
NIAKWA PROGRAMMING LANGUAGE

INTEL UNIX SUPPLEMENT

1st Edition - May 1994
COPYRIGHT © 1994 Niakwa, Inc.

Niakwa, Inc.
23600 N. Milwaukee Avenue
Mundelein, IL 60060

PHONE: (708) 634-8700; FAX (708) 634-8718; TELEX 3719965 NIAK UB

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES AND
PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa), has taken due care in preparing this manual. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution Li-
cense Agreement, End-User Support Only License Agreement, the Niakwa Software Li-
cense Agreement and Warranty, or any other Niakwa License Agreement (collectively
the "License Agreements") by which this software package was acquired.

This manual is to serve as a guide for use of the Niakwa software only and not as a
source of representations or additional undertakings by Niakwa. The licensee must refer
to the License Agreements for Niakwa product and service representations.

No ownership of Niakwa Software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa is prohibited.

Niakwa is a registered trademark of Niakwa, Inc. All other trademarks are property of their respective holders.

PREFACE

P.1 The NPL Intel UNIX Supplement

The Niakwa Programming Language (NPL) Intel UNIX Supplement is designed as an
aid to the installation, operation and operating systems-specific features of the NPL Inter-
preter, Compiler, RunTime program and related utilities in the following environments:

Hardware Operating Systems Notes
IBM-Compatible PC
(80386 or greater)

Altos UNIX System V/386
rev. 3.2 or greater

32-bit implementation of NPL

IBM-Compatible PC
(80386 or greater)

AT&T UNIX System V/386
rev. 3.2 or greater

32-bit implementation of NPL
NCR System 3000
Wyse 5000, 7000, and 9000

IBM-Compatible PC
(80386 or greater)

Interactive UNIX 386/ix rev.
2.0.2 or greater

32-bit implementation of NPL

IBM-Compatible PC
(80386 or greater)

SCO UNIX System V/386 rev.
3.2 or greater

32-bit implementation of NPL

IBM-Compatible PC
(80286 or greater)

SCO Xenix System V/286 rev.
2.x or greater

16-bit implementation of NPL

PREFACE The NPL Intel UNIX Supplement

NPL Intel UNIX Supplement P-1

P.1.1 Prerequisite Knowledge

This guide assumes at least a basic knowledge of the supported hardware and operating
system.

P.1.2 How to Use the NPL Documentation

The NPL documentation has been structured into generic and operating environment de-
pendent manuals to allow developers easy reference to detailed platform-specific informa-
tion. The NPL Technical Reference Guide (TRG) consists of two manuals, the NPL
Programmer’s Guide and the NPL Statements Guide. The TRG set is intended as a ge-
neric guide for programmers in the correct use of NPL and its program development and
debugging facilities on all supported environments.

The TRG set is designed to be used in conjunction with the NPL operating system-spe-
cific supplements (that clearly document the operating system-dependent features of NPL
on that specific operating system). Some supplements also contain a series of operating
environment-specific addenda. These addenda discuss the NPL operation and options
that are either unique to a given operating environment, or function differently from plat-
form to platform.

Additionally, each supplement contains a set of Release Notes, providing information per-
taining to an operating system-specific supplement that was not available at press time.

Refer to the Preface in the NPL Programmer’s Guide for more information on the use of
the NPL documentation.

P.1.3 How to Use this Supplement

The NPL Intel UNIX Supplement discusses the operation of NPL under Intel UNIX
based operating environments (SCO Xenix is also supported as a 16-bit product).

P.1.4 Notational Conventions

This guide uses the following notational conventions:

NOTE: Notes provide information of particular importance.

The NPL Intel UNIX Supplement PREFACE

P-2 NPL Intel UNIX Supplement

WARNING--Warnings are special conditions that require extra care by
the user.

HINT: Hints provide helpful comments pertaining to the use of particular features.

The following conventions are used in the illustration and definition of NPL:

• Each statement appears on a separate page, with the statement as a page header.

• The general form of each statement is enclosed within a box.

• Uppercase letters ("A" through "Z"), digits ("0" to "9"), and special characters
(such as "$", "#", ":") must always appear exactly as presented in the general for-
mat.

• All lower-case words indicate information that the user must supply. These
words appear in italic type.

For example:

LEN (alpha-variable)

The user must supply the alpha-variable.

• When braces, "{ }", enclose a vertically stacked list, or a horizontal list with
each item separated by a comma (","), the user must choose one of the options
within braces. Information within braces is shown in italic type.

For example:

ALL ({literal-string, alpha-variable, two-hexdigits})

or

ALL ({literal-string })
 {alpha-variable }
 {two-hexdigits }

Here, the ALL instruction must be followed by one and only one of the items in the list.

PREFACE The NPL Intel UNIX Supplement

NPL Intel UNIX Supplement P-3

• Brackets, "[]", indicate that the enclosed items are optional. When brackets en-
close a vertical list or a horizontal list, the user may specify one or none of the
items. Information within brackets is shown in italic type.

For example:

 INPUT [literal-string,] variable [,variable] ...

Here, the INPUT instruction may optionally contain a literal-string fol-
lowed by an optional comma preceding the required "variable". Additional
variables may optionally be specified.

or:

CLEAR [V]
 [N]
 [P [line-number1][,[line-number2]]]

Here, either the V, N, or P parameter may be specified, but no parameter is
required. Line-number parameters may be optionally specified only if the
"P" parameter is specified.

• The presence of an ellipsis (...) within any format indicates that the unit immedi-
ately preceding the ellipsis can occur one or more times in succession.

For example:

 DEFFN’integer [(variable[,variable]...)]

Here, any number of "variable" may be specified, but the format ",variable"
must be used for the second and subsequent "variables".

• All other punctuation such as commas or parentheses must be included where
shown.

The NPL Intel UNIX Supplement PREFACE

P-4 NPL Intel UNIX Supplement

P.1.5 Terminology

Throughout this Supplement, the following terms are used:

Niakwa NPL Development Package
This refers to the entire contents of the package, including the NPL Development
Package diskettes, the NPL Technical Reference Guide (Programmer’s and State-
ments Guides), and the NPL Supplement. This term may frequently refer to just the
software elements of this package.

Niakwa NPL Technical Reference Guide
This refers to the NPL Statements Guide and Programmer’s Guide.

NPL Compiler
This refers to the actual compiler program itself, b2c.

Niakwa NPL Development Package Diskettes
This refers to the physical diskettes delivered as part of the Niakwa NPL Develop-
ment Package. These diskettes contain the contain the NPL Compiler, Utilities, etc.
software used in NPL software development.

Niakwa NPL RunTime Package
This refers to the RunTime Installation Guide and diskettes. This package is used by
the Authorized NPL Developer for executing and testing the application object code
generated by the compiler. It is also used by end-users for executing application ob-
ject code purchased from a Authorized NPL Developer.

Niakwa NPL RunTime Program
This refers to the Interpretive (rti) or Non-Interpretive (rtp) RunTime programs.

Niakwa NPL RunTime Program Diskette(s)
This refers to the physical diskette(s) delivered as part of the Niakwa NPL RunTime
Package. The first diskette of this package is also referred to as the Gold Key disk-
ette.

PREFACE The NPL Intel UNIX Supplement

NPL Intel UNIX Supplement P-5

TABLE OF CONTENTS

PREFACE
The NPL Intel UNIX Supplement ..P-1

Prerequisite Knowledge ...P-2
How to Use the NPL Documentation...P-2
How to Use this Supplement..P-2
Notational Conventions..P-2
Terminology ...P-5

INTRODUCTION
Overview...1-1
Contents of the Niakwa Development Package ...1-2

Compiler Diskette..1-2
Utilities Diskette..1-3
Terminal Support Files Diskette ..1-3
BESDK Diskette..1-5

Contents of the Niakwa NPL Runtime Package ..1-5
Niakwa RunTime Package Files ..1-6

Niakwa NPL RunTime Package File Listing................................1-6
Niakwa NPL Upgrade RunTime Package ...1-7

Niakwa NPL Upgrade RunTime Package File Listing.................1-7
UNIX-Specific Features of the NPL Runtime ..1-8
Intel UNIX Supplement Overview ..1-9

INSTALLATION
Overview ..2-1
OS and Hardware Requirements..2-2

System Requirements ...2-2
Supported Terminals ..2-3
Printer Support..2-3

NPL Configuration Requirements..2-3
System Parameters..2-4
Modifying the .profile File ...2-4

Installing the NPL Development Package ...2-6

TABLE OF CONTENTS PREFACE

NPL Intel UNIX Supplement TOC-1

Intel UNIX Diskette Drives..2-7
Installing the Development Software...2-7

Installation Steps ...2-7
Installing the NPL External Subroutine Development Kit (BESDK)2-8

NPL Runtime Security..2-8
Security Overview..2-8
The NIAKSER.DAT File ...2-9
The Security Check ..2-9
NIAKWA_RUNTIME Environment Variable ..2-10

Locating the NPL Software in a Directory other than /usr/BA-
SIC2C ..2-11

The Security Screen..2-11
Once-a-Day Security ..2-12
What to Do if the Gold Key Security is Lost ...2-12
Replacement RunTimes ...2-13

Installing the NPL Runtime Package ...2-13
NIAKWA_RUNTIME Environment Variable ..2-13
Copying the Software to the Hard Disk ...2-13

Installation Steps ...2-14
Installing the Gold Key Security..2-14

Installation Steps ...2-15
Access Privileges..2-16

setup.nodes ..2-16
Terminal Configuration..2-17
Recalling the Gold Key Security..2-17

Recall Steps ...2-18
Installing the Upgrade RunTime Package..2-19

Requirements for Upgrading..2-19
How the Upgrade Works..2-20
Performing the Upgrade ...2-21

Upgrade Steps..2-21
Recalling the Upgraded RunTime Package ...2-23
Reinstalling the Upgrade RunTime Package ...2-24

Reinstallation Steps ...2-24

CONFIGURATION
Overview ..3-1
 The UNIX File System..3-2
 Location of NPL Software ..3-2

CONFIGURATION TABLE OF CONTENTS

TOC-2 NPL Intel UNIX Supplement

Installation of Application Software ..3-3
Locating Application Programs and Data3-4

Auxiliary Files ...3-5
The "ENABLED" File..3-5
Keyboard Files..3-6
Screen and Font Files ...3-7
Printer Control Values..3-9
Error Descriptions ..3-9
Terminal Identification...3-10
Additional End-User Security (#GOLDKEY)...3-10

Configuring Additional Users for Operation ...3-11
Adding a User to UNIX..3-11
The User Directory...3-11
The .profile File ..3-11

Configuring User’s Workstations...3-12
Required Access Privileges ..3-12
Executing the Runtime from a Shell Script..3-12
Executing the RunTime from a Menu System...3-13

Creating the Menu Instruction File ..3-14
Displaying the Menu Instruction File ..3-14
An Example Menu Instruction File..3-15

Linking Start-Up and Menu Script Files ..3-15

RUNTIME OPERATION
Overview...4-1
rtp Versus rti ...4-2
Starting the NPL RunTime ...4-2

Starting From the Command Processor ...4-2
Starting from Shell Script Files...4-3
Starting from a Menu ...4-3

Command Line (Start-up) Options...4-4
-B (Background Partition)..4-4
-D (DET Entries) ..4-5

Special Considerations for -D Option...4-5
-G (Graphics Mode) ...4-6
-H (Handle Table Size)...4-6
-K (Mouse Support)..4-7
-L (Leave Overhead Memory) ...4-7
-M (XMS Memory) ..4-7

