not be used to change the value of numbered DEFFN’s.
Only named DEFFN’s are permitted.

The prime (’) indicator is optional, but is always tagged by the decompiler.

If the old DEFFN’ name does not exist, an error 202 "Name Not Referenced in Program"
occurs.

If the new DEFFN’ name already exists, an error 201 "Name Already Referenced in Pro-
gram" occurs unless, the keyword MERGE is specified.

General Form:

RENAME DEFFN’ old-deffn-nam e [MERGE] TO new-deffn-name

Where:

old-deffn-name = current name of a DEFFN’ subroutine in
the program.

new-deffn-name = name to which old-deffn-name references
should be changed.

LANGUAGE STATEMENTS RENAME DEFFN’

NPL Statements Guide 2-577

RENAME DEFFN’ (cont.)

For example:

RENAME DEFFN ’Grape_Juice MERGE TO ’Vintage_Stuff

renames all occurrences of the DEFFN identifier ’Grape_Juice in the current LIST mod-
ule to the DEFFN identifier ’Vintage_Stuff, even if ’Vintage_Stuff has been previously
defined in the current LIST module.

Renaming DEFFN’ identifiers deresolves the LIST module and clears the return stack.

NOTE: A HALTed program may not be CONTINUEd after any RENAME DEFFN’ state-
ment.

RENAME DEFFN’ may not be used under program control.

Examples:

RENAME DEFFN ’Old_Pack TO ’New_Pack
RENAME DEFFN Count_Sticks TO Count_Trees
RENAME DEFFN ’Aspirin$ MERGE TO ’Ibuprofen$

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

$NAMEOF
DEFFN’

RENAME DEFFN’ LANGUAGE STATEMENTS

2-578 NPL Statements Guide

RENAME FIELD

Discussion:

RENAME FIELD is an immediate mode command that is used to RENAME all occur-
rences of a FIELD identifier in the currently selected LIST module to a new or existing
FIELD identifier.

For example:

RENAME FIELD .Blue TO .Red

renames all occurrences of the FIELD identifier .Blue in the current LIST module to
FIELD identifier .Red.

The type information for string fields "$" and arrays "(" must be specified. The types of
the old and new FIELD identifiers must be the same.

The (.) indicator is optional, but is always tagged by the decompiler.

If the old field name does not exist, an error 202 (Name Not Referenced in Program) oc-
curs.

If the new field name already exists, an error 201 (Name Already Referenced in Pro-
gram) occurs, unless the keyword MERGE is specified.

General Form:

RENAME FIELD . old-field-name [$] [(] [MERGE] TO .new-field-name [$] [(]

Where:

old-field-name = current name of a field identifier in the
program.

new-field-name = name to which old-field-name should be
changed.

LANGUAGE STATEMENTS RENAME FIELD

NPL Statements Guide 2-579

RENAME FIELD (cont.)

For example:

RENAME FIELD .Grape(MERGE TO .Raisin(

renames all occurrences of the FIELD identifier .Grape(in the current LIST module to
the FIELD identifier .Raisin(even if .Raisin(has been previously defined in the current
LIST module.

Renaming FIELD identifiers deresolves the LIST module and clears the return stack.

NOTE: A HALTed program may not be CONTINUEd after any RENAME FIELD state-
ment.

RENAME FIELD may not be used under program control.

Examples:

RENAME FIELD .Particle TO .Quark
RENAME FIELD .Negative$ TO .Positive$
RENAME FIELD .Aspirin$ MERGE TO .Ibuprofen$
RENAME FIELD .Stripe$(MERGE TO .Shirt$(

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

$NAMEOF

RENAME FIELD LANGUAGE STATEMENTS

2-580 NPL Statements Guide

RENAME FUNCTION

Discussion:

RENAME FUNCTION is an immediate mode command that is used to RENAME all oc-
currences of a FUNCTION identifier in the currently selected LIST module to a new or
existing FUNCTION identifier.

For example:

RENAME FUNCTION ’Red TO ’Blue

renames all occurrences of the FUNCTION identifier ’Red in the current LIST module to
FUNCTION identifier ’Blue.

The type information for string functions "$" must be specified. The types of the old and
new FUNCTION identifiers must be the same. The prime (’) indicator is optional, but is
always tagged by the decompiler.

If the old function name does not exist, an error 202 (Name Not Referenced in Program)
occurs.

If the new function name already exists, an error 201 (Name Already Referenced in Pro-
gram) occurs unless, the keyword MERGE is specified.

General Form:

RENAME FUNCTION ’old-function-name [$] [MERGE] TO ’new-function-name [$]

Where:

old-function-name = current name of a FUNCTION identifier in
the program.

new-function-name = name to which the FUNCTION identifier
should be changed.

LANGUAGE STATEMENTS RENAME FUNCTION

NPL Statements Guide 2-581

RENAME FUNCTION (cont.)

For example:

RENAME FUNCTION ’Grape_Juice MERGE TO ’Vintage_Stuff

renames all occurrences of FUNCTION ’Grape_Juice in the current LIST module to
’Vintage_Stuff even if ’Vintage_Stuff has been previously defined in the current LIST
module.

Renaming FUNCTION identifiers deresolves the LIST module and clears the return
stack.

NOTE: A HALTed program may not be CONTINUEd after and RENAME FUNCTION
statement

RENAME FUNCTION may not be used under program control.

RENAME FUNCTION ’Do_It$ TO ’Did_It$
RENAME FUNCTION ’Count_Sticks TO ’Count_Trees
RENAME FUNCTION ’Aspirin$ MERGE TO ’Ibuprofen$

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

$NAMEOF
RENAME PROCEDURE

RENAME FUNCTION LANGUAGE STATEMENTS

2-582 NPL Statements Guide

RENAME PROCEDURE

Discussion:

RENAME PROCEDURE is an immediate mode command that is used to RENAME all
occurrences of a PROCEDURE identifier in the currently selected LIST module to a new
or existing PROCEDURE identifier. For example:

RENAME PROCEDURE ’Get_Blue TO ’Get_Red

renames all occurrences of the PROCEDURE identifier ’Get_Blue in the current LIST
module to PROCEDURE identifier ’Get_Red.

The prime (’) indicator is optional, but is always tagged by the decompiler.

If the old procedure name does not exist, an error 202 "Name Not Referenced in Pro-
gram" occurs.

If the new procedure name already exists, an error 201 "Name Already Referenced in Pro-
gram" occurs unless, the keyword MERGE is specified.

For example:

RENAME PROCEDURE ’Grape_Juice MERGE TO ’Vintage_Stuff

renames all occurrences of the PROCEDURE identifier ’Grape_Juice in the current LIST
module to the PROCEDURE identifier ’Vintage_Stuff even if ’Vintage_Stuff has been
previously defined in the current LIST module.

General Form:

RENAME PROCEDURE ’old-procedure-name [MERGE] TO ’new-procedure-name

Where:

old-procedure-name = current name of a PROCEDURE in the
program.

new-procedure-name = name to which old-procedure-name
should be changed.

LANGUAGE STATEMENTS RENAME PROCEDURE

NPL Statements Guide 2-583

RENAME PROCEDURE (cont.)

Renaming PROCEDURE identifiers deresolves the LIST module and clears the return
stack.

NOTE: A HALTed program may not be CONTINUEd after any RENAME PROCEDURE
statement.

RENAME PROCEDURE may not be used under program control.

Examples:

RENAME PROCEDURE ’Do_It TO ’Did_It
RENAME PROCEDURE ’Count_Sticks TO ’Count_Trees
RENAME PROCEDURE ’Aspirin MERGE TO ’Ibuprofen

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

$NAMEOF
RENAME FUNCTION

RENAME PROCEDURE LANGUAGE STATEMENTS

2-584 NPL Statements Guide

RENAME RECORD

Discussion:

RENAME RECORD is an immediate mode command that is used to RENAME all occur-
rences of a RECORD identifier in the currently selected LIST module to a new or exist-
ing RECORD identifier.

For example:

RENAME RECORD Colors TO Hues

renames all occurrences of the RECORD identifier Colors in the current LIST module to
RECORD identifier Hues.

If the old record name does not exist, an error 202 "Name Not Referenced in Program"
occurs.

If the new record name already exists, an error 201 "Name Already Referenced in Pro-
gram" occurs unless, the keyword MERGE is specified.

For example:

RENAME RECORD Grapes MERGE TO Raisins

General Form:

RENAME RECORD old-record-name [MERGE] TO new-record-name

Where:

old-record-name = current name of a RECORD identifier in
the program.

new-record-name = name to which old-record-name should
be changed.

LANGUAGE STATEMENTS RENAME RECORD

NPL Statements Guide 2-585

renames all occurrences of the RECORD identifier Grapes in the current LIST module to
the RECORD identifier Raisins even if Raisins has been previously defined in the current
LIST module.

RENAME RECORD LANGUAGE STATEMENTS

2-586 NPL Statements Guide

RENAME RECORD (cont.)

Renaming RECORD identifiers deresolves the LIST module and clears the return stack.

NOTE: A HALTed program may not be CONTINUEd after any RENAME RECORD state-
ment.

RENAME RECORD may not be used under program control.

Examples:

RENAME RECORD Particles TO Quarks
RENAME RECORD Negatives TO Positives
RENAME RECORD Aspirin MERGE TO Ibuprofen

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

$NAMEOF

LANGUAGE STATEMENTS RENAME RECORD

NPL Statements Guide 2-587

RENAME = (Statement Label)

Discussion:

RENAME = is an immediate mode command that is used to RENAME all occurrences
of a statement label in the currently selected LIST module to a new or existing statement
label.

For example:

RENAME = Get_Color TO Get_Background

renames all occurrences of the statement label Get_Color in the current LIST module to
statement label Get_BackGround.

If the old statement label name does not exist, an error 202 (Name Not Referenced in Pro-
gram) occurs.

If the new statement label name already exists, an error 201 (Name Already Referenced
in Program) occurs unless, the keyword MERGE is specified.

For example:

RENAME = Make_Wine MERGE TO Brew_Beer

renames all occurrences of the statement label Make_Wine in the current LIST module to
the statement label Brew_Beer even if Brew_Beer has been previously defined in the cur-
rent LIST module.

Renaming statement labels deresolves the LIST module and clears the return stack.

General Form:

RENAME = old-statement-label [MERGE] TO new-statement-label

Where:

old-statement-label = current name of a statement label in the
program.

new-statement-label = name to which old-statement-label should be
changed.

RENAME = (Statement Label) LANGUAGE STATEMENTS

2-588 NPL Statements Guide

RENAME = (Statement Label) (cont.)

NOTE: A halted program may not be CONTINUEd after any RENAME = statement.

RENAME = may not be used under program control.

Examples:

RENAME = Under_Control TO OutOfControl
RENAME = Calc_Principal TO Calc_Interest
RENAME = Get_Color MERGE TO Get_BackGround

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

LANGUAGE STATEMENTS RENAME = (Statement Label)

NPL Statements Guide 2-589

RENAME V

Discussion:

RENAME V is an immediate mode command that is used to RENAME all occurrences
of a variable in the currently selected module to a new or existing variable.

For example:

RENAME V A$ TO B$

renames all occurrences of variable A$ currently in memory to B$.

Variable names must be of the same type (numeric scalar, numeric array, alphanumeric
scalar, or alphanumeric array).

If the old variable name does not exist, an error 202 (Variable Already Referenced in Pro-
gram) occurs.

If the new variable name already exists, an error 201 (Variable Already Referenced in
Program) occurs unless the keyword MERGE is specified.

General Form:

RENAME V old-variable-name [MERGE] TO new-variable-name

Where:

old-variable-name = {numeric scalar }
{numeric array }
{alpha scalar }
{alpha array }

new-variable-name = {numeric scalar }
{numeric array }
{alpha scalar }
{alpha array }

RENAME V LANGUAGE STATEMENTS

2-590 NPL Statements Guide

RENAME V (cont.)

For example:

RENAME V A$ MERGE TO B$

renames all occurrences of variable A$ in the current LIST module to B$, even if B$ is
previously defined in the current LIST module.

RENAME V implicitly performs a CLEAR V if either the new-name or old-name is a
common (COM) variable.

RENAME V implicitly performs a CLEAR N if either the new-name or old-name is a de-
clared (DIM) variable, and neither is common.

RENAME V always deresolves the LIST module. Program execution may not be contin-
ued after a RENAME V command.

RENAME V may not be used under program control.

Examples:

RENAME V A$ TO X43$
RENAME V Name$(MERGE TO OldName$(
RENAME V Apples MERGE TO Oranges
RENAME V Grapes(TO Raisins(

Compatibility Issues:

This statement is supported only with Release 3.2 or greater.

References

LANGUAGE STATEMENTS RENAME V

NPL Statements Guide 2-591

RENUMBER

Discussion:

The RENUMBER command is used to renumber an entire program or portions of a pro-
gram by any specified incremental STEP value. RENUMBER can also be used to reorder
lines within a program, by moving sections of program text from one location to another,
and appropriately changing the corresponding line numbers. RENUMBER also performs
a cross-reference of the program to check for line references, changing any references to
the new line number.

The lines which are in the line-number range are always consecutive before the RENUM-
BER, and must be consecutive after the RENUMBER or an error P33-Line number con-
flict is generated and the operation is not performed.

Renumbering a program allows subroutines or program segments to be inserted within a
program without reentering the entire program due to insufficient line numbers

The RENUMBER statement performs no operation on the non-interpretive RunTime pro-
gram.

General Form:

RENUMBER [line1][-line2] [TO line3] [STEP x]

Where:

line1 = first line-number to be renumbered. If omitted, the low-
est line-number in the program is assumed.

line2 = last line-number to be renumbered. If omitted, the high-
est line-number in the program is assumed.

line3 = new starting line-number. If omitted, the default is the
same as the STEP value.

x = STEP value, an integer such that 0< x <100 (default=10).

RENUMBER LANGUAGE STATEMENTS

2-592 NPL Statements Guide

RENUMBER (cont.)

Examples:
:RENUMBER
:RENUMBER -1000 TO 10
:RENUMBER 200-1000 TO 100 STEP 5
:RENUMBER STEP 5

Given the following program in memory:

0050 GOSUB 1000
0100 PRINT "ABC"
0200 PRINT "123"
0210 I=I+1
0300 PRINT "XYZ"
0350 IF I=12 THEN 200
0400 GOSUB 2000

Using the RENUMBER function to renumber this program segment from line 100 to line
350:

:RENUMBER 100-350 TO 100 STEP 10
:LIST
0050 GOSUB 1000
0100 PRINT "ABC"
0110 PRINT "123"
0120 I=I+1
0130 PRINT "XYZ"
0140 IF I=12 THEN 110
0400 GOSUB 2000

Given the following program in memory:

0100 DIM A$20,B$50
0110 DIM R(4),T(5,5)
0200 GOSUB 1000
0210 GOSUB 2000
0500 FOR I=1 TO 100 STEP 2
0510 PRINT J,K,L
0520 GOSUB 3000
0530 NEXT I
0540 A$=W$(9)

LANGUAGE STATEMENTS RENUMBER

NPL Statements Guide 2-593

RENUMBER (cont.)

Using RENUMBER to reorder a section of program lines:

:RENUMBER 500-530 to 150 STEP 5
:LIST
0100 DIM A$20,B$50
0110 DIM R(4),T(5,5)
0150 FOR I=1 TO 100 STEP 2
0155 PRINT J,K,L
0160 GOSUB 3000
0165 NEXT I

0200 GOSUB 1000
0210 GOSUB 2000
0540 A$=W$(9)

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

References:

RENUMBER LANGUAGE STATEMENTS

2-594 NPL Statements Guide

REPEAT

Discussion:

The REPEAT statement marks the start of a structured REPEAT...UNTIL loop. It may be
followed by a number of statements, which comprise the body of the loop. It must then
be followed by an UNTIL statement.

The body of a REPEAT...UNTIL loop is always executed at least once. When a REPEAT
statement is executed, no operation is performed. Execution proceeds on the statement
following the REPEAT statement.

It is possible to branch into the range of a REPEAT...UNTIL loop, although this is poor
programming practice.

Examples:

0005 X=1
0010 REPEAT
 : X=X+X
 : PRINT X
 : UNTIL X>100

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

UNTIL
BREAK
LOOP
REPEAT/UNTIL - Section 4.11.3 of the NPL Programmer’s Guide

General Form:

REPEAT

LANGUAGE STATEMENTS REPEAT

NPL Statements Guide 2-595

RESAVE

Discussion:

The RESAVE command is used to save a program or a portion of a program to an exist-
ing disk file specified by the prog-name parameter. The existing disk file may be
scratched or not scratched and may be a program or a data file. As with SAVE, if there is
insufficient space to save the program in the file specified, the RunTime attempts to relo-
cate the file to the end of the diskimage.

Operation of RESAVE is otherwise identical to SAVE. Please refer to SAVE for further
details on the other parameters.

Examples:
0010 RESAVE T"MYPROG"
0010 RESAVE T/D11,Q$1000,2000
0010 RESAVE T<A$>,!"MYPROG"100,200
0010 RESAVE <W> T#1,Q$100

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

Please refer to the Compatibility Issues section of SAVE for further details on compatibil-
ity.

General Form:

RESAVE [<[W] [S] [R]>] T [$][file-number,][!]prog-name
 [disk-address,]
 [<address-var>,]
 [line-number1][,[line-number2]]

Where:

prog-name = an alpha-variable or literal containing the name
of the program to be saved.

line-number1 = the lowest line-number of the program to be saved.

line-number2 = the highest line-number of the program to be
saved.

RESAVE LANGUAGE STATEMENTS

2-596 NPL Statements Guide

RESAVE (cont.)

In NPL Revision 4.0, the RESAVE command acts upon the current LIST module.

NPL Revision 4.0 or greater requires enough free memory to make a copy of the largest
program line being saved to SAVE a program. Applications that run with very little free
memory or which have very large program lines may need to do a CLEAR N or CLEAR
V to free up enough memory to perform the SAVE operation.

WARNING--It is possible that a program may be loaded that does not have sufficient
memory to save itself.

References:

LANGUAGE STATEMENTS RESAVE

NPL Statements Guide 2-597

RESET

Discussion:

The RESET function is used to terminate program execution. RESET is a function of the
HELP Processor.

The RESET function invokes Immediate Mode and allows for normal Immediate Mode
functions. Normal program continuation is not allowed. For this reason, RESET should
be a last effort to terminate program execution because it does not allow program continu-
ation, and is normally reserved for terminating a program when a system I/O error (e.g.,
disk not ready) cannot be handled in any other way.

While the program is unresolved in memory, variables are not cleared and can still be ex-
amined in Immediate Mode.

The RESET function performs the following:

• Closes all devices currently opened by the program.

• Clears all FOR/NEXT loop and subroutine stack information, including all
FUNCTION and PROCEDURE calls.

• Turns TRACE Mode off and deactivates STEP Mode.

• Clears the screen and displays "READY (NPL) PARTITION #".

• Invokes Immediate Mode.

General Form:

RESET function

RESET LANGUAGE STATEMENTS

2-598 NPL Statements Guide

RESET (cont.)

The RESET function can be suppressed by setting byte 12 of the $OPTIONS system vari-
able to HEX(01). Refer to $OPTIONS system variable for details.

The RESET function is available only in the interpretive RunTime program.

Examples:

Compatibility Issues:

On the Wang 2200, an actual RESET key is available.

References:

$OPTIONS
HELP Processor - Chapter 11 of the Programmer’s Guide

LANGUAGE STATEMENTS RESET

NPL Statements Guide 2-599

RESTORE

Discussion:

The RESTORE statement is used to reset the internal pointer for the next DATA item
that is used for a READ statement. When RESTORE is specified without parameters, the
internal pointer is reset to the first data item on the first DATA statement in the program.
If a numeric-expression is specified, the data pointer is reset to the item in the DATA
statements that would have that number if all the items were sequentially numbered from
1. A value of 0 is also legal and is equivalent to 1 in this content.

Each module has its own separate list of DATA items. However, all modules share a sin-
gle global data pointer.

The data pointer is set by default to the start of a module when resolution of that module
completes. A RUN statement sets the data pointer to the start of the RUN module’s
DATA list. Data items in other modules may not be read, until a RESTORE statement is
executed in the other module.

A RESTORE statement always set the data pointer to a location in the current module’s
DATA list.

There is currently no mechanism to save or restore the current location of the global
DATA pointer. Consequently, if a PUBLIC function, procedure or DEFFN’ uses RE-
STORE or READ statements, it should be clearly documented that the DATA pointer is
affected. Otherwise, this could constitute an unexpected side-effect to the logic of the call-
ing program.

General Form:

RESTORE [LINE line-number [,numeric-expression]]
 [numeric-expression]

Where:

0 <= numeric-expression < 65536

RESTORE LANGUAGE STATEMENTS

2-600 NPL Statements Guide

RESTORE (cont.)

When used with the LINE option, the data pointer is reset to the first DATA statement on
the specified line number. If the specified line does not contain a DATA statement as the
first statement on the line, an execution error occurs. If a numeric-expression follows the
line number, the pointer is set to the item in the DATA statements that would have that
number if all items starting at the specified LINE were sequentially numbered from 1. A
value of 0 is also legal and is equivalent to 1 in this content.

The RESTORE pointer is reset to the start of the program by execution of the RUN state-
ment or by any program overlay (LOAD statement).

Examples:
0010 RESTORE
0010 RESTORE 17
0010 RESTORE LINE 100
0010 RESTORE LINE 17,17*I
:0010 DIM A$16,B$16,C$16
:0020 FOR I=1 TO 3
 : READ A$,B$,C$
 : PRINT A$;B$;C$
 : NEXT I
:0030 PRINT
:0040 FOR I=1 TO 3
 : RESTORE LINE 70,2
 : READ A$,B$,C$
 : PRINT A$;B$;C$
 : NEXT I
:0050 DATA "Niakwa"," NPL"," RunTime"
:0060 DATA "Program"," Release II"," Interpreter"
:0070 DATA "This"," is"," a"," test"
:RUN
Niakwa NPL RunTime
Program Release II Interpreter
This is a

is a test
is a test
is a test

Compatibility Issues:

In Wang 2200 Basic-2, if a line number specified in a restore statement does not have a
DATA statement in it, the next line with a data statement is used.

References:

DATA
READ

LANGUAGE STATEMENTS RESTORE

NPL Statements Guide 2-601

RETURN

Discussion:

The RETURN statement followed by either a numeric or alpha expression in parentheses
indicates the end of execution of a FUNCTION. It does not mark the syntactic end of a
function; this is provided by the END FUNCTION statement. A RETURN statement
with a result-value is only legal within a FUNCTION body.

The RETURN ERROR statement followed by a numeric expression in parentheses indi-
cates that the specified error condition should be raised in the calling statement. If the
calling statement does not trap errors, the program is halted. The error-code should be a
NPL error condition or user-defined error.

NOTE: Not all errors are recoverable, so if the error must be recoverable some error values
should not be used. A specific range of error codes is reserved for user-defined or ex-
ternal error codes, both recoverable and non-recoverable. Refer to the ERROR
statement for a definition of these ranges.

A RETURN ERROR statement is only legal within a FUNCTION or PROCEDURE
body.

A RETURN statement with no options indicates the end of execution of a subroutine
called using GOSUB or GOSUB’. An END PROCEDURE statement normally ends the
execution of a PROCEDURE. If there are no pending GOSUB or GOSUB’ calls since
the last call to a function or procedure, the RETURN statement with no options may also
be used to end the execution of a PROCEDURE (but not a FUNCTION).

Execution proceeds on the statement following the statement that called the subroutine or
PROCEDURE.

General Form:

RETURN
RETURN (numeric-expression)
RETURN (alpha-variable or literal-string)
RETURN ERROR (error-code)

RETURN LANGUAGE STATEMENTS

2-602 NPL Statements Guide

RETURN (cont.)

When a RETURN statement ends the execution of a GOSUB or GOSUB’, all incomplete
FOR/BEGIN...NEXT loops which have been started since the subroutine was called are
terminated, and the internal stack information for any such loops is cleared.

When any type of RETURN ends the execution of a FUNCTION or PROCEDURE, all
incomplete FOR/BEGIN...NEXT loops and GOSUB or GOSUB’ calls which have been
started since the function or procedure was called are terminated, and the internal stack in-
formation for any such loops and subroutine calls is cleared.

When used with a subroutine entered through keyboard action (GOSUB’), the RETURN
statement causes program control to be returned to:

1. Immediate Mode if the Specific Function key was pressed in Immediate Mode;

2. The INPUT statement if the Special Function key was pressed in response to an IN-
PUT - input is reexecuted;

3. The statement following a LINPUT statement if the Special Function key was pressed
in response to a LINPUT.

If a RETURN statement is encountered when a corresponding a GOSUB statement has
not been executed, an error is generated (ERR P41 - RETURN Without GOSUB).

Examples:
0010 RETURN
0010 RETURN(result)

0010 RETURN(12)
0010 RETURN(FNX(A))
0010 RETURN(Temp$)
0010 RETURN("Wendy")
0010 RETURN ERROR(48)

LANGUAGE STATEMENTS RETURN

NPL Statements Guide 2-603

RETURN (cont.)

Compatibility Issues:

References:

FUNCTION
PROCEDURE
GOSUB
GOSUB’

RETURN LANGUAGE STATEMENTS

2-604 NPL Statements Guide

RETURN CLEAR

Discussion:

The RETURN CLEAR statement may be used to clear internal stack information created
by the most recent GOSUB or GOSUB’ subroutine call, without returning to the state-
ment that made the subroutine call. Any incomplete FOR/BEGIN...NEXT loops which
have been started since the subroutine was called are also terminated, and the internal
stack information for any such loops is also cleared. Execution proceeds following the
RETURN CLEAR statement.

Stack information created by GOSUB or GOSUB’ statements prior to a pending call to a
FUNCTION or PROCEDURE may not be cleared by RETURN CLEAR.

If a RETURN CLEAR statement is executed when there is no pending GOSUB or GO-
SUB’ information, an error is generated (P41 - RETURN without GOSUB).

The RETURN CLEAR ALL statement clears all internal stack information for GOSUB
and GOSUB’ subroutine calls, as well as for any incomplete FOR/BEGIN...NEXT loops.
Stack information created by GOSUB or GOSUB’ statements or FOR/BEGIN...NEXT
loops prior to a pending call to a FUNCTION or PROCEDURE is not cleared by RE-
TURN CLEAR ALL.

WARNING--It is inadvisable to use RETURN CLEAR ALL when this could clear stack in-
formation for a PUBLIC DEFFN’ subroutine, since this means that, in general, control
cannot be transferred back to the calling program.

Structured programs should not require the use of RETURN CLEAR [ALL].

General Form:

RETURN CLEAR [ALL]

LANGUAGE STATEMENTS RETURN CLEAR

NPL Statements Guide 2-605

RETURN CLEAR (cont.)

Examples:
0010 RETURN CLEAR
0010 RETURN CLEAR ALL
:0010 GOSUB 100
:0020 PRINT "DONE": GOTO 400
:0100 GOSUB 200
 : PRINT "Returned from Subroutine 200"
 : RETURN
:0200 REM Subroutine line 200
 : GOSUB 300
 : PRINT "Returned from Subroutine 300"
 : RETURN

:0300 REM Subroutine line 300
 : PRINT "Before RETURN CLEAR"
 : LIST STACK
 : RETURN CLEAR
 : PRINT "After RETURN CLEAR"
 : LIST STACK
 : RETURN
:0400 REM Done
:RUN
Before RETURN CLEAR
0010 GOSUB 100
0100 GOSUB 200
0200 : GOSUB 300
After RETURN CLEAR
0010 GOSUB 100
0100 : GOSUB 200
Returned from Subroutine 200
DONE

NOTE: Executing the RETURN CLEAR statement in the subroutine on line 300 means that
statements following the GOSUB 300 on line 200 are never executed.

Compatibility Issues:

References:

RETURN CLEAR LANGUAGE STATEMENTS

2-606 NPL Statements Guide

$REV

Discussion:

The $REV system variable contains the full revision number of the RunTime program
currently executing as a twelve byte displayable alpha-numeric value in the format:

A.BB.CC.DD.H

Where:

A The major release level. This indicates the primary syntactical and
functional level of the release.

BB The major revision level. This indicates a secondary level of
syntactical or functional revisions.

CC The minor revision level. This indicates minor changes in syntax or
functionality. This level is typically used to distinguish beta or other
prerelease versions from a customer ship version of the product.

DD The edit level. This is usually set by patches or other field level
changes.