TABLE OF CONTENTS RUNTIME OPERATION

NPL Intel UNIX Supplement TOC-3

-P (Pre-Boot)...4-7
-R (Remote Control)...4-8
-S (Separate Program Segments)..4-8
-T (Terminal/Port Number) ..4-8
-U (UMB Memory) ..4-9
The -X (Load External Library) ...4-9
The BOOT Program ...4-9

Available Memory ..4-10
Default Printer Control ...4-10

Default Values ..4-10
Exiting from the RunTime Program...4-11

Exiting Under Program Control ...4-11
Exiting using the HELP Key..4-12
Exiting using the Interrupt Key..4-12

DEVICE SUPPORT
Overview...5-1
Diskette Devices ...5-2

Naming Conventions..5-3
UNIX Diskette Device Names ..5-3

Supported Media ..5-4
5-1/4" Media..5-4
3-1/2" Media..5-5

Determination of Media Type ..5-6
"Raw" Diskettes..5-7

Performance...5-8
Media Defects..5-8
Drive/Media Compatibility ...5-8
Data Integrity...5-9
Multi-User Access ...5-9
$FORMAT DISK ..5-9

Error Handling..5-10
Programming Considerations...5-10

Mounting Diskettes ...5-10
I93 Error if No Diskette in Drive ..5-11

Diskimage Files ...5-11
Naming Conventions..5-11
File Allocation Considerations...5-12

SCRATCH DISK ..5-12

DEVICE SUPPORT TABLE OF CONTENTS

TOC-4 NPL Intel UNIX Supplement

Non-Catalogued Diskimage Space ...5-12
Altering Diskimage File Size ..5-12

Effect of Disk I/O on Task Interleave...5-13
The Timeslice Release Option ..5-13
Release of Diskimage File Lock ...5-14
Performance Considerations ...5-14

RAM Disks ...5-15
Creating a RAM Disk..5-15
Accessing a RAM Disk ...5-15
Use of RAM Disks to Functionally Replace Global Partitions ..5-16

UNIX umask and ulimit ...5-17
umask ..5-17
ulimit..5-17

Other Issues ..5-17
Supported Console Monitors and Controllers ..5-18

File Naming Conventions...5-18
Using Emulation Products..5-19

Byte 31 of $OPTIONS ..5-20
Printers...5-20

On-Line Printing...5-20
Parallel Device Equivalences..5-21
Serial Device Equivalences ..5-21
Line Feed (ALF) Handling ...5-21
$OPEN/$CLOSE Considerations ..5-22
Printer Not Ready ...5-22

Printing Using the UNIX Print Spooler ...5-22
Device Equivalences ..5-23
Line Feed (ALF) Handling ...5-24
$OPEN/$CLOSE ...5-24
Printer Not Ready ...5-24
Other Issues..5-24

Terminal Printers (Local Printing) ...5-24
Device Equivalences ..5-25
Line Feed (ALF) Handling ...5-25
$OPEN/$CLOSE ...5-25
Printer Not Ready ...5-25

Text Files ..5-26
Device Equivalences ..5-26
Line Feed (ALF) Handling ...5-27
$OPEN/$CLOSE Considerations ..5-27

TABLE OF CONTENTS DEVICE SUPPORT

NPL Intel UNIX Supplement TOC-5

Printer Not Ready ...5-27
Line Feed Handling ..5-27

The ALF (Auto Line Feed) Option ..5-27
$OPEN/$CLOSE Considerations ...5-28
Killing Output to a Non-Existent Device ...5-28
Printer Translation ..5-29

Mouse Support ..5-29
Serial Devices ..5-30

Naming Conventions..5-30
Sending Output to a Serial Port..5-30
Input from a Serial Port ..5-31
Asynchronous Serial Communications ..5-32

The Tape Drive ...5-33
Math Co-Processor Support..5-33
Default Device Equivalences..5-34

TERMINAL CHARACTERISTICS
Overview...6-1
Operating System Characteristics...6-2

Determination of Terminal Type..6-2
Location of Terminal Files ...6-3
Downloading FONT and KEYS Files..6-4
HALT Key Functionality ...6-4
Local Printer Support ...6-5
Terminal Configuration Requirements ..6-5

Supported Terminals..6-6
NPL Supported Terminals..6-6
Supported Terminal Characteristics ...6-7

Terminal Characteristics..6-8
Terminal Features Notes ...6-9
Console Characteristics ...6-9
Console Notes..6-9

Wang 2x36 Terminal Support ..6-10
Altos UNIX..6-10
DigiBoard Support ..6-10

Use with Native Operating System and Functions ..6-11
Common Default Keyboard Equivalences...6-11

Monochrome Console Characteristics..6-12
Graphics Availability ...6-12

TERMINAL CHARACTERISTICS TABLE OF CONTENTS

TOC-6 NPL Intel UNIX Supplement

Screen Character Set ..6-12
Downloadable Fonts..6-12
Alternate Character Set (Pixel Graphics)....................................6-12
Non-English Character Sets ..6-13
Screen Translation ...6-13

Box Graphics Support ..6-13
Attributes Support ..6-13
Cursor Appearance ...6-13
Support for 132-Column Mode..6-13
Use With Native Operating System Functions and Utilities6-14

Color Console Terminal Characteristics ..6-14
Graphics Availability ...6-14
Screen Character Set ..6-14

Downloadable Fonts..6-14
Alternate Character Set (Pixel Graphics)....................................6-14
Non-English Character Sets ..6-14
Screen Translation ...6-14

Box Graphics Support ..6-15
Attributes Support ..6-15
Cursor Appearance ...6-15
Support for 132-Column Mode..6-15
Use With Native Operating System Functions and Utilities6-15

Color Support under NPL...6-16
Graphics Support under NPL ...6-16
Keyboard Characteristics..6-16

Default Equivalence Table ...6-18

MULTI-USER CAPABILITIES
Overview ..7-1
Device Sharing and "Hogging" ..7-2

Suppress Implicit $OPEN Logic..7-2
Suppress $OPEN on Read Only Files..7-3

Global Partitions ...7-3
Terminal Identification ...7-3

#TERM ...7-4
Example ttys Use...7-4

#PART..7-5
#ID 7-5

Inter-task Communication ..7-6

TABLE OF CONTENTS MULTI-USER CAPABILITIES

NPL Intel UNIX Supplement TOC-7

$PSTAT..7-6
$BREAK...7-7

UNIX Versus Xenix Timeslicing..7-7
DATE and TIME..7-9
System Messages..7-9

User Count ..7-9
userfix Utility..7-10

Use on Networks...7-10
Multi-Screen Products and Issues ..7-11

PLATFORM-SPECIFIC LANGUAGE FEATURES
Overview...8-1
UNIX-Specific Statements ...8-2

$MACHINE ...8-2
$OPTIONS ...8-4
$PSTAT..8-6
$SHELL..8-6

Background Partition Support ..8-7
Configuration Requirements ..8-7
Operation of the Background Partition ..8-8
Restrictions ...8-9

Memory Management...8-10
UNIX Considerations ...8-10
Dynamic Partition Size...8-10

COMPILER OPERATION
Overview...9-1
Invoking the Compiler..9-2
File Naming Conventions...9-2

Supported Characters ...9-2
The TRANSLATE Option ..9-3

Case Sensitivity ..9-4
Wildcard Usage ..9-4
Pathnames...9-5

Print Devices...9-6
Shell Scripts ..9-7

Example Shell Script Files ...9-8
b2ca ...9-8

PLATFORM-SPECIFIC LANGUAGE FEATURES TABLE OF CONTENTS

TOC-8 NPL Intel UNIX Supplement

b2cb..9-8
b2cc..9-9
b2cd..9-9

Example Compiles..9-9
From a Compiled Diskimage to a Compiled Diskimage9-10
From a 2200 to a Compiled Diskimage9-12
From a Compiled Diskimage to 2200 Atomized Code...........9-14
From a 2200 to a Compiled Diskimage and ASCII Text Files ..9-16
From a Compiled Diskimage to ASCII Text Files9-18
From ASCII Text Files to Compiled Format in a Directory 9-20
From ASCII Text Files to a Compiled Diskimage9-22

PORTING PROGRAMS AND DATA
Overview...10-1
Porting Options...10-2

Serial Communications ..10-2
"RAW" Diskette Transfer ..10-2

Specific Environments..10-4
From a Wang 2200 ...10-4
From an MS-DOS-based system..10-4
From a SuperDOS-Based System ..10-4
From Another UNIX Based System ..10-5

MIXED LANGUAGE PROGRAMMING
Overview...11-1

Differences from DOS/SuperDOS Releases..11-2
Choosing the Development Environment ..11-3
Security...11-4

Installation of the Custom RunTime at End-User Sites..............11-4
Upgrades...11-4

Contents of the BESDK..11-5
Installation of the BESDK Diskette ...11-9
Xenix Support ...11-10
Microsoft C under Xenix..11-10

General..11-11
Mainline..11-11
Calling Conventions for BESDK Subroutines...11-11

Test rtp Subroutines...11-11

TABLE OF CONTENTS PORTING PROGRAMS AND DATA

NPL Intel UNIX Supplement TOC-9

RTPEXT Subroutine ...11-11
GOSUB’ Subroutines:...11-11

Linkage of Test Program..11-12
Linkage of Customized rti or rtp ..11-12

Microsoft Macro Assembler Under Xenix...11-14
General..11-14
Mainline..11-15
Calling Conventions for BESDK Subroutines...11-16

Test rtp Subroutines...11-16
RTPEXT Subroutine: ..11-16
GOSUB’ Subroutines ..11-16

Linkage of Test Program..11-17
Linkage of Customized rti or rtp ..11-17

UNIX Support...11-19
Microsoft C under UNIX..11-19

General..11-19
Mainline..11-19
Calling Conventions for BESDK Subroutines...11-20

Test rtp Subroutines...11-20
RTPEXT Subroutine ...11-20
GOSUB’ Subroutines ..11-20

Linkage of Test Program..11-20
Linkage of Customized rti or rtp ..11-21

Microsoft Macro Assembler Under UNIX...11-23
General..11-23
Mainline..11-23
Calling Conventions for BESDK Subroutines...11-24

Test rtp Subroutines...11-24
RTPEXT Subroutine ...11-24
GOSUB’ Subroutines ..11-25

Linkage of Test Program..11-25
Linkage of Customized rti or rtp ..11-26

Flow Control for External Libraries ...11-27

COMMON PROBLEMS
Overview..A-1
Runtime Problems ...A-2

Problem 1: Program rtp (or rti) not found....................................A-2
Problem 2: A RunTime error P48 is generated............................A-3

COMMON PROBLEMS TABLE OF CONTENTS

TOC-10 NPL Intel UNIX Supplement

Problem 3: The NPL RunTime program generates an I90 (or any
other I series) error. ..A-3
Problem 4: The NPL RunTime program generates an immediate
D82 error stating that the boot program cannot be found............A-4
Problem 5: When reading from "raw" diskettes, data from a disk-
ette
previously in the drive is accessed. ..A-4
Problem 6: "Cannot Determine Terminal Number" is displayed
upon
execution of rti or rtp..A-4
Problem 7: The 2200 character set does not display properly on the
screen. ...A-4
Problem 8: The keyboard does not generate expected key codes. ..A-5
Problem 9: The message "the Niakwa Programming Language
authorized user limit exceeded. Access denied." appears............A-5
Problem 10: The message "Interpreter not enabled." appears.A-6
Problem 11: The message "cannot execute Access denied" appears.A-6
Problem 12: The message "No more process available" appears.
In addition, the message "no files" may appear on the console...A-6
Problem 13: The message: "Serial number not found on floppy
diskette.
Please contact your distributor for assistance the NPL RunTime
Canceled" appears. ...A-7
Problem 14: The message "Please mount your Gold Key diskette"
appears on the screen when executing the NPL RunTime.A-7
Problem 15: When executing the Gold Key installation program,
the
message "Enter ’xeninst I’ to install or ’xeninst D’ to recall NPL."A-7
Problem 16: The message "No installs left on this diskette" ap-
pears
when trying to install the security. ...A-7
Problem 17: The message "Serial number not found on floppy
diskette" appears when trying to recall the security.A-8
Problem 18: The message "NIAKSER.DAT missing or damaged
(Error Code) appears on the screen when executing the NPL Run-
Time..A-8
Problem 19: The message "Please Mount your Gold Key diskette"
remains on the screen with an error code 1706 displayed on the
screen
after the NPL RunTime has been executed..................................A-8

TABLE OF CONTENTS COMMON PROBLEMS

NPL Intel UNIX Supplement TOC-11

Problem 20: An error code "1706" appears in the upper left hand
corner during the security install process or when starting up the
NPL RunTime. ...A-9

Upgrade Problems ...A-9
Problem 1: When upgrading, a "This upgrade is for a site with x"
message appears. ..A-9
Problem 2: When upgrading, an Error #XX message appears. ...A-9

Compiler Problems ..A-9
Problem 1: Program b2c not found. ...A-9
Problem 2: The compiler generates a message "No source pro-
grams
matching wildcard". .. A-10
Problem 3: The compiler states "cannot open "srcloc" (or "objloc")
as a diskimage file" when compiling from or to diskimage files. ...A-10
Problem 4: The compiler states "cannot open "srcloc" as a
diskimage
file" when compiling from 2200 format diskettes. A-10

UNIX ERROR CODES
Overview.. B-1

PERFORMANCE ISSUES
Overview.. C-1
RAM Disks .. C-2
$OPTIONS Settings... C-2
Configuration Issues .. C-2

"RAW" DEVICE COMPATIBILITY CHART
"Raw" Diskette Chart ..D-1

UNIX ERROR CODES TABLE OF CONTENTS

TOC-12 NPL Intel UNIX Supplement

CHAPTER 1

INTRODUCTION

1.1 Overview

The Niakwa Programming Language Supplement for Intel UNIX is intended as an aid in
the correct installation and use of the NPL Interpreter, Compiler and RunTime Program
under Intel UNIX.

Section 1.2 describes the contents of the NPL Development Package.

Section 1.3 describes the contents of the NPL RunTime Package.

Section 1.4 discusses the main features of the RunTime Program which are specific to In-
tel UNIX.

Section 1.5 provides an overview of the NPL Intel UNIX Supplement.

INTRODUCTION Overview

NPL Intel UNIX Supplement 1-1

1.2 Contents of the Niakwa Development Package

The NPL Development Package is intended for software vendor use in the development
and execution of application software under Intel UNIX. The NPL Development Package
consists of the NPL Intel UNIX Supplement and 7 diskettes.

NOTE: The NPL Development Package for Intel UNIX is provided on both 5-1/4" high den-
sity 1.2MB and 3-1/2" low density 720K diskettes. In addition, both the 286 (Xenix)
and 386 (UNIX) version are provided.

The following is a description of the contents of these diskettes.

Compiler Diskette
b2c The NPL Compiler program.

b2cx Example script files showing command-line use of the com-
piler designed to simplify use.

ENABLED The "enable" file necessary for allowing the Interpretive
RunTime program to function.

EXSNPL.BS2 A diskimage containing NPL Release IV example programs.

NPLEXAM.BS2 A diskimage containing the NPL Release IV example pro-
grams as discussed in Chapter 17 of the NPL Programmer’s
Guide.

NPLSYS.BS2 A diskimage containing NPL Release IV library modules
used by the example programs as discussed in Chapter 3 of
the NPL Statements Guide.

B2CHELP.HLP A text file containing help entries for the NPL compiler.

B2CHELP.IDX A file containing the index used when the NPL compiler
help file is accessed.

BOOT.OBJ The default RunTime boot program in compiled p-code for-
mat.

Contents of the Niakwa Development Package INTRODUCTION

1-2 NPL Intel UNIX Supplement

GOLDKEY.OBJ A boot program that converts a serial number into its corre-
sponding #GOLDKEY value.

REL4EXAM.OBJ A boot program used to start the Release IV example pro-
grams.

BOOT.SRC The default RunTime boot program in source format.

Utilities Diskette
util Script file that starts the NPL Utilities..

utilinst Text displayed containing start-up menu instructions for the
NPL Utilities when util script is run.

UTILITY.BS2 A diskimage file containing the NPL Utilities.

UTILHELP.HLP An indexed help files for use by the NPL Utilities.

UTILHELP.IDX A file containing index listings used when the help file is ac-
cessed.

UTILITY.OBJ A compiled version of the boot program to start up the NPL
Utilities.

UTILITY.SRC A source code version of the boot program for the Utilities.

Terminal Support Files Diskette
w2236 Source for termcap entry (used on Alto UNIX).

wangmode Turns on the Wang 2x36 flow control for Altos UNIX.

VTFONT.AL5 Font file used for downloading the NPL screen character set
for the Altos V terminals.

IBMFONT0.EGA A font file used for downloading the screen character set for
EGA cards on an IBM compatible PC.

ttys.exp An example of an NPL ttys file.

INTRODUCTION Contents of the Niakwa Development Package

NPL Intel UNIX Supplement 1-3

IBMFONT0.HGA A font file used for downloading the screen character set for
HGA cards on an IBM compatible PC.

WYKEYS.OFF File necessary for correct keyboard operation in application-
key mode of Wyse 150 and 160 terminals in Wyse 60 emula-
tion.

WYKEYS.ON File necessary for correct keyboard operation in application-
key mode of Wyse 150 and 160 terminals in Wyse 60 emula-
tion.

FONT.TBL A character font file which can be used as a reference font
file by the NPL Font Table Editor.

FONTIBME.TBL Modifiable font files used to create downloadable font file
for the EGA controller.

FONTIBMH.TBL Modifiable font files used to create downloadable font file
for the IBM EGA board and Hercules MGA board.

FONTxxxx.TBL Font table files used for editing and creating the above down-
loadable font files.

VTFONT.VT200 A font file used for downloading the screen character set for
the VT200 series terminals.

VTKEYS.VT200 A file necessary for downloading the uppercase key defini-
tions for VT200 series terminals.

WYKEYS.WY370 A file necessary for proper keyboard operation of a Wyse
370 terminal.

WYFONT.WY60 A font file used for downloading the screen character set for
the Wyse 60 terminals.

KEYBOARD.xxx A series of keyboard translation tables used for handling dif-
ferences between the keyboard and hex codes expected by
NPL programs. These files are used on the various NPL-sup-
ported terminals that can be used for remote maintenance
with the Redirect feature of the RunTime.

Contents of the Niakwa Development Package INTRODUCTION

1-4 NPL Intel UNIX Supplement

SCREEN.xxx A series of screen translation tables used for displaying the
NPL standard character set. These files are used on the vari-
ous NPL-supported terminals that can be used for remote
maintenance with the redirect feature of the RunTime.

W370FONT.xxx Font files used for downloading the screen character set (80
or 132 columns) for the Wyse 370 terminals.

BESDK Diskette
This diskette contains the required files necessary to allow NPL to interface with external
subroutines written in other languages (one diskette for SCO Xenix or two diskettes for
Intel UNIX). For a complete description of all files on this diskette, refer to Chapter 11.

1.3 Contents of the Niakwa NPL Runtime Package

The Niakwa NPL RunTime Package is intended for:

• Vendor use in executing and testing application object code developed in NPL.

• End-user use for execution of application object code purchased from an Author-
ized NPL Developer.

The NPL RunTime Package is packaged as two unique products. The first product is the
Niakwa RunTime Package and is normally shipped for new orders of NPL. The second
product is the Niakwa Upgrade RunTime Package. This may be ordered for upgrades to
existing customers in cases when the customer already has a Release III RunTime in-
stalled on the system. The advantage of the Upgrade RunTime is that the old Gold Key
does not need to be returned. The contents of each product are different. Refer to the
other sections in this chapter for more details on the contents of the Niakwa RunTime
and the Niakwa Upgrade RunTime Packages.

The Niakwa RunTime and Niakwa Upgrade RunTime Packages are available on both 5-
1/4" and 3-1/2" media. The files for each RunTime Package are contained on one 5-1/4"
or 3-1/2" diskette.

INTRODUCTION Contents of the Niakwa NPL Runtime Package

NPL Intel UNIX Supplement 1-5

1.3.1 Niakwa RunTime Package Files

The Niakwa RunTime Package (for new installations) physically consists of the Niakwa
RunTime Package Installation Guide and one 5-1/4" or 3-1/2" diskette. These diskettes
are labeled as follows:

• Niakwa NPL RunTime Package - GOLD KEY

The "Gold Key" is necessary to complete any task requesting or requiring the Gold Key
Diskette (i.e., installing the Gold Key security to the hard drive, passing security, etc.).

Niakwa NPL RunTime Package File Listing
The Niakwa RunTime Package contains the following files:

clearmem UNIX RunTime only. Program that clears the shared mem-
ory (without rebooting the system) if the old Release III Run-
Time programs were run before the Release IV versions.

commonmem Xenix RunTime only. A file used internally by the RunTime.

hexedit An utility program that is used by Niakwa to help diagnose
NPL security problems.

hexdump An utility program that is used by Niakwa to help diagnose
NPL security problems.

rti The Interpretive RunTime program.

rtp The Non-interpretive RunTime program.

userfix UNIX RunTime only. A utility that allows the developer to
reset the user count in situations where the user count is
greater than the actual number of NPL users on the systems.

xeninst A shell script used for installing or recalling the NPL copy
protection on the hard drive.

NIAKSER.DAT File used by the Runtime security check.

install.err Installation program error messages.

Contents of the Niakwa NPL Runtime Package INTRODUCTION

1-6 NPL Intel UNIX Supplement

ERRORMSG.HLP A text file that contains the error messages that are dis-
played when using the Interpretive RunTime program.

RTIXERR.HLP A text file that contains the UNIX error messages that are
displayed optionally when using the Interpretive RunTime
program.

ERRORMSG.IDX File containing the index used when the ERRORMSG.HLP
file is accessed.

RTIXERR.IDX File containing the index used when the RTIXERR.HLP file
is accessed.

setup.nodes A shell script file necessary for establishing special device
names required by the NPL RunTime.

XENINST.OBJ File used by the install procedure.

1.3.2 Niakwa NPL Upgrade RunTime Package

The Niakwa Upgrade RunTime Package physically consists of the Niakwa RunTime
Package Upgrade RunTime Installation Guide and one 5-1/4" or 3-1/2" diskette. These
diskettes are labeled as follows:

• Niakwa NPL Upgrade RunTime Package

The 5-1/4" or 3-1/2" diskette labeled Niakwa Upgrade RunTime Package is necessary to
complete the upgrade procedure.

Niakwa NPL Upgrade RunTime Package File Listing
The Niakwa Upgrade RunTime Package contains the following files:

RTIUPG The Interpretive RunTime program.