H The hardware version. This is the same as byte 1 of $MACHINE.

$REV is intended to be used to examine the revision level of a particular RunTime pro-
gram for support and diagnostic purposes.

The complete revision level returned by $REV is also displayed on the RunTime startup
screen.

Examples:
0010 X$=$REV

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

$REV is not supported on the Wang 2200.

General Form:

alpha-receiver = $REV

LANGUAGE STATEMENTS $REV

NPL Statements Guide 2-607

References:

$REV LANGUAGE STATEMENTS

2-608 NPL Statements Guide

RND Function

Discussion:

The RND function produces a pseudo-random number greater than or equal to zero and
less than one based on a numeric-expression. If the numeric-expression is zero, the RND
function returns the first value in the pseudo-random number list. If the numeric-expres-
sion is non-zero the next value in the pseudo-random number list is returned. This is valid
wherever a numeric-expression is legal.

A non-zero value is normally used when various random values are required. The zero
value, when used once at the start of a program, ensures that the same sequence of
pseudo-random numbers is used during testing and debugging of programs which use
RND().

Examples:
0010 A = RND(1)
0010 G4 = INT(RND(1)*100)+1
0010 M2(K) = RND(0)+44

Compatibility Issues:

Due to the use of a different algorithm, results of this function may differ from functions
evaluated on a Wang 2200. The first value of the pseudo-random chain (produced by
RND(0)) is returned as .1584625767084 which is the same as on the Wang 2200 MVP
(some programs use this value to decide whether they are running on a Wang 2200T proc-
essor) but subsequent values returned by RND(1) are, in general, different from those on
the Wang 2200 MVP.

References:

General Form:

RND (numeric-expression)

LANGUAGE STATEMENTS RND Function

NPL Statements Guide 2-609

ROTATE

Discussion:

The ROTATE statement is used to rotate data at the bit level of the specified alpha-vari-
able on a character-by-character basis. All bytes of the specified alpha-variable are RO-
TATEd including trailing spaces.

The numeric-expression specifies the number of bits to be rotated and can have values
from -8 to 8, inclusive. A positive numeric-expression causes the bits to be rotated to the
left. A negative numeric-expression causes the bits to be rotated to the right.

If the "C" option is used, the entire alpha-variable is treated as a single string of bits dur-
ing the rotate operation. If the "C" option is not used, the rotate occurs only within each
byte of the alpha-variable.

ROTATE C can be used to rotate characters within an alpha-variable by specifying a nu-
meric-expression of 8 or -8.

ROTATE is useful in multi-precision or BCD arithmetic.

Examples:
0010 ROTATE(X$,1)
0010 ROTATE(Q$,-3)
0010 ROTATE(STR(Q$,6,4),4)
0010 ROTATE C(X$,A)
0010 ROTATE C(STR(X$,3,7),-8)

General Form:

ROTATE [C] (alpha-variable,numeric-expression)

Where:

-8 <= numeric-expression <= 8

ROTATE LANGUAGE STATEMENTS

2-610 NPL Statements Guide

ROTATE (cont.)
:0010 DIM A$4
:0020 A$=HEX(B4829410)
:0030 ROTATE(A$,4)
:0040 PRINT "AFTER ROTATE A$= HEX ";
:0050 HEXPRINT A$
:0060 A$=HEX(B4829410)
:0070 ROTATEC(A$,4)
:0080 PRINT "AFTER ROTATEC A$= HEX ";
:0090 HEXPRINT A$

:RUN
AFTER ROTATE A$= HEX 4B284901

AFTER ROTATEC A$= HEX 4829410B

Compatibility Issues:

References:

LANGUAGE STATEMENTS ROTATE

NPL Statements Guide 2-611

ROUND Function

Discussion:

The ROUND function is used to round a numeric-expression to a specified decimal place.

If the round-factor is greater than zero, the round-value is rounded to the number of digits
beyond the decimal point indicated by the round-factor. If the round-factor is less than
zero, the round-value is rounded to that position to the left of the decimal.

Examples:
0010 A=ROUND(B,C)
0010 A=ROUND(B,2)
0010 A=ROUND(351,2)

:PRINT ROUND(1.2579,1)
 1.3
:PRINT ROUND(1.2579,3)
 1.258
:PRINT ROUND(671,-2)
 700
:PRINT ROUND(671,-1)
 670

Compatibility Issues:

References:

General Form:

ROUND(round-value,round-factor)

Where:

round-value = a numeric-expression whose value is to be
rounded.

round-factor = a numeric-expression specifying the rounding fac-
tor. Valid wherever a numeric-expression is le-
gal.

ROUND Function LANGUAGE STATEMENTS

2-612 NPL Statements Guide

RUN Command

Discussion:

The RUN command is used to initiate execution of the program currently in memory.

Before execution of the program begins, the program is first resolved in memory. During
program resolution, a check is performed for syntax errors, variable and line-number ref-
erences. If errors are encountered, an error message is displayed and execution is termi-
nated.

When the RUN command is executed with no line-number specified, non-common vari-
ables are cleared from memory, GOSUB and FOR/TO information is cleared from the in-
ternal stack, program resolution occurs, and program execution begins.

Specifying a line-number causes the program to be resolved in memory and program exe-
cution begins at the specified line. All variables (common and non-common) remain un-
disturbed in memory. If the specified line-number does not exist in the program, a
runtime error P36 (Undefined Line Number or Continue Illegal) is generated.

The statement-number parameter allows execution to begin on a particular statement
within a multi-statement program line. Statements are numbered within a program line
from left to right, starting at 1.

Execution of the RUN command as a program statement is allowed. However, the line-
number and statement-number parameters are not allowed when used as a program state-
ment. Refer to RUN statement for details.

General Form:

RUN [line-number [,statement-number]]

LANGUAGE STATEMENTS RUN Command

NPL Statements Guide 2-613

RUN Command (cont.)

Examples:
:RUN
:RUN 100
:RUN 10,2
:0005 Y$="9/30/86"
:0010 PRINT "Today’s date is: ";Y$
:0020 PRINT "Company Name: " : REM (statement-number 1)
 : X$="Niakwa" : REM (statement-number 2)
 : PRINT X$: REM (statement-number 3)
:RUN
Today’s date is: 9/30/86
Company Name: Niakwa

:RUN 20,2
Niakwa

Execution of the RUN 20,2 command causes execution to begin at line 20, statement-
number 2 (X$="Niakwa").

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

Execution of the RUN command in NPL Revision 4.0 resets the current module to the
root (no name) module.

References:

LOAD RUN
RUN Statement

RUN Command LANGUAGE STATEMENTS

2-614 NPL Statements Guide

RUN Statement

Discussion:

The RUN statement is used to reinitiate execution of the program currently in memory.

Execution of the RUN statement has the following effects:

• The LIST module is reset to the RUN module.

• All FUNCTION and PROCEDURE return information is cleared from the stack.

• All GOSUB/RETURN and FOR/NEXT loop information is cleared from the
stack.

• All non-common variables are cleared (CLEAR N).

• The program is reresolved and execution starts from the beginning.

General Form:

RUN module-name[,return-var]

Where:

module-name = { alpha-variable }
{ literal-string }

return-var = { numeric-scalar }
{ num-array-element}

LANGUAGE STATEMENTS RUN Statement

NPL Statements Guide 2-615

The programmable RUN statement allows a program to perform dynamic dimensioning
of variables without reloading itself from disk. However, Revision 4.00 or greater allow
dynamic dimensioning of arrays using MAT REDIM.

RUN Statement LANGUAGE STATEMENTS

2-616 NPL Statements Guide

RUN Statement (cont.)

RUN as a program statement could also be used in an application that should completely
"restart" (including clearing all non-common variables and resetting them to blanks or ze-
roes).

Examples:

0010 RUN
0010 IF S>1 THEN RUN
0010 RUN PlotDriver$
0010 RUN "REPORT"
0010 RUN "AccountsReceivableSystemMenu",ExitCode

:0010 COM S
 :DIM A$(S)1 :REM Want A$() array as large as possible
 :IF S>0 THEN 20 :REM first time, S=0
 :S=SPACE-100 :REM after other variables are resolved
 :RUN :REM use rest of memory then re-run
:0020 REM start program
 :LIST DIM
:RUN
DIM A$(57222)1
COM S

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

Wang 2200 Basic-2 does not allow RUN as a programmable statement.

References:

LANGUAGE STATEMENTS RUN Statement

NPL Statements Guide 2-617

SAVE

Discussion:

The SAVE statement is used to save a program or a portion of a program currently in
memory to a designated diskimage. The disk catalog index is updated with the program
name, start-sector address, and end-sector address saved. All program lines from line-
number1 through line-number2 are saved on disk. If line-number1 is not specified, all
program lines from the first line in memory to line-number2 is saved. If line-number2 is
not specified, all program lines from line-number1 to the last line in memory are saved. If
no line-numbers are specified, the entire program in memory is saved.

NOTE: Presence of the "$" parameter specifies that a read-after-write is to be executed as
program text is saved on disk to verify that all text is written correctly to the disk.

General Form:

SAVE [<[W][S][R]>] T [$] [file-number,][([old-prog-name])][!]
 [disk-address,][space]
 [<address-var>,]
 new-prog-name [line-number1][,[line-number2]]

Where:

space = a numeric-expression which represents the number
of extra sectors to reserve in addition to the
program.

old-prog-name = an alpha-variable or literal containing the name
of an existing scratched file to be overwritten.

new-prog-name = an alpha-variable or literal containing the name
of the program to be saved.

line-number1 = the lowest line-number of the program to be saved.

line-number2 = the highest line-number of the program to be
saved.

SAVE LANGUAGE STATEMENTS

2-618 NPL Statements Guide

SAVE (cont.)

WARNING--If neither old-prog-name nor space parameters are specified, the file is
saved as a new file with space defaulting to a value of 0. If empty parenthesis () are
specified, the old-prog-name defaults to the same name as new-prog-name (e.g., SAVE
overwrites the scratched file with the same name as new-prog-name). If the scratched
file does not exist with the same name as new-prog-name, an error is generated (D84 -
File Not Scratched).

NOTE: The "!" parameter specifies that the program is to be saved in scramble protected
format. The entire program is scrambled as it is saved to the disk. This discourages
examination or modification of the program.

The SAVE statement cannot be used if any part of the currently loaded program was
scramble protected at the time it was loaded.

When issued from Immediate Mode, the SAVE command relocates files at the end of the
diskimage if the new-prog-name is the same as the old-prog-name (previously scratched
file) and insufficient space is available in old-prog-name. Otherwise, if insufficient space
is available in the diskimage, an error is generated.

On the non-interpretive RunTime program, executing SAVE generates an error unless the
line-number range does not include any program text.

Examples:
SAVE T "SP LOAD"
SAVE T "SP MENU"8000
SAVE T !"SECURITY"
SAVE T#2,"START"8000,8100
SAVE T !Q$
SAVE T#Q,()"PROGRAM"100,2000
SAVE T<A$>,()"PROGRAM"100,2000
SAVE T ("PROGRAM")"PROGRAM2"
SAVE T/D20,(10)X$
SAVE T ()X$

LANGUAGE STATEMENTS SAVE

NPL Statements Guide 2-619

SAVE (cont.)

Compatibility Issues:

In Wang 2200 Basic-2, programs are saved in atomized 2200 executable format. In NPL,
programs are saved in p-code format.

In Wang 2200 Basic-2, the "< S>" parameter specifies that all spaces within a program
are to be removed as it is stored on disk. NPL supports the < S> parameter syntax for
compatibility purposes, but this parameter has no effect on the SAVE statement at run-
time.

In Wang 2200 Basic-2, the "< SR>" parameter specifies that all insignificant spaces and
REM’s within a program are to be removed as it is stored on disk. NPL supports the <
SR> parameter syntax for compatibility purposes, but this parameter has no effect on the
SAVE statement at runtime.

In Wang 2200 Basic-2 Revision 3.0 and higher, the < W> parameter specifies that sector
boundaries are to be ignored when saving the program. Sector boundaries are always ig-
nored in NPL. Therefore this operation performs no operation in NPL. It is supported for
syntactical compatibility only.

The "< W>" parameter is recognized only on NPL Revision 3.0 or greater.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

In NPL, REM’s can be removed as they are entered by setting the system variable
$KEEPREMS to HEX(00). Refer to $KEEPREMS system variable for details on remov-
ing REM’s and spaces within a program. REM’s can also be removed when compiling
programs by specifying the compiler KEEPREMS option OFF. Refer to Compiler Opera-
tions, Chapter 14 of the Programmer’s Guide for details.

In Wang 2200 Basic-2, a "P" parameter may be specified in place of the "!" parameter
which specifies that the program is to be "Protected" but not scrambled. This is not sup-
ported by NPL.

In Wang 2200 Basic-2, programs are not automatically relocated at the end of the
diskimage.

SAVE LANGUAGE STATEMENTS

2-620 NPL Statements Guide

In NPL Revision 4.0, the SAVE command acts upon the current list module.

LANGUAGE STATEMENTS SAVE

NPL Statements Guide 2-621

SAVE (cont.)

NPL Revision 4.0 or greater requires enough free memory to make a copy of the largest
program line being saved to SAVE a program. Applications that run with very little free
memory or which have very large program lines may need to do a CLEAR N or CLEAR
V to free up enough memory to perform the SAVE operation.

WARNING--It is possible that a program might be loaded with insufficient memory to
save it.

References:

$KEEPREMS
OBJFORMAT Option - Section 14.7 of the Programmer’s Guide
Loading Programs - Section 5.3 of the Programmer’s Guide

SAVE LANGUAGE STATEMENTS

2-622 NPL Statements Guide

SAVE BOOT Command

Discussion:

The SAVE BOOT command is used to save bootstrap programs to the native file system.
A bootstrap program is a NPL program which is saved as a native file and is automat-
ically loaded and executed by the RunTime at initial start up. Refer to the appropriate
NPL Supplement for details.

When progname is omitted or blank, the "default" boot program name is assumed. In-
itially, the "default" boot program name is either BOOT, or the name of the boot program
specified on the command line when the RunTime Program was invoked.

If the native operating system allows extensions, a .OBJ extension is assumed or no exten-
sion is specified.

The "default" boot program name is changed any time a LOAD BOOT or SAVE BOOT
command is entered with an explicit filename.

When saving a bootstrap program, any existing file in the current directory with the same
name is replaced.

For immediate mode SAVE BOOT commands, program text from the current LIST mod-
ule is saved. For other SAVE BOOT commands, program text from the executing mod-
ule is saved.

NOTE: Scramble protection and partial program saving (line-number ranges) options are
not supported by the SAVE BOOT command.

SAVE BOOT cannot be used if any part of a currently loaded program was scramble-pro-
tected at the time it was loaded.

General Form:

SAVE BOOT [progname]

Where:

progname = an alpha-variable or literal-string containing the na-
tive file-specification of a bootstrap program.

LANGUAGE STATEMENTS SAVE BOOT Command

NPL Statements Guide 2-623

SAVE BOOT (cont.)

Programs saved by SAVE BOOT may also be used by the PREBOOT (/P) option. Refer
to Chapter 4 of the appropriate Supplement for information on the preboot option.

Examples:
:SAVE BOOT
:SAVE BOOT "UTILITY" :REM Saves a program named "UTILITY.OBJ"

to the currently selected native
file system directory.

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

The SAVE BOOT command is not a valid instruction in Wang 2200 Basic-2.

In NPL Revision 4.0, the SAVE command acts upon the current list module.

References:

LOAD BOOT
Loading Programs - Section 5.3 of the Programmer’s Guide

SAVE BOOT Command LANGUAGE STATEMENTS

2-624 NPL Statements Guide

SAVE DA

NOTE: The use of this statement is not recommended. Refer to SAVE as a better alternative.

Discussion:

The SAVE DA command is used to save a program or a portion of a program currently in
memory into a designated diskimage without accessing the catalog index. All program
lines from line-number1 to line-number2 are saved on disk. If line-number1 is not speci-
fied, all program lines from the first line-number in memory to line-number2 is saved. If
line-number2 is not specified, all program lines from line-number1 to the last line-num-
ber in memory is saved.

NOTE: Presence of the "$" parameter specifies that a read-after-write is to be executed as
program text is saved on disk to verify that all text was written correctly.

Expr1 contains the first sector-number to be saved. If expr1 is an alpha-variable, the bi-
nary value of the first two bytes is used.

Use of an alpha-variable to contain sector addresses results in improper sectors being ac-
cessed if extended (greater than 16 MB) diskimages are in use and the sector numbers be-
ing accessed are greater than 65355. Refer to Section 7.3.10 of the Programmer’s Guide
for further programming considerations for use of extended diskimages.

General Form:

SAVE DA [<[W][S][R]>] T[$] [file-number,](expr1[,return-value])
 [disk-address,]
 [<address-var> ,]
 [line-number1][,[line-number2]]

Where:

expr1 = an alpha-variable or numeric-expression.

return-value = an alpha-variable or numeric-expression.

line-number1 = the lowest line-number in the program to be saved.

line-number2 = the highest line-number in the program to be saved.

LANGUAGE STATEMENTS SAVE DA

NPL Statements Guide 2-625

SAVE DA (cont.)

The return-value performs no operation in NPL. The return-value does not affect opera-
tion of the SAVE DA statement at runtime. No value is returned to the return-value if
specified.

On the non-interpretive RunTime Program, executing SAVE generates an error unless
the line-number range does not include any program text.

No catalog information is read by SAVE DA. It is the programmer’s responsibility to en-
sure that the program is saved at the correct sector address and does not overwrite other
programs or data files unintentionally. Use of SAVE DA is to be avoided where possible
in favor of cataloged SAVE statements.

Examples:
SAVE DAT(100)
SAVE DAT$/D12,(Q,Q)8000,8100
SAVE DAT#2,(Q$,Q$)
SAVE DAT<A$>,(Q$,Q$)
SAVE DAT#Q,(1000)

Compatibility Issues:

In Wang 2200 Basic-2, programs are saved in atomized 2200 executable format. In NPL,
programs are saved in p-code format.

In Wang 2200 Basic-2, the "< S>" parameter specifies that all spaces within a program
are to be removed as it is stored on disk. NPL supports the < S> parameter syntax for
compatibility purposes, but this parameter has no effect on the SAVE statement at run-
time. In Wang 2200 Basic-2, the "< SR>" parameter specifies that all insignificant spaces
and REM’s within a program are to be removed as it is stored on disk. NPL supports the
< SR> parameter syntax for compatibility purposes, but this parameter has no effect on
the SAVE statement at runtime.

In Wang 2200 Basic-2 Revision 3.0 and higher, the "< W>" parameter specifies that sec-
tor boundaries are to be ignored when saving the program. Sector boundaries are always
ignored in NPL. Therefore this option performs no operation in NPL. It is supported for
syntactical compatibility only.

SAVE DA LANGUAGE STATEMENTS

2-626 NPL Statements Guide

SAVE DA (cont.)

The "< W>" parameter is recognized only on NPL Revision 3.0 or greater.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

In NPL, REM’s can be removed as they are entered by setting the system variable
$KEEPREMS to HEX(00). Refer to $KEEPREMS system variable for details on remov-
ing REM’s and spaces within a program. REM’s can also be removed when compiling
programs by specifying the compiler KEEPREMS option OFF. Refer to Compiler Opera-
tions, Chapter 14 of the Programmer’s Guide for further details.

In Wang 2200 Basic-2, the return-value returns the sector immediately following the last
sector accessed by the SAVE DA operation. The return-value does not affect operation of
the SAVE DA statement in NPL. No value is returned in the return-value if specified.
The syntax is supported for compatibility purposes only.

In NPL Revision 4.0, the SAVE DA command acts upon the current list module.

References:

$KEEPREMS
OBJFORMAT Option - Section 14.7 of the Programmer’s Guide
Loading Programs - Section 5.3 of the Programmer’s Guide

LANGUAGE STATEMENTS SAVE DA

NPL Statements Guide 2-627

SCRATCH

Discussion:

The SCRATCH statement is used to set the status of a file or files to a scratched condi-
tion. It does not delete the filename from the catalog index nor does it alter the contents
of the file itself except for the file trailer sector. The sectors used by scratched files can
be reused to save new programs or data files.

A file is scratched to allow its contents to be overwritten (using DATA SAVE DC OPEN
or SAVE statements) or to remove its name from the catalog index and its contents from
the catalog area by execution of a MOVE statement.

NOTE: As of Revision 3.0 of NPL, programs may be resaved without first scratching them
by use of the RESAVE statement.

Once a file has been scratched, it is no longer accessible with DATALOAD DC OPEN or
LOAD statements, although it can be renamed or reused by DATASAVE DC OPEN or
SAVE statements.

NOTE: As of Revision 3.0 of NPL, files can be renamed without first scratching them by use
of the RENAME statement.

As of Revision 3.0 of NPL, files which are SCRATCHed in error may be set back to nor-
mal status by use of the UNSCRATCH statement.

General Form:

SCRATCH T [file-number,] file-name [,file-name]...
 [disk-address,]
 [<address-var>,]

Where:

file-name = an alpha-variable or literal-string containing the
name of the existing cataloged file to be scratched.

SCRATCH LANGUAGE STATEMENTS

2-628 NPL Statements Guide

SCRATCH (cont.)

Examples:
0010 SCRATCH T"START",Q$
0010 SCRATCH T X$,X1$,X2$
0010 SCRATCH T#Y,"SP MENU"
:SCRATCH T"START"
:SCRATCH T/D32,"START","SP START","SECURITY"
:SCRATCH T<A$>,"PROGRAM"

Compatibility Issues:

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

SAVE
LOAD
DATA SAVE DC OPEN
DATA LOAD DC OPEN
MOVE
RESAVE
UNSCRATCH

LANGUAGE STATEMENTS SCRATCH

NPL Statements Guide 2-629

SCRATCH DISK

Discussion:

The SCRATCH DISK statement is used to create a new diskimage or to delete and recre-
ate existing diskimages.

The SCRATCH DISK statement is also used to define the physical size of a disk device.
When directed to diskimage files, the diskimage is deleted (if already existing) and then
recreated to the size of the specified END= expression, provided physical disk space is
available. When directed to "raw" diskette devices, the index is cleared and the physical
end of catalog is set.

The ’ option specifies the alternate hashing method is to be used when scratching the
diskimage.

The "LS" parameter is used to specify the size of the catalog index. If no "LS" parameter
is specified, a default value of 24 is used. The first index sector in the catalog index can
hold up to 15 index entries, all other sectors in the catalog index hold up to 16 index en-
tries. A maximum of 255 sectors is allowed for the catalog index size. The formula for
calculating the maximum number of files in an index catalog is:

General Form:

SCRATCH DISK [’]T [file-number,][LS=value1,] END=value2
 [disk-address,]
 [<address-var>,]

Where:

’ = specifies the alternate hashing method is to be used.

value1 = a numeric- expression which represents the required size
of the Catalog Index whose value is from 1 to 255. The
default value if not specified is 24.

value2 = a numeric- expression which represents the highest sec-
tor address in the Catalog area. The expression must be
less than or equal to highest sector address available
on disk.

SCRATCH DISK LANGUAGE STATEMENTS

2-630 NPL Statements Guide

SCRATCH DISK (cont.)

(assuming LS=X)
Maximum # of Files = (X-1)*16+15

The "END" parameter is used to specify the end of the catalog area to be used for storing
cataloged files.

WARNING--This statement removes all data and programs from an existing diskimage
and should be used with appropriate caution.

Examples:
0010 SCRATCH DISK T LS=127, END=19583
0010 SCRATCH DISK T#1, END=3873
0010 SCRATCH DISK T END=32607
0010 SCRATCH DISK T/D11, LS=11, END=1231
0010 SCRATCH DISK T<A$>, LS=11, END=1231
0010 SCRATCH DISK T LS=Q, END=Q1
0010 SCRATCH DISK T#X, LS=31, END=X2
0010 SCRATCH DISK ’T/D12, LS=20, END=4799

:SCRATCH DISK T/D60,LS=10,END=1279
:LIST DC T/D60
$DEVICE(/D60) ="/BASIC2C/PROGS.BS2"
INDEX SECTORS = 10
END SECTORS = 1279
CURRENT END = 9

FILE TYPE START END USED FREE DATE TIME
:

Compatibility Issues:

In NPL, the SCRATCH DISK statement performs the function of defining the size of a
diskimage file. The diskimage file is actually deleted and then recreated to the size of the
specified END= value. In the Wang 2200 Basic-2, devices are not actually deleted and
recreated. The physical device is simply cleared to the specified size.

Operation of SCRATCH DISK is operating system dependent. Refer to Diskimage Files
and Raw Disk Devices in the NPL Supplement(s) for details.

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

LANGUAGE STATEMENTS SCRATCH DISK

NPL Statements Guide 2-631

SCRATCH DISK (cont.)

References:

Native Operating System Files as Diskimages - Section 7.3.4 of the Programmer’s Guide
Native Operating System "Raw" Devices as Diskimages - Section 7.3.5 of the Program-
mer’s Guide

SCRATCH DISK LANGUAGE STATEMENTS

2-632 NPL Statements Guide

$SCREEN

Discussion:

This statement allows a NPL application program to examine or modify the current
screen translation table. Form 1 allows the $SCREEN system variable to be modified.
Form 2 allows the $SCREEN system variable to be examined.

The $SCREEN system variable contains the 256-byte screen translation table currently in
effect. The screen translation table contains the character equivalents to be sent to the
screen in place of the character received from the NPL program. Byte 1 contains the re-
placement character for HEX(00), byte 256 contains the replacement character for
HEX(FF), etc.

For example:

10 DIM X$(256)1
20 X$()=$SCREEN : REM PLACE CURRENT TABLE IN X$
30 PRINT STR(X$(),66,2): REM RESULTS WOULD BE "AB"
40 STR(X$(),66,1)="B" : REM REPLACE CHARACTER IN POSITION 66
 (VAL(HEX(41))+1) WITH THE CHARACTER "B"
50 $SCREEN=X$() : REM MODIFY SCREEN TRANSLATION TABLE

The effect of this character is that whenever the character "A" is sent to the screen, the
character "B" appears.

General Form:

Form 1:

$SCREEN=alpha-expression

Form 2:

alpha-receiver =$SCREEN

Where:

alpha-expression = length of 256 characters.

LANGUAGE STATEMENTS $SCREEN

NPL Statements Guide 2-633

$SCREEN (cont.)

Changes made to the screen translation table using the $SCREEN statement go into ef-
fect immediately and remain in effect, unless further modifications are made or until the
end of the current RunTime session. Changes are not retained from one session to the
next. To make more permanent modifications to the screen translation table, please use
the Screen Translation Table Editor Utility. Refer to the appropriate NPL Supplement for
further details.

NOTE: The values of characters in the $SCREEN system variable refer to the character set
of the native operating system. Available character sets vary from one machine to
another. Refer to the appropriate NPL Supplement for details.

Compatibility Issues:

$SCREEN statement is not a valid instruction in Wang 2200 Basic-2.

Default values for $SCREEN vary from one machine to another. Refer to the appropriate
NPL Supplement for hardware-specific details.

References:

Screen Translation Table Editor - Chapter 13 of the Programmer’s Guide
Screen Handling - Chapter 7 of the Programmer’s Guide

$SCREEN LANGUAGE STATEMENTS

2-634 NPL Statements Guide

SELECT

General Form:

SELECT select-item [,select-item]...

Where:

select-item = { PRINT } select-specification
{ LIST }
{ CO }
{ CI }
{ INPUT }
{ DISK }
{ TAPE }
{ PLOT }
{ D,R,G }
{ ERROR }
{ ROUND }
{ P }
{ LINE }
{ @PART }
{ #expr }
{ LOG }
{ TERMINAL }
{ ON,OFF }
{ DRIVER }
{ ON CLEAR }
{ TC }
{ LISTLINE }

expr = an integer, numeric-scalar or numeric-ar-
ray-element whose value is a valid device
number
(0 <= expr <= 255).

select-specification = defined by individual SELECT statements.

LANGUAGE STATEMENTS SELECT

NPL Statements Guide 2-635

SELECT (cont.)

Discussion:

The SELECT statement is used to assign multiple select-items separated by commas. Re-
fer to the individual SELECT statements for detailed information on each select-item.