RTPUPG The Non-Interpretive RunTime program.

upgrade A file used to start the upgrade procedure.

UPGRADE.BS2 A diskimage used by the upgrade procedure.

INTRODUCTION Contents of the Niakwa NPL Runtime Package

NPL Intel UNIX Supplement 1-7

ERRORMSG.HLP A text file that contains the error messages that are dis-
played when using the Interpretive RunTime program.

RTIXERR.HLP A text file that contains the UNIX error messages that are
displayed optionally when using the Interpretive RunTime
program.

ERRORMSG.IDX File containing the index used when the ERRORMSG.HLP
file is accessed.

RTIXERR.IDX File containing the index used when the RTIXERR.HLP file
is accessed.

UPGR0.OBJ A file used by the upgrade procedure.

The NPL Upgrade RunTime Package is ordered separately from Niakwa for each end-
user who is upgrading from a Release III UNIX or Xenix RunTime Package. Refer to
Chapter 2 for further details on the Niakwa NPL Upgrade RunTime Package.

1.4 UNIX-Specific Features of the NPL Runtime

The RunTime program for Intel UNIX supports multi-user operation on individual termi-
nals connected to the UNIX environment. In addition to the standard NPL Release IV fea-
tures, specific features under Intel UNIX include:

• The ability to individually identify workstations or terminals on the system under
program control.

• Support for variables larger than 64K (UNIX only). Refer to Chapter 4 of the
NPL Programmer’s Guide.

• Support of mixed language programming with call-back capabilities to NPL
FUNCTIONs or PROCEDUREs.

• Support of 2.88MB "raw" diskettes on systems that support these formats. Refer
to Section 5.2.

UNIX-Specific Features of the NPL Runtime INTRODUCTION

1-8 NPL Intel UNIX Supplement

1.5 Intel UNIX Supplement Overview

The Intel UNIX Supplement is designed to provide information on operating NPL on In-
tel UNIX based systems. This supplement documents platform-specific features only.
General language features are discussed in the NPL Programmer’s Guide or the NPL
Statements Guide.

Chapter 2 of the Supplement discusses installation and configuration requirements of
NPL on Intel UNIX systems. It also discusses the NPL Gold Key security and security in-
stallation.

Chapter 3 discusses configuration of the NPL system including location of files, and use
of auxiliary files.

Chapter 4 discusses RunTime operations, describing various command-line startup op-
tions available, and exiting the RunTime.

Chapter 5 discusses devices supported by NPL. These include diskimage files, "raw" disk-
ettes, monitors/controllers, printers, tape drives, serial devices, math coprocessors, and
mice.

Chapter 6 discusses terminal characteristics under Intel UNIX including operating system
and supported terminal characteristics. In addition, the NPL support of the system con-
sole is also discussed.

Chapter 7 discusses multi-user issues for Intel UNIX systems and how they can co-exist
with networks.

Chapter 8 discusses language features that are specific to Intel UNIX, including differ-
ences with the system variables $MACHINE and $OPTIONS.

Chapter 9 covers operation of the B2C compiler and conventions used under Intel UNIX.

Chapter 10 discusses options for porting programs and data to Intel UNIX systems from
other platforms.

Chapter 11 discusses the use of mixed-language programming under Intel UNIX to create
external libraries.

INTRODUCTION Intel UNIX Supplement Overview

NPL Intel UNIX Supplement 1-9

Appendix A contains some common problems and solutions encountered while configur-
ing or executing NPL under Intel UNIX.

Appendix B contains common Intel UNIX error codes encountered during disk I/O or na-
tive operating system commands.

Appendix C discusses performance issues with NPL under Intel UNIX.

Appendix D diagrams "raw" device compatibility for all current NPL-supported systems.

Intel UNIX Supplement Overview INTRODUCTION

1-10 NPL Intel UNIX Supplement

CHAPTER 2

INSTALLATION

2.1 Overview

This chapter provides instructions for installing the NPL Development and RunTime
Packages under Intel UNIX.

Section 2.2 discusses the operating system and hardware requirements for use of the NPL.

Section 2.3 discusses the operating system configuration requirements for the use of NPL.

Section 2.4 discusses installing the NPL Development Package.

Section 2.5 discusses the NPL RunTime’s Gold Key security.

Section 2.6 discusses the installation of the NPL RunTime Package under Intel UNIX.

INSTALLATION Overview

NPL Intel UNIX Supplement 2-1

Section 2.7 discusses the installation of all Intel UNIX based NPL Upgrade RunTime
Packages.

2.2 OS and Hardware Requirements

The following section discusses the operating system and hardware requirements for the
Intel UNIX implementation of NPL.

2.2.1 System Requirements

The Intel UNIX implementation of NPL is designed to operate on systems meeting the
following requirements:

Hardware Operating Systems Notes
IBM-Compatible PC
(80386 or greater)

Altos UNIX System V/386
rev. 3.2 or greater

32-bit implementation of NPL

IBM-Compatible PC
(80386 or greater)

AT&T UNIX System V/386
rev. 3.2 or greater

32-bit implementation of NPL
NCR System 3000
Wyse 5000, 7000, and 9000

IBM-Compatible PC
(80386 or greater)

Interactive UNIX 386/ix rev.
2.0.2 or greater

32-bit implementation of NPL

IBM-Compatible PC
(80386 or greater)

SCO UNIX System V/386 rev.
3.2 or greater

32-bit implementation of NPL

IBM-Compatible PC
(80286 or greater)

SCO Xenix System V/286 rev.
2.x or greater

16-bit implementation of NPL

NOTE: Refer to Niakwa’s BBS or your authorized sales representative for current informa-
tion on newly approved/tested hardware and operating system versions.

Each of the NPL RunTime programs requires a different amount of memory. The follow-
ing chart indicates the approximate memory requirements of each and the per user over-
head as well.

Interpretive RunTime (rti) Non-Interpretive RunTime (rtp)
Base RunTime
(sharable)

254K (UNIX)
217K (XENIX

144K (UNIX)
133K (Xenix)

Per user overhead
(non-sharable)

203K (UNIX)
216K (Xenix)

198K (UNIX)
214K (Xenix)

OS and Hardware Requirements INSTALLATION

2-2 NPL Intel UNIX Supplement

2.2.2 Supported Terminals

Supported NPL terminals include:

• Altos III and V

• Bull HDS 1 and 3

• DEC VT100 and VT200 series

• IBM 3151

• NCR 4970

• Spectrix SPX 701

• Wang 2110A

• Wang 2236DE, and 2236DW

• Wyse 50, 60,150, 160, and 370

Refer to Chapter 6 or Appendix D of the NPL Programmer’s Guide or for a complete dis-
cussion of all Niakwa-supported terminals.

2.2.3 Printer Support

Both parallel and serial system printers are supported. In addition, local printers are sup-
ported for terminals with parallel or serial printer ports. Refer to Section 5.5 for addi-
tional information on printer support under UNIX.

2.3 NPL Configuration Requirements

The following represent configuration requirements for NPL under Intel UNIX.

INSTALLATION NPL Configuration Requirements

NPL Intel UNIX Supplement 2-3

2.3.1 System Parameters

The minimum system parameters for configuring the host operating system are as follows:

Inodes 150
Open files 150
Max processes 100

NOTE: The above settings are typically sufficient for up to 16 concurrent NPL users. Appli-
cation specific considerations or more users may require these settings to be set to
higher values.

2.3.2 Modifying the .profile File

Each UNIX operating system contains the file /etc/profile which contains global login in-
formation for all users. In addition, each user has his own .profile file which is located in
the user’s home directory. These files all contain operational parameters and can be used
to execute shell script files and initialize environment variables. The /etc/profile file is
used to setup system wide parameters and shell scripts. The user’s specific .profile file is
used to setup parameters and shell scripts specific to the individual user. Refer to the ap-
propriate UNIX reference manual for further information on the /etc/profile and .profile
files and setting up users.

These profile files are also used to perform several functions for the operation of NPL.
These include:

• To set up the alternate path to the /usr/BASIC2C directory.

• To set up the default file protection status for any new files created by the user.

• To automatically load and execute a specified shell script file.

• Properly set the terminal type (BASIC2C TERM--refer to Section 6.3.1 for valid
entries). In addition, for some terminals, other commands may be required. Refer
to Chapter 6 for details.

• Optionally set the BASIC2C ID system variable. BASIC2C ID can be used to
generate unique #ID values. Refer to Chapter 7 for details.

NPL Configuration Requirements INSTALLATION

2-4 NPL Intel UNIX Supplement

For convenient operation of NPL applications, certain parameters in the /etc/profile and
in the appropriate default user .profile files should be modified before any user is "cre-
ated" on the system.

The following changes should be made to the /etc/profile to set up /usr/BASIC2C (or
whatever directory the NPL files are to be located in) as an alternate path.

NOTE: These changes should be performed while logged in as super-user (root) and from
an UNIX text editor (e.g., vi, ed). It is a good idea to make a backup of the file before
editing.

1. Modify the "PATH=" line by adding to the end:

:/usr/BASIC2C:.

NOTE: The dot (.) at the end of the PATH statement must be included. This indicates the
current directory should be included as an alternate path. This causes UNIX to
search the current directory for commands.

For example:

Modify the "PATH=" line in the /etc/profile file from:

PATH=:/etc:/bin:/usr/bin

to:

PATH=:/etc:/bin:/usr/bin:/usr/BASIC2C:.

NOTE: It is recommended to make the following changes to the .profile file for each spe-
cific user or to the default user .profile to set the default file protection status, and
optionally specify a program to be executed at login time.

WARNING--Each flavor of UNIX has its own way of configuring users. Refer to the
UNIX administration documentation for more information.

2. Set BASIC2C TERM (refer to Chapter 6) and optionally BASIC2C ID (refer to Chap-
ter 8) system variables and execute any terminal specific commands required.

3. Optionally, the NIAKWA_RUNTIME environment variable setting. Refer to Section
2.5.4.

INSTALLATION NPL Configuration Requirements

NPL Intel UNIX Supplement 2-5

4. Optionally, a UNIX command to be automatically executed at login time may be
added to the .profile file. If this is done, this should be added as the last line in the file.

For example, .profile entries may include:

umask 022
cd /usr/BASIC2C
rti UTILITY

The above lines when added to a users .profile file performs the following tasks:

• Sets for other users, read only access to any file created by this user.

• Changes the directory to /usr/BASIC2C.

• Executes the RunTime’s UTILITY program.

To allow these changes to take affect, Logoff (by pressing Ctrl-D or entering "lo-
gout") and login again.

2.4 Installing the NPL Development Package

This section discusses the installation of the NPL Development Package under Intel
UNIX. The NPL Development Package consists of seven diskettes labeled as follows:

• Compiler Diskette (one each for UNIX and Xenix)

• Terminal Support Diskette (supports both UNIX and Xenix)

• Utilities Diskette (supports both UNIX and Xenix)

• BESDK Diskette (two for UNIX and one for Xenix)

Each diskette is provided on a 3-1/2" 720K and a 5-1/4" 1.2MB diskette.The contents of
these diskettes are described in Section 1.2. The first three diskettes are installed in the
/usr/BASIC2C directory. The BESDK diskette has a separate installation process. Refer
to Chapter 11 for details.

Installing the NPL Development Package INSTALLATION

2-6 NPL Intel UNIX Supplement

2.4.1 Intel UNIX Diskette Drives

Under UNIX, diskette drives are accessed by using a special device name. Each device
name refers to a specific diskette drive and the media expected to be in the drive. Intel
UNIX refers to each drive as drive 0 or drive 1.

The following table illustrates several examples on accessing Intel UNIX floppy drive
with different media. Keep in mind that different flavor of UNIX may use other designa-
tions as well. Refer to the appropriate UNIX documentation for more information.

Drive 3-1/2" 720K 5-1/4" 1.2MB
0 /dev/fd0135ds9* /dev/fd096ds15
1 /dev/fd1135ds9* /dev/fd196ds15

* Prior to running setup.nodes, Interactive and AT&T flavors of UNIX require that
/dev/dsk/f0q9dt 720 or /dev/dsk/f1q9dt 720 be used.

NOTE: The designation of drive "0" is used in this manual for the purpose of documenta-
tion.

2.4.2 Installing the Development Software

The Development Package diskettes have been produced in UNIX Tape Archive ("tar")
format on 3-1/2" 720K or 5-1/4" 1.2MB media. In this form, the diskettes may be easily
copied to the system’s hard drive by using the UNIX tar command.

NOTE: UNIX is case sensitive in assigning file names and directory names. All references to
file names, directory names, and UNIX commands in this document accurately re-
flect the appropriate case.

When copied to the system’s hard drive, all NPL software is placed in the /usr/BASIC2C
directory. The /usr/BASIC2C directory is created automatically as part of the tar proce-
dure. As such, it is not necessary to create the /usr/BASIC2C directory before running tar.

Installation Steps
To install the Niakwa NPL Development Package’s software from floppy drive 0 to the
system’s hard drive, follow these steps:

1. Login to UNIX as "root" (the super-user login)

INSTALLATION Installing the NPL Development Package

NPL Intel UNIX Supplement 2-7

2. Enter the following UNIX commands:

cd / Select the current directory as root.
umask 0000 Sets protection mode to full access for all users.

3. For installing from drive 0 enter:

for 3-1/2" 720K media

tar xvfk /dev/fd0135ds9 720

NOTE: For Interactive and AT&T UNIX installation use the following until setup.nodes is
run:

tar xvfk /dev/dsk/f0q9dt 720

for 5-1/4" 1.2MB media

tar xvfk /dev/fd096ds15 1200

The screen will display a list of files being copied to the system’s hard drive by the
tar process. Repeat this command for each of the development diskettes (excluding
the BESDK diskette).

NOTE: This procedure is identical for both developer and end user sites. Refer to the UNIX
Commands Directory for details on the UNIX tar utility.

2.4.3 Installing the NPL External Subroutine Development Kit (BESDK)

The BESDK diskette has a separate installation procedure. Refer to Chapter 11 for the in-
stallation procedure for the BESDK diskette NPL (formally, Basic-2C) External Subrou-
tine Development Kit.

2.5 NPL Runtime Security

The following section discusses the NPL security.

2.5.1 Security Overview

The RunTime programs are protected from unauthorized copying by use of a security
scheme. The Gold Key diskette issued by Niakwa contains a physically encoded serial
number. The RunTime Package contained on the Gold Key contains the same encrypted
serial number.

NPL Runtime Security INSTALLATION

2-8 NPL Intel UNIX Supplement

The protection being used is an "install based security" by which the RunTime program
can be copied to a single disk drive. With this type of security the RunTime does not re-
quire insertion of the Gold Key diskette. The RunTime program can be "installed" and
"recalled" to allow changing systems.

NOTE: Once the RunTime is installed, the Gold Key diskette is used as a backup in case the
installed security on the hard drive is lost.

2.5.2 The NIAKSER.DAT File

At start-up time, the NPL RunTime Program attempts to read the NIAKSER.DAT file
and extract the encrypted "Serial Number" from it. To find the NIAKSER.DAT file, the
RunTime first looks at the current directory, then the directory NIAKWA_RUNTIME is
set to (if used), and finally the /usr/BASIC2C directory.

The RunTime fails whenever the NIAKSER.DAT file cannot be read, found, or contains
invalid data. If this occurs, the following error message may be displayed:

NIAKSER.DAT missing or damaged (error code)
RunTime program canceled.
Contact your distributor for assistance.

where the numeric code generated can be one of the following:

Error Code Description
Code 0 Cannot find NIAKSER.DAT.
Code 1 Cannot read NIAKSER.DAT.
Codes 2-5 Invalid data in NIAKSER.DAT. File is probably damaged

In addition, the RunTime generates an error message if the internal revision level in the
RunTime is greater than the revision level contained in NIAKSER.DAT.

NOTE: If it is necessary to contact Niakwa’s Technical Support regarding one of the above
errors, please be sure to note the exact error code received.

2.5.3 The Security Check

Based on the "Serial Number" extracted from NIAKSER.DAT, the NPL RunTime secu-
rity check is comprised of the following steps:

1. The current directory is checked for the matching security fingerprint protection. If
the hard drive protection is found, execution continues.

INSTALLATION NPL Runtime Security

NPL Intel UNIX Supplement 2-9

2. If the fingerprint is not found in the current directory, the directory specified in the
NIAKWA_RUNTIME environment variable is checked. If the protection is found,
execution continues.

3. If the fingerprint is not found in the directory specified by the NIAKWA_RUNTIME
environment variable, the /usr/BASIC2C directory is checked. If the hard drive pro-
tection is found, execution continues.

4. If the hard drive protection check fails all of the above checks, normal diskette based
security procedures must be performed. Here, the "Mount Gold Key" message ap-
pears whether or not the Gold Key diskette is in the drive. When this occurs, insert
the original Gold Key diskette in the diskette drive. If the protection is found, execu-
tion continues and the Gold Key diskette may be removed and returned to a safe
place. The Once-a-Day feature then takes effect for subsequent executions of the Run-
Time until the system is rebooted or the date changes. Refer to Section 2.5.6 for de-
tails on the Once-a-Day Security feature.

5. If the fingerprint is not found on the diskette, the "Mount Gold Key" screen is redis-
played.

Refer to Section 2.5.5 for more information on the security screen.

2.5.4 NIAKWA_RUNTIME Environment Variable

The NPL RunTime supports the use of an environment variable to specify the directory
in which the RunTime system files are located. These system files include:

NIAKSER.DAT
ENABLED
Screen and keyboard translation files
Error message files
Patch files

NOTE: For purposes of upward compatibility, the NPL RunTime still looks in /usr/BA-
SIC2C if files are not found in the NIAKWA_RUNTIME directory.

NPL Runtime Security INSTALLATION

2-10 NPL Intel UNIX Supplement

The search path used by the RunTime is as follows:

Current directory
NIAKWA_RUNTIME directory
/usr/BASIC2C directory

To establish the NIAKWA_RUNTIME directory, use the UNIX export command. This is
best placed in the user’s .profile file. For example:

NIAKWA_RUNTIME=/usr/NPL
export NIAKWA_RUNTIME

This instructs the RunTime to look for system files in the /usr/NPL directory.

Locating the NPL Software in a Directory other than /usr/BASIC2C
If the NPL software is to be moved to a different directory other than /usr/BASIC2C
(where it is automatically installed), the following must be considered:

• The NIAKWA_RUNTIME Environment Variable must be set to the new direc-
tory and exported.

• The setup.nodes script should be executed while the NPL file still reside in
/usr/BASIC2C directory (prior to being moved).

• Even if the NPL files are moved to a different directory, the /usr/BASIC2C direc-
tory must still be available. When the RunTime executes, it creates a few files
that must be placed in the /usr/BASIC2C directory. As such, it is necessary to rec-
reate the /usr/BASIC2C directory once the NPL files have been moved. For ex-
ample:

 mv /usr/BASIC2C /usr/NPL
 mkdir /usr/BASIC2C

NOTE: It is necessary to use the UNIX mv (move) command instead of cp (copy) to move
the files to another directory.

2.5.5 The Security Screen

In the event that the Gold Key "Security Fingerprint" is not installed on the system’s hard
drive or the hard drive based security check fails, normal diskette based security proce-
dures must be performed.

INSTALLATION NPL Runtime Security

NPL Intel UNIX Supplement 2-11

In this event, the following prompt is displayed:

Please mount your GOLD KEY diskette.

NOTE: This prompt appears whether or not the diskette is in the drive:

When this occurs, mount the original Gold Key diskette with its matching "Serial Num-
ber" in the diskette drive. If the "Serial Number" is not found on the diskette or if the se-
rial number is found but does not match, the security check fails and the message "Please
mount your Gold Key diskette" remains on the screen.

NOTE: If the Gold Key is required, it must be the original Gold Key containing the "Secu-
rity Fingerprint". For example, if a 3.20 RunTime is installed and upgraded to Re-
lease IV, the 3.20 Gold Key is required to pass the diskette-based security check (the
Upgrade RunTime diskettes contain no security fingerprint that can be used to pass
the RunTime security check).

When performed, the security check always takes place at the beginning of the Run-
Time’s execution. Once the security check has been completed, the Gold Key diskette
may be removed and returned to a safe place.

2.5.6 Once-a-Day Security

The Once-a-Day security feature is designed to eliminate the need for the Gold Key disk-
ette to be inserted each time the NPL RunTime is executed. The Once-a-Day security fea-
ture requires that the first user to execute the RunTime program, after booting the system,
be logged in as the super-user. The security check is only issued on the first attempt to
use the NPL RunTime for that day. The Once-a-Day security check is functional when
the RunTime security is diskette based and takes effect for subsequent executions of the
RunTime until the system is rebooted or the date changes.

2.5.7 What to Do if the Gold Key Security is Lost

If the security check fails on the hard drive, the installed Gold Key security may have
been lost. The first step is to check that the RunTime program has been installed. This
can be done by trying to reinstall the RunTime program. Refer to Appendix A for more
details.

NPL Runtime Security INSTALLATION

2-12 NPL Intel UNIX Supplement

2.5.8 Replacement RunTimes

If the Gold Key security becomes lost, a replacement RunTime can be ordered from the
Authorized NPL Distributor.

NOTE: The RunTime can be executed normally, using the Gold Key as a backup until the
replacement arrives.

2.6 Installing the NPL Runtime Package

The following sections discusses the installation the NPL RunTime Package. The NPL
RunTime Package consist of a single diskette, which is labelled as follows:

• Niakwa NPL RunTime Package - Gold Key

Refer to Section 1.3 for details on the contents of the NPL RunTime Package for Intel
UNIX. When complete, all system software necessary for execution of the NPL RunTime
is located in the /usr/BASIC2C directory on the system’s hard drive.

NOTE: The Development Package must be installed to facilitate development of NPL appli-
cation programs. The installation of the NPL Development Package is discussed in
Section 2.4.

2.6.1 NIAKWA_RUNTIME Environment Variable

The RunTime supports the use of an environment variable to specify the location of the
NPL files. Refer to Section 2.5.4 for more information.

2.6.2 Copying the Software to the Hard Disk

The RunTime Package diskettes have been produced in the standard UNIX Tape Archive
("tar") format on either 3-1/2" 720K or 5-1/4" 1.2MB diskettes. In this form, the diskettes
may easily be copied to the hard drive by using the tar command.

NOTE: UNIX is case sensitive in assigning file names and directory names. All references to
file names, directory names, and UNIX commands in this document accurately re-
flect the appropriate case.

INSTALLATION Installing the NPL Runtime Package

NPL Intel UNIX Supplement 2-13

When copied to the hard drive, all NPL software is placed in the /usr/BASIC2C direc-
tory. The /usr/BASIC2C directory is created automatically as part of the tar procedure.
As such, it is not necessary to create the /usr/BASIC2C subdirectory before running tar.