Examples:

Compatibility Issues:

References:

SELECT LANGUAGE STATEMENTS

2-636 NPL Statements Guide

$SELECT

Discussion:

The $SELECT function allows program inspection of the currently established default de-
vices in the Internal Device Table. The returned value is a 3-byte device-address in AS-
CII format for all device specifications except PRINT, LIST, and CO when the optional
WIDTH keyword is specified. For PRINT, LIST, and CO when WIDTH is specified, the
returned value includes the 3 byte device-address followed by a WIDTH field. The
WIDTH field may be 3 to 5 characters in length and is comprised of the current width
value in ASCII enclosed by parenthesis. There are no spaces between the device-address
and the WIDTH field returned.

The $SELECT function could be used to preserve the status of, for example, the SE-
LECT PRINT address. Selecting the screen address, operator messages can then be di-
rected to the screen before reselecting the original PRINT address.

General Form:

alpha-receiver = [$] SELECT{(internal-device-table-entry)}
 {internal-device-table-entry }

Where:

internal-device-table-entry = { PRINT [WIDTH]}
{ LIST [WIDTH] }
{ CO [WIDTH] }
{ CI }
{ INPUT }
{ DISK }
{ TAPE }
{ LOG }
{ PLOT }
{ #expr }

expr = a numeric-expression whose value
is a valid device number
(0 <= expr <= 255).

LANGUAGE STATEMENTS $SELECT

NPL Statements Guide 2-637

$SELECT (cont.)

NOTE: Since the width parameter, if specified, is returned as part of an alpha-variable, it
can not be used directly to reestablish the width when reselecting a device. It must
be converted to a numeric value first.

For example:

0010 A$=SELECT PRINT WIDTH
0020 SELECT PRINT 005(80)
0030 PRINT "Message to the operator"
0040 CONVERT STR(A$,5,NUM(STR(A$,5))) TO W: REM extract width
0050 SELECT PRINT <A$>(W): REM reselect original address and width

In Immediate Mode, the values of the Internal Device Table are more easily inspected us-
ing LIST DT. However, if the current value of the SELECT LIST device is unknown, it
can best be determined by use of $SELECT.

Examples:
0010 X$=SELECT PRINT WIDTH
0010 Y$=SELECT DISK
0010 X$=SELECT LIST

:0010 SELECT #1/D20
:0020 A$=SELECT #1
:0030 PRINT "ADDRESS #1=";A$
:0040 A$=SELECT PRINT WIDTH
:0050 PRINT "CURRENT PRINT ADDRESS =";A$
:RUN
ADDRESS #1=D20
CURRENT PRINT ADDRESS=005(80)

Compatibility Issues:

The $SELECT function is implemented in Revision 2.00 and greater of NPL.

As of Revision 3.0 and higher of NPL, the syntax of $SELECT has been modified to sup-
port the Wang Basic-2 syntax in addition to the original NPL syntax. The $ preceding the
statement and the parenthesis around the specified internal-device-table-entry are now op-
tional. Previously supported syntax is still recognized by the compiler and RTI. Which
syntax is generated by the de-compiler is determined by the status of the $KEEPREMS
(in RTI) or the KEEPREMS option (in B2C) when the statement is originally compiled.
Statements compiled with KEEPREMS ON using Revision 3.0 or greater of B2C or RTI
are de-compiled using the same syntax as entered. Statements compiled with
KEEPREMS OFF or with earlier versions of B2C or RTI are de-compiled using the origi-
nal NPL syntax.

$SELECT LANGUAGE STATEMENTS

2-638 NPL Statements Guide

$SELECT (cont.)

The Width parameter for PRINT, LIST, and CO is supported only in Revision 3.0 or
higher of NPL. The Width parameter is not supported in Wang Basic-2.

The LOG internal device table entry is supported only in NPL Revision 3.0 or greater and
is not supported on the Wang 2200.

References:

SELECT
LIST DT
Internal Device Table - Section 7.2.3 of the Programmer’s Guide

LANGUAGE STATEMENTS $SELECT

NPL Statements Guide 2-639

SELECT @PART

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development performs no operation.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
When executed under NPL, the alpha-variable or literal-string must be blank or an error
X77-Invalid Partition Reference is generated.

Examples:

Compatibility Issues:

In Wang 2200 Basic-2, the SELECT @PART instruction specifies that a global partition
is to be referenced by the partition SELECT @PART is executed from. In NPL, global
partitions are not supported. This statement is supported for syntactical purposes only.

Global partitions are not supported by NPL.

References:

General Form:

SELECT @PART {alpha-variable}
 {literal-string}

SELECT @PART LANGUAGE STATEMENTS

2-640 NPL Statements Guide

SELECT CI

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development performs no operation.

Discussion:

The SELECT CI statement sets the Console Input entry in the Internal Device Table to
the specified device-address. This entry in the Internal Device Table performs no opera-
tion. This statement is supported for syntactical purposes only.

The slash designation used as part of the standard device-address is optional with this
statement.

Examples:
0010 SELECT CI 001
:SELECT CI 001

Compatibility Issues:

In Wang 2200 Basic-2, the Console Input entry in the Internal Device Table specifies the
device-address for keyboard input. In NPL, this entry in the Internal Device Table per-
forms no operation (NOP). Keyboard input is always entered from the default device-ad-
dress /001. This statement is supported for syntactical purposes only.

References:

General Form:

SELECT CI {device-address }
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable in which the first three bytes
contain an ASCII representation of a hexdigit
(0-9; A-F).

LANGUAGE STATEMENTS SELECT CI

NPL Statements Guide 2-641

SELECT CO

NOTE: Discussion:

The SELECT CO statement sets the Console Output entry in the Internal Device Table to
the specified device-address. All output produced by TRACE Mode is directed to the
specified Console Output device-address (usually the screen or printer).

The width parameter is used to format the CO output to a designated line width. If the
width is omitted, the lastline width selected for a CO operation is used. The default line
width established at boot time is set equal to the maximum line width of the primary ter-
minal. A specified line width of (0) indicates that line width is disregarded entirely, and
that a carriage return is not issued until the entire output line has been printed, regardless
of length.

Programmers should be aware that, in addition, a CLEAR command (with no parameters
specified) copies the CO address and width to the SELECT PRINT and LIST addresses
and widths.

The slash designation used as part of the standard device-address is optional with this
statement.

General Form:

SELECT CO {device-address } [(width)]
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable in which the first three bytes
contain an ASCII representation of a hexdigit
(0-9; A-F).

width = a numeric-expression indicating optional line
width for the output device, in the range 0-255.

SELECT CO LANGUAGE STATEMENTS

2-642 NPL Statements Guide

SELECT CO (cont.)

Examples:
:SELECT CO 215
:SELECT CO 005
0010 SELECT CO 215

Compatibility Issues:

References:

TRACE

LANGUAGE STATEMENTS SELECT CO

NPL Statements Guide 2-643

SELECT D,R,G

Discussion:

The SELECT {D,R,G} statement sets the mathematics mode entry in the Internal Device
Table to the specified type. The default mathematical mode entry in the Internal Device
Table is Radians. This entry can be changed by executing another SELECT {D,R,G}
statement or by reentering the RunTime Program.

The mathematical mode entry specifies the type of measure being used during trigono-
metric functions (SIN, COS, TAN, ARCSIN, ATN, ARCCOS).

The value of 360 degrees is represented as follows using the different units of measure:

• 2*#PI radians

• 400 gradians

• 1 revolution

General Form:

SELECT {D}
 {R}
 {G}

Where:

D = specifies Degrees.

R = specifies Radians.

G = specifies Gradians.

SELECT D,R,G LANGUAGE STATEMENTS

2-644 NPL Statements Guide

SELECT D,R,G (cont.)

Examples:
0010 SELECT R
0010 SELECT G
0010 SELECT D
:0010 SELECT R
 : PRINT SIN(360)
:0020 SELECT D
 : PRINT SIN(360)
:0030 SELECT G
 : PRINT SIN(360)
:RUN
.95891572342024
 0
-.58778525229251

Compatibility Issues:

References:

LANGUAGE STATEMENTS SELECT D,R,G

NPL Statements Guide 2-645

SELECT DISK/FILE-NUMBER

Discussion:

The SELECT DISK statement sets the Current Disk entry in the Internal Device Table to
the specified device-address.

This entry in the device table is used for any disk instructions which do not explicitly
specify a disk-address or file-number (i.e., LIST DC, DATALOAD, SAVE, etc.).

The #expr specifies the file-number slot in the Internal Device Table to be assigned the
specified device-address. Specifying file-number #0 is the equivalent of the DISK pa-
rameter.

Valid File #s

File #0 through file #15 are always valid file #s. Additional file #s may be defined by use
of an expression which is a constant in the range of 16 to 255. For example:

SELECT #32 /D30

establishes file #0 through file #32 as valid.

For each additional file # defined, 24 bytes of the user partition are allocated. Should in-
sufficient memory be available, an A01 error (Memory Overflow, Text < ---> Variable
Table) occurs.

General Form:

SELECT {DISK } {device-address }
 {#expr } {<alpha-variable>}

Where:

alpha-variable = an alpha-variable in which the first three bytes
contain an ASCII representation of a hexdigit (0-
9; A-F).

expr = an integer, numeric-scalar or numeric-array-ele-
ment whose value is a valid device number.

SELECT DISK/FILE-NUMBER LANGUAGE STATEMENTS

2-646 NPL Statements Guide

SELECT DISK/FILE-NUMBER (cont.)

Allocation of additional file #s takes place at resolution time. If multiple SELECT # con-
stant statements are present, the highest constant specified becomes the highest valid file
#. Once allocated, file #s above 15 are de-allocated only by the CLEAR and LOAD RUN
statements.

Attempting to use a variable for a file # above 16 generates a P34 error (Illegal Value) if
the file # specified exceeds the current defined maximum as described above.

For example:

0010 SELECT #32 /D30
0020 A=32
0030 SELECT #A /D30
0040 B=33
0050 SELECT #B /D30

produces a P34 (Illegal Value) error on line 50 since the value of B (33) is higher than the
currently defined file # maximum (set at 32 in line 10).

Examples:
0010 SELECT DISK/D11
0010 SELECT #1/215,#2/D11,#3/D10
0010 SELECT #4/D12
0010 SELECT #A1<A$>
:SELECT DISK/D10
:SELECT DISK<A$>
:SELECT #1/D11

Compatibility Issues:

Use of file #s above #15 is supported only on NPL Revisions 3.0 and greater.

The method of implementation for support of file #s greater than #15 is fully compatible
with the method used in Wang Basic-2 Revision 3.1.

References:

Internal Device Table - Section 7.2.3 of the Programmer’s Guide

LANGUAGE STATEMENTS SELECT DISK/FILE-NUMBER

NPL Statements Guide 2-647

SELECT DRIVER

The compiler generates a warning when this statement is encountered.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
No operation is performed when this statement is encountered at execution time.

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, is used to enable or disable use
of the generalized printer driver.

Under NPL, the generalized printer driver is not supported.

This statement is syntactically recognized only by NPL Revision 3.0 or greater.

References:

General Form:

SELECT DRIVER {device-address } [OFF]
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable in which the first three
bytes contain an ASCII representation of a
hexdigit (0-9; A-F).

SELECT DRIVER LANGUAGE STATEMENTS

2-648 NPL Statements Guide

SELECT ERROR

Discussion:

The SELECT ERROR statement is used to suppress system error messages caused by
computational errors. Computational errors are those errors produced during the execu-
tion of arithmetic operations or functions.

NOTE: The value for SELECT ERROR affects all modules.

Normally, computational errors cause program execution to terminate followed by an er-
ror message. The SELECT ERROR statement can be used to suppress the error condition
and allow the program to continue normally. The value of the receiver after a computa-
tional error varies depending on the type of error encountered. The computational errors
and the returned values are listed on the following page.

General Form:

SELECT ERROR [> error-code]

Where:

error-code = any computational error-code (60-69).

LANGUAGE STATEMENTS SELECT ERROR

NPL Statements Guide 2-649

SELECT ERROR (cont.)

Computational Errors and Returned Values:

C60 Underflow Returned Value: 0
C61 Overflow Returned Value: Largest positive number if

actual result is positive. Largest negative
number if actual result is negative.

C62 Division by zero Returned Value: Largest positive number if
number divided is positive. Largest negative
number if number divided is negative.

C63 Zero raised to zero power, or
zero divided by zero.

Returned Value: 0

C64 Zero raised to negative power Returned Value: Largest positive number.
C65 Negative number X raised to

non-integer power Y
Returned Value: ABS(X)^Y

C66 SQR of negative value (X) Returned Value: SQR(ABS(X))
C67 LOG of zero Returned Value: Largest negative number.
C68 LOG of negative value X Returned Value: LOG(ABS(X))
C69 Argument too large for

specified trig function
Returned Value: 0

The SELECT ERROR statement sets the ERROR entry in the Internal Device Table. All
error messages less than or equal to this entry are suppressed. The SELECT ERROR
status is returned to normal by execution of a CLEAR or LOAD RUN command.

NOTE: Error conditions which have been suppressed using the SELECT ERROR state-
ment can not be detected using an ERROR statement until SELECT ERROR status
is returned to normal. However, the occurrence of suppressed errors may be de-
tected by inspecting ERR both before and after potential errors. A non-zero value
after a calculation indicates a suppressed error occurred.

Examples:
0010 SELECT ERROR > 60
0010 SELECT ERROR > 69

:SELECT ERROR > 65

SELECT ERROR LANGUAGE STATEMENTS

2-650 NPL Statements Guide

SELECT ERROR (cont.)

Compatibility Issues:

Some hardware versions support the use of optional math coprocessor hardware if appro-
priate interface drivers are installed. The range and precision of results near the math
function singularities dealt with by SELECT ERROR may vary if this option is in use.

References:

ERROR

LANGUAGE STATEMENTS SELECT ERROR

NPL Statements Guide 2-651

SELECT INPUT

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development performs no operation.

Discussion:

The SELECT INPUT statement sets the INPUT entry in the Internal Device Table to the
specified device-address. This entry in the Internal Device Table performs no operation
(NOP). This statement is supported for syntactical purposes only.

The slash designation used as part of the standard device-address is optional with this
statement.

Examples:
0010 SELECT INPUT 001
:SELECT INPUT 001

Compatibility Issues:

In Wang 2200 Basic-2, the INPUT entry in the Internal Device Table specifies the device-
address for INPUT, LINPUT, and KEYIN statements. In NPL, this entry in the Internal
Device Table performs no operation. Input for these statements is always entered from
the default device-address /001. This statement is supported for syntactical purposes only.

References:

General Form:

SELECT INPUT {device-address }
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable in which the first three bytes
contain an ASCII representation of a hexdigit (0-
9; A-F).

SELECT INPUT LANGUAGE STATEMENTS

2-652 NPL Statements Guide

SELECT LINE

Discussion:

The SELECT LINE statement sets the LINE entry in the Internal Device Table to the
specified value.

This entry in the device table is used to specify the maximum number of lines to be listed
at one time on a screen by any LIST command or statement when the page break is in ef-
fect (LIST F option not specified).

SELECT LINE may also affect the result of PRINT AT function when this is used to
erase to "end of screen". Otherwise, the output from PRINT or PRINTUSING statement
in a program is not affected by the current SELECT LINE value.

The SELECT LINE value defaults to the size of the screen (24 lines) upon entering the
RunTime Program.

Examples:
0010 SELECT LINE 67
0010 SELECT LINE X+Y-3
:SELECT LINE 16
:SELECT LINE 24
:SELECT LINE 32

Compatibility Issues:

On previous releases of NPL, SELECT LINE also affected LIST output directed to a
printer. As of Revision 3.0 of NPL, the number of lines for LIST output directed to a
printer is controlled by SELECT LISTLINE.

References:

LIST
PRINT AT
SELECT LISTLINE

General Form:

SELECT LINE expression

LANGUAGE STATEMENTS SELECT LINE

NPL Statements Guide 2-653

SELECT LIST

Discussion:

The SELECT LIST statement sets the LIST entry in the Internal Device Table to the
specified device-address. Output generated by all of the LIST commands and its deriva-
tives is directed to this device-address.

The width expression is used to format the LIST output to a designated line width. If the
width is omitted, the last line width selected for a LIST operation is used. The default line
width established at boot time is set equal to the maximum line width of the primary ter-
minal. A specified line width of (0) indicates that line width is disregarded entirely, and
that a carriage return is not issued until the entire output line has been printed, regardless
of length.

Examples:
0010 SELECT LIST 005
0010 SELECT LIST 215(132)
:SELECT LIST <A$>
:SELECT LIST <A$>(80)

Compatibility Issues:

References:

General Form:

SELECT LIST {device-address }[(width)]
 {<alpha-variable> }

Where:

alpha-variable = an alpha-variable wherein the first three bytes
contain an ASCII representation of a hexdigit (0-
9; A-F).

width = a numeric-expression indicating optional line
width for the output device, in the range 0-255.

SELECT LIST LANGUAGE STATEMENTS

2-649 NPL Statements Guide

SELECT LISTLINE

Discussion:

The SELECT LISTLINE statement sets the LISTLINE entry in the Internal Device Table
to the specified value.

This entry in the device table is used to specify the maximum number of lines to be listed
at one time to a printer by any LIST command or statement when the page break is in ef-
fect (LIST S option specified).

The SELECT LISTLINE value defaults to a value of 55 lines upon entering the RunTime
Program.

The current SELECT LISTLINE value may be examined by use of the LIST DT com-
mand.

Refer to LIST, general parameters, for further information on operation of the S option.

Examples:
0010 SELECT LISTLINE 67
0010 SELECT LISTLINE X+Y-3
:SELECT LISTLINE 16
:SELECT LISTLINE 24
:SELECT LISTLINE 32

Compatibility Issues:

This statement is supported only with Release 3.0 or greater and is not supported on the
Wang 2200.

References:

LIST
PRINT AT
SELECT LIST

General Form:

SELECT LISTLINE expression

LANGUAGE STATEMENTS SELECT LISTLINE

NPL Statements Guide 2-650

SELECT LOG

Discussion:

The SELECT LOG statement is used to select a specific output device to be used for key-
board logging operations and set the ON/OFF status of keyboard logging. The specified
address is recorded in the Internal Device Table. The default SELECT LOG address is
/000.

Typical use of the keyboard logging capability requires that the device-address specified
is a print class device which has been defined using $DEVICE as a native operating sys-
tem file.

Keyboard Logging Status:

The keyboard logging status is set to ON whenever the optional OFF keyword is not
specified. Specification of the OFF keyword sets the keyboard logging status to OFF.
When keyboard logging is set to ON by the SELECT LOG statement, keyboard logging
to the specified device address begins immediately.

Keyboard logging status may also be modified by the operator using the Enable/Disable
Keyboard Logging options on the Diag screen of the Help Processor.

NOTE: Operator options for enabling/disabling keyboard logging may be suppressed by set-
ting on the HEX(04) bit of byte 33 of $OPTIONS. Refer to $OPTIONS for further
details.

General Form:

SELECT LOG {device-address } [OFF]
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable wherein the first three bytes
contain an ASCII representation of a hexdigit (0-
9; A-F).

SELECT LOG LANGUAGE STATEMENTS

2-651 NPL Statements Guide

SELECT LOG (cont.)

Examining Keyboard Logging Status and Address:

The current ON/OFF status of keyboard logging is contained the HEX(02) bit of byte 19
of $MACHINE. Refer to $MACHINE for details. The current SELECT LOG address
may be examined by use of the $SELECT FUNCTION:

X$=$SELECT(LOG)

In addition, LISTDT displays the current SELECT LOG address and status.

Output Generated by Keyboard Logging:

When Keyboard Logging status is on, keys pressed by the operator (with the exceptions
noted below) are written to the device address specified by SELECT LOG. Special keys
are expanded to the format recognized by $DEMO. Refer to Section 12.4.2 of the Pro-
grammer’s Guide for details on the "special key" format used.

Keys are not written to the specified log address in the following circumstances:

• The HELP key is not written.

• All keys pressed while in the HELP Processor are not written.

• All keys processed by a polling KEYIN are not written.

When keyboard output is logged to a native operating system ASCII file, the resulting
file is suitable for use as a $DEMO script provided that polling KEYIN was not used by
the application. If desired, other $DEMO features such as BOX statements or REM state-
ments may be added to the log file before use with $DEMO by use of a text editor. Refer
to $DEMO and to Chapter 12 of the Programmer’s Guide for further details on $DEMO
and the contents of the Demo script file.

LANGUAGE STATEMENTS SELECT LOG

NPL Statements Guide 2-652

SELECT LOG (cont.)

Output created by the Keyboard Logging capability is treated as print class output by
NPL. All features that apply to print class output do apply. This includes the ability to
$OPEN the LOG device, the ability to generate NPL errors if an error occurs writing the
output to a disk file using the ERR=Y $DEVICE clause, the ability to set line feed/car-
riage return characteristics using the ALF clause in the $DEVICE statement, and the abil-
ity to issue a (8700) $GIO microcommand to cause subsequent output to start at the start
of file.

HINT: It is recommended that Keyboard Logging output be directed to a new file rather than
overwriting an existing file. If an existing file is overwritten, but not completely overwrit-
ten, attempting to use this file as a $DEMO file may result in unexpected behavior when
the entries left over from a previous session are encountered.

Examples:
0010 SELECT LOG /215
0010 SELECT LOG <A$> OFF

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

SELECT LOG is not supported on the Wang 2200.

References:

$OPTIONS - byte 33
$MACHINE - byte 19
$DEMO
$DEMO - Chapter 12 of the Programmer’s Guide
Printing to ASCII text files - Chapter 5 of the NPL Supplement

SELECT LOG LANGUAGE STATEMENTS

2-653 NPL Statements Guide

SELECT ON/OFF

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development performs no operation.

The compiler generates a warning when this statement is encountered.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
At execution time, this statement behaves as follows:

SELECT OFF with a device-address or ALERT but with no GOSUB clause per-
forms no operation.

SELECT OFF with a GOSUB clause specified generates an error zero (not imple-
mented).

All forms of SELECT ON generate an error zero (not implemented).

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, is used to define the interrupt
status.

Under NPL, program control over interrupts is not supported.

This statement is supported only with Release 3.0 or greater.

References:

General Form:

SELECT {ON } [{device-address} [GOSUB line-number]]
 {OFF} {file-number }
 {ALERT }

LANGUAGE STATEMENTS SELECT ON/OFF

NPL Statements Guide 2-654

SELECT ON CLEAR

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development performs no operation.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
No operation is performed when this statement is encountered at execution time.

The compiler generates a warning when this statement is encountered.

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, is used to clear previously de-
fined interrupts.

Under NPL, program control over interrupts is not supported.

This statement is supported only with Release 3.0 or greater.

References:

General Form:

SELECT ON CLEAR

SELECT ON CLEAR LANGUAGE STATEMENTS

2-655 NPL Statements Guide

SELECT P

Discussion:

The SELECT P command is used to slow output to the screen in order to render it more
readable to the user (preventing screen output from rapidly scrolling by). The SELECT P
command causes a pause of specified duration each time a carriage return is issued to the
screen. SELECT P is also useful in debugging complex screen display operations.

The optional "digit" parameter specifies the duration of the pause to be performed before
each carriage return. The digit values increment the length of the pause with SELECT P9
being the longest pause, SELECT P (or P0) being no pause. The duration of the pause is
equal to the digit times one sixth of a second (i.e., SELECT P9 is a pause of 1.5 seconds,
SELECT P6 is a pause of 1 second).

Any of the following resets the SELECT P value to 0:

• Execution of a SELECT P (or P0).

• Execution of a CLEAR command (with no parameters).

• RESET function.

Examples:

0010 SELECT P
0010 SELECT P6
:SELECT P9
:SELECT P

Compatibility Issues:

References:

General Form:

SELECT P[digit]

Where:

digit = an integer in the range of 0 to 9.

LANGUAGE STATEMENTS SELECT P

NPL Statements Guide 2-656

SELECT PLOT

Discussion:

The SELECT PLOT statement is supported only for compatibility with Wang 2200 Basic-
2. No operation is performed when this statement is encountered at execution time.

Examples:
0010 SELECT PLOT /415
:SELECT PLOT /415

Compatibility Issues:

In Wang 2200 Basic-2, the SELECT PLOT entry in the Internal Device Table specifies
the device-address for PLOT operations. In NPL, this entry in the Internal Device Table
performs no operation. This statement is supported for syntactical purposes only.

References:

General Form:

SELECT PLOT {device-address }
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable wherein the first three bytes
contain an ASCII representation of a hexdigit (0-
9; A-F).

SELECT PLOT LANGUAGE STATEMENTS

2-657 NPL Statements Guide

SELECT PRINT

Discussion:

The SELECT PRINT statement sets the PRINT entry in the Internal Device Table to the
specified device-address. This entry indicates the device which is to receive output from
PRINT and PRINTUSING statements encountered during program execution.

Immediate mode PRINT statements are not affected by the PRINT entry selected in the
Internal Device Table.

The width expression is used to format the PRINT output to a designated line width. If
the width is omitted, the last line width selected for a PRINT operation is used. The de-
fault line width established at boot time is set equal to the maximum line width of the pri-
mary terminal. A specified line width of (0) indicates that line width is disregarded
entirely, and that a carriage return is not issued until the entire output line has been
printed, regardless of length.

Examples:
0010 SELECT PRINT 216(132)
0010 SELECT PRINT 205
:SELECT PRINT <A$>(64)
:SELECT PRINT 005

General Form:

SELECT PRINT {device-address }[(width)]
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable wherein the first three bytes
contain an ASCII representation of a hexdigit
(0-9; A-F).

width = a numeric-expression indicating optional line
width for the output device, in the range 0-255.

LANGUAGE STATEMENTS SELECT PRINT

NPL Statements Guide 2-658

Compatibility Issues:

References:

PRINT

SELECT PRINT LANGUAGE STATEMENTS

2-659 NPL Statements Guide

SELECT ROUND

Discussion:

The SELECT ROUND statement is used to cause rounding to take place to 14 significant
digits. SELECT ROUND is the normal operation for all arithmetic operations and func-
tions.

Specifying the NO parameter causes results to be truncated to 14 significant digits as op-
posed to rounding to 14 significant digits.

SELECT ROUND is the default upon entering the RunTime Program.

Examples:
0010 SELECT NO ROUND
0010 SELECT ROUND
:SELECT ROUND
:SELECT NO ROUND

:0010 SELECT ROUND
:0020 PRINT 2/3
:0030 SELECT NO ROUND
:0040 PRINT 2/3
:RUN
.66666666666667
.66666666666666

Compatibility Issues:

On a Wang 2200, SELECT NO ROUND precision is 13 significant digits.

References:

General Form:

SELECT [NO] ROUND

LANGUAGE STATEMENTS SELECT ROUND

NPL Statements Guide 2-660

SELECT TAPE

NOTE: The use of this statement is not recommended. Refer to $GIO as a better alternative.

Discussion:

The SELECT TAPE statement is used to select a specific output device to be used for
TAPE-class operations, and records the specified device-address in the Internal Device
Table. This entry in the Internal Device Table is used as a default device for $GIO and
$IF ON statements when no specific device address is given.

Examples:
0010 SELECT TAPE /613
:SELECT TAPE /613

Compatibility Issues:

References:

$GIO
$IF ON

General Form:

SELECT TAPE {device-address }
 {<alpha-variable>}

Where:

alpha-variable = an alpha-variable wherein the first three bytes
contain an ASCII representation of a hexdigit (0-
9; A-F).

SELECT TAPE LANGUAGE STATEMENTS

2-661 NPL Statements Guide

SELECT TC

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development is not supported.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
A P48 (Illegal Device Specification) error is generated when this statement is executed.

The compiler generates a warning when this statement is encountered.

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, selects the specified port as a tele-
communications port. The port must be located on a 2236MXE controller.

Under NPL, dynamic port selection for telecommunications versus terminal operation is
not supported.

This statement is supported only with Release 3.0 or greater.

References:

General Form:

SELECT TC port-number

Where:

port-number = {/Add }
{<alpha-variable>}

dd = decimal value from 02 to 16
alpha-variable contains the the port address Add.

LANGUAGE STATEMENTS SELECT TC

NPL Statements Guide 2-662

SELECT TERMINAL

NOTE: This statement is supported for Wang compatibility reasons only and its use in new
development performs no operation.

Discussion:

The syntax of this statement is supported only for compatibility with Wang 2200 Basic-2.
No operation is performed when this statement is encountered at execution time.

The compiler generates a warning when this statement is encountered.

Examples:

Compatibility Issues:

This instruction, when executed on a Wang 2200 MVP, selects the specified port as a ter-
minal port.

Under NPL, dynamic port selection for telecommunications versus terminal operation is
not supported.