Installation Steps
To install the Niakwa NPL RunTime Package’s software from floppy drive 0 to the sys-
tem’s hard drive, follow these steps:

1. Login to UNIX as "root" (the super-user login).

2. Enter the following UNIX commands to install the NPL RunTime files from drive 0
to the system’s hard drive:

cd / Select the current directory as root.
umask 0000 Sets protection mode to full access for all users.

3. For installing from drive 0 enter:

for 3-1/2" 720K media

tar xvfk /dev/fd0135ds9 720

NOTE: For Interactive and AT&T UNIX installation use the following until setup.nodes is
run:

tar xvfk /dev/dsk/f0q9dt 720

for 5-1/4"" 1.2MB media

tar xvfk /dev/fd096ds15 1200

The screen will display a list of files being copied to the system’s hard drive by the
tar process.

2.6.3 Installing the Gold Key Security

Niakwa highly recommends installing the security fingerprint on the hard drive. When
the security fingerprint is installed on the hard drive, this avoids checking the diskette for
the security, making the RunTime security appear transparent to the end user and mini-
mizing the possibility of the Gold Key being lost or damaged.

NOTE: If the RunTime files were moved to another directory other than /usr/BASIC2C, the
NIAKWA_RUNTIME environment variable must be set before the installation of
RunTime Security. Refer to Section 2.5.4 for more information.

Installing the NPL Runtime Package INSTALLATION

2-14 NPL Intel UNIX Supplement

Installation Steps
The following steps are to be performed for installing the NPL Gold Key security finger-
print to the system’s hard drive:

NOTE: Interactive and AT&T UNIX installations must run the setup.nodes script before
proceeding with the Gold Key security installation and several device names are
linked by this script. Refer to Section 2.6.4 for information on executing this script.

1. Login to UNIX as "root" (the super-user login).

2. Change directories to /usr/BASIC2C by entering the following:

cd /usr/BASIC2C (or the specified NPL RunTime directory)

3. Set the BASIC2C_TERM system variable (refer to Section 6.3.1 for valid values). If
using the system console, set BASIC2C TERM as follows:

BASIC2C TERM=imon
export BASIC2C TERM

NOTE: If the RunTime detects that the BASIC2C_TERM variable is not set and the UNIX
TERM variable is set to "ansi", the following prompt is displayed:

"Is this procedure being run on the console on SCO Xenix or UNIX?"

A response of "Y" causes the BASIC2C_TERM value to be set to imon and ex-
ported. When the installation procedure has terminated, the BASIC2C_TERM en-
try is restored to the original value. A "N" response causes the procedure to use the
current TERM variable setting.

The security install procedure also automatically sets #TERM=1 during the installa-
tion process.

WARNING--SCO UNIX Release 3.2 version 4.0 (later versions are corrected) has a
problem with its console drivers such that attempts to display boxes or other extended
characters on the console result in alphabetic characters being displayed. SCO has pro-
vided a patch for this problem which is available on Niakwa’s BBS. Contact Niakwa’s
Technical Support for more information.

4. Insert the diskette labeled "Master Gold Key" into the diskette drive.

INSTALLATION Installing the NPL Runtime Package

NPL Intel UNIX Supplement 2-15

5. At the UNIX prompt, enter:

./xeninst I

where I = Install

6. The Gold Key security screen then appears and prompts for the Gold Key diskette.
Press Enter to continue or Tab to escape.

NOTE: During the installation, the following warning message appears on the system con-
sole once or twice depending on the system being used.

WARNING: error on dev fd (1/1) sector 2396 cmd 0x3 status 0x2000

This message may very from operating system to operating system, but can be safely
disregarded.

After a successful installation, the following message appears:

"NPL RunTime Gold Key has been successfully installed."

NOTE: The ttys file must be established before normal use. Refer to Section 7.4 for more in-
formation on this file.

2.6.4 Access Privileges

Once the NPL RunTime and Development Package diskettes have been copied to the
hard drive, the RunTime must be configured for proper access privileges. Both the Run-
Time programs (rtp and rti) and the compiler (b2c) must execute functions that are nor-
mally restricted in an UNIX environment. However, UNIX allows programs to execute
previously restricted functions if the program has been given super-user privileges. There-
fore, Niakwa has provided a shell script program to perform the required configuration
steps to give super-user privileges to the compiler (b2c) and the RunTime Programs (rtp
and rti) automatically.

setup.nodes
A file named setup.nodes has been included on the Gold Key diskette in the /usr/BA-
SIC2C directory. The setup.nodes shell script file assigns rti, rtp, and b2c super-user ac-
cess privileges and sets up devices for non-SCO based flavors of UNIX.

NOTE: The setup.nodes shell script must be executed on all installations while the NPL files
are located in the /usr/BASIC2C directory.

Installing the NPL Runtime Package INSTALLATION

2-16 NPL Intel UNIX Supplement

In addition, Interactive and AT&T UNIX installations should execute this script
prior to attempting the installation of the Gold Key security.

To execute the setup.nodes script, follow the steps shown below.

1. Login to UNIX as "root" (the super-user login)

2. Change directories to /usr/BASIC2C by entering the following:

cd /usr/BASIC2C

3. Enter:

./setup.nodes

4. At the prompt requesting if this is an Interactive or AT&T UNIX install or not, re-
spond appropriately.

NOTE: This step configures devices for Interactive and AT&T based flavors of UNIX for
NPL operation.

2.6.5 Terminal Configuration

Once the NPL RunTime is fully installed, it is then necessary to configure the system for
end-user operation. This typically involves the setup and configuration of the system’s
terminals for operation with NPL. Detailed information on these configuration issues are
covered in Chapter 3.

2.6.6 Recalling the Gold Key Security

The following conditions may require recalling the Gold Key security fingerprint:

• The current hard drive must be reformatted or replaced.

• Before upgrading the operating system.

• Before running the operating system utilities that may affect the operating system
kernel or file system (e.g., utilities that rebuild the kernel).

• The RunTime Program must be installed on a different system.

• The RunTime Program must be secured from being used.

INSTALLATION Installing the NPL Runtime Package

NPL Intel UNIX Supplement 2-17

NOTE: The NIAKSER.DAT and NIAKSEC.386 files contain important information related
to the RunTime security. Avoid moving or deleting these files. For more information
on NIAKSER.DAT, refer to Section 2.5.2.

Routine backup and restore procedures should not affect the installed security.

Recall Steps
To recall the Gold Key security on the hard drive, place the original Gold Key diskette in
the diskette drive and follow the steps shown below.

1. Login to UNIX as "root" (the super-user login).

2. If the NPL RunTime files have been copied to any directory other than /usr/BA-
SIC2C, make sure the NIAKWA_RUNTIME environment variable is set as discussed
in Section 2.5.4.

3. Change directories to /usr/BASIC2C (or whatever directory is being used) by entering
the following:

cd /usr/BASIC2C

3. Be sure that the BASIC2C_TERM system variable is set correctly (refer to step 3 in
Section 2.6.3).

4. Insert the diskette labeled "Gold Key" into the diskette drive.

5. At the UNIX prompt, enter:

./xeninst D

where D = De-install (recall)

After a successful recall of security, the following message appears:

"NPL RunTime Gold Key has been successfully de-installed."

Installing the NPL Runtime Package INSTALLATION

2-18 NPL Intel UNIX Supplement

2.7 Installing the Upgrade RunTime Package

A special Upgrade RunTime Package is available. This Upgrade RunTime Package is de-
signed so that when it is installed, it is tied to the Gold Key security and serial number of
the existing Release III RunTime that is currently installed on the host system’s hard
drive. This Upgrade RunTime eliminates the need for the old RunTime to be returned to
Niakwa. In addition, use of the Upgrade RunTime provides the same serial number and
#GOLDKEY value as the current RunTime in use.

The Upgrade RunTime is similar to the Standard RunTime, except for the following:

• The Upgrade RunTime diskettes do not contain the Gold Key security used to
pass the RunTime security check.

• The Upgrade RunTime diskette does not contain a NIAKSER.DAT file. This file
is updated during the upgrade procedure.

The concept behind the Upgrade RunTime is that the serial number from the currently in-
stalled RunTime is extracted by a special upgrade program. This "Serial Number" is then
used by the new RunTime to pass the security check.

2.7.1 Requirements for Upgrading

For the upgrade procedure to complete successfully, the following items are required:

• The system being upgraded must have a current Release III (Revision 3.00 or
greater) version of the NPL (formerly Basic-2C) RunTime installed (the Gold
Key security from this RunTime must be installed on the hard drive).

• The Upgrade RunTime Package number of users must match the currently in-
stalled RunTime’s number of users.

• Either rtp or rti must be present and executable (rtp is used if both rtp and rti are
present).

• All files from the Upgrade RunTime diskettes must be copied to the directory
where the existing RunTime files are located (typically /usr/BASIC2C).

INSTALLATION Installing the Upgrade RunTime Package

NPL Intel UNIX Supplement 2-19

• Select the /usr/BASIC2C directory or the NIAKWA_RUNTIME environment
variable directory if not set to /usr/BASIC2C.

• The Upgrade RunTime Package must match a valid upgrade option, as shown be-
low, or the upgrade procedure will abort.

The following is a complete list of all NPL RunTime "no-return" upgrade options based
upon existing RunTime installation Gold Key revision and type (a Xenix upgrade cannot
upgrade a UNIX site and vise versa).

Gold Key
Revision

Old RunTime Type
(prior to Release IV)

3.xx SCO Xenix
3.xx ALTOS UNIX
3.xx SCO UNIX
3.xx INTERACTIVE UNIX
3.xx AT&T UNIX

NOTE: The Gold Key revision number RunTime type appears on the original Gold Key
diskette label.

2.7.2 How the Upgrade Works

The Upgrade program is used to produce the required NIAKSER.DAT file for the new
version of the RunTime being installed. The following steps are performed by the up-
grade program:

1. The Upgrade program performs a series of tests to determine if the upgrade should
proceed. Various self-explanatory error messages may be generated during this phase.
The upgrade procedure is aborted if an error occurs during this phase. Once the error
condition is corrected, the Upgrade program can be rerun.

2. All required disk operations are attempted (to ensure access to files, sufficient space
on the hard disk, etc.). Again, self-explanatory error messages may be generated dur-
ing this phase. The upgrade procedure is aborted if an error occurs during this phase.
Once the error condition is corrected, the Upgrade program can be rerun.

Installing the Upgrade RunTime Package INSTALLATION

2-20 NPL Intel UNIX Supplement

3. A security check is performed on the upgrade diskette. The procedure is aborted with
an error message if the security check fails.

4. Once the above test are done the Upgrade program updates NIAKSER.DAT.

5. The Upgrade Procedure then:

• Creates a backup copy of NIAKSER.DAT on the upgrade diskette.

• Deletes rtpold and rtiold if they exist.

• Renames the existing RunTime programs, rtp and rti to rtpold and rtiold.

• Renames the Upgrade RunTime programs, RTPUPG and RTIUPG to rtp and rti.

• Exits with a message of successful completion.

NOTE: All error messages produced by the upgrade program are contained in the script
file "upgrade". These error messages may be translated for use by non-English us-
ers.

2.7.3 Performing the Upgrade

The following installation instructions assume that drive 0 is the floppy drive and
/usr/BASIC2C is the target directory. If the designations are different on the system being
used, be sure to use the correct designations instead.