This statement is supported only with Release 3.0 or greater.

General Form:

SELECT TERMINAL port-number

Where:

port-number = {/Add }
{<alpha-variable>}

dd = a decimal value from 02 to 16
alpha-variable contains the the port address Add.

General Form:

alpha-receiver = $SER

SELECT TERMINAL LANGUAGE STATEMENTS

2-663 NPL Statements Guide

References:

LANGUAGE STATEMENTS SELECT TERMINAL

NPL Statements Guide 2-664

$SER

Discussion:

The $SER system variable contains the full serial number of the RunTime program cur-
rently executing as a displayable alpha-numeric value.

The complete serial number returned by $SER is also displayed on the RunTime’s Gold
Key diskette label.

Examples:
0010 X$=$SER

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

$SER is not supported on the Wang 2200.

References:

$SER LANGUAGE STATEMENTS

2-665 NPL Statements Guide

SET DATA

Discussion:

The SET DATA statement is used to set the file type of a file or files in the diskimage in-
dex to type Data. NPL currently supports two file types--programs and data files. These
are represented in the diskimage index by byte 2 of the file entry for the file. This byte
may have a value of (00) for data files or (80) for program files. The SET DATA com-
mand simply sets this byte to a value of (00). The corresponding SET PROGRAM state-
ment may be used to set file type to program.

SET DATA fails with an error if any specified file on the file list is either not found or is
scratched. Files listed prior to the file where the error was encountered have type set as
specified.

The actual contents of the file are not affected by SET DATA except for the file trailer
sector. However, operation of many NPL statements which access the file are affected if
the file type is set incorrectly.

NOTE: The current file type can be determined by use of the LIMITS statement.

Examples:
0010 SET DATA T"START",Q$
0010 SET DATA T X$,X1$,X2$
0010 SET DATA T#Y,"SP MENU"
:SET DATA T"START"
:SET DATA T/D32,"START","SP START","SECURITY"
:SET DATA T#2,"DATA"

General Form:

SET DATA T [file-number,] file-name [,file-name]...
 [disk-address,]
 [<alpha-variable>,]

Where:

file-name = an alpha-variable or literal-string containing the
name of the existing cataloged file to be scratched.

LANGUAGE STATEMENTS SET DATA

NPL Statements Guide 2-666

SET DATA (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

SET DATA is not supported on the Wang 2200.

References:

SCRATCH
SET PROGRAM
UNSCRATCH
Internal structure of diskimages - Section 7.3.6 of the Programmer’s Guide

SET DATA LANGUAGE STATEMENTS

2-667 NPL Statements Guide

SET PROGRAM

Discussion:

The SET PROGRAM statement is used to set the file type of a file or files in the
diskimage index to type Program. NPL currently supports two file types--programs and
data files. These are represented in the diskimage index by byte 2 of the file entry for the
file. This byte may have a value of (00) for data files or (80) for program files. The SET
PROGRAM command simply sets this byte to a value of (80). The corresponding SET
DATA statement may be used to set file type to data.

SET PROGRAM fails with an error if any specified file on the file list is either not found
or is scratched. Files listed prior to the file where the error was encountered have type set
as specified.

The actual contents of the file are not affected by SET PROGRAM except for the file
trailer sector. However, operation of many NPL statements which access the file are af-
fected if the file type is set incorrectly.

NOTE: The current file type can be determined by use of the LIMITS statement.

Examples:
0010 SET PROGRAM T"START",Q$
0010 SET PROGRAM T X$,X1$,X2$
0010 SET PROGRAM T#Y,"SP MENU"
:SET PROGRAM T"START"
:SET PROGRAM T/D32,"START","SP START","SECURITY"
:SET PROGRAM T#2,"DATA"

General Form:

SET PROGRAM T [file-number,] file-name [,file-name]...
 [disk-address,]
 [<alpha-variable>,]

Where:

file-name = an alpha-variable or literal-string containing the
name of the existing cataloged file to be scratched.

LANGUAGE STATEMENTS SET PROGRAM

NPL Statements Guide 2-668

Compatibility Issues:

This statement is supported only with Release 3.0 or greater and is not supported on the
Wang 2200.

SET PROGRAM LANGUAGE STATEMENTS

2-669 NPL Statements Guide

SET PROGRAM (cont.)

References:

SCRATCH
SET DATA
UNSCRATCH
Internal structure of diskimages - Section 7.3.6 of the Programmer’s Guide

LANGUAGE STATEMENTS SET PROGRAM

NPL Statements Guide 2-670

SGN Function

Discussion:

The SGN function is used to determine the sign (+,-) of a specified numeric-expression.
The SGN function causes a comparison between the numeric-expression and zero. If the
numeric-expression is less than zero a value of -1 is returned. If the numeric-expression is
equal to zero a value of zero is returned. If the numeric-expression is greater than 0 a
value of +1 is returned. This is valid wherever a numeric-expression is legal.

Examples:
0010 X=SGN(-12.4)
0010 PRINT SGN(.0021)
0010 Y=SGN(Y1-X)

:PRINT SGN(99.98647)
 1
:PRINT SGN(0)
0
:PRINT SGN(-152.125)
-1

Compatibility Issues:

References:

General Form:

SGN (numeric-expression)

SGN Function LANGUAGE STATEMENTS

2-671 NPL Statements Guide

$SHELL

Discussion:

The $SHELL statement is used to effect a temporary exit from the NPL environment, and
allow for interfacing with native operating system functions and programs.

Form 1 is recommended for use in programs. Form 2 can be used in programs, but not in
Immediate Mode. Form 3 can be used only in Immediate Mode, and is specified without
quotes surrounding the command argument.

General Form:

Form 1:

$SHELL [literal-string] [,return-variable]
 [alpha-variable]

Form 2:

! [literal-string]
 [alpha-variable]

Form 3:

! [command]

Where:

literal-string = string containing native operating system com-
mand to be executed.

alpha-variable = variable containing native operating system com-
mand to be executed.

return-variable = alpha-variable which will contain a return code
generated by the native operating system shell
upon completion of the command.

LANGUAGE STATEMENTS $SHELL

NPL Statements Guide 2-672

$SHELL (cont.)

The $SHELL statement can be used to execute specific commands from the native operat-
ing system or to invoke the native operating system shell for an interactive session from
within NPL. In either event, the status of the NPL program in memory at the time
$SHELL is issued is unchanged when $SHELL has completed. The contents of all vari-
ables is unchanged. When the $SHELL instruction is used during program execution (as
a program statement), or in Immediate Mode, program execution continues with the state-
ment immediately following the $SHELL command (as would all other non-transfer in-
structions in the language).

If no literal-string or alpha-variable is specified, or the specified value is blank, then the
native operating system shell is loaded for an interactive session. The user can then use
any native operating system programs or functions available.

If the $SHELL statement is used to execute a specific native operating system command,
control is returned automatically to the NPL program upon completion. If the $SHELL
statement is used to specify an interactive session, instructions are first displayed on how
to end the session when executed. When the session ends, control returns to the NPL pro-
gram. In all cases, exiting from the native operating system shell returns to the exact
point where NPL was originally exited.

If a "return-variable" is specified, the "return code" as specified by the shell is placed in
the specified variable after performing the required command or interactive session. The
value of this code depends on the native operating system and the command specified.
Refer to the appropriate NPL Supplement for details.

The system performs an implicit $CLOSE on all files before $SHELL is executed.

Upon return to NPL, the current screen retains any information printed by the native oper-
ating system program. If it is desirable to retain the NPL screen, then the native operating
system call function of the HELP processor may be used. Application programs should
assume that any use of this statement modifies the screen display.

Examples:
0010 !"DIR B:"
0010 $SHELL"BACKUP",B$
0010 $SHELL A$
0010 $SHELL
:$SHELL"DIR A:"
:!DIR A:
:!cd /usr/BASIC2C; ls -l (command under Xenix)

$SHELL LANGUAGE STATEMENTS

2-673 NPL Statements Guide

$SHELL (cont.)

Compatibility Issues:

The $SHELL statement is not valid in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

Programmed use of the $SHELL statement is highly dependent on the native operating
system. The format of commands and effect of these on the operation of the RunTime de-
pends on the operating system in use. The command to exit from the command inter-
preter varies--when the interactive session is started, the RunTime provides appropriate
instructions on how to "exit". Availability of functions through $SHELL may require ad-
ditional memory or other system resources.

References:

$SHELL - Chapter 10 of the Programmer’s Guide
Platform-specific Language Features - Chapter 8 of the NPL Supplements

LANGUAGE STATEMENTS $SHELL

NPL Statements Guide 2-674

SIN Function

Discussion:

The SIN function computes the value of the sine of a numeric- expression. The numeric-
expression is specified as a number of radians, degrees or gradians, depending on the last
executed SELECT R, D or G statement. The default at startup time is radians. This is
valid wherever a numeric-expression is legal.

Examples:
0010 P7(R4,18) = 33*SIN(G(U2)/90)
0010 N5 = SIN(R-INT(W/90)*90)

:0010 A = 49^3+SIN((24^3)/12)
:0020 PRINT A
:RUN
 117649.821766309

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

SELECT D,R,G

General Form:

SIN(numeric-expression)

SIN Function LANGUAGE STATEMENTS

2-675 NPL Statements Guide

$SOURCE Function

Discussion:

The $SOURCE function is used to generate a single program line of ASCII program text
from a line of NPL compatible p-code. $SOURCE used in combination with $OBJECT is
useful for dynamic manipulation of NPL programs. Refer to $OBJECT for a detailed dis-
cussion of the structure of p-code files.

Under the non-interpretive RunTime program, the $SOURCE statement performs no op-
eration.

Input to $SOURCE (alpha-variable2) must be one program line of p-code, which in-
cludes the header field. If the program line could contain long identifiers, a long identifi-
ers table (alpha-variable3) must be specified.

The output produced is ASCII text, just as it would appear if the program line were re-
called by the line editor in the Interpreter. Multi-line statements are separated by a
HEX(0D) return-graphics character. One HEX(0D) always appears at the end of the line.

Should the $SOURCE function encounter difficulties decompiling (due to invalid p-code,
for example) de-compilation halts at the approximate location of the problem and the out-
put produced terminates with a "?" (instead of a HEX(0D)).

General Form:

receiver-variable1 =$SOURCE(alpha-variable2[,alpha-variable3])

Where:

receiver-variable = the buffer that contains the line of
 p-code generated by $SOURCE

alpha-variable2 = ASCII text to be converted to p-code

alpha-variable3 = a long identifier table, if long
 identifiers are to be used

LANGUAGE STATEMENTS $SOURCE Function

NPL Statements Guide 2-676

$SOURCE Function (cont.)

NOTE: Although the decompiler does many consistency checks, the fact that $SOURCE
does not generate a "?" at the end of the output does not necessarily indicate that
the p-code is valid.

Output from $SOURCE is limited to 1024 bytes of ASCII text, regardless of the size of
the alpha-variables used.

Practical use of $SOURCE requires the dissection of a p-code file into its component p-
code lines before use of $SOURCE, with suitable validity checks on the label and tests
for end of file indicator. In addition, if the program uses long identifiers, the long identifi-
ers table must be located and loaded before $SOURCE can be used. A library of func-
tions is available to perform these functions (refer to Changes to $SOURCE
functionality, Chapter 3).

Applications which use $SOURCE to locate a particular program line, and then use $OB-
JECT to modify that program line should follow these guidelines:

1. Always start the search at the start of the p-code file, searching program line by pro-
gram line, until the desired program line is located. The length attribute stored in the
header of each program line must be used to locate the next program line. Because
program lines may span sectors, there is no 100% reliable way for a program to locate
the start of line in any given sector other than by starting at the beginning of the pro-
gram.

2. Check the length of the p-code regenerated by $OBJECT. If it is different (longer or
shorter) from the original length, it is the responsibility of the program to adjust the lo-
cation of all subsequent p-code lines in the p-code file. The RunTime uses the length
stored in the header of the program line to determine the starting location of the next
program line.

NOTE: Refer to Chapter 3, Libraries, for further information.

$SOURCE Function LANGUAGE STATEMENTS

2-677 NPL Statements Guide

$SOURCE Function (cont.)

Optional Retention of Soft Carriage Returns by $SOURCE

Byte 41 of $OPTIONS may be used to specify that $SOURCE should retain soft carriage
returns imbedded in the object code being translated to ASCII. The default value of
HEX(00) indicates that soft carriage returns are not to be retained (this is how previous re-
visions worked). A value of HEX(01) indicates that soft carriage returns are to be re-
tained.

Soft carriage returns are represented by a HEX(0D) in the ASCII string returned by
$SOURCE. Retention of soft carriage returns may be desirable in order to preserve the
structure of code being modified by $SOURCE/$OBJECT and is also required to pre-
serve the syntax of lines that contain an IMAGE statement or a LINE REMARK termi-
nated by a soft carriage return. Programs that analyze or modify the ASCII source
produced by $SOURCE likely require modifications to properly handle soft carriage re-
turns if byte 41 is set to HEX(01).

Statement separator colons that appear at the start of multi-statement lines may be
changed to return spaces on $SOURCE output. This is controlled by the HEX(08) bit of
$OPTIONS byte 45. When this bit is set to 0 (the default), colons are returned by
$SOURCE. When this bit is set to 1, spaces are returned by $SOURCE.

Examples:

0010 A$=$SOURCE(B$)
0010 B$=$SOURCE(STR(X$,J,C))
0010 X$=$SOURCE(Y$)R
0010 Display$=$SOURCE(PcodeLine$,IdentifierTable$)

Compatibility Issues:

Versions of NPL prior to version 3.0 only permit a maximum of 512 bytes of $SOURCE
output.

The form of $SOURCE in which alpha-variable3 is specified requires Revision 4.00 or
later of NPL.

The $SOURCE statement is not valid in Wang 2200 Basic-2.

LANGUAGE STATEMENTS $SOURCE Function

NPL Statements Guide 2-678

$SOURCE Function (cont.)

This statement requires Revision 2.00 or higher of the interpreter.

References:

$OBJECT
$OPTIONS
$KEEPREMS
$NUMBERS
Chapter 5 of the Programmers Guide
Chapter 3 of the Statements Guide

$SOURCE Function LANGUAGE STATEMENTS

2-679 NPL Statements Guide

SPACE Function

Discussion:

The SPACE function is a numeric-function which return the amount of space available
for either program text or variable definition, in bytes up to a maximum of 65488. This is
valid wherever a numeric-expression is legal.

Examples:
0010 Y=SPACE-(X/2^6)
:PRINT SPACE
57338

Compatibility Issues:

The value returned by the SPACE function, in general, is substantially different for pro-
grams running under NPL compared to the same programs running on the Wang 2200
MVP. There are several reasons for this, as presented below.

• On a Wang 2200, the maximum value returned by SPACE in a 56K partition is
56220.

• Actual internal memory required by programs under NPL is at variance as com-
pared to Wang 2200 Basic-2, due to a radically different internal program storage
format (i.e., p-code).

• Actual internal memory required by variables is different. Due to a different inter-
nal format of the stack, stack overhead for variables can be larger on the NPL
compiler. The following contrasts the stack overhead of the two languages.

e.g. variable type Wang 2200 NPL
1 dimension 2 dimensions

X numeric-scalar 4 bytes 8 bytes
X$ alpha-scalar 5 bytes 10 bytes
X() numeric-array 6 bytes 12 bytes

General Form:

SPACE

LANGUAGE STATEMENTS SPACE Function

NPL Statements Guide 2-680

X$() alpha-array 7 bytes 14 bytes

SPACE Function LANGUAGE STATEMENTS

2-681 NPL Statements Guide

SPACE (cont.)

In addition, memory is allocated in minimum units of 2 bytes on the 2200 and in mini-
mum units of 16 bytes under NPL (Revision 3.0 or greater).

SPACEF and SPACEW are NPL extensions not supported on the Wang 2200.

References:

SPACEF
SPACEK
SPACEW
Dynamic Partition Size - Section 3.2 of the Programmer’s Guide

LANGUAGE STATEMENTS SPACE Function

NPL Statements Guide 2-682

SPACEF Function

NOTE: SPACEF should not be used to dimension variables directly since the maximum
variable size is 64K and SPACEF values may substantially exceed this. For dimen-
sioning variables, use of the SPACE function is recommended.

Discussion:

The SPACEF function returns the amount of memory currently available in the user parti-
tion for either program text or variable definition in bytes. This is valid wherever a nu-
meric-expression is legal.

Examples:
0010 A=SPACEF

:PRINT SPACEF
324782

Compatibility Issues:

The SPACEF function is not valid in Wang 2200 Basic-2.

This statement is supported only with Release 3.0 or greater.

References:

SPACE
SPACEW
SPACEK
Dynamic Partition Size - Section 3.2 of the Programmer’s Guide

General Form:

SPACEF

SPACEF Function LANGUAGE STATEMENTS

2-683 NPL Statements Guide

SPACEK Function

NOTE: The use of this statement is not recommended. Refer to SPACEW as a better alter-
native.

Discussion:

The SPACEK function is a numeric function which returns the size of the user partition
in number of Kilobytes (bytes/1024), up to a maximum of 61. This is valid wherever a nu-
meric-expression is legal.

Applications which need to determine the full size of the user partition in kilobytes
should use SPACEW/1024.

Due to internal dynamic memory allocation techniques, the value returned by SPACEK
may vary slightly after CLEAR is executed.

Refer to Section 3.2 of the Programmer’s Guide for further details on partition size.

Examples:
0010 W=(SPACEK-28)
:X=SPACEK

:PRINT SPACEK
 61

Compatibility Issues:

The SPACEK function produces results at variance with Wang Basic-2 SPACEK func-
tions on the Wang 2200 due to the radically different partition sizes generated by NPL.

In releases prior to Revision 3.0, SPACEK never produced a value larger than 56 in NPL.

General Form:

SPACEK

LANGUAGE STATEMENTS SPACEK Function

NPL Statements Guide 2-684

References:

SPACEF
SPACEW
SPACE
Dynamic Partition Size - Section 3.2 of the Programmer’s Guide

SPACEK Function LANGUAGE STATEMENTS

2-685 NPL Statements Guide

SPACEP Function

NOTE: The use of this statement is not recommended. Refer to SPACEF as a better alterna-
tive.

Discussion:

The SPACEP function is syntactically supported for compatibility with previous releases
of NPL but now returns the same value as SPACE. This is valid wherever a numeric-ex-
pression is legal.

Examples:

Compatibility Issues:

The SPACEP function is not valid in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

In NPL Revisions 2.x, SPACEP returned the amount of space available in the program
segment. As of Revision 3.0, there is no longer any distinction between the program seg-
ment and the variable segment.

References:

SPACE
SPACEF
SPACEW
Dynamic Partition Size - Section 3.2 of the Programmer’s Guide

General Form:

SPACEP

LANGUAGE STATEMENTS SPACEP Function

NPL Statements Guide 2-686

SPACEV Function

NOTE: The use of this statement is not recommended. Refer to SPACEF as a better alterna-
tive.

Discussion:

The SPACEV function is syntactically supported for compatibility with previous releases
of NPL but now returns the same value as SPACE. This is valid wherever a numeric-ex-
pression is legal.

Examples:

Compatibility Issues:

The SPACEV function is not valid in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

In NPL Revisions 2.x, SPACEV returned the amount of space available in the variable
segment. As of Revision 3.0, there is no longer any distinction between the program seg-
ment and the variable segment.

References:

SPACE
SPACEF
SPACEW
Dynamic Partition Size - Section 3.2 of the Programmer’s Guide

General Form:

SPACEV

SPACEV Function LANGUAGE STATEMENTS

2-687 NPL Statements Guide

SPACEW Function

Discussion:

The SPACEW function returns the total size of the user partition in bytes. This is valid
wherever a numeric-expression is legal.

Due to internal dynamic memory allocation techniques, the value returned by SPACEW
may vary slightly after CLEAR is executed.

Examples:
0010 A=SPACEW

:PRINT SPACEW
395464

Compatibility Issues:

The SPACEW function is not valid in Wang 2200 Basic-2.

This statement is supported only with Release 3.0 or greater.

References:

SPACE
SPACEF
SPACEK
Dynamic Partition Size - Section 3.2 of the Programmer’s Guide

General Form:

SPACEW

LANGUAGE STATEMENTS SPACEW Function

NPL Statements Guide 2-688

SQR Function

Discussion:

The SQR function computes the square root of a numeric-expression. This is valid wher-
ever a numeric-expression is legal.

Examples:
0010 A=SQR(F)
0010 B,C=2+SQR(R(10,W))

:0010 A=25: B=49
:0020 PRINT SQR(A+B)
:RUN
 8.602325267042

Compatibility Issues:

Due to the use of different algorithms, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

General Form:

SQR(numeric-expression)

SQR Function LANGUAGE STATEMENTS

2-689 NPL Statements Guide

= statement-name (Statement Labels)

Discussion:

A statement-name may serve to label a section of program with an identifier.

Statement labels may be used instead of line numbers in GOTO and GOSUB statements,
as well as ON.. GOTO/GOSUB statements.

Statement labels are always private in a module; it is not possible to GOTO or GOSUB
using a label in another module.

The same identifier may not be used as a statement label more than once in the same mod-
ule. Statement labels which occur inside a function body are local to the function. State-
ment labels which occur outside all function bodies are not accessible from inside any
function. The same label may be used in multiple functions within a module without con-
flict, or may be used in both the mainline and a function without conflict.

Statement labels are not permitted in immediate mode. An immediate mode reference to
a statement label (e.g., GOSUB process_record) is executed in the context of the cur-
rently executing function (if any).

Examples:

General Form:

=identifier

Where:

identifier = a descriptive identifier which labels the state-
ment.

LANGUAGE STATEMENTS = statement-name (Statement Labels)

NPL Statements Guide 2-690

= Statement-name (Statement Labels) (cont.)
0010 =Reset
0020 RecCount = 1
 : ; top of loop
 : =ProcessRecord
 : PRINT RecCount
 : RecCount += 1
 : IF RecCount < 10 THEN GOTO ProcessRecord
 : =ProcessRecordEnd
0030 =InKey
 : KEYIN key$
 : PRINT HEXOF(key$)
 : GOTO InKey
 : =InKeyEnd

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

GOTO
GOSUB
ON GOTO
ON GOSUB
Statement Labels - Section 4.3.2 of the Programmer’s Guide

= statement-name (Statement Labels) LANGUAGE STATEMENTS

2-691 NPL Statements Guide

STEP

Discussion:

The STEP statement is used to activate STEP Mode. The STEP statement can be issued
in Immediate Mode or under program control. STEP Mode can also be invoked from the
STEP menu item on the HELP display.

If the program is resolved, and can be continued, entering STEP from Immediate Mode
displays the next statement to be executed, and sets the current LIST module to the exe-
cuting module.

STEP Mode allows for "stepping" through a program one statement at a time, displaying
each statement before execution. This is termed "Stepped Execution". Stepped Execution
is performed by pressing the EXECUTE key while in Immediate Mode.

During Stepped Execution, if a line number range parameter has been issued (refer to
STEP #), Stepped Execution is only activated within the specified line number range. By
default, STEP mode is disabled for program lines located in library modules which have
been loaded by INCLUDE statements. STEP mode may be explicitly enabled for these
modules by:

• Selecting the module with the MODULE command.

• Enabling STEP mode for a range of lines with the STEP # command.

Stepping remains enabled on the selected range of lines in the module until the module is
deleted, or a new range of step lines is selected with the above procedure. A null range of
lines in the STEP # statement (STEP #1,0) disables STEP mode for all lines in the mod-
ule.

Two methods are available to deactivate STEP Mode:

General Form:

STEP

LANGUAGE STATEMENTS STEP

NPL Statements Guide 2-692

• Entering the CONTINUE instruction causes the program to continue normally.
Refer to also CONTINUE RETURN, CONTINUE NEXT and CONTINUE
LOAD for details on controlled CONTINUE statements.

STEP LANGUAGE STATEMENTS

2-693 NPL Statements Guide

STEP (cont.)

• The STEP OFF instruction deactivates STEP Mode, causing any subsequent
pressing of the EXECUTE key to perform as a CONTINUE instruction.

HINT: The ability to encode a STEP statement into a program is extremely useful for debugging
purposes on new or recently modified program modules.

Under the non-interpretive RunTime Program, the STEP statement performs no operation.

Examples:
0010 STEP
:STEP

Compatibility Issues:

The STEP statement is not valid in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

References:

STEP #
STEP OFF
Inspection/Modification of Program Logic - Section 6.3 of the Programmer’s Guide

LANGUAGE STATEMENTS STEP

NPL Statements Guide 2-694

STEP #

Discussion:

The STEP # format of the STEP statement allows for designating a specified line number
range within the current LIST module (termed a STEP Range) in which to limit Stepped
Execution. By default, the STEP # range for the root module includes all line numbers
while the default STEP # range for other modules includes no line numbers. Different
STEP # values for different modules may be set by use of the MODULE command to se-
lect the desired module followed by the STEP # command to set the line # range for that
module.

This allows for "stepping" through a program one statement at a time, displaying each
statement before execution, but only within the specified STEP Range. Stepped Execu-
tion is performed by pressing the EXECUTE key while in Immediate Mode.

• If program control is branched into the range of line-numbers specified, STEP
Mode is activated.

• If program control is branched out of the range of line-numbers specified, STEP
Mode is deactivated and program execution resumes, until program control is
once again passed back into the range.

If the start line number is not specified, a default of 0 is assumed. If an end line number is
not specified, all lines to the end of the program are included in the range.

Selecting STEP from the HELP display changes the line number range to all lines for the
executing module.

General Form:

STEP #[start[,[end]]]

Where:

start = line-number to begin STEP Mode.

end = line-number to end STEP Mode.

STEP # LANGUAGE STATEMENTS

2-695 NPL Statements Guide

STEP # (cont.)

Two methods are available to deactivate STEP Mode:

• Entering the CONTINUE instruction causes the program to continue normally.
Refer to also CONTINUE RETURN, CONTINUE NEXT and CONTINUE
LOAD for details on controlled CONTINUE statements.

• The STEP OFF instruction terminates STEP Mode, causing any subsequent press-
ing of the EXECUTE key to perform as a CONTINUE instruction. However, if
STEP (with no range parameters) is then executed, the previously specified line
number range by the STEP # statement remains in effect.

The ability to encode a STEP # statement into a program is useful for debugging pur-
poses on specific sections of new or recently modified program modules.

Under the non-interpretive RunTime Program, the STEP # statement performs no opera-
tion.

Examples:
:0010 STEP #
:STEP #100,1300
:STEP #100,

Compatibility Issues:

The STEP # statement is not valid in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

References:

STEP
STEP OFF
Inspection/Mod of Program Logic - Section 6.3 of the Programmer’s Guide

LANGUAGE STATEMENTS STEP #

NPL Statements Guide 2-696

STEP OFF

Discussion:

The STEP OFF statement may be used either in Immediate Mode or as a program state-
ment.

The STEP OFF instruction deactivates STEP Mode, causing any subsequent pressing of
the EXECUTE key to perform as a CONTINUE instruction. However, if STEP Mode is
again activated, any previously specified line number range established by STEP # state-
ments remain in effect in all modules.

Under the non-interpretive RunTime Program, the STEP OFF statement performs no op-
eration.

Examples:
:STEP OFF
0010 STEP OFF

Compatibility Issues:

The STEP OFF statement is not a valid instruction in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

References:

STEP
STEP #
Inspection/Mod of Program Logic - Section 6.3 of the Programmer’s Guide

General Form:

STEP OFF

STEP OFF LANGUAGE STATEMENTS

2-697 NPL Statements Guide

STOP

Discussion:

The STOP statement is used to invoke Immediate Mode during program execution.

Under the Interpretive RunTime Program, when a STOP statement is encountered, the
program is halted, and Immediate Mode is invoked. Normal continuation of the program
from that point is allowed by entering the CONTINUE command or pressing the EXE-
CUTE key. Any other Immediate Mode commands may also be entered.

Under the Non-interpretive RunTime Program, when a STOP statement is encountered,
the program is halted and the Immediate Mode prompt (":") is displayed. At this point,
pressing the CANCEL key exits from the RunTime Program, pressing the EXECUTE
key causes normal program continuation. Marked subroutines (DEFFN’) with no parame-
ters may also be called by pressing the appropriate SF keys. The HELP processor is also
available. No other Immediate Mode functions are available.