Upgrade Steps
To perform the upgrade, the following steps must be performed:

1. Login to UNIX as "root" (the super-user login).

2. Enter the following UNIX commands to install the NPL Upgrade files from drive 0 to
the system’s hard drive:

cd / Select the current directory as root.
umask 0000 Sets protection mode to full access for all users.

INSTALLATION Installing the Upgrade RunTime Package

NPL Intel UNIX Supplement 2-21

3. For installing from drive 0 enter:

for 3-1/2" 720K media

tar xvfk /dev/fd0135ds9 720

NOTE: For Interactive and AT&T UNIX installation use the following until setup.nodes is
run:

tar xvfk /dev/dsk/f0q9dt 720

for 5-1/4"" 1.2MB media

tar xvfk /dev/fd096ds15 1200

The screen will display a list of files being copied to the system’s hard drive by the
tar process. This copies the Upgrade RunTime software required to perform the up-
grade, to the existing /usr/BASIC2C directory on the hard drive. This must be done
before running the upgrade script (upgrade).

NOTE: If the old Release III NPL files are in a directory other than /usr/BASIC2C, the new
upgrade files must be moved to that directory prior to going on to step 4.

4. Select the /usr/BASIC2C directory (or the appropriate directory where the NPL files
are located) on the hard drive.

cd /usr/BASIC2C

5 Execute the upgrade program (upgrade):

WARNING--Once the upgrade procedure is complete, the Release IV Upgrade is perma-
nently tied to the original Gold Key diskette and the upgrade diskette contains a copy of
the newly-updated version of the NIAKSER.DAT file. The original Gold Key must be
saved. Both this diskette and the Upgrade RunTime diskette(s) should be stored together
in a safe location as an emergency backup.

Do not write-protect the upgrade diskette(s).

Only the original upgrade diskette(s) may be used to perform the upgrade.

Once the upgrade procedure is successfully completed, it cannot be executed again.

upgrade [drive]

where [drive] is the diskette drive in which the Upgrade RunTime is present.

Installing the Upgrade RunTime Package INSTALLATION

2-22 NPL Intel UNIX Supplement

For example:

upgrade 0

Upon completion of the "upgrade" procedure the following message is displayed:

"Upgrade was completed successfully"

The Upgrade RunTime Package is now installed. Execution of rtp (or rti if enabled)
causes the new RunTime to be executed.

Refer to Section 2.7.2 for details on the operation of the "upgrade" procedure.

NOTE: If an error occurs, please make a note of the error code before calling Niakwa.

The upgrade procedure can only be run once. Once the upgrade has been success-
fully completed, it no longer executes. However, should the upgrade procedure be
terminated due to some error condition, the execute count is not decremented and
the upgrade procedure may be rerun once the error condition is corrected.

Once the upgrade procedure is complete, the NIAKSER.DAT file produced during
the Upgrade procedure is automatically backed up to the upgrade diskette. The Up-
grade RunTime is now permanently tied to the security fingerprint of the original
Gold Key (NPL Revision 3.00 or higher).

2.7.4 Recalling the Upgraded RunTime Package

If any of the following conditions arises, it is necessary to recall the upgraded RunTime
from the hard drive:

• The current hard drive must be reformatted or replaced.

• Before upgrading the operating system.

• Before running the operating system utilities that may affect the operating system
kernel or file system (e.g., utilities that rebuild the kernel).

• The RunTime Program must be installed on a different system.

• The RunTime Program must be secured from being used.

INSTALLATION Installing the Upgrade RunTime Package

NPL Intel UNIX Supplement 2-23

To recall the Upgrade RunTime, the installed Gold Key security of the original Gold Key
that is currently installed on the hard drive must be recalled. There are no special steps to
be performed with the actual Upgrade Diskettes. Refer to Section 2.6.6 for details on re-
calling the Gold Key security from the host system’s hard drive.

2.7.5 Reinstalling the Upgrade RunTime Package

The following steps should be performed to reinstall the Upgrade RunTime after it has
been recalled for any reason.

Reinstallation Steps
1. Copy the files from the original Gold Key diskette as discussed in Section 2.6.2. They

are copied to the /usr/BASIC2C directory.

2. If the NPL RunTime files are to be stored in a directory other than /usr/BASIC2C, it
is necessary to move them from /usr/BASIC2C to the desired location. For example:

mv /usr/BASIC2C/* /usr/NPL

Also make sure the NIAKWA_RUNTIME environment variable is set as discussed
in Section 2.5.4.

3. Install the Gold Key security from the original Gold Key to the hard drive. Refer to
Section 2.6 for details.

4. Mount the latest RunTime Upgrade Diskette and tar all files from the RunTime Up-
grade diskettes. If necessary, move them from /usr/BASIC2C to the desired directory
as described in step 2 above.

NOTE: This now includes the NIAKSER.DAT file created by the Upgrade procedure.

5. Rename rtp to rtpold.

6. Rename rti to rtiold.

7. Rename RTPUPG to rtp.

8. Rename RTIUPG to rti.

The upgraded RunTime is now reinstalled and operational.

Installing the Upgrade RunTime Package INSTALLATION

2-24 NPL Intel UNIX Supplement

CHAPTER 3

CONFIGURATION

3.1 Overview

NPL applications consist of one or more diskimage files containing compiled NPL pro-
grams and data files, at least one start up "BOOT" program, and possibly other associated
files. The application software developer must decide where to place these applications
within the UNIX file system and how to access them from NPL. The method of setting
up NPL applications to operate in a UNIX file system is reviewed in this chapter

Section 3.2 discusses the UNIX file system.

Section 3.3 discusses the location of all NPL software.

Section 3.4 discusses the location of application programs and data.

Section 3.5 discusses the various NPL auxiliary files and their functions.

CONFIGURATION Overview

NPL Intel UNIX Supplement 3-1

Section 3.6 discusses configuring additional users for operation within the system.

Section 3.7 discusses configuring the user’s workstation.

Section 3.8 discusses the required access privileges.

Section 3.9 discusses invoking the RunTime from a shell script.

Section 3.10 discusses using a menu system to invoke the RunTime from a script file.

Section 3.11 discusses the linking of start-up and menu scripts files.

3.2 The UNIX File System

UNIX uses a hierarchical file system to organize its own system files. Individual directo-
ries are used to store the various components of the UNIX operating system.

Each NPL application should be placed in its own directory under the UNIX operating
systems. It is recommended that directories for NPL applications be created as subdirecto-
ries of the /usr directory. This is because all subdirectories of the /usr directory are consid-
ered part of the user file system. Other directories are placed on the root file system,
where there is limited space.

NOTE: The BASIC2C directory itself is set up as a subdirectory of /usr.

By establishing a series of subdirectories within the /usr directory, multiple application
systems can be organized, allowing for ease of operation, including separate backups of
individual systems or directories.

3.3 Location of NPL Software

By default, all NPL software, including the Niakwa Development and RunTime Pack-
ages, must be installed in the /usr/BASIC2C directory to insure proper operation of the
RunTime and Compiler. This is achieved during the installation of the NPL RunTime and
Development Packages.

 The UNIX File System CONFIGURATION

3-2 NPL Intel UNIX Supplement

NOTE: The /usr/BASIC2C directory is the default directory for NPL. If it is necessary to es-
tablish a different directory as the default NPL directory, the NIAKWA_RUN-
TIME environment variable must be set to point to the new default directory. Refer
to Section 2.5.4 for more information.

Refer to Chapter 2 for details on installing the Niakwa Development and RunTime Pack-
ages.

3.4 Installation of Application Software

The steps described in this section are for installing an example NPL application at an
end-user site (as opposed to a development system) under UNIX. After installing the
NPL RunTime (refer to Chapter 2 for details), the application software can be installed.

NOTE: When porting an existing system from a Wang 2200 or another supported NPL envi-
ronment, refer to Chapter 10 for a discussion of porting software to a UNIX system.

If the application is already in UNIX format, perform the following steps:

1. Login to UNIX as "root" (the super-user login)

2. Enter the following UNIX commands:

cd / Select the current directory as root.
umask 0000 Set protection mode to full access for all users.

3. Determine and create the directories in which the application program and data files
are to be installed using the UNIX mkdir command.

4. Copy the application files into their appropriate directories.

5. Modify the $DEVICE statements in the "BOOT.OBJ" file to reflect the locations of
the application program and data files (refer below).

NOTE: When porting an application directly from a Wang 2200, the program files must be
compiled to operate under NPL. Refer to Chapter 9 for details on compiling.

UNIX is case sensitive. If the directory is created as /usr/AR, all subsequent access
to AR must be in upper case.

CONFIGURATION Installation of Application Software

NPL Intel UNIX Supplement 3-3

Locating Application Programs and Data
As explained in Section 3.2, all application programs and data should be located in sepa-
rate subdirectories of the /usr directory.

There are several reasons why application software should be segregated from the NPL
software, these include:

• For the purposes of backing up only those data files relevant to an individual ap-
plication system.

• To avoid the frustration of trying to locate one particular file on a directory
which is intermixed with several other application files.

For example, when installing an accounts payable system and an accounts receivable sys-
tem, the directory structure containing these two application systems might appear as:

/usr/AP Contains the accounts payable main directory with two
subdirectories named PROGS and DATA.

/usr/AP/PROGS Contains the AP subdirectory PROGS with all of the AP
application programs.

/usr/AP/DATA Contains the AP subdirectory DATA with all of the AP
application data files.

/usr/AR Contains the accounts receivable main directory with two
subdirectories named PROGS and DATA.

/usr/AR/PROGS Contains the AR subdirectory PROGS with all of the AP
application programs.

/usr/AR/DATA Contains the AR subdirectory DATA with all of the AP
application data files.

Installation of Application Software CONFIGURATION

3-4 NPL Intel UNIX Supplement

3.5 Auxiliary Files

The NPL Development Package contains a series of auxiliary files that the NPL uses to
address a variety of functions. This section provides a detailed discussion of these files.

Auxiliary files required for the end user installation may be copied directly from the ap-
propriate NPL Development Package diskette by entering the following UNIX com-
mands:

tar xvfk /dev/fd0135ds9 720 /usr/BASIC2C/filename

Alternatively, auxiliary files or modified versions of the auxiliary files can be copied
from a development system to a diskette and then to the end-user’s system by entering
the following UNIX commands:

On the development system:

tar cvf /dev/fd0135ds9 /usr/BASIC2C/filename

On the end user system:

tar xvf /dev/fd0135ds9 /usr/BASIC2C/filename

3.5.1 The "ENABLED" File

For the Interpretive RunTime (rti) to operate, it is necessary to install a special file, called
"ENABLED". This file is located on the NPL Compiler diskette and must be installed in
the /usr/BASIC2C or appropriate NPL files directory of the host system’s hard drive.

If the Interpretive RunTime is invoked without the presence of the ENABLED file in the
current, NIAKWA_RUNTIME set, or /usr/BASIC2C directory, the message:

 Interpreter not enabled

appears, and RunTime execution is canceled.

Installing ENABLED in the end user’s /usr/BASIC2C or appropriate NPL files directory
enables the Interpreter for all applications.

HINT: It is also possible to install the ENABLED file only in the current directory of specific ap-
plications. This allows the Interpreter to be used with some applications while preventing
its use with other applications.

CONFIGURATION Auxiliary Files

NPL Intel UNIX Supplement 3-5

NOTE: Use of the Interpreter allows the end-user access to several functions which, if used
improperly, could be damaging. These are the RESET and STEP functions of the
HELP processor and the HALT key (refer to Chapter 11 of the NPL Programmer
Guide for more information on the HELP processor). These functions can be sup-
pressed under program control by use of the $OPTIONS system variable. For a de-
tailed discussion of the $OPTIONS system variable, refer to the NPL Statements
Guide, $OPTIONS.