Examples:
0010 STOP#
0010 STOP "This is loop line# "#
0010 STOP "Error"

Compatibility Issues:

Marked subroutines (DEFFN’) with parameters is supported by Wang 2200 Basic-2.
NPL does not support this feature.

General Form:

STOP I[text] [#]

Where:

text = any literal-string to be displayed upon execution of the
STOP statement.

= causes the line number the STOP statement appears in to be
displayed.

LANGUAGE STATEMENTS STOP

NPL Statements Guide 2-698

The capabilities of Immediate Mode under NPL operate differently from those on a
Wang 2200. Refer to Section 2.5.3 of the Programmer’s Guide for details concerning the
capabilities of Immediate Mode under NPL.

STOP LANGUAGE STATEMENTS

2-699 NPL Statements Guide

STOP (cont.)

References:

Invoking Immediate Mode - Section 2.5.2 of the Programmer’s Guide
Immediate Mode Operation - Section 2.5.3 of the Programmer’s Guide

LANGUAGE STATEMENTS STOP

NPL Statements Guide 2-700

STR() Function

Discussion:

The STRing function is an alpha function which is used to define a substring of an alpha-
variable.

The STR function allows an entire alpha value or just portions of it to be examined and
modified.

If the "a" parameter is omitted, the default value is 1 (the first character in the alpha-vari-
able). If the "b" parameter is omitted, the default is equal to the rest of the alpha variable
(defined length minus "a" plus 1).

A STR() function is valid wherever an alpha-variable is legal.

In some contexts, a STR function may be used to indicate that trailing spaces are impor-
tant (where trailing spaces are normally not included as part of an alpha-variable).

General Form:

STR(alpha-variable[,a[,b]])
 [,,b]

Where:

a = a numeric-expression specifying the first character of the
substring in the alpha-variable.

b = a numeric-expression specifying the number of characters in
the substring.

assuming d is the defined length of the alpha-variable, the
following range conditions must be met:

 1 <= a <= d+1
 0 <= b <= d-a+1

STR() Function LANGUAGE STATEMENTS

2-701 NPL Statements Guide

STR() (cont.)

Examples:
0010 C$=STR(X$,2,4)
0010 X$=STR(A$,2)
0010 STR(Q$,2,2)=Q1$
0010 LINPUT STR(A$,,5)
0010 Y$=STR(E$(),S,N)

:0010 DIM A$20
:0020 A$="ABCDEFGHIJKLMNOP"
:0030 PRINT A$;"*"
:0040 PRINT STR(A$);"*"
:0050 PRINT STR(A$,,10);"*"
:0060 PRINT STR(A$,10);"*"
:0070 PRINT STR(A$,10,5);"*"
:RUN
ABCDEFGHIJKLMNOP*
ABCDEFGHIJKLMNOP *
ABCDEFGHIJ*
JKLMNOP *
JKLMN*

Compatibility Issues:

NPL allows a string length ("b") of 0. This is not valid in Wang 2200 Basic-2.

In Wang 2200 Basic-2, the first argument of the STR() function may not itself be a STR()
function. This is legal in NPL.

String Ravel Effects

Statements which both use the value of a string and assign the value of another string en-
counter an interesting class of side effects when these strings overlap. Ideally, all such
situations should be handled so that the result is not affected by such an overlap--the re-
sult would be the same whether the strings overlap or not. In practice, it is not generally
possible to achieve this ideal, since this would require an intermediate work area big
enough to store all strings whose value is required. Consequently, such operations are
usually done one byte at a time, and string ravel side effects occur as a result. In general,
where these effects occur, the compiler may not produce identical results to the Wang
2200 system because the compiler routines, in general, do operations two bytes at a time,
if possible.

LANGUAGE STATEMENTS STR() Function

NPL Statements Guide 2-702

STR() (cont.)

For example, consider the following two statements:

A$="CAT"
STR(A$,2)=A$

The second statement uses both the value of A$, and sets the value of STR(A$,2). Since
the strings overlap, we are dealing with the possibility of a side effect. The user might ex-
pect that the result would be the same as the statement STR(A$,2)="CAT"--which would
result in a value of "CCAT" in A$.

In fact, on a Wang 2200, the result is "CCCC". To see why this happens, the user must re-
alize that only one byte is transferred at a time from the source (A$) to the destination
(STR(A$,2)), and that the number of bytes transferred is determined from the length
(LEN function) of the source (in this case 3). Consequently, the assignment is equivalent
to the following sequence of 1-byte transfers:

T$=STR(A$,1,1):STR(A$,2,1)=T$:REM T$="C",A$="CCT"
T$=STR(A$,2,1):STR(A$,3,1)=T$:REMT$="C",A$="CCC"
T$=STR(A$,3,1):STR(A$,4,1)=T$:REM T$="C",A$="CCCC"

On the compiler, the result of the statement is quite different (the result is "CCAA"). This
happens because the compiler routine transfers two bytes at a time, and transfers all bytes
from the source string. So the assignment is equivalent to:

T$=STR(A$,1,2):STR(A$,2,2)=T$:REM T$="CA",A$="CCA"
T$=STR(A$,3,2):STR(A$,4,2)=T$:REM T$="A ",A$="CCAA"
T$=STR(A$,5,2):STR(A$,6,2)=T$:REM T$=" ",A$="CCAA"
...repeat for remaining bytes :REM no change

NOTE: For a large class of statements which have the potential for side effects, the problem
does not in fact occur, since it makes no difference how many bytes are transferred
at a time. In particular, the following, frequently used types of statements give iden-
tical results in Wang 2200 Basic-2 and in NPL:

STR(A$,X)=STR(A$,Y) :REM IF X IS NOT EQUAL TO Y+1
A$=A$ & Y$:REM FOR ANY ALPHA EXPRESSION Y$

For string transfer operations where the exact order of transfer is required to ensure side
effects are the same as on a Wang 2200, use of the MAT COPY statement is recom-
mended, since for this statement the exact order of transfer of bytes in the operation is
guaranteed.

References:

STR() Function LANGUAGE STATEMENTS

2-703 NPL Statements Guide

SUB[C] Alpha-operator

Discussion:

The SUB alpha-operator is used to subtract the binary value of an alpha-operand from the
binary value of an alpha-variable. SUB may only be used in an alpha-expression in an al-
pha assignment statement.

Each byte of alpha-operand is SUBtracted from each corresponding byte of the receiving
alpha-variable. The SUB operation is performed from right to left, starting with the right-
most byte. If "C" immediately follows the SUB alpha-operator, then carry propagation is
effected between bytes to yield full multi-byte binary number addition.

If the value of alpha-operand and the receiving alpha-variable are of different length, then
the SUB algorithm implicitly extends the shorter value with leading zeroes prior to SUB-
tracting. If the SUB resultant is larger than the receiving alpha-variable then the extrane-
ous high order bytes of the resultant are truncated before assignment.

NOTE: Contrary to conventional alpha-variable operations, the SUB alpha-operator oper-
ates on all bytes of an alpha-variable (either as a receiver or alpha-operand) includ-
ing trailing spaces.

The SUB[C] alpha-operator is often used in conjunction with ADD[C], BIN and VAL.

General Form:

alpha-receiver = [...] SUB[C] alpha-operand [...]

Where:

alpha-operand = {literal-string }
{alpha-variable }
{ALL function }
{BIN function }
{system-variable }

LANGUAGE STATEMENTS SUB[C] Alpha-operator

NPL Statements Guide 2-704

SUB[C] Alpha-operator (cont.)

Examples:
0010 A$=SUB B$
0010 A$=SUBC ALL(01)
0010 A$=B$ SUB C$
0010 STR(A$,3,2)=SUB X$
0010 A$=SUB ’Next_Byte$(buffer$,bufpos)
0010 A$=NUM$.Hi$ SUB HEX(EF)
:0010 DIM A$2
:0020 A$=HEX(0121)
:0030 A$=SUB HEX(00FF)
:0040 PRINT "A$=";HEXOF(A$)
:RUN
A$=0122

Compatibility Issues:

References:

ADD
BIN
LET (Alpha Assignment)
VAL

SUB[C] Alpha-operator LANGUAGE STATEMENTS

2-705 NPL Statements Guide

-= numeric-expression Subtract from Variable Statement

Discussion:

The subtract from variable statement avoids the repetition of long variable names in com-
mon decrement uses (it is not intended to be faster than the common subtract).

This is not a numeric operator. It can only appear as a statement by itself.

NOTE: Only one variable is permitted on the left-had side of the -= , but it may be either a
scalar or an array element.

Examples:

0010 I-=1
0010 I-=Array(X,Y)

Compatibility Issues:

References:

+=
LET Numeric Assignment

General Form:

numeric-var -= numeric-expression

Where:

numeric-var = a valid numeric variable (i.e., scalar or ar-
ray element).

numeric-expression = a valid numeric-expression.

LANGUAGE STATEMENTS -= numeric-expression

NPL Statements Guide 2-706

SWITCH Logical

Discussion:

This statement declares the entry point of a logical SWITCH structure.

It is usually followed by a number of logical CASE statements. These are optionally fol-
lowed by a default CASE statement. The end of the SWITCH structure is marked by a re-
quired END SWITCH statement.

When a logical SWITCH statement is executed, each of following logical CASE state-
ments are examined, one at a time, in the order that they appear in the program. If a logi-
cal CASE statement specifies a true condition, control is transferred to the statement
following that CASE statement. If no logical CASE statement specifies a true condition,
and a default CASE statement is specified, control is transferred to the statement follow-
ing the default CASE statement. If no logical CASE statement specifies a true condition,
and no default CASE statement is specified, control is transferred to the statement follow-
ing the matching END SWITCH statement.

It is possible to branch into the range of a SWITCH structure, although this is poor pro-
gramming practice. If a CASE statement of any kind is encountered during execution,
control is transferred to the statement following the matching END SWITCH statement.

Statements situated between a SWITCH statement and the first CASE statement are
never executed. If a default CASE statement occurs in the switch structure, it must be the
last CASE for the structure, or an error occurs at resolve time.

Examples:

0010 SWITCH
 : CASE Index<CacheIndex
 : T=Cache(Index)
 : CASE Index<RamdiskIndex AND HasRAMDISK$="YES"
 : T=’RAMDISK_Index(Index)
 : CASE Index<VMIndex AND HasVM$="YES"
 : T=’SearchVM(Index)
 : CASE

General Form:

SWITCH

SWITCH Logical LANGUAGE STATEMENTS

2-707 NPL Statements Guide

 : T=-1
 : END SWITCH

LANGUAGE STATEMENTS SWITCH Logical

NPL Statements Guide 2-708

SWITCH Logical (cont.)

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

CASE (logical)
END SWITCH
Logical Constructs - Section 4.11 of NPL Programmer’s Guide

SWITCH Logical LANGUAGE STATEMENTS

2-709 NPL Statements Guide

SWITCH Numeric

Discussion:

This statement declares the entry point of a numeric SWITCH structure and defines the
value of the switch expression. It is usually followed by a number of numeric CASE state-
ments; each "case-expression" for these statements is compared to the value of the switch
expression. These are optionally followed by a default CASE statement. The end of the
SWITCH structure is marked by a required END SWITCH statement.

When a numeric SWITCH statement is executed, the numeric switch expression is evalu-
ated. The value of following numeric CASE statements are examined, one at a time, in
the order that they appear in the program. If a numeric CASE statement specifies an ex-
pression that is equal to the switch expression, control is transferred to the statement fol-
lowing that CASE statement. If no numeric CASE statement matches the switch value,
and a default CASE statement is specified, control is transferred to the statement follow-
ing the default CASE statement. If no numeric CASE statement matches the switch
value, and no default CASE statement is specified, control is transferred to the statement
following the matching END SWITCH statement.

It is possible to branch into the range of a SWITCH structure, although this is poor pro-
gramming practice. If a CASE statement of any kind is encountered during execution,
control is transferred to the statement following the matching END SWITCH statement.

Statements situated between a SWITCH statement and the first CASE statement are
never executed. If a default CASE statement occurs in the switch structure, it must be the
last CASE for the structure, or an error occurs at resolve time.

General Form:

SWITCH numeric-expression

LANGUAGE STATEMENTS SWITCH Numeric

NPL Statements Guide 2-710

SWITCH Numeric (cont.)

Examples:
0010 SWITCH 12
0010 SWITCH Widget_Type
0010 SWITCH Activity_Code(Index)
:SWITCH Widget_Type
: CASE 0
: PRINT "Gizmos"
: CASE 1
: PRINT "Thingammies"
: CASE
: PRINT "Whatchamacallits"
: END SWITCH

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

CASE (numeric)
END SWITCH
Logical Constructs - Section 4.11 of NPL Programmer’s Guide

SWITCH Numeric LANGUAGE STATEMENTS

2-711 NPL Statements Guide

SWITCH String

Discussion:

This statement declares the entry point of a string SWITCH structure and defines the
value of the switch expression. It is usually followed by a number of string CASE state-
ments; each "case-expression" for those statements is compared to the value of the switch
expression. These are optionally followed by a default CASE statement. The end of the
SWITCH structure is marked by a required END SWITCH statement.

When a string SWITCH statement is executed, the string switch value is evaluated. The
value of following string CASE statements are examined, one at a time, in the order that
they appear in the program. If a string CASE statement specifies a value that is equal to
the switch value, control is transferred to the statement following that CASE statement. If
no string CASE statement matches the switch value, and a default CASE statement is
specified, control is transferred to the statement following the default CASE statement. If
no string CASE statement matches the switch value, and no default CASE statement is
specified, control is transferred to the statement following the matching END SWITCH
statement.

It is possible to branch into the range of a SWITCH structure, although this is poor pro-
gramming practice. If a CASE statement of any kind is encountered during execution,
control is transferred to the statement following the matching END SWITCH statement.

Statements situated between a SWITCH statement and the first CASE statement are
never executed. If a default CASE statement occurs in the switch structure, it must be the
last CASE for the structure, or an error occurs at resolve time.

General Form:

SWITCH {alpha-variable}
 {literal-string}

LANGUAGE STATEMENTS SWITCH String

NPL Statements Guide 2-712

SWITCH String (cont.)

Examples:

0010 SWITCH "Alligators"
0010 SWITCH Widget_Type$
0010 SWITCH Activity_Code$(Index)
: SWITCH Widget_Type$
: CASE "Gizmos","GIZMOS"
: PRINT 0
: CASE "Thingammies","THINGAMMIES"
: PRINT 1
: CASE
: PRINT "Eh?"
: END SWITCH

Compatibility Issues:

This statement is supported only with Release IV or greater.

References:

CASE (string)
END SWITCH
Logical Constructs - Section 4.11 of NPL Programmer’s Guide

SWITCH String LANGUAGE STATEMENTS

2-713 NPL Statements Guide

$TAB

Discussion:

Form 1 of the $TAB statement allows the NPL application to modify the contents of the
$TAB system variable.

Form 2 allows examination of the current status of the $TAB system variable.

The $TAB system variable is 132 bytes in length. Each byte corresponds to a column po-
sition on the screen with byte 1 of $TAB corresponding to column zero, byte 2 corre-
sponding to column 1, and so on. Values for each byte of $TAB may be either space or
"T". A "T" indicates that a tab stop is defined for the corresponding column. A space indi-
cates that no tab stop is defined for the corresponding column. Values other than space or
"T" are reserved and should not be used but are treated as tab stop indicators on the cur-
rent revision.

Default values for $TAB are that a "T" is present in every fourth byte starting from byte 1.

$TAB is used when TAB or SHIFT/TAB are pressed when editing a program line. Refer
to TAB/SHIFT TAB, Section 5.4.12 of the Programmer’s Guide, for further details.

Examples:
0010 X$=$TAB
0010 $TAB=X$

General Form:

Form 1

$TAB = alpha-variable

Form 2

alpha-variable = $TAB

LANGUAGE STATEMENTS $TAB

NPL Statements Guide 2-714

$TAB (cont.)

Compatibility Issues:

This statement is supported only with Release 3.0 or greater.

$TAB is not supported on the Wang 2200.

References:

Use of TAB/BACKTAB - Section 5.4.12 of the Programmer’s Guide

$TAB LANGUAGE STATEMENTS

2-715 NPL Statements Guide

TAN Function

Discussion:

The TAN function computes the value of the tangent of a numeric-expression. This is
valid wherever a numeric-expression is legal.

The numeric-expression is specified in Degrees, Radians or Gradians depending on the
last executed SELECT D, R, or G statement.

Examples:
0010 PRINT TAN(15)
0010 N=R3+E2-TAN(90-Q1)
0010 E7=A(3,X)+TAN(15)
0010 X(M4,M5)=SIN(R4)-TAN(X(Y))

Compatibility Issues:

Due to the use of a different algorithm, results of these functions may differ from func-
tions evaluated on a Wang 2200. In general, however, the functions are accurate to 13 sig-
nificant digits.

References:

General Form:

TAN (numeric-expression)

LANGUAGE STATEMENTS TAN Function

NPL Statements Guide 2-716

#TERM

Discussion:

The #TERM function is a numeric function which returns the terminal number of the cur-
rent user. #TERM is typically used to distinguish between different users in a multi-user
environment. This is valid wherever a numeric-expression is legal.

Examples:
0010 X=#TERM
0010 IF #TERM=2 THEN PRINT "ERROR"

Compatibility Issues:

The generation of #TERM is hardware-specific. Refer to the appropriate NPL Supple-
ment for details on the hardware system.

References:

Multi-user Functions - Chapter 7 of the NPL Supplement(s)

General Form:

#TERM

#TERM LANGUAGE STATEMENTS

2-717 NPL Statements Guide

TIME

Discussion:

The TIME function is a special instruction which allows inspection (form 1) and modifi-
cation (form 2) of the system clock.

TIME is represented as an eight-byte alpha field in ASCII format:

Bytes 1-2 Hour (in a 24-hour format)
Bytes 3-4 Minute
Bytes 5-6 Seconds
Bytes 7-8 1/100 of a seconds, although on many machines these

may always be set to 00.

Examples:
0010 T$=TIME
0010 T$()=TIME
0010 TIME=X$
0010 TIME="14425900"

Compatibility Issues:

Form 2 of the TIME statement which READS the time is fully compatible with Wang
2200 Basic-2 form.

The PASSWORD clause is required on the Wang 2200. Under NPL, the PASSWORD
clause is syntactically supported for compatibility purposes, and if specified, is checked
for validity. The system password is "SYSTEM" under NPL and may not be modified.

General Form:

 Form 1:

TIME= alpha-expression [PASSWORD {literal-string}]
 {alpha-variable}

 Form 2:

alpha-receiver = TIME

LANGUAGE STATEMENTS TIME

NPL Statements Guide 2-718

TIME (cont.)

Operation of this statement may vary on different hardware versions of NPL. Access
privileges may be needed to set the system time under certain operating systems. Refer to
the appropriate NPL Supplement for details.

References:

DATE
Multi-user Functions - Chapter 7 of the NPL Supplement(s)

TIME LANGUAGE STATEMENTS

2-719 NPL Statements Guide

TRACE

Discussion:

The TRACE statement is used to activate TRACE Mode. While TRACE Mode is on, the
labels and values of all variables modified by "Trace-Sensitive" statements (refer to Sec-
tion 6.3.2 of the Programmer’s Guide for a list of "Trace-Sensitive" statements), and the
line number of all transfer operations are displayed to the currently selected console out-
put (CO) device as they occur. TRACE is used as a debugging tool.

NOTE: Not all variable assignments are displayed by TRACE. Only assignments by "Trace-
Sensitive" statements are displayed.

The TRACE statement can be issued either in Immediate Mode or under program con-
trol. TRACE Mode is terminated by executing the TRACE OFF statement, a CLEAR
statement, or the RESET function. Refer to Section 6.3 of the Programmer’s Guide for de-
tails on TRACE Mode.

Under the non-interpretive RunTime program, the TRACE statement performs no opera-
tion.

TRACE output is not restricted to any specific module. Output is produced for all vari-
able changes and transfers.

Variable assignments to function or procedure parameters which are declared as
/POINTER type display the name of the referenced variable (not the name of the parame-
ter). If the variable is declared in a module other than the current module, or in a function
other than the currently executing function, the name of the module or function which de-
clared the variable is also displayed.

General Form:

TRACE

LANGUAGE STATEMENTS TRACE

NPL Statements Guide 2-720

TRACE (cont.)

Examples:
:TRACE
0010 TRACE

:0010 DIM A$1,B$16
:0020 A$="Y"
:0030 IF A$="Y" THEN 100
:0040 B$="Process Aborted"
 : GOTO 110
:0100 B$="Process Complete"
:0110 PRINT B$

:TRACE
:RUN

A$= "Y" HEX(59)
TRANSFER TO 0100
B$= "Process Complete "HEX(5072 6F63 6573 7320 436F 6D70 6C65 7465)

Process Complete

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

References:

TRACE OFF
TRACE #
TRACE ’
TRACE V
SELECT CO
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

TRACE LANGUAGE STATEMENTS

2-721 NPL Statements Guide

TRACE OFF

Discussion:

The TRACE OFF statement is used to deactivate TRACE Mode.

TRACE OFF can be used in conjunction with TRACE, TRACE #, TRACE ’, and
TRACE V to restrict TRACE output to specified portions of a program where a sus-
pected bug is present.

The TRACE OFF statement may be used either in Immediate Mode or under program
control.

Under the non-interpretive RunTime program, the TRACE OFF statement performs no
operation.

Examples:
:TRACE OFF
0010 TRACE OFF
0010 TRACE
 : GOSUB 1000
 : TRACE OFF

Compatibility Issues:

This statement is supported only with Release 2.0 or greater.

References:

TRACE
TRACE #
TRACE ’
TRACE V
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

General Form:

TRACE OFF

LANGUAGE STATEMENTS TRACE OFF

NPL Statements Guide 2-722

TRACE #

Discussion:

The TRACE # statement is used to turn on TRACE Mode, while suppressing all TRACE
output except that associated with transfer statements to lines in the specified range. Out-
put from TRACE Mode is displayed on the currently selected console output (CO) de-
vice. Both the line number branched to and the line number branched from are displayed
by TRACE #.

The TRACE # statement causes the system to HALT program execution after executing
the statement which produced the TRACE output. The "*" parameter specifies that the
HALT operation is not performed.

The TRACE Mode processor can be invoked for a specified range of transfer statements
by using the line1 and line2 parameters:

• If line1 is specified, all TRACE Mode output is suppressed except that associated
with transfer statements to the specified line-number.

• If line1 and a comma (,) are specified, all TRACE Mode output is suppressed ex-
cept that associated with transfer statements to specified line-numbers equal to or
greater than the specified line-number.

• If line1 and line2 are specified, all TRACE Mode output is suppressed except
that associated with transfer statements to lines within the specified range.

General Form:

TRACE #[*] [[line1],[line2]]

Where:

line1 = the lowest line-number in range specification for control-
led TRACE Mode processing.

line2 = the highest line-number in range specification for con-
trolled TRACE Mode processing.

TRACE # LANGUAGE STATEMENTS

2-723 NPL Statements Guide

TRACE # (cont.)

• If only a comma (,) and line2 are specified, all TRACE output is suppressed ex-
cept that associated with transfer statements to line-numbers less than or equal to
the specified line-number.

TRACE # is useful when debugging programs where it is uncertain how a program
branched to a particular section of code, especially when that code should not be exe-
cuted.

The TRACE # statement can be issued either in Immediate Mode or under program con-
trol. TRACE Mode is terminated by implicitly specifying the TRACE OFF statement. Re-
fer to Section 6.3 of the Programmer’s Guide for details on TRACE Mode.

Under the non-interpretive RunTime program, the TRACE # statement performs no op-
eration.

Examples:
:TRACE # 100
:TRACE # * 1000,2000
0010 TRACE # 950,2110
0010 TRACE # ,999
0010 TRACE # 10

:0010 IF A=0 THEN 100
:0020 PRINT A
:0030 END
:0100 A=1
 : GOTO 20

:TRACE #*
:RUN

TRANSFER FROM 0010 TO 0100
TRANSFER FROM 0100 TO 0020

1

Compatibility Issues:

TRACE # is not a valid instruction in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater

Controlled TRACE Mode (specification of range parameters) is not allowed in Wang
2200 Basic-2.

LANGUAGE STATEMENTS TRACE #

NPL Statements Guide 2-724

TRACE # (cont.)

References:

TRACE
TRACE OFF
SELECT CO
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

TRACE # LANGUAGE STATEMENTS

2-725 NPL Statements Guide

TRACE ’

Discussion:

The TRACE ’ statement is used to turn on TRACE Mode, while suppressing all TRACE
output except that associated with transfer statements using GOSUB’ to any marked sub-
routines in the specified range. Output from TRACE Mode is displayed on the currently
selected console output (CO) device.

The TRACE ’ statement causes the system to HALT program execution after executing
the statement which produced the TRACE output. The "*" parameter specifies that a
CONTINUE be performed automatically after each TRACE output.

The TRACE Mode processor can be invoked for a specified range of marked subroutines
by using the mark1 and mark2 parameters:

• If mark1 is specified, all TRACE Mode output is suppressed except that associ-
ated with transfer statements (GOSUB’) to the specified marked subroutine.

• If mark1 and a comma (,) are specified, all TRACE Mode output is suppressed
except that associated with transfer statements (GOSUB’) to the specified
marked subroutines equal to or greater than the specified marked subroutine.

• If mark1 and mark2 are specified, all TRACE Mode output is suppressed except
that associated with transfer statements (GOSUB’) to marked subroutines within
the specified range.

General Form:

TRACE ’ [*] [[mark1],[mark2]]

Where:

mark1 = the lowest defined GOSUB’ in range specification for con-
trolled TRACE Mode processing.

mark2 = the highest defined GOSUB’ in range specification for con-
trolled TRACE Mode processing.

LANGUAGE STATEMENTS TRACE ’

NPL Statements Guide 2-726

TRACE ’ (cont.)

• If only a comma (,) and mark2 are specified, all TRACE output is suppressed ex-
cept that associated with transfer statements (GOSUB’) to marked subroutines
less than or equal to the specified marked subroutine.

TRACE ’ is useful when debugging programs where it is uncertain how a program
branched to a particular marked subroutine, especially when that subroutine should not
be executed.

NOTE: LIST STACK is useful in conjunction with TRACE ’ to determine where the sub-
routine was called from.

The TRACE ’ statement can be issued either in Immediate Mode or under program con-
trol. TRACE Mode is terminated by implicitly specifying the TRACE OFF statement. Re-
fer to Section 6.3 of the Programmer’s Guide for details on TRACE Mode.

Under the non-interpretive RunTime program, the TRACE ’ statement performs no opera-
tion.

TRACE’ statements are extended to include named DEFFN routines.

NOTE: In ranges of DEFFN’ names, numbered functions sort numerically but numbered
functions sort lexicographically (all numbers appear before any names).

For example:

’2 appears before ’12 <- numerical
’9999 appears before ’65535
’Aardvark appears before ’Zebra
’f10000 appears before ’f9 <-lexical

A LIST’ or DEFFN’ range that ends at 65535 is equivalent to ’all ranges after start
value’. It is not possible to specify a range that ends exactly at 65535.

TRACE ’ LANGUAGE STATEMENTS

2-727 NPL Statements Guide

TRACE ’ (cont.)

Examples:
:TRACE ’ 220
:TRACE ’ * 200,240
0010 TRACE ’100
0010 TRACE ’121,200
0010 TRACE ’189,

:0010 A=1
:0020 IF A=1 THEN GOSUB ’100
:0030 GOSUB ’200
:0040 PRINT A,B,C
:0050 END
:0060 DEFFN’100
 : B=A*2
 : A=A+1
 : RETURN
:0070 DEFFN’200
 : C=B*A
 : B=B+1
 : RETURN

:TRACE ’*
:RUN

DEFFN’100
DEFFN’200

2 3 4

Compatibility Issues:

TRACE ’ is not a valid instruction in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

Controlled TRACE Mode (specification of range parameters) is not allowed in Wang
2200 Basic-2.

References:

TRACE
TRACE OFF
LIST STACK
SELECT CO
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

LANGUAGE STATEMENTS TRACE ’

NPL Statements Guide 2-728

TRACE V

Discussion:

The TRACE V statement is used to turn on TRACE Mode, while suppressing all TRACE
output except that associated with variable assignments in the specified range. Output
from TRACE Mode is displayed on the currently selected console output (CO) device.

The TRACE V statement causes the system to HALT program execution after executing
the statement which produced the TRACE output. The "*" parameter specifies that a
CONTINUE be performed automatically after each TRACE output.

TRACE Mode can be invoked for a specified range of variables ordered alphabetically
by using the var1 and var2 parameters:

• If var1 parameter is specified, all TRACE Mode output is suppressed except that
associated with variable assignments for the specified variable.

• If var1 and a comma (,) are specified, all TRACE Mode output is suppressed ex-
cept that associated with variable assignments for variables equal to or greater
than the specified variable (in ascending order).

• If var1 and var2 are specified, all TRACE Mode output is suppressed except that
associated with variables within the specified range.

• If only a comma (,) and var2 are specified, all TRACE output is suppressed ex-
cept that associated with variable assignments for variables less than or equal to
the specified variable (in ascending order).

General Form:

TRACE V[*] [[var1],[var2]]

Where:

var1 = the lowest variable in range specification for controlled
TRACE Mode processing.

var2 = the highest variable in range specification for controlled
TRACE Mode processing.

TRACE V LANGUAGE STATEMENTS

2-729 NPL Statements Guide

TRACE V (cont.)

• If no range is specified, all variables are TRACEd.

• If only one type of variable (numeric-scalar, alpha-scalar, numeric-array, alpha-
array) is specified, only TRACE output concerning that type of variable is se-
lected.

NOTE: Array variables are designated by the special format:

array-name(

For example,

A$(refers to array A$()
A(refers to array A()

TRACE V is useful when debugging programs where it is uncertain how a variable was
assigned to a particular value.

The TRACE V statement can be issued either in Immediate Mode or under program con-
trol. TRACE Mode is terminated by executing the TRACE OFF statement, a CLEAR
statement, or the RESET function. Refer to Section 6.3 of the Programmer’s Guide for de-
tails on TRACE Mode.

Under the non-interpretive RunTime program, the TRACE V statement performs no op-
eration.

LANGUAGE STATEMENTS TRACE V

NPL Statements Guide 2-730

TRACE V (cont.)

Examples:
:TRACE V A$
:TRACE V L(,X$
0010 TRACE V ,J1
0010 TRACE V N$(
0010 TRACE V R,
0010 TRACE V A$,J

:0010 A=1
:0020 IF A=1 THEN GOSUB ’100
:0030 GOSUB ’200
:0040 PRINT A,B,C
:0050 END
:0060 DEFFN’100
 : B=A*2
 : A=A+1
 : RETURN
:0070 DEFFN’200
 : C=B*A
 : B=B+1
 : RETURN

:TRACE V*
:RUN

A= 1
B= 2
A= 2
C= 4
B= 3

 2 3 4

Compatibility Issues:

TRACE V is not a valid instruction in Wang 2200 Basic-2.

This statement is supported only with Release 2.0 or greater.

Controlled TRACE Mode (specification of range parameters) is not allowed in Wang
2200 Basic-2.

TRACE V LANGUAGE STATEMENTS

2-731 NPL Statements Guide

References:

LIST V
LIST DIM
TRACE
TRACE OFF
Inspection and Modification of Program Logic - Section 6.3 of the Programmer’s Guide

LANGUAGE STATEMENTS TRACE V

NPL Statements Guide 2-732

$TRAN

Discussion:

The $TRAN statement is used to perform a character-by-character translation on all the
characters in alpha-variable1. Alpha-variable2 contains a the translation table used. Typi-
cally, $TRAN is used to perform translation between character sets, i.e., ASCII and
EBCDIC, lowercase to uppercase, etc.

If the "R" option is specified, alpha-variable2 must consist of pairs of characters. Each
pair consists of a "TO" and a "FROM" character. If a character in arg1 is listed as one of
the "FROM" characters in alpha-variable2, that character in alpha-variable1 is replaced
with the corresponding "TO" character from alpha-variable2. If the character cannot be
found, its value is not changed. The search in alpha-variable2 is halted when a to/from
pair of HEX(2020) is encountered or the end of alpha-variable2 is reached.

If the "R" option is not specified, the binary value, plus one, of each character in alpha-
variable1 is used to determine a position in alpha-variable2. The character in alpha-vari-
able1 is then replaced with the character in the corresponding position in alpha-variable2.
If alpha-variable2 is not large enough to contain the indicated position, the character in al-
pha-variable1 is not changed.

General Form:

$TRAN (alpha-variable1[subs],{alpha-variable2[subs]} [hh] [R]
 {literal-string }

Where:

subs = <[s][,n]>

hh = two hex-digits .

s = a numeric expression indicating the starting position of
the alpha-variable to use.

n = the number of bytes of the alpha-variable to use. All
bytes to the end of the alpha-variable are used if n is
not specified.

$TRAN LANGUAGE STATEMENTS

2-733 NPL Statements Guide

$TRAN (cont.)

If a mask of two hex-digits is specified, they are ANDed with each character in alpha-
variable1 before the character is looked up in alpha-variable2.

Examples:
0010 $TRAN (Z$,HEX(0F11090A))R
0010 $TRAN (A$,Y$)0A
0010 $TRAN (B$,C$())
0010 $TRAN (STR(D$(),1,10),STR(F$(),1,16))0F R

:0010 DIM A$4,B$8
:0020 A$="ABCD"
:0030 B$="1A2B3C4D"
:0040 PRINT A$
:0050 $TRAN(A$,B$) R
:0060 PRINT A$
:RUN

ABCD
1234

Compatibility Issues:

References:

LANGUAGE STATEMENTS $TRAN

NPL Statements Guide 2-734

UNPACK

Discussion:

The UNPACK statement is used to convert packed numeric information stored in an al-
pha-variable to one or more numeric-variables. UNPACK is normally used in conjunc-
tion with the PACK statement.

The numeric values are unpacked starting at the beginning of the specified alpha-vari-
able. Values are converted to numeric format according to the specified image and se-
quentially stored in the specified numeric-variable(s) in the order listed. If numeric-arrays
are specified, each element of the array is filled with one value from the alpha-variable.

Typically, the image used to unpack values is identical to the image used to pack it origi-
nally. For information on how the image determines the way packed numbers are stored,
refer to the PACK statement.

An error is generated if not enough packed data is available to fill the numeric-variables
or if non-BCD data appears where digits are required.

Examples:
0010 UNPACK(######) B$ TO A8
0010 A$="-###.##^^^^": UNPACK(A$) B$ TO A8
0010 UNPACK(-########.####) A$() TO B()
0010 UNPACK(####) STR(C$,1,6) TO A, B, C(3)

General Form:

UNPACK (image) alpha-variable TO {numeric-receiver}
 {numeric-array }
 [,{numeric-receiver}]...
 {numeric-array }

Where:

image = {[+,-] [#]...[.][#]...[^^^^] }
{alpha-variable containing image }
 length of image <= 254

UNPACK LANGUAGE STATEMENTS

2-735 NPL Statements Guide

UNPACK (cont.)
:0010 DIM A(2)
:0020 PACK(+####.##) A$ FROM 12.354,-123.45,1234.56
:0030 HEXPRINT A$
:0040 UNPACK(+####.##) A$ TO A,A()
:0050 PRINT A,A(1),A(2)
:RUN

00012350101234500123456020202020

12.35 -123.45 1234.56

Compatibility Issues:

References:

PACK

LANGUAGE STATEMENTS UNPACK

NPL Statements Guide 2-736

$UNPACK

Discussion:

The $UNPACK statement is used to unpack alpha-variable1 to one or more receiver-vari-
ables according to the unpack-specification. Usually, this information has been stored in
alpha-variable1 using the $PACK statement. Data values are read sequentially from al-
pha-variable1 and is stored sequentially in the receiver-variables according to the format
rules stated below. If arrays are specified in the receiver list, array-elements are filled ele-
ment by element and row by row; with each element receiving one value. To treat an al-
pha-array as an alpha-variable, it must be specified as a STR() function.

There are three forms of the $UNPACK statement:

Delimiter Form (D parameter) each value to be unpacked is separated by a delim-
iter character.

General Form:

$UNPACK [({F} = unpack-specification)] alpha-variable1 TO
 {D}

 receiver-variable [,receiver-variable]...

Where:

unpack-specification = {alpha-variable}
{literal-string}

receiver-variable = {numeric-receiver}
{numeric-array }
{alpha-variable }
{alpha-array }

$UNPACK LANGUAGE STATEMENTS

2-737 NPL Statements Guide

$UNPACK (cont.)

Field Form (F parameter) each value occupies a specified number of bytes.

Internal Form (neither F or D is specified) data is stored in standard logical record
format.

Delimiter Form

In the Delimiter form, the delimiter specification contains two bytes. The first byte is a
control byte that must be set to a value from HEX(00) to HEX(03). This value is used by
the $UNPACK statement to define certain unpacking rules to be followed:

00xx An error is generated if not enough fields in alpha-variable1 for variables list. Skip
variables if successive delimiters occur in alpha-variable1.

01xx No error is generated if not enough fields in alpha-variable1. Skip variables if suc-
cessive delimiters occur in alpha-variable1.

02xx An error is generated if not enough fields in alpha-variable1 for variables list. Ig-
nore successive delimiters.

03xx No error is generated if not enough fields in alpha-variable1. Ignore successive de-
limiters.

0 0 F F

The second byte of the delimiter specification is a delimiter character. This delimiter char-
acter separates each value in the alpha-variable to be unpacked.

When the delimiter form is used, data values may be either alpha or numeric. Alpha data
values may contain any character other than the specified delimiter.

Numeric data must be stored in ASCII free format. Refer below (Field Form) for details
on the internal structure of ASCII free format.

LANGUAGE STATEMENTS $UNPACK

NPL Statements Guide 2-738

$UNPACK (cont.)

Example of Delimiter Form:
:0010 DIM X$32,A$5,B$5
:0020 A$="ABC": A=1.03: B$="DEFG": B=-3.2
:0030 $PACK(D=HEX(00FF)) X$ FROM A$,A,B$,B
:0040 $UNPACK(D=HEX(00FF)) X$ TO C$,C,D$,D
:0050 HEXPRINT X$: PRINT C$,C,D$,D

:RUN

4142432020FF20312E3033FF4445464720FF2D332E3220202020202020202020
ABC 1.03 DEFG -3.2

Field Form

In the Field form, the unpack-specification contains a series of 2 byte format specifica-
tions for unpacking each value in the buffer. The first byte contains the format type. The
second byte contains the length of the field.

The following types are allowed:

00xx Skip xx bytes in alpha-variable2
10xx ASCII free format
2dxx ASCII integer format
3dxx IBM display format
4dxx IBM USASCII - 8 format
5dxx IBM packed decimal format
6dxx Unsigned packed decimal format
A0xx Alpha field (length = xx bytes)
Axxx Alpha field (length = xxx bytes)
Bd0x Unsigned Binary format
Cd0x Signed Binary format
Dd0x Unsigned small endian
Ed0x Signed small endian
Ft0x Floating Point format

Where:
x, xx or xxx = field width in binary (x, xx or xxx > 0)
d = implied decimal position in binary
t = class of floating point format (refer below)

$UNPACK LANGUAGE STATEMENTS

2-739 NPL Statements Guide

$UNPACK (cont.)

A X X X

An individual field specification must be specified for each variable or array in the list.
One field specification is specified for an array, with each element in the array being un-
packed to that specification.

Alpha fields (Axxx) are treated as a character string with the length specified by xxx, al-
lowing a field size up to 4095 bytes (4K-1).

The internal format of numeric fields is different for each of the numeric field specifica-
tions. In all cases, the length of the field is specified by byte two of the specification and
the location of the implied decimal point (except for ASCII Free Format) is specified by
the second hex digit of the first byte.

The $$UNPACK statement may be used to extract an entire record into a list of values.
In many circumstances, it is more convenient to define a RECORD structure which de-
fines the order and FIELD format of fields within the record. This allows a program to as-
sign or inspect individual fields in the record buffer using numeric or string FIELD
expressions, without any need to define or extract the entire list of fields. Refer to discus-
sions in the RECORD and FIELD statements for more information.

ASCII Free Format - (10xx)

Contains a number in the format permitted for a numeric-constant. Spaces are ignored.
Refer to the Glossary at the end of this guide for a description of the formats permitted
for numeric-constants.

- 1.23456789 E 28

NOTE: In the case of ASCII Free Format, $UNPACK does not require an identical format
to that produced with $PACK.

LANGUAGE STATEMENTS $UNPACK

NPL Statements Guide 2-740

$UNPACK (cont.)

For example:

 :0010 DIM X$32
 :0020 $PACK(F=HEX(10101010)) X$ FROM 1.2345678901E28,-1234567890123
 :0030 $UNPACK(F=HEX(10101010)) X$ TO A,B
 :0040 PRINT X$: PRINT A,B

 :RUN

 1.23456789E+28 -1234567890123
 1.23456789E+28 -1234567890123

ASCII Integer Format - (2dxx)

In this format, all digits are stored as the ASCII representation of a number. The sign is
contained in byte 1 of the field. The location of the decimal point is specified implicitly
by the d parameter.

- 0010065

IBM Display Format - (3dxx)

In this form, digits are stored 1 digit per byte in the format HEX(Fd) where d is the digit
(0-9). The sign is stored in the high-order nibble of the last byte of the field and may be C
for positive or D for negative.

F0 F0 F1 F2 D3

For example:

:0010 A$=HEX(F1F2D3)
:0020 $UNPACK (F=HEX(3203))A$ to A
:0030 PRINT A
:RUN

-1.23

IBM USASCII Format - (4dxx)

In this form, digits are stored 1 digit per byte in the format HEX(5d) where d is the digit
(0-9). The sign is stored in the high order nibble of the last byte of the field and may be A
for positive or B for negative.

50 50 51 52 A3

$UNPACK LANGUAGE STATEMENTS

2-741 NPL Statements Guide

LANGUAGE STATEMENTS $UNPACK

NPL Statements Guide 2-742

$UNPACK (cont.)

For example:

:0010 A$=HEX(5152A3)
:0020 $UNPACK (F=HEX(4203))A$ to A
:0030 PRINT A
:RUN
 1.23

IBM Packed Decimal Format - (5dxx)

In this form, digits are stored 2 digits per byte in the format HEX(dd) where d is the digit
(0-9). The sign is stored in the low order nibble of the last byte of the field and may be C
for positive or D for negative.

00 00 00 12 3D

For example:

:0010 A$=HEX(123D)
:0020 $UNPACK (F=HEX(5202))A$ to A
:0030 PRINT A
:RUN

-1.23

Unsigned Packed Decimal Format - (6dxx)

In this form, digits are stored 2 digits per byte in the format HEX(dd) where d is the digit
(0-9). No sign is stored.

For example:

:0010 A$=HEX(1234)
:0020 $UNPACK (F=HEX(6202))A$ to A
:0030 PRINT A
:RUN

 12.34

Unsigned Binary Format (Bd0x)

Unsigned binary numbers may be specified using the format code HEX(Bd0x) where:

B d 0 x

$UNPACK LANGUAGE STATEMENTS

2-743 NPL Statements Guide

$UNPACK (cont.)

"B" indicates that the field is binary
"d" is a hexadecimal digit from 0 to F indicating a number of implied decimal places in
the field.
"x" is the length of the field in bytes (values 1 to 5 permitted).

The following table indicates the range of values which may be stored using this format.
If an implied decimal of "d" places is assumed, divide all numbers by 10^d.

Field length Minimum Maximum
1 0 255
2 0 65535
3 0 16777215
4 0 4294967295
5 0 1099511627775

The value returned from the field A$ is the same as that returned by VAL(A$,X)/1Ed.

Example:
:LIST
1000 DIM Z(4),Z1(4),X$14
 : Y=16000
 : Z(1)=196.32
 : Z(2)=100.305
 : Z(3)=1200
 : Z(4)=0
 : $PACK(F=HEX(B002B203)) X$ FROM Y,Z()
 : HEXPRINT X$
 : $UNPACK(F=HEX(B002B203)) X$ TO Y1,Z1()
 : PRINT Y1,Z1(1),Z1(2),Z1(3),Z1(4)
:RUN
3E80004CB000272E01D4C0000000R16000 196.32 100.3 1200 0

Signed Binary Format (Cd0x)

Signed binary numbers may be specified using the format code HEX(Cd0x) where:

C0 00 02 03

LANGUAGE STATEMENTS $UNPACK

NPL Statements Guide 2-744

"C" indicates that the field is signed binary.
"d" is a hexadecimal digit from 0 to F indicating a number of implied decimal places in
the field.
"x" is the length of the field in bytes (values 1 to 6 permitted).

$UNPACK LANGUAGE STATEMENTS

2-745 NPL Statements Guide

$UNPACK (cont.)

The following table indicates the range of values which may be stored using this format.
If an implied decimal of "d" places is assumed, divide all numbers by 10^d.

Field length Minimum Maximum
1 -128 127
2 -32768 32767
3 -8388608 8388607
4 -2147483648 2147483647
5 -549755813888 549755813887
6 -140737488355328 140737488355327

The value returned from the field A$ is the same as that returned by VAL(A$,-X)/1Ed.

Unsigned Small-Endian (Dd0x)

The format Dd0x is used for unsigned small-endian format, where d denotes the number
of implied decimal positions and x denotes the number of bytes to be used. The number
of bytes to be used may range from 1 to 5.

For example:

10 $PACK (F=HEX(D202)) X$ FROM 1.23
20 $UNPACK (F=HEX(D202)) X$ TO A

Signed Small-Endian (Ed0x)

The format Ed0x is used for signed small-endian format, where d denotes the number of
implied decimal positions and x denotes the number of bytes to be used. The number of
bytes to be used may range from 1 to 6.

For example:

10 $PACK (F=HEX(E202)) X4 FROM 1.23
20 $UNPACK (F=HEX(E202)) X$ to A

NOTE: "Small-endian" format is equivalent to Intel integer format.

LANGUAGE STATEMENTS $UNPACK

NPL Statements Guide 2-746

$UNPACK (cont.)

Floating Point Format (Ft0x)

As of Revision 3.0 of NPL, field specifications of the form HEX(Ft0x) indicate the use of
a floating point field "x" bytes in length. The "t" is used to distinguish between 5 classes
of floating point formats.

F 2 0 4

NOTE: This differs from other previously supported numeric field format specifications,
which only supported fixed point data formats and used this hex digit to indicate an
implied decimal position. In addition, only a few values of the field length "x" are
supported, unlike previously supported numeric field format specifications, which
allow any non-zero value for the field length. The following is a summary of the sup-
ported floating point formats:

"t" Format Valid values for "x"
0 Wang Internal Numeric Format 8
1 NPL Internal Numeric Format 8
2 IEEE Binary Real, H-L format 4, 8
3 IEEE Binary Real, L-H format 4, 8
4 DEC VAX floating point format 4, 8
5 Sortable MAT MOVE format 2, 8

In general, where both 4 and 8 are supported as a field length, the 4-byte format corre-
sponds to a single precision value, and the 8-byte format to a double precision value.

Purpose of the New Format

These formats have been implemented to allow NPL applications to read or generate nu-
meric data in a format compatible with programs written in other languages such as C.

Refer to $PACK for a detailed discussion of each of the individual floating point formats.

$UNPACK LANGUAGE STATEMENTS

2-747 NPL Statements Guide

$UNPACK (cont.)

Examples:
0010 Q$=HEX(A004A0105209): $UNPACK(F=Q$) Q1$() TO A$,A0$,A
0010 $UNPACK(F=HEX(5001)) T1$() TO A2
0010 $UNPACK(F=HEX(0001A00500085204)) Q1$() TO A0$,A0

:0010 DIM X$32,Y(5),A$3,B$(3)5
:0020 $PACK(F=HEX(52055205520552055205)) X$ FROM -123.45,123.456,99,-
99,34
:0030 $UNPACK(F=HEX(5205)) X$ TO Y()
:0040 HEXPRINT X$
:0050 MAT PRINT Y
:0060 $PACK(F=HEX(A00300045205A005A005A005A005)) X$ FROM
"abc",123.45,"defg","hijk","lmno"
:0070 $UNPACK(F=HEX(A00300045205A005)) X$ TO A$,C,B$()
:0080 HEXPRINT X$
:0090 PRINT A$,C,B$(1),B$(2),B$(3)

:RUN

000012345D000012345C000009900C000009900D000003400C20202020202020

-123.45
123.45
 99
-99
 34
616263345D0000000012345C646566672068696A6B206C6D6E6F202020202020
abc 123.45 defg hijk lmno

Field Format (F50x)

In this format, x represents the number of bytes in the alpha variable to be used.

The alpha representation of numeric values by this format is identical to that produced by
MAT MOVE. Refer to the MAT MOVE discussion for details. The advantage of this for-
mat is that it produces alphanumeric values that can be sorted even if the numeric values
contain both positive and negative values.

For example:

10 DIM A$8
20 $PACK(F=HEX(F508)) A$ FROM -1.234
30 $UNPACK(F=HEX(F508)) A$ to A

LANGUAGE STATEMENTS $UNPACK

NPL Statements Guide 2-748

The size of the alpha variable used to store the result affects the precision of the opera-
tion. A size of eight bytes ensures full precision (13 digits). For smaller values, the preci-
sion can be calculated by the formula D= n*2-3 where n is the number of bytes in the
alpha variable and D is the number of digits of precision.

$UNPACK LANGUAGE STATEMENTS

2-749 NPL Statements Guide

$UNPACK (cont.)

Internal Form

The Internal form of the $UNPACK statement uses the same format used by the DATA-
LOAD DC/DA statements. The values of all variables in the list are unpacked sequen-
tially into the receiver-variable(s). If receiver-variables types do not match the data being
unpacked, an error is generated. The $UNPACK operation is terminated when all data in
the alpha-variable has been unpacked or all receiver-variables have been filled. Refer to
Cataloged Files, Section 7.3.7 of the Programmer’s Guide, for further details on the inter-
nal logical disk record format.

Examples:
0010 $UNPACK A$() TO B$,C(),D$(3),E
0010 $UNPACK X$ TO Z(2),Z(3),Z$,Z(4)

:0010 DIM A$(20)1
:0020 A$()=HEX(80010801012345000000008441424344FD)
:0030 $UNPACK A$() TO A,A$
:RUN

 12.345 ABCD

Compatibility Issues:

The unsigned binary (Bd0x) and signed binary (Cd0x) field format specifications are sup-
ported only on NPL Revision 2.1 or greater and are not supported on the Wang 2200.

The floating point (Ft0x) field format specification is supported only on NPL Revision
2.1 or greater and is not supported on the Wang 2200.

Floating point format F50x is supported only by NPL revision 3.01.11 or later.

Little-endian formats (Dxxx and Cxxx) are supported only by NPL revision 3.01.13 or
later.

References:

MAT MOVE
$PACK
Internal Format of Data Files, Chapter 7 of NPL Programmer’s Guide

LANGUAGE STATEMENTS $UNPACK

NPL Statements Guide 2-750

UNSCRATCH

Discussion:

The UNSCRATCH statement is used to set the status of a file or files to a non-scratched
condition. The purpose of this statement is to provide a convenient method to access files
that were scratched in error. UNSCRATCH does not alter the contents of the file in any
way except for the file trailer sector. UNSCRATCH only modifies the index entry and
the file status byte of the trailer sector for the specified file.

Once UNSCRATCH has been executed, the file may be accessed normally as though it
was never scratched.

No error results if the specified file is already non-scratched. However, a D82 (File not in
Catalog) error results if the specified file name is not in the index of the specified
diskimage.

When using UNSCRATCH, it is the responsibility of the application or programmer to
make sure that no adverse effects result from the file being temporarily scratched. In par-
ticular, it should be noted that if a MOVE statement was executed while the file was in a
scratched state, the file would not have been moved to the destination platter.

Examples:
0010 UNSCRATCH T"START",Q$
0010 UNSCRATCH T <A$>,X$,X1$,X2$
0010 UNSCRATCH T#Y,"SP MENU"
:UNSCRATCH T"START"
:UNSCRATCH T/D32,"START","SP START","SECURITY"
:UNSCRATCH T#2,"PROGRAM"

General Form:

UNSCRATCH T [file-number,] file-name [,file-name]...
 [disk-address,]
 [<address-var>,]

Where:

file-name = an alpha-variable or literal-string containing the
name of the existing cataloged file to be scratched.

UNSCRATCH LANGUAGE STATEMENTS

2-751 NPL Statements Guide

Compatibility Issues:

This statement is supported only with Release 3.0 or greater

LANGUAGE STATEMENTS UNSCRATCH

NPL Statements Guide 2-752

UNSCRATCH (cont.)

UNSCRATCH is not supported on the Wang 2200.

References:

SAVE
LOAD
DATA SAVE DC OPEN
DATA LOAD DC OPEN
MOVE
SCRATCH

UNSCRATCH LANGUAGE STATEMENTS

2-753 NPL Statements Guide

UNTIL

Discussion:

The UNTIL statement marks the end of a structured REPEAT...UNTIL loop.

If the specified logical-expression is true, the loop exits and execution proceeds with the
statement following the UNTIL statement. Otherwise, control is transferred to the state-
ment following the matching REPEAT statement.

Examples:
0010 UNTIL FALSE
0010 UNTIL X>Y
0010 UNTIL ’ReadItem(NextItem$)<>GroupCode$
0010 UNTIL Index > MAX_INDEX OR Valid(Index)<>1

0010 REPEAT
: X=X+X
: PRINT X
:UNTIL X>1000000

Compatibility Issues:

This statement is supported only with Release IVor greater.

References:

BREAK
REPEAT
LOOP
Logical Constructs - Section 4.11 of the NPL Programmer’s Guide

General Form:

UNTIL logical-expression
UNTIL FALSE
UNTIL TRUE
UNTIL END

LANGUAGE STATEMENTS UNTIL

NPL Statements Guide 2-754

USES

Discussion:

The USES statement indicates that a PUBLIC section labeled with the specified Pack-
ageIdentifier is required by the module.

A module implicitly USES any PUBLIC sections defined within itself. If the PUBLIC
section is defined by another module, an INCLUDE statement is required to specify
where that module may be located.

Where named PUBLIC sections are defined, a module is only able to USE the named sec-
tion if the module in which it is defined is INCLUDEd.

For example:

(Module A) (Module B) (Module C)
0010 INCLUDE T "B" INCLUDE T "C" PUBLIC C_PRIVATE
0020 USES C_PRIVATE END PUBLIC

C_PRIVATE

The unnamed PUBLIC section of a module (if any) is implicitly USED by a module
which INCLUDEs the module.

Examples:
0010 USES StringFunctions
0010 USES StandardColorNames

Compatibility Issues:

This statement is supported only with Release IVor greater.

General Form:

USES PackageIdentifier

USES LANGUAGE STATEMENTS

2-755 NPL Statements Guide

References:

PUBLIC
INCLUDE

LANGUAGE STATEMENTS USES

NPL Statements Guide 2-756

VAL Function

Discussion:

The VAL function is used to convert the binary value of a specified alpha-variable or lit-
eral string to a numeric value. This is valid wherever a numeric-expression is allowed.

The range-expression of the VAL function is used to specify both the length and format
of the character string to be converted. The range-expression must evaluate to a number
from - 6 to + 5, otherwise an error results. If the range-expression is omitted, a value of 1
is assumed.

The absolute value of the range-expression indicates the length of the character string to
be converted by VAL. A length from 0 bytes up to 6 bytes is acceptable.

If the range expression is negative, the format of the character string is assumed to be
signed binary. If the range expression is positive, the format of the character string is as-
sumed to be unsigned binary. All numbers are assumed to be stored high order-byte first.

The VAL function is the inverse of the BIN function.

General Form:

VAL({alpha-variable}[,range-expression])
 {literal-string}

Where:

range-expression = a numeric-expression with result between -6
and +5.

VAL Function LANGUAGE STATEMENTS

2-757 NPL Statements Guide

VAL Function (cont.)

The following table summarizes the range of numbers which can be converted for each
possible value of the range-expression.

Range Resultant
Expression Length (bytes) Type Range allowed for numeric-expression
-6 6 signed -140737488355328 140737488355327
-5 5 signed -549755813886 549755813887
-4 4 signed -2147483648 2147483647
-3 3 signed -8388608 8388607
-2 2 signed -32768 32767
-1 1 signed -128 127
0 0 unsigned 0 0
1 1 unsigned 0 255
2 2 unsigned 0 65535
3 3 unsigned 0 16777215
4 4 unsigned 0 4294967295
5 5 unsigned 0 1099511627775

Examples:
0010 X=VAL(A$)
0010 Y=VAL(A$,4)
0010 X$=Y$(VAL(T$,2),1)

:0010 A$=HEX(923456)
:0020 PRINT VAL(A$),VAL(A$,2),VAL(A$,3)
:0030 PRINT VAL(A$,-1),VAL(A$,-2),VAL(A$,-3)

:RUN

 146 37428 9581654
-110 -28108 -7195562

 Compatibility Issues:

In Wang 2200 Basic-2, the VAL function converts up to a maximum two byte unsigned
character string only. Further, on the Wang 2200, the range-expression, if specified, must
be a ",2". Numeric-expressions are not allowed as range-expressions in Wang 2200 Basic-
2.

LANGUAGE STATEMENTS VAL Function

NPL Statements Guide 2-758

References:

BIN

VAL Function LANGUAGE STATEMENTS

2-759 NPL Statements Guide

VER Function

Discussion:

The VER function is used to verify a data-string according to a specified pattern-string.
This is valid wherever a numeric-expression is allowed.

The VER function performs a byte-by-byte check of the data-string against the specified
pattern-string. If a character of the data-string does not belong to the set of characters de-
fined by the corresponding byte in the specified pattern-string, the character is considered
illegal and the verify operation is terminated. The VER function returns the number of
data-string characters checked against the specified pattern-string before any illegal char-
acters or the end of a string is found.

The valid character representations in the pattern-string specification are:

Pattern Character Definitions
A Alpha characters (Upper and lower case A-Z)
Numeric only (0-9)
N Alpha or numeric (Upper and lower case A-Z
H Hexadecimal (0-9 or A-F)
P Packed decimal
+ +, -, or blank
X Any character allowed
Other Must be the same as the corresponding data-string character

General Form:

VER(data-string,pattern-string)

Where:

data-string = {alpha-variable}
{literal-string}

pattern-string = {alpha-variable}
{literal-string}

LANGUAGE STATEMENTS VER Function

NPL Statements Guide 2-760

VER Function (cont.)

Three occurrences cause the termination of the verification process:

• An illegal character is encountered

• End of data-string is encountered

• End of pattern-string is encountered

Examples:
0010 X=VER(X$,"AAAAAAAA")
0010 PRINT VER(X$,"NNNNNN+")
0010 X=VER(Y$,"NNNNNNNNNNNNNN")
0010 X=Y-VER(Y$,"HHHHHHHHH")
0010 X=VER(STR(X$,10,2),"AA")

:0010 A$="ABCD123.45"
:0020 PRINT VER(A$,"AAAAAAAAAA")
:0030 PRINT VER(A$,"AAAA###.##")
:0040 PRINT VER(A$,"NNNNNNNNNN")
:0050 PRINT VER(A$,"##########")
:0060 PRINT VER(STR(A$,5),"##########")

:RUN

 4
 10
 7
 0
 3

Compatibility Issues:

References:

VER Function LANGUAGE STATEMENTS

2-761 NPL Statements Guide

VERIFY

Discussion:

The VERIFY statement is used to check a diskimage or portion of a diskimage for sectors
which cannot be read due to a disk hardware error or media malfunction. The VERIFY
statement reads each individual sector for the range specified, checking that all informa-
tion has been written correctly.

NOTE: VERIFY does not check the validity of the data; it only checks that data can be
read. If the range parameters (start,end) are omitted, the entire catalog index and
catalog area up to the Current End are verified.

If errors are found during the VERIFY operation, an error with the sector address is dis-
played on the Console Output (CO) device, and the verify operation continues. If the nu-
meric-receiver is specified, the numeric-receiver is set to the value of the
sector-address+1 containing the error and the verify operation is terminated. In this case,
no error message is displayed.

General Form:

VERIFY T [file-number,][(start,end)][numeric-receiver]
 [disk-address,]
 [<address-var>,]

Where:

start = an expression representing the first sector to
be verified.

end = an expression representing the last sector to
be verified.

numeric-receiver = a numeric-receiver set to the value+1 of the
address of the first sector that failed during
verify operation. If no errors are found, re-
ceives a value of zero.

LANGUAGE STATEMENTS VERIFY

NPL Statements Guide 2-762

VERIFY (cont.)

Examples:
0010 VERIFY T/D35,
0010 VERIFY T/D32,(0,1200)S
0010 VERIFY T/D10,(10,1279)
0010 VERIFY T<A$>,(10,1279)

:0010 VERIFY T#3,
:RUN

ERROR IN SECTOR 100
ERROR IN SECTOR 204

Compatibility Issues:

Use of the address-var parameter is supported only on NPL Revision 3.0 or greater and is
not supported on the Wang 2200.

References:

SELECT CO

VERIFY LANGUAGE STATEMENTS

2-763 NPL Statements Guide

WEND

Discussion:

The WEND statement marks the end of a structured WHILE...WEND loop.

NOTE: It is possible to branch into the range of a WHILE...WEND loop, although this is
poor programming practice.

When the WEND statement is executed, control flows to the matching WHILE statement.

Example:

0010 X = 1
 :WHILE X<=10
 : X += 1
 : PRINT X
 : WEND

Compatibility Issues:

This statement is supported only with Release IVor greater.

References:

BREAK
WHILE
LOOP
WHILE/WEND - Chapter 4 of NPL Programmer’s Guide

General Form:

WEND

LANGUAGE STATEMENTS WEND

NPL Statements Guide 2-764

WHILE

Discussion:

The WHILE statement marks the beginning of a structured WHILE...WEND loop. It may
be followed by a number of statements, which comprise the body of the loop. It must
then be followed by a WEND statement.

If the specified logical-expression is false, control is transferred to the statement follow-
ing the matching WEND statement. Otherwise, execution proceeds in the body of the
loop.

NOTE: It is possible to branch into the range of a WHILE...WEND loop, although this is
poor programming practice.

Examples:

0010 WHILE TRUE
0010 WHILE X<=Y
0010 WHILE ’ReadItem(NextItem$)=GroupCode$
0010 WHILE Index <=_MAX_INDEX AND Valid(Index)=1

Compatibility Issues:

This statement is supported only with Release IVor greater.

References:

BREAK
WEND
LOOP
WHILE/WEND -Chapter 4 of the NPL Programmer’s Guide

General Form:

WHILE logical-expression
WHILE FALSE
WHILE TRUE
WHILE END

WHILE LANGUAGE STATEMENTS

2-765 NPL Statements Guide

XOR Alpha-operator

Discussion:

The XOR logical alpha-operator performs a logical XOR operation on the alpha-operand
and the contents of the alpha-receiver, the result of which is then assigned to the alpha-re-
ceiver. The XOR alpha-operator is legal only in an alpha-expression in an alpha-assign-
ment statement.

The XOR operation is performed on a byte-by-byte basis, moving from left to right in
each field, for a number of bytes equal to the shorter of:

• The defined length of the alpha-receiver.

• The defined length of the alpha-operand (if the alpha-operand is an alpha-vari-
able or system-variable, trailing spaces are included in the operation).

If the defined length of the alpha-operand is shorter than the defined length of the alpha-
receiver, then the remaining bytes of the alpha-receiver remains unchanged (i.e., padding
with spaces is not performed).

NOTE: In regard to the "XOR" syntactic unit, this may also appear in conditional-expres-
sions. However, the similarity is syntactical only and its use in a conditional-expres-
sion has a completely different meaning.

General Form:

alpha-receiver = [...] XOR alpha-operand [...]

Where:

alpha-operand = { literal-string }
{ alpha-variable }
{ ALL function }
{ BIN function }
{ system-variable }

LANGUAGE STATEMENTS XOR Alpha-operator

NPL Statements Guide 2-766

XOR Alpha-operator (cont.)

Examples:
0010 STR(A$,4,5)=XOR B$
0010 A$=C$ XOR "0"
0010 X$=Y$ XOR Z$
0010 A$=STR(B$,4,5) XOR C$

:0010 A$=XOR buffer$.checksum$
0010: A$=XOR ’Next_Byte$(buffer$,bufpos)
:0010 DIM A$2,B$2,C$2
:0020 A$=HEX(1234)
:0030 B$=HEX(9420)
:0040 C$=A$ XOR B$
:0050 HEXPRINT C$
:RUN

8614

Compatibility Issues:

References

BOOL

XOR Alpha-operator LANGUAGE STATEMENTS

2-767 NPL Statements Guide

CHAPTER 3

LIBRARY FUNCTIONS

3.1 Overview

The following chapter discusses the library functions included with the NPL Develop-
ment Package.

Section 3.2 lists new files in the development package to support the library functions.

Section 3.3 discusses changes to $SOURCE functionality to support LIN’s.

Section 3.4 discusses changes to $OBJECT functionality to support LIN’s.

Section 3.5 describes field type specifications.

Section 3.6 describes field type NDM specifications.

Overview LIBRARY FUNCTIONS

3-1 NPL Statements Guide

3.2 Development Package Files for Library Functions

NPLSYS.BS2 and NPLEXAM.BS2 diskimages are now part of the development pack-
age. These diskimages include the following files:

NPLEXAM.BS2 Example use of the SOURCEIO and OBJECTIO API’s.Vendors are
encouraged to modify or adapt this code as required.

NPLSYS Configuration file for examples. This defines the location of NPLSYS.BS2
library.

SRCEXAM Example program extracts and PRINT’s the ascii version of an NPL program
file.

OBJEXAM Example program generates an NPL program file from a series of string
DATA items containing program lines.

SAVEPROG Utility module defines a function ’SaveAscii that saves current RUN module
source code as new\xxxxxx.SRC (replacing any existing file of that name).

NPLSYS.BS2 System library support as outlined in the reference specification. Modification
of this diskimage by vendor is not recommended. Future releases of the
RunTime may replace this diskimage

SOURCEIO $SOURCE functions. This API must be used by applications that wish to
obtain displayable source of Release IV NPL program files.

OBJECTIO $OBJECT functions. This API must be used by applications that wish to
generate NPL program files from displayable source at runtime.

PCKFIELD Mnemonic names and API functions for FIELD specifications used or $PACK
and NDM type fields.

BUFFERIO Buffered I/O support. This API is used by SOURCEIO and OBJECTIO
modules. The functionality of this module is not as defined in the reference
specification. Direct use of the API in this module by vendors is not
recommended.

PCODELBL Common structures used by SOURCEIO and OBJECTIO when manipulating
NPL program files. Direct use of the API in this module by vendors is not
recommended.

LIBRARY FUNCTIONS Development Package Files for Library Functions

NPL Statements Guide 3-2

3.3 Changes to $SOURCE Functionality to Support LIN’s

Some changes will be required to programs which use the previously available
$SOURCE function to extract the displayable form of a program from the compiled
form, when the compiled form may contain long identifier names. Attempting to use
$SOURCE on programs which contain long identifiers without making these changes
will result in source which terminates with an error indicator (ending in "?") when any
long identifier is found.

To use the support functions for source code extraction, the library module SOURCEIO
is required. Add the following line to your program:

INCLUDE T "SOURCEIO"

To support long identifier names with $SOURCE, the following additional library proce-
dures are provided:

• ’SourceioOpenFile(FileName$8,DeviceNumber,/POINTER Stream$)

This library procedure opens the specified program name on the indicated Device. A
string variable, "Stream$" is used for buffered input from the file. An internally defined
RECORD is used for each open buffered file. The size of this record is returned by either
the ’SourceioGetMinSize function, which is visible when SOURCEIO is INCLUDEd, or
by the ’ObjectioGetMinSize function, which is visible when OBJECTIO is INCLUDEd.
Applications should not modify the contents of a Stream$ variable except by calls to the
API.

A non-zero NPL error code is returned if the operation cannot complete (e.g., file already
exists as data file, cannot create file, etc.).

3.3.1 ’SourceioGetTableLengths

/POINTER Stream$,/POINTER TableLength,/POINTER MaxLineLength

This library routine determines the length of a long identifier name from a compiled pro-
gram (opened using OpenObjectFile), and places the resulting length (in bytes) in
TableLength. The size of buffer required to load the largest program line is also deter-
mined, and returned in MaxLineLength.

Changes to $SOURCE Functionality to Support LIN’s LIBRARY FUNCTIONS

3-3 NPL Statements Guide

3.3.2 ’SourceioLoadIdentifierTable

/POINTER Stream$,/POINTER Table$

This library routine initializes Table$ to contain the label and long identifier name table
from a compiled program (opened using ’SourceioOpenFile). The Stream pointer is posi-
tioned to read the first program line.

3.3.3 ’SourceioReadLine

/POINTER Stream$, /POINTER PcodeBuffer$,/POINTER End of file

This library routine reads the next program line into PcodeBuffer$. The size of Buffer$
should be at least MaxLineLength, as returned by ’SourceioGetTableLengths. The End of
file value is set to TRUE if no more program lines are in the specified Stream.

In addition, $SOURCE will support an optional second parameter which must contain the
label and long identifier table for a program, as loaded using ’SourceioLoadIdenti-
fierTable.

3.3.4 $SOURCE

Pcodebuffer$[,Table$]]

A decompiler error (source ending in "?") will occur if $SOURCE is used to decompile a
program which contains long identifiers, and no long identifier table is specified in
$SOURCE, or the identifier index is invalid (exceeds size of table).

3.3.5 ’SourceioCloseObjectFile

/POINTER Stream$

This library call should be done when end of file is encountered by ’SourceioReadLine,
to ensure that any resources allocated to allow stream I/O are released.

LIBRARY FUNCTIONS Changes to $SOURCE Functionality to Support LIN’s

NPL Statements Guide 3-4

3.4 $OBJECT Functionality Changes for LIN’s

In order to support long identifier names with $OBJECT, the following additional library
routines are required:

• INCLUDE T "OBJECTIO"

3.4.1 ’ObjectioCreateFile

FileName$8,DeviceNumber,Size,/POINTER

This library routine initializes the specified program name on the indicated Device to be
an empty program. String$ is a string field variable used for buffered output to the file. A
non-zero NPL error code is returned if the operation cannot complete (e.g., file already
exists as data file, cannot create file, etc.).

3.4.2 ’ObjectioClearIdentifierTable

/POINTER Stream$,/POINTER Table$

This library routine clears the specified Table$ to the initial state of the batch compiler at
the start of a program, i.e., earliest label, empty long identifier table.

$OBJECT will support an optional second parameter, in which the appropriate revision
label and long identifier table is incrementally maintained, e.g.:

• Output$=$OBJECT(Source$[,Table$])

3.4.3 ’ObjectioAppendLine

/POINTER Output$,/POINTER Stream$

This library routine appends the output of a $OBJECT statement to the specified Stream,
which must be initialized using CreateProgramFile.

$OBJECT Functionality Changes for LIN’s LIBRARY FUNCTIONS

3-5 NPL Statements Guide

3.4.4 ’ObjectioAppendLongIdentifierTable

/POINTER Stream$, /POINTER Table$

This library routine is updates the label and long identifier name table from Table$ on the
opened Stream file (which must be initialized using CreateProgramFile).

3.4.5 ’ObjectioCloseFile

/POINTER Stream$

This library call should be done after appending the identifier table to ensure that any re-
sources allocated to allow stream I/O are released.

3.5 FIELD Type Specifications

The following section discusses the use of the FIELD type NPL specifications.

LIBRARY FUNCTIONS FIELD Type Specifications

NPL Statements Guide 3-6

3.5.1 Defining Field Type Using $PACK Mnemonic Codes

You may use standard mnemonic field type and subtype names (instead of expressions)
and little-endian binaries, if you include the standard library package "PackFormats" in
the module "PCKFIELD":

; Module - PCKFIELD
0020 PUBLIC PackFormats
: ;TYPES
: DIM _PACK_ASCII_FREE_FORMAT=1
: DIM _PACK_ASCII_INTEGER_FORMAT=2
: DIM _PACK_IBM_DISPLAY_FORMAT=3
: DIM _PACK_IBM_USASCII_FORMAT=4
: DIM _PACK_IBM_PACKED_DECIMAL_FORMAT=5
: DIM _PACK_UNSIGNED_PACKED_DECIMAL_FORMAT=6
: DIM _PACK_ALPHA_STRING_FORMAT=10
: DIM _PACK_UNSIGNED_BINARY_FORMAT=11
: DIM _PACK_SIGNED_BINARY_FORMAT=12
: DIM _PACK_UNSIGNED_BINARY_LITTLE_ENDIAN=13
: DIM _PACK_SIGNED_BINARY_LITTLE_ENDIAN=13
: DIM _PACK_FLOATING_POINT_FORMAT=15
: ;SUBTYPES
: DIM _PACK_WANG_INTERNAL_NUMERIC_FORMAT=0
: DIM _PACK_BASIC2C_INTERNAL_NUMERIC_FORMAT=1
: DIM _PACK_IEEE_BINARY_REAL_HL_FORMAT=2
: DIM _PACK_IEEE_BINARY_REAL_LH_FORMAT=3
: DIM _PACK_DEC_VAX_FLOATING_POINT_FORMAT=4
: FUNCTION ’FieldType$(Type,Subtype,Length)/FORWARD
: FUNCTION ’FieldAlpha$(Length)/FORWARD
:END PUBLIC PackFormats

Implemented as:
: DIM /STATIC Type$2
:1020 FUNCTION ’FieldType$(Field_Type,Subtype,Length)/BEGINS
: DIM Field Type$2
: IF Field Type= PACK ALPHA STRING FORMAT
: IF Length>4095 OR Subtype<>0 THEN RETURN ERROR (58)
: Field Type$=HEX(A000) ADD BIN(Length,2)
: ELSE
: Field Type$=BIN(Field Type*16+Subtype) & BIN(Length)
: END IF
: RETURN (Field Type$)
: END FUNCTION ’FieldType$
: FUNCTION ’FieldAlpha$(Length)/BEGINS
: RETURN (’FieldAlpha$(Length)/BEGINS
: END FUNCTION ’FieldAlpha$

FIELD Type Specifications LIBRARY FUNCTIONS

3-7 NPL Statements Guide

Example:
0010 INCLUDE T/D21
0020 USES PackFormats
0030 RECRD /PUBLIC EMPLOYEE

: FIELD name$=HEX(A020)
: FIELD amount=’FieldType$(_PACK_IBM_PACKED_DECIMAL_FORMAT,2,5)
: FIELD last_pay=’FieldType$(_PACK_FLOATING_POINT_FORMAT,
: _PACK_BASIC2C_INTERNAL_NUMERIC_FORMAT,8)
: END RECORD

3.6 FIELD Type NDM Specifications

The following section discusses the use of the FIELD type NDM specifications.

3.6.1 Defining Field Type Using NDM Mnemonic Codes

You may use Niakwa Data Manager field type, decimal and length codes may be used in-
stead of expressions if you include the standard library package "NDMPackFormats" is
included in the module "PCKFIELD":

; Module - PCKFIELD
PUBLIC NDMPackFormats
 ;NDM FIELD TYPES
 DIM _NDM_ASCII_FREE_FORMAT=1
 DIM _NDM_ASCII_INTEGER_FORMAT=2
 DIM _NDM_IBM_DISPLAY_FORMAT=3
 DIM _NDM_IBM_USASCII_FORMAT=4
 DIM _NDM_IBM_PACKED_DECIMAL_FORMAT=5
 DIM _NDM_UNSIGNED_PACKED_DECIMAL_FORMAT=6
 DIM _NDM_ALPHA_FIELD=7
 DIM _NDM_UNSIGNED_BINARY_FORMAT=8
 DIM _NDM_SIGNED_BINARY_FORMAT=9
 DIM _NDM_WANG_INTERNAL_NUMERIC_FORMAT=10
 DIM _NDM_BASIC2C_INTERNAL_NUMERIC_FORMAT=11
 DIM _NDM_IEEE_BINARY_REAL_HL_FORMAT=12
 DIM _NDM_IEEE_BINARY_REAL_LH_FORMAT=13
 DIM _NDM_DEC_VAX_FLOATING_POINT_FORMAT=14
 DIM _NDM_BASIC2C_DATE=15
 DIM _NDM_PACKED_DECIMAL_DATE_YYMMDD=16
 DIM _NDM_PACKED_DECIMAL_DATE_MMDDYY=17
 DIM _NDM_PACKED_DECIMAL_DATE_YYYYMMDD=18
 DIM _NDM_ASCII_YEAR_DAYS_JULIAN_DATE_YYDDD=19
 DIM _NDM_ASCII_DAYS_JULIAN_DATE_DDDDD=20
 DIM _NDM_ALPHA_WITH_TRANSLATION=21
 FUNCTION ’NDM_FieldType$(Type,Len,Decimal)/FORWARD
END PUBLIC NDMPackFormats

LIBRARY FUNCTIONS FIELD Type NDM Specifications

NPL Statements Guide 3-8

Implemented as:

DIM /STATIC Type$2
FUNCTION ’NDM_FieldType$(Type,Len,Decimals)
DIM PackType,Subtype
SWITCH Type
CASE _NDM_ASCII_FREE_FORMAT
 PackType=_PACK_ASCII_FREE_FORMAT
 Subtype=0
CASE _NDM_ASCII_INTEGER_FORMAT
 PackType=_PACK_ASCII_INTEGER_FORMAT
 Subtype=Decimals
CASE _NDM_IBM_DISPLAY_FORMAT
 PackType=_PACK_IBM_DISPLAY_FORMAT
 Subtype=Decimals
CASE _NDM_IBM_USASCII_FORMAT
 PackType=_PACK_IBM_USASCII_FORMAT
 Subtype=Decimals
CASE _NDM_IBM_PACKED_DECIMAL_FORMAT
 PackType=_PACK_IBM_PACKED_DECIMAL_FORMAT
 Subtype=Decimals
CASE _NDM_UNSIGNED_PACKED_DECIMAL_FORMAT
 PackType=_PACK_UNSIGNED_PACKED_DECIMAL_FORMAT
 Subtype=Decimals
CASE _NDM_ALPHA_FIELD
 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE _NDM_UNSIGNED_BINARY_FORMAT
 PackType=_PACK_UNSIGNED_BINARY_FORMAT
 Subtype=Decimals
CASE _NDM_SIGNED_BINARY_FORMAT
 PackType=_PACK_SIGNED_BINARY_FORMAT
 Subtype=Decimals
CASE _NDM_WANG_INTERNAL_NUMERIC_FORMAT
 PackType=_PACK_FLOATING_POINT_FORMAT
 SubType=_PACK_WANG_INTERNAL_NUMERIC_FORMAT
 Subtype=Decimals
CASE _NDM_BASIC2C_INTERNAL_NUMERIC_FORMAT
 PackType=_PACK_FLOATING_POINT_FORMAT
 SubType=_PACK_BASIC2C_INTERNAL_NUMERIC_FORMAT
CASE _NDM_IEEE_BINARY_REAL_HL_FORMAT
 PackType=_PACK_FLOATING_POINT_FORMAT
 SubType=_PACK_IEEE_BINARY_REAL_HL_FORMAT
CASE _NDM_IEEE_BINARY_REAL_LH_FORMAT
 PackType=_PACK_FLOATING_POINT_FORMAT
 SubType=_PACK_IEEE_BINARY_REAL_LH_FORMAT
CASE _NDM_DEC_VAX_FLOATING_POINT_FORMAT
 PackType=_PACK_FLOATING_POINT_FORMAT
 SubType=_PACK_DEC_VAX_FLOATING_POINT_FORMAT
CASE _NDM_BASIC2C_DATE
 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE _NDM_PACKED_DECIMAL_DATE_YYMMDD
 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE _NDM_PACKED_DECIMAL_DATE_MMDDYY
 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE _NDM_PACKED_DECIMAL_DATE_YYYYMMDD

FIELD Type NDM Specifications LIBRARY FUNCTIONS

3-9 NPL Statements Guide

 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE _NDM_ASCII_YEAR_DAYS_JULIAN_DATE_YYDDD
 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE _NDM_ASCII_DAYS_JULIAN_DATE_DDDDD
 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE _NDM_ALPHA_WITH_TRANSLATION
 PackType=_PACK_ALPHA_STRING_FORMAT
 Subtype=0
CASE
 RETURN ERROR(58):; illegal field specification
END SWITCH
RETURN (’FieldType$(PackType,Subtype,Length))

Example:
0010 INCLUDE T/D21
0020 USES NDMPackFormats
0030 RECRD /PUBLIC EMPLOYEE

: FIELD name$=HEX(_NDM_ALPHA_FIELD,0,0)
: FIELD amount=’FieldType$(_NDM_IBM_PACKED_DECIMAL_FORMAT,2,5)
: FIELD last_pay=’FieldType$(_NMD_BASIC2C_INTERNAL_FORMAT,1,8)
: END RECORD

LIBRARY FUNCTIONS FIELD Type NDM Specifications

NPL Statements Guide 3-10

APPENDIX A

RESERVED WORDS TABLE

The following terms are "reserved" and should not be used as variable names.

Reserved Words Table APPENDIX A

A-1 NPL Statements Guide

ABS
ADD
ADDC
AND
ARC
AT
ATN
BACKSPACE
BEG
BIN
BOOL
BOOL0
BOOL1
BOOL2
BOOL3
BOOL4
BOOL5
BOOL6
BOOL7
BOOL8
BOOL9
BOOLA
BOOLB
BOOLC
BOOLD
BOOLE
BOOLF
BOX
BREAK
CASE
CLEAR
CLOSE
COM
CONTINUE
CONVERT
COPY
COS
DATA
DATE
DBACKSPACE
DC
DEF
DEFFN
DELETE

DIM
DSKIP
ELSE
END
ENDDO
ENDIF
ENDSWITCH
ERR
ERROR
EXP
FALSE
FIELD
FIX
FN0-FN9
FNA-FNZ
FOR
FUNCTION
GOSUB
GOTO
HEX
HEXOF
HEXPACK
HEXPRINT
HEXUNPACK
IF
INCLUDE
INIT
INPUT
INT
KEYIN
LEN
LET
LGT
LIMITS
LINK
LINPUT
LIST
LOAD
LOG
LOOP
MAT
MAX
MEMBER
MERGE

MIN
MOD
MODULE
MOVE
NEXT
NUM
ON
OPEN
OR
PACK
PLOT
POS
PRINT
PRINTUSING
PROCEDURE
PUBLIC
RE
READ
RECORD
REM
RENAME
RENUMBER
REPEAT
RESAVE
RESTORE
RETURN
REWIND
RND
ROTATE
ROTATEC
ROUND
RUN
SAVE
SCRATCH
SCREEN
SEARCH
SELECT
SET
SGN
SIN
SKIP
SORT
SPACE
SPACEF

SPACEK
SPACEP
SPACEV
SPACEW
SQR
STEP
STOP
STR
SUBC
SWITCH
TAB
TAN
TIME
TO
TRACE
TRAP
TRUE
TYPE
UNLINK
UNPACK
UNSCRATCH
UNTIL
USES
VAL
VER
VERIFY
WEND
WHEN
WHILE
XOR

APPENDIX A Reserved Words Table

NPL Statements Guide A-2

APPENDIX B

LANGUAGE COMPATIBILITY
CHART

B.1 Overview

This chart is organized by specific statements and functions of the Niakwa Programming
Language (NPL) language. The compatibility chart lists all Wang 2200 BASIC-2 state-
ments (through MVP Operating System version 3.0 with some statements from higher op-
erating system versions). In addition, where there are variances in the operation of a
statement within different hardware versions of NPL, this is so indicated.

Following the list of Wang 2200 Basic-2 statements is a list of NPL extensions to the lan-
guage. These statements are not supported on Wang 2200 Basic-2.

For each command, instruction and function of the language, the implementation status is
indicated with the following fields:

Language Compatibility Chart APPENDIX B

B - 1 NPL Statements Guide

• New--Presence of an "X" in this field indicates that the statement is not sup-
ported on the 2200. The NPL revision level the statment was implemented in is
also indicated.

• Implemented (Yes, Partial, No)--These fields indicate whether the corresponding
element of the 2200 BASIC-2 language is implemented in NPL. Presence of an
"X" in the "Yes" column indicates that the command is implemented. Presence
of an "X" in the "Partial" column indicates that the command syntax is recog-
nized by NPL as a convenience, but that it is effectively ignored at run time.
Presence of an "X" in the "No" column indicates that the command is totally un-
recognized by NPL. Separate columns are provided for each of these conditions
to assist in quick identification of items not implemented.

• Syntax Variance--Presence of an "X" in this field indicates the command is im-
plemented but with some difference in syntax (no matter how slight).

• Run-Time Variance--Presence of an "X" in this field indicates the command is
known in some cases to produce results at variance with 2200 BASIC-2 (no mat-
ter how slight).

• Command Extended -- Presence of an "X" in this field indicates the command
has been extended with additional features beyond the specifications of 2200 BA-
SIC-2.

The presence of an "X" in this field for all "NEW" statements indicates the com-
mand has been extended since it’s initial introduction into NPL.

• Hardware Variance--Presence of an "X" in this field indicates the results of the
statement may vary, no matter how slightly, in different hardware versions of
NPL.

The presence of an "X" in this field for all "NEW" statements indicates the the re-
sults of the statement may vary in different hardware versions of NPL, since the
commands initial introduction into NPL.

APPENDIX B Language Compatibility Chart

NPL Statements Guide B - 2

NOTE: Niakwa has taken due care in the preparation of this chart. To date, many thou-
sands of Wang 2200 BASIC-2 programs of varying scope and complexity have been
ported successfully to NPL. It is however the sole responsibility of the programmer
to ensure that the required instruction set of the given application software is in fact
satisfied by NPL through proper testing procedures.

Refer to Chapter 2 of the Statements Guide, for complete details on the function of all
NPL statements including full descriptions of any incompatibilities with Wang 2200 Ba-
sic-2.

Language Compatibility Chart APPENDIX B

B - 3 NPL Statements Guide

COMMAND
Implemented Syntax RunTime Command Hardware
Y Part N Variance Variance Extended Variance

ABS X - - - - - -
ADD [C] X - - - - - -
ALL X - - - - - -
AND X - - - - - -
BIN X - - - - X -
BOOL X - - - - - -
CLEAR X - - - - X -
COM X - - - X X -
COM CLEAR X - - - - - -
& (Concatenation) X - - - - - -
CONTINUE X - - - - X -
CONVERT X - - - - - -
DAC X - - - X - -
DATA X - - - - - -
DATE X - - X X - X
DEF FN X - - - - - -
DEFFN’ keyboard input
def.

X - - - X - X

DEFFN’ subroutine
entry point

X - - X X X -

DEFFN@PART - X - - - - -
DIM X - - - X X -
DO/ENDDO X - - X - X -
DSC X - - - X - -
ELSE X - - - X - -
END X - - - - - -
ERR X - - - X X -
ERROR X - - - X X -
EXEC X - - - - X X
EXP X - - - X - -
FIX X - - - - - -
FN X - - - - X -
FOR ... TO X - - - - - -
GOSUB X - - - - X -

APPENDIX B Language Compatibility Chart

NPL Statements Guide B - 4

COMMAND
Implemented Syntax RunTime Command Hardware
Y Part N Variance Variance Extended Variance

GOSUB’ X - - X - X -
GOTO X - - - - - -
HALT/STEP X - - X X X X
HEX X - - - - - -
HEXPACK X - - - - - -
HEXPRINT X - - - - - -
HEXUNPACK X - - - - - -
IF...THEN - - - - - - -
IF END...THEN X - - - - - -
Image (%) X - - - - X -
INIT X - - - - - -
INPUT X - - - X - -
INPUT SCREEN X - - - X X -
INT X - - - - - -
KEYIN X - - - X - -
LEN X - - - - - -
LET (Alpha
Assignment)

X - - - X - -

LET (Numeric
Assignment)

X - - - X - -

LGT X - - - X -X -
LIMITS X - - - - X -
LINPUT X - - - - X -
LIST (I, D, #, V, ’, T) X - - X X X -
LIST DT X - - - - X -
LOAD ’ - - - - - - -
LOG X - - - X - -
MAT + (addition) X - - - - X X
MAT CON (constant) X - - - - X X
MAT COPY X - - - - - -
MAT = (Assignment) X - - - - X X
MAT IDN (identity) X - - - - X X
MAT INPUT X - - - - - -
MAT INV (inverse) X - - - X - -

Language Compatibility Chart APPENDIX B

B - 5 NPL Statements Guide

COMMAND
Implemented Syntax RunTime Command Hardware
Y Part N Variance Variance Extended Variance

MAT MERGE X - - - X X X
MAT MOVE X - - - X X X
MAT * (multiplication) X - - - - X X
MAT PRINT X - - - - - -
MAT READ X - - - - - -
MAT REDIM X - - - - X X
MAT ()*
(scalar multiplication)

X - - - - X X

MAT SEARCH X - - - - X X
MAT SORT X - - - X X X
MAT - (subtraction) X - - - - X X
MAT TRN
(transposition)

X - - - - X X

MAT ZER (zero) X - - - - - -
MAX X - - - - - -
MIN X - - - - - -
MOD X - - - - - -
NEXT X - - - - - -
NUM X - - - - - -
ON ERROR X - - - - - -
ON/GOSUB X - - - - - -
ON/GOTO X - - - - - -
ON/SELECT X - - - - - -
OR X - - - - - -
PACK X - - - - - -
POS X - - - - - -
PRINT X - - - - - X
PRINT AT function X - - - - - -
PRINT BOX function X - - - X - X
PRINT HEXOF
function

X - - - - - -

PRINT TAB function X - - - - - -
PRINTUSING X - - - - X -
PRINTUSING TO X - - - X - -
READ X - - - - - -

APPENDIX B Language Compatibility Chart

NPL Statements Guide B - 6

COMMAND
Implemented Syntax RunTime Command Hardware
Y Part N Variance Variance Extended Variance

REM X - - - X X -
RENUMBER X - - - - - -
RESET (key) X - - - X - X
RESTORE [LINE] X - - - X - -
RETURN X - - - - - -
RETURN CLEAR X - - - - - -
RND X - - - X - -
ROTATE - - - - - - -
ROUND X - - - - - -
RUN Command X - - - - - -
RUN Statement X - - - - X -
SAVE BOOT - - - - - - -
SCRATCH - - - - - - -
SELECT DEGREES,
RADIANS, GRADS

X - - - - - -

SELECTERROR [>
error-code]

X - - - - - X

SELECT LINE X - - - - - -
SELECT[NO] ROUND X - - - - - -
SELECT PAUSE [digit] X - - - - - -
SELECT CI, INPUT X - - - X - -
SELECT CO, PRINT,
LIST

X - - - - - -

SELECT PLOT, TAPE,
DISK

X - - - X - -

SELECT# file/device-
address

X - - - - - -

SELECT ON [dev adrs
[GOSUB line]]

- X - - - - -

SELECT ON CLEAR - X - - - - -
SELECT OFF [dev adrs
[GOSUB line]]

- X - - - - -

SELECT DRIVER - X - - - - -
SELECT TERMINAL - X - - - - -
SELECT TC - X - - - - -

Language Compatibility Chart APPENDIX B

B - 7 NPL Statements Guide

COMMAND
Implemented Syntax RunTime Command Hardware
Y Part N Variance Variance Extended Variance

SELECT@PART X - - - X - -
SGN X - - - - - -
SIN - - - - - - -
SPACE X - - - X - -
SPACEK X X
Special FN keys
(function calls)

X - - - X - X

SQR X - - - X - -
STMT NUMBER key - - X - - - -
STOP X - - - X - -
STR X - - - X X -
SUB [C] X - - - - - -
TIME X - - X X - X
TRACE [OFF] X - - - X X -
Trig functions:
 SIN, COS, TAN,
ARCSIN, ARCCOS,
ARCTAN, ATN

X - - - X - -

UNPACK X - - - - - -
VAL X - - - - X -
VER X - - - - - -
XOR X - - - - -
$ALERT - X - - - - -
$BREAK X - - - X - X
$CLOSE X - - - - X X
$DISCONNECT - X - - - - -
$FORMAT (see note
below)

- X - - - - -

NOTE: $FORMAT syntax is accepted by the compiler (B2C) and interpreter (RTI) but is converted to a
 STR() function. The STR() function is functionally identical to $FORMAT.
$GIO X - - - X X -
$IF ON/OFF X - - - X - -
$INIT - - X - - - -
$MSG X - - - X - -
$OPEN X - - - X X X

APPENDIX B Language Compatibility Chart

NPL Statements Guide B - 8

COMMAND
Implemented Syntax RunTime Command Hardware
Y Part N Variance Variance Extended Variance

$PACK X - - - - X -
$PSTAT X - - - X - X
$RELEASE PART - X - - - - -
$RELEASE
TERMINAL

X - - - X - X

$SELECT X - - X - X -
$TRAN X - - - - - -
$UNPACK X - - - - X -
#ID X - - - X - X
#PART X - - - - - X
#PI X - - - X - -
#TERM X - - - - - X
Disk Commands
COPY X - - - X X -
DATA LOAD BA X - - - - X -
DATA LOAD BM X - - - - X -
DATA LOAD DA X - - - - X -
DATA LOAD DC X - - - - - -
DATA LOAD DC
OPEN

X - - - - - -

DATA SAVE BA X - - - X X -
DATA SAVE BM X - - - X X -
DATA SAVE DA X - - - X X -
DATA SAVE DC
[END]

X - - - - X -

DATA SAVE DC
CLOSE

X - - - - - -

DATA SAVE DC
OPEN

X - - - - X -

DBACKSPACE X - - - - - -
DSKIP X - - - - - -
IF END THEN X - - - - - -
LIMITS T X - - - - - -
LIMITS T (name) X - - - - X -
LIST DC T X - - X X X -

Language Compatibility Chart APPENDIX B

B - 9 NPL Statements Guide

COMMAND
Implemented Syntax RunTime Command Hardware
Y Part N Variance Variance Extended Variance

LOAD Command X - - - X X -
LOAD Statement X - - - X X -
LOAD DA Command X - - - X X -
LOAD DA Statement X - - - X X -
LOAD RUN X - - - X X -
MOVE X - - - - X -
MOVE END X - - - - X X
MOVE FILE X - - - - X -
RENAME X - - - - X -
RESAVE X - - - X X -
SAVE X - - X X X -
SAVE DA X - - X X X -
SCRATCH DISK X - - - X X X
VERIFY X - - - - X -
$FORMAT DISK X - - - X X X
Other Commands
DATA LOAD BT - - X - - - -
DATA SAVE BT - - X - - - -
Other Considerations
GLOBAL
PARTITIONS

- - X - - - -

GLOBAL
VARIABLES

X - - - - X -

LOCAL PRINTERS X - - - X - X

APPENDIX B Language Compatibility Chart

NPL Statements Guide B - 10

Command
Hardware

New Variance
NPL Commands / System Variables (not supported on Wang 2200 Basic-2)
+=numeric expression (Rev. 4.00) X -
CASE Logical (Rev. 4.00) X -
CASE Numeric (Rev. 4.00) X
CASE String (Rev. 4.00) X -
CASE Default (Rev. 4.00) X -
CONTINUE LOAD (Rev. 2.00) X -
CONTINUE NEXT (Rev. 2.00) X -
CONTINUE RETURN (Rev. 2.00) X -
$BOXTABLE (Rev. 1.03) X X
DELETE (Rev. 3.00) X
$DEMO (Rev. 2.00) X -
$DET (Rev. 3.00) X -
$DEVICE (Rev. 1.02) X X
DIM constant variable declaration (Rev. 4.00) X X
DIM/PUBLIC (Rev. 4.00) X X
DIM/RECURSIVE (Rev. 4.00) X X
DIM/STATIC (Rev. 4.00) X X
ELSE (structured) (Rev. 4.00) X -
$END (Rev. 1.03) X -
END FUNCTION (Rev. 4.00) X -
END IF (Rev. 4.00) X -
END PROCEDURE (Rev. 4.00) X -
END PUBLIC (Rev. 4.00) X -
END RECORD (Rev. 4.00) X -
END SWITCH (Rev. 4.00) X -
ERR$ (REV. 3.00) X -
FIELD (Rev. 4.00) X -
literal-string FIELD equivalent (Rev. 4.00) X -
numeric-expression FIELD equivalent
(Rev. 4.00)

X -

$FIELDFORMAT (Rev. 4.00) X -
#FIELDLENGTH (Rev. 4.00) X -
#FIELDSTART (Rev. 4.00) X -

Language Compatibility Chart APPENDIX B

B - 11 NPL Statements Guide

Command
Hardware

New Variance
NPL Commands / System Variables (not supported on Wang 2200 Basic-2)
FOR/BEGIN (Rev. 4.00) X -
FUNCTION (Rev. 4.00) X -
numeric-expression FUNCTION equivalent (Rev. IV) X -
literal-string FUNCTION equivalent
(Rev. 4.00)

X -

user-type-constant equivalent (Rev. 4.00) X -
#GOLDKEY (Rev. 1.03) X -
$HELP (Rev. 1.02) X -
$HELPINDEX (Rev. 1.03) X -
IF structured (Rev. 4.00) X -
INCLUDE (Rev. 4.00) X -
$KEEPREMS (Rev. 2.00) X -
$KEYBOARD (Rev. 1.03) X X
LET (numeric field assignment (Rev. 4.00) X -
LET (string field assignment) (Rev. 4.00) X -
LIMITS INDEX (Rev. 3.00) X -
LIST’ (Rev. 3.20) X -
LIST DIM (Rev. 2.00) X -
LIST FIELD (Rev. 4.00) X -
LIST FUNCTION (Rev. 4.00) X -
LIST PROCEDURE (Rev. 4.00) X -
LIST PUBLIC DEFFN (Rev. 4.00) X -
LIST PUBLIC FIELD (Rev. 4.00) X -
LIST PUBLIC FUNCTION (Rev. 4.00) X -
LIST PUBLIC PROCEDURE (Rev. 4.00) X -
LIST PUBLIC RECORD (Rev. 4.00) X -
LIST PUBLIC V (Rev. 4.00) X -
LIST RECORD (Rev. 4.00) X -
LIST statement label (Rev. 4.00) X -
LIST STACK (Rev. 2.00) X -
LIST STACK DIM (Rev. 2.00) X -
LOAD BOOT (Rev. 2.00) X -
LOOP (Rev. 4.00) X -

APPENDIX B Language Compatibility Chart

NPL Statements Guide B - 12

Command
Hardware

New Variance
NPL Commands / System Variables (not supported on Wang 2200 Basic-2)
$MACHINE (Rev. 1.03) X X
MODULE (Rev. 4.00) X -
$NAMEOF (Rev. 4.00) X -
$NETID (Rev. 4.00) X -
NEXT CLEAR (Rev. 3.00) X -
$NUMBERS (Rev. 2.00) X -
$OBJECT (Rev. 2.00) X -
$OPTIONS (Rev. 1.03) X X
$OSERR (Rev. 3.00) X -
PRINT SCREEN (Rev. 3.00) X -
PRINT TO (Rev. 3.00) X -
$PRINTER (Rev. 2.01) X -
PROCEDURE (Rev. 4.00) X -
call PROCEDURE by name (Rev. 4.00) X -
$PROGRAM (Rev. 3.00) X -
PUBLIC (Rev. 4.00) X -
READ DC (Rev. 3.00) X -
RECORD (Rev. 4.00) X -
#RECORDLENGTH (Rev. 4.00) X -
REM $PC (Rev. 1.02) X -
RENAME DEFFN’ (Rev. 4.00) X -
RENAME FIELD (Rev. 4.00) X -
RENAME FUNCTION (Rev. 4.00) X -
RENAME PROCEDURE (Rev. 4.00) X -
RENAME RECORD (Rev. 4.00) X -
RENAME = (statement label) (Rev. 4.00) X -
RENAME V (Rev. 3.20) X -
REPEAT (Rev. 4.00) X -
$REV (Rev. 3.00) X -
SAVE BOOT (Rev. 2.00) X -
SELECT LISTLINE (Rev. 3.00) X -
SELECT LOG (Rev. 3.00) X -
$SER (Rev. 3.00) X -

Language Compatibility Chart APPENDIX B

B - 13 NPL Statements Guide

Command
Hardware

New Variance
NPL Commands / System Variables (not supported on Wang 2200 Basic-2)
SET DATA (Rev. 3.00) X -
SET PROGRAM (Rev. 3.00) X -
$SHELL (Rev. 2.00) X X
$SCREEN (Rev. 1.03) X X
$SOURCE (Rev. 2.00) X -
SPACEF (Rev. 3.00) X -
SPACEP (Rev. 2.00) X -
SPACEV (Rev. 2.00) X -
SPACEW (Rev. 3.00) X -
=statement-name (Statement Labels)
(Rev. 4.00)

X -

STEP (Rev. 2.00) X -
STEP # (Rev. 2.00) X -
STEP OFF (Rev. 2.00) X -
-=numeric-expression (Rev. 4.00) X -
SWITCH Logical (Rev. 4.00) X -
SWITCH Numeric (Rev. 4.00) X -
SWITCH String (Rev. 4.00) X -
$TAB (Rev. 3.00) X -
TRACE # (Rev. 2.00) X -
TRACE ’ (Rev. 2.00) X -
TRACE V (Rev. 2.00) X -
UNSCRATCH
(Rev. 3.00)

X -

UNTIL (Rev. 4.00) X -
USES (Rev. 4.00) X -
VERIFY (Rev. 4.00) X -
WEND (Rev. 4.00) X -
WHILE (Rev. 4.00) X -

APPENDIX B Language Compatibility Chart

NPL Statements Guide B - 14

	Table of Contents
	PREFACE
	INTRODUCTION
	Overview 1-1
	Notational Conventions 1-1
	Form of Presentation 1-2
	Statement Description Layout 1-3
	Statement Conventions 1-4
	Terminology 1-7
	Variable Names 1-9

	Organization of the Statements Guide 1-14

	LANGUAGE STATEMENTS
	Overview 2-1
	ABS Function 2-2
	ADD[C] Alpha-operator 2-3
	+=numeric expression 2-5
	$ALERT 2-6
	ALL Alpha-operand 2-7
	AND Alpha-operator 2-9
	ARC COS Function 2-11
	ARC SIN Function 2-12
	ATN Function - ARC TANGENT 2-13
	BIN Function/Alpha-operand 2-14
	BOOL Alpha-operator 2-16
	$BOXTABLE 2-19
	BREAK 2-23
	$BREAK 2-25
	CASE Default 2-26
	CASE Logical 2-28
	CASE Numeric 2-30
	CASE String 2-32
	CLEAR 2-35
	$CLOSE 2-38
	COM 2-40
	COM CLEAR 2-44
	& (Concatenation) Alpha-Operator 2-46
	CONTINUE 2-47
	CONTINUE LOAD 2-48
	CONTINUE NEXT 2-49
	CONTINUE RETURN 2-51
	CONVERT 2-55
	COPY 2-59
	COS Function 2-63
	DAC Alpha-operator 2-60
	DATA 2-62
	DATA LOAD BA 2-63
	DATA LOAD BM 2-65
	DATA LOAD DA 2-68
	DATA LOAD DC 2-71
	DATA LOAD DC OPEN 2-73
	DATA SAVE BA 2-76
	DATA SAVE BM 2-80
	DATA SAVE DA 2-85
	DATA SAVE DC 2-88
	DATA SAVE DC CLOSE 2-90
	DATA SAVE DC OPEN 2-91
	DATE 2-94
	DBACKSPACE 2-96
	DEFFN' Keyboard Input 2-98
	DEFFN' Subroutine 2-100
	DEFFN Function Definition 2-104
	DEFFN@PART 2-106
	DELETE 2-108
	$DEMO 2-110
	$DET 2-113
	$DET (cont.) 2-114
	$DEVICE 2-115
	DIM 2-126
	DIM Constant Variable Declarations 2-131
	DIM /PUBLIC 2-133
	DIM /RECURSIVE 2-135
	DIM /STATIC 2-137
	$DISCONNECT 2-140
	DO/ENDDO 2-141
	DSC Alpha-operator 2-146
	DSKIP 2-148
	ELSE 2-146
	ELSE Structured 2-148
	END 2-149
	$END 2-150
	END FUNCTION 2-152
	END IF 2-153
	END PROCEDURE 2-154
	END PUBLIC 2-155
	END RECORD 2-156
	END SWITCH 2-157
	ERR Function 2-158
	ERR$ 2-160
	ERROR 2-162
	EXEC Key 2-165
	EXP Function 2-166
	FIELD 2-167
	String FIELD-Expressions - Alpha-Variable Equivalent 2-170
	Numeric FIELD-Expressions - Term in Numeric Expression 2-172
	$FIELDFORMAT Function 2-173
	#FIELDLENGTH Function 2-175
	#FIELDSTART Function 2-177
	FIX Function 2-179
	FN Function 2-180
	FOR/BEGIN Structured 2-182
	FOR/TO 2-184
	$FORMAT DISK 2-187
	FUNCTION 2-188
	'Function-name (...) Numeric-Expression Equivalent 2-191
	'Function-name$(...) Literal-String Equivalent 2-192
	$GIO 2-193
	#GOLDKEY Function 2-200
	GOSUB 2-203
	GOSUB' 2-205
	GOTO 2-209
	HALT Key 2-211
	$HELP 2-212
	$HELPINDEX 2-214
	HEX Function 2-217
	HEXPACK 2-219
	HEXPRINT 2-220
	HEXUNPACK 2-221
	#ID Function 2-222
	$IF 2-223
	IF/THEN 2-228
	IF END THEN 2-234
	IMAGE (%) 2-236
	INCLUDE 2-238
	INIT 2-241
	INPUT 2-242
	INPUT SCREEN 2-245
	INT function 2-254
	$KEEPREMS 2-255
	$KEYBOARD 2-259
	KEYIN 2-264
	LEN Function 2-267
	LET Alpha Assignment 2-269
	LET Numeric Assignment 2-273
	LET Numeric Field Assignment 2-277
	LGT Function 2-278
	LIMITS 2-279
	LIMITS INDEX 2-282
	LINPUT 2-284
	LIST (General Parameters) 2-288
	LIST 2-290
	LIST # 2-295
	LIST ' 2-299
	LIST DC 2-304
	LIST DIM 2-309
	LIST DT 2-314
	LIST FIELD 2-318
	LIST FUNCTION 2-322
	LIST PROCEDURE 2-326
	LIST PUBLIC DEFFN 2-330
	LIST PUBLIC FIELD 2-334
	LIST PUBLIC FUNCTION 2-338
	LIST PUBLIC PROCEDURE 2-342
	LIST PUBLIC RECORD 2-345
	LIST PUBLIC V 2-348
	LIST RECORD 2-351
	LIST Statement Label References 2-355
	LIST STACK 2-359
	LIST STACK DIM 2-363
	LIST T 2-367
	LIST V 2-371
	LOAD Command 2-376
	LOAD Statement 2-377
	LOAD' 2-380
	LOAD BOOT Command 2-382
	LOAD DA Command 2-384
	LOAD DA Statement 2-386
	LOAD RUN 2-389
	LOG Function 2-391
	LOOP 2-392
	$MACHINE 2-394
	MAT CON 2-400
	MAT COPY 2-401
	MAT IDN 2-404
	MAT INPUT 2-405
	MAT INV 2-407
	MAT MERGE 2-410
	MAT MOVE 2-416
	MAT* (Multiply) 2-423
	MAT PRINT 2-424
	MAT READ 2-425
	MAT REDIM 2-426
	MAT SEARCH 2-429
	MAT SORT 2-434
	MAT TRN 2-441
	MAT ZER 2-442
	MAT Addition 2-443
	MAT Assignment 2-444
	MAT Scalar Multiplication 2-445
	MAT Subtraction 2-446
	MAX Function 2-448
	MIN Function 2-449
	MOD Function 2-450
	MODULE Command 2-451
	MOVE 2-452
	MOVE END 2-455
	$MSG 2-457
	$NAMEOF() - Built-in String Function 2-456
	$NETID 2-458
	NEXT 2-459
	NEXT CLEAR 2-461
	NUM Function 2-463
	$NUMBERS 2-464
	$OBJECT 2-466
	ON ERROR 2-468
	ON/GOSUB 2-471
	ON/GOTO 2-473
	ON/SELECT 2-475
	$OPEN 2-477
	$OPTIONS 2-479
	OR Alpha-operator 2-491
	$OSERR 2-493
	PACK 2-495
	$PACK 2-497
	#PART Function 2-521
	#PI Function 2-522
	POS Function 2-523
	PRINT 2-525
	PRINT AT Function 2-529
	PRINT BOX Function 2-531
	PRINT HEXOF Function 2-533
	PRINT SCREEN 2-534
	PRINT TAB Function 2-538
	PRINT TO 2-539
	$PRINTER 2-542
	PRINTUSING 2-544
	PRINTUSING TO 2-548
	PROCEDURE 2-550
	'Procedure-name (Call PROCEDURE) 2-553
	$PROGRAM 2-554
	$PSTAT 2-556
	PUBLIC 2-558
	READ 2-560
	READ DC 2-563
	RECORD 2-566
	#RECORDLENGTH Function 2-568
	$RELEASE PART 2-569
	$RELEASE TERMINAL 2-570
	REM 2-572
	REM $PC 2-574
	RENAME 2-576
	RENAME DEFFN' 2-577
	RENAME FIELD 2-579
	RENAME FUNCTION 2-581
	RENAME PROCEDURE 2-583
	RENAME RECORD 2-585
	RENAME = (Statement Label) 2-588
	RENAME V 2-590
	RENUMBER 2-592
	REPEAT 2-595
	RESAVE 2-596
	RESET 2-598
	RESTORE 2-600
	RETURN 2-602
	RETURN CLEAR 2-605
	$REV 2-607
	RND Function 2-609
	ROTATE 2-610
	ROUND Function 2-612
	RUN Command 2-613
	RUN Statement 2-615
	SAVE 2-618
	SAVE BOOT Command 2-623
	SAVE DA 2-625
	SCRATCH 2-628
	SCRATCH DISK 2-630
	$SCREEN 2-633
	SELECT 2-635
	$SELECT 2-637
	SELECT @PART 2-640
	SELECT CI 2-641
	SELECT CO 2-642
	SELECT D,R,G 2-644
	SELECT DISK/FILE-NUMBER 2-646
	SELECT DRIVER 2-648
	SELECT ERROR 2-649
	SELECT INPUT 2-652
	SELECT LINE 2-653
	SELECT LIST 2-649
	SELECT LISTLINE 2-650
	SELECT LOG 2-651
	SELECT ON/OFF 2-654
	SELECT ON CLEAR 2-655
	SELECT P 2-656
	SELECT PLOT 2-657
	SELECT PRINT 2-658
	SELECT ROUND 2-660
	SELECT TAPE 2-661
	SELECT TC 2-662
	SELECT TERMINAL 2-663
	$SER 2-665
	SET DATA 2-666
	SET PROGRAM 2-668
	SGN Function 2-671
	$SHELL 2-672
	SIN Function 2-675
	$SOURCE Function 2-676
	SPACE Function 2-680
	SPACEF Function 2-683
	SPACEK Function 2-684
	SPACEP Function 2-686
	SPACEV Function 2-687
	SPACEW Function 2-688
	SQR Function 2-689
	= statement-name (Statement Labels) 2-690
	STEP 2-692
	STEP # 2-695
	STEP OFF 2-697
	STOP 2-698
	STR() Function 2-701
	SUB[C] Alpha-operator 2-704
	-= numeric-expression 2-706
	SWITCH Logical 2-707
	SWITCH Numeric 2-710
	SWITCH String 2-712
	$TAB 2-714
	TAN Function 2-716
	#TERM 2-717
	TIME 2-718
	TRACE 2-720
	TRACE OFF 2-722
	TRACE # 2-723
	TRACE ' 2-726
	TRACE V 2-729
	$TRAN 2-733
	UNPACK 2-735
	$UNPACK 2-737
	UNSCRATCH 2-751
	UNTIL 2-754
	USES 2-755
	VAL Function 2-757
	VER Function 2-760
	VERIFY 2-762
	WEND 2-764
	WHILE 2-765
	XOR Alpha-operator 2-766

	LIBRARY FUNCTIONS
	Overview 3-1
	Development Package Files for Library Functions 3-2
	Changes to $SOURCE Functionality to Support LIN's 3-3
	'SourceioGetTableLengths 3-3
	'SourceioLoadIdentifierTable 3-4
	'SourceioReadLine 3-4
	$SOURCE 3-4
	'SourceioCloseObjectFile 3-4

	$OBJECT Functionality Changes for LIN's 3-5
	 'ObjectioCreateFile 3-5
	'ObjectioClearIdentifierTable 3-5
	'ObjectioAppendLine 3-5
	'ObjectioAppendLongIdentifierTable 3-6
	'ObjectioCloseFile 3-6

	FIELD Type Specifications 3-6
	Defining Field Type Using $PACK Mnemonic Codes 3-7

	FIELD Type NDM Specifications 3-8
	Defining Field Type Using NDM Mnemonic Codes 3-8

	
	
	APPENDIX A
	RESERVED WORDS TABLE
	LANGUAGE COMPATIBILITY CHART
	Overview B-1