Enabling the Interpretive RunTime program at the end user’s site requires that the end
user execute the Niakwa End User Support Only License Agreement.

3.5.2 Keyboard Files

The keyboards of many terminals used by NPL are not completely compatible with the
NPL character set. These keyboard differences are resolved by the use of a look up table
which translates keys received from the keyboard to hex codes expected by NPL pro-
grams. The standard built-in defaults for keyboard remapping are present within the Run-
Time and should prove adequate for most applications.

NOTE: The method the NPL RunTime program uses to handle keyboard character transla-
tion under an UNIX operating system is different than under other versions of NPL.
The presence of a keyboard translation table file is required or the NPL RunTime
may hang the executing terminal.

Should modifications be required, they can be made by using the NPL Keyboard Transla-
tion Tables Editor. This utility will modify the various disk files named KEY-
BOARD.xxxx, where xxxx is the proper suffix of the terminal in use. NPL determines
the proper value of this suffix from the value of the UNIX system variable TERM, or
from the value of the BASIC2C_TERM system variable. NPL first searches for the KEY-
BOARD.xxxx file in the currently selected directory when executed. If the file is not
found, the RunTime then searches the NIAKWA_RUNTIME set directory and finally the
/usr/BASIC2C directory.

NOTE: If the file is not found, the keyboard cannot be properly configured and will not
function properly.

Auxiliary Files CONFIGURATION

3-6 NPL Intel UNIX Supplement

The NPL Development Package provides a series of KEYBOARD.xxxx files on the NPL
Terminal Support diskette. These files are used by NPL for use with the various terminals
supported by the RunTime. Be sure to use the properly named KEYBOARD file for the
terminal in use if modifications are made to the keyboard translation table. Refer to Chap-
ter 6 for the appropriate file names.

The above files are also used by the NPL RunTime with the NPL REDIRECT feature of
the HELP facility, thus providing for a variety of terminals that may be used for remote
communication and support with the end user’s site.

To modify any of the default keyboard translation tables:

1. Create the modified KEYBOARD.xxxx file(s) on the development system.

2. Copy the file(s) to a diskette (refer to Section 3.5 for details).

3. Copy the file(s) to the end user’s system as part of the standard application installa-
tion procedure (refer to Section 3.5 for details).

Refer to Chapter 13, of the NPL Programmer’s Guide, for details on the use of the NPL
Keyboard Translation Tables Editor utility. Refer to Appendix D of the NPL Program-
mer’s Guide for details on supported terminals. Also, refer to Chapter 6 of this Supple-
ment for details of the IBM-compatible PC keyboard characteristics, for the console
terminal under the UNIX implementation of NPL.

WARNING--If reinstallation of the Terminals Support Files Diskette is necessary (for
new versions), any changes made to the above files are overwritten. Consequently, a
backup copy of all customized files should be made at the time of their creation and
stored in a safe place.

3.5.3 Screen and Font Files

The NPL character set is not fully supported on all the terminals supported by NPL.
These screen differences are resolved by using a look up table which translates the UNIX
screen characters to screen characters expected from a NPL program.

NOTE: The method that the NPL RunTime program uses to handle screen character trans-
lation under an UNIX operating system is different than under other versions of the
NPL. The presence of a screen translation table file is required.

CONFIGURATION Auxiliary Files

NPL Intel UNIX Supplement 3-7

Should modifications be required, they can be made by use of the NPL Screen Transla-
tion Table Editor. This utility allows modification of the various disk files named
SCREEN.xxxx, where xxxx is the proper suffix of the terminal in use. NPL determines
the proper value of this suffix from the value of the UNIX system variable TERM, or
from the value of the BASIC2C_TERM system variable. NPL first searches for the
SCREEN.xxxx file in the currently selected directory when executed. If the file is not
found, the RunTime then searches the NIAKWA_RUNTIME set directory and finally the
/usr/BASIC2C directory.

NOTE: If the file is not found, the screen translation cannot operate correctly and may hang
the terminal.

In addition, many NPL terminals support the use of downloadable fonts. Downloading of
the screen character set to the Wyse 60, Wyse 150, Wyse 160, Wyse 370, Altos V, and
VT220 series terminals is performed through the files WYFONT.WY6, W370FONT.80,
W370FONT.132, VTFONT.AL5 and VTFONT.VT2 respectively. Should modifications
be required, the NPL Font Table Editor utility program allows the programmer to create
or modify these files. Refer to Chapter 6 of this supplement, Chapter 13 and Appendix D
of the NPL Programmer’s Guide for more information.

The Screen and Font files are also used by the Niakwa RunTime with the NPL REDI-
RECT feature, thus providing for a variety of terminals that may be used for remote com-
munication to the end user’s site.

To modify any of the default font or screen translation tables:

1. Create the modified FONT or SCREEN.xxxx file(s) on the development system.

2. Copy the file(s) to a diskette.

3. Copy the file(s) to the end user’s system as part of the standard application installa-
tion procedure.

Refer to the NPL Statements Guide, $SCREEN, for details on $SCREEN. Refer to
Chapter 13 of the Programmer’s Guide for details on the NPL Screen Translation Ta-
bles Editor. Refer to Chapter 6 for more details on UNIX specific screen charac-
teristics under the NPL.

Auxiliary Files CONFIGURATION

3-8 NPL Intel UNIX Supplement

WARNING--If reinstallation of the Terminals Support Files Diskette is necessary (for
new versions), any changes made to the above files are overwritten. Consequently, a
backup copy of all customized files should be made at the time of their creation and
stored in a safe place.

3.5.4 Printer Control Values

Since printer control protocol standards are virtually non-existent, printer control specifi-
cations vary dramatically from printer to printer. The print control feature of the NPL has
built-in default control codes (refer to Section 4.6 for actual default values) which should
work well with the IBM-compatible PC Graphics Printer (Epson MX-80, or equivalent).

If other types of printers are in use on the system, use the NPL Edit Printer Control Codes
utility to define a PRINTCTL.TBL file of printer control values so that the functions
listed on the Printer Control screen operate correctly.

When the RunTime program is executed, it looks for the PRINTCTL.TBL file in the cur-
rent directory. If the file is not found, the RunTime then searches the NIAKWA_RUN-
TIME set directory and finally the /usr/BASIC2C directory. If the file is not found, the
built-in defaults of the RunTime are used.

Refer to Chapter 13 of the NPL Programmer’s Guide for details on the operation of the
NPL Edit Printer Control Codes utility.

3.5.5 Error Descriptions

The RunTime diskette contains four files, labeled ERRORMSG.HLP, ER-
RORMSG.IDX, RTIXERR.HLP and RTIXERR.IDX, which are copied to the /usr/BA-
SIC2C directory on the hard disk when the RunTime is installed. The ERRORMSG files
are used to display the NPL error code messages when an error occurs. The RTIXERR
files are used to display the native operating system error code message when an error oc-
curs. The files with the extension of .HLP contains the literal description of each NPL or
native operating system error code, while the .IDX file is the indexed help files required
to "find" the proper entry in the descriptive files.

CONFIGURATION Auxiliary Files

NPL Intel UNIX Supplement 3-9

The ERRORMSG.HLP and RTIXERR.HLP files can be modified by the developer so
that different error descriptions can be displayed. This is particularly useful for distribu-
tors of non-English applications. However, if the ERRORMSG.HLP and RTIXERR.HLP
files are modified, they must be processed by the NPL Indexed Help File Processor utility
(refer to Section 13.16 of the NPL Programmer’s Guide for details). Refer to Chapter 11
of the NPL Programmer’s Guide for details on indexed help files.

WARNING--If reinstallation of the RunTime Package is necessary (for new versions or
Upgrades), any changes made to the above files are overwritten since these files are con-
tained on the NPL RunTime Package diskettes. Consequently, a backup copy of all cus-
tomized files should be made at the time of their creation and stored in a safe place.

3.5.6 Terminal Identification

Terminal identification is determined by the NPL RunTime by interrogating the ttys file
in the Niakwa files directory or in the /etc directory.

If NPL cannot find the ttys file, the error message "Cannot Determine Terminal Number"
is displayed and the RunTime cannot execute. If the ttys file does not exist, it must be cre-
ated.

To help in the creation of the ttys file, the RunTime Development Package, Terminal Sup-
port Files Diskette, contains an example file called ttys.exp. The ttys.exp file can be cop-
ied to the ttys file and then modified to fit the needs of the installed system.

For further details on the ttys file and terminal type identification refer to Section 7.4.

3.5.7 Additional End-User Security (#GOLDKEY)

The GOLDKEY.OBJ program allows developers to determine the #GOLDKEY number
for any NPL RunTime based on the Gold Key serial number without having to physically
open the RunTime Package.

This program can be found on the NPL Development Package Compiler diskette and,
once installed, can be run as any other NPL program.

Auxiliary Files CONFIGURATION

3-10 NPL Intel UNIX Supplement

When executed, the GOLDKEY program prompts for the Gold Key serial number as
shown below.

Enter Serial Number (1 - 65535) to convert to #GOLDKEY:

Once the serial number is entered, the program returns the correct #GOLDKEY code
number that is necessary for some application security programs.

3.6 Configuring Additional Users for Operation

This section discusses the procedure of establishing users in an UNIX environment.

3.6.1 Adding a User to UNIX

The commands used for adding users to a UNIX system vary between different flavors of
UNIX. Refer to the appropriate UNIX manuals for information on how to add users.

3.6.2 The User Directory

The procedure for adding a user to an UNIX system includes the creation of a new subdi-
rectory in the user filesystem. The creation of this directory is typically created automat-
ically when the user is added. This directory is the user’s "HOME" directory. This means
that whenever a user logs in, the current directory is always set to the users "HOME" di-
rectory.

3.6.3 The .profile File

The procedure for adding a user to an UNIX system includes the creation of a .profile file
for each user. This .profile file is normally placed in the user’s HOME directory. This
.profile file must contain certain statements required for proper execution of the NPL
RunTime program. Refer to Section 2.3.2 for details on the configuration of the .profile
file.

CONFIGURATION Configuring Additional Users for Operation

NPL Intel UNIX Supplement 3-11

3.7 Configuring User’s Workstations

UNIX is a multi-user NPL environment and as such NPL supports many terminals for
use with the NPL RunTime. Refer to Chapter 6 for details on configuring terminals for
use with NPL under UNIX.

3.8 Required Access Privileges

UNIX access privileges must also be set to allow end user access to developer created ap-
plication programs and files as necessary. Rights are typically assigned by the super-user
through the UNIX "chmod" command. Refer to the UNIX documentation for further in-
formation on the use of the chmod command and user access privileges.

NOTE: Access privileges for the NPL RunTime files as discussed in Section 2.6.4.

3.9 Executing the Runtime from a Shell Script

Under the UNIX implementation of NPL, it is advantageous to invoke the RunTime from
a "procedure file". A procedure file is an ASCII text file containing a list of commands as
they would be entered by the user. This file would typically select the proper directory
and then invoke the RunTime with the proper "BOOT" program name. This simplifies op-
erations for the end user. A procedure file in UNIX is called a "shell script". A UNIX text
editor (e.g., vi, ed, etc.) can be used to create a "shell script" file.

HINT: This is also a very important technique to use, since more than one user would have to re-
member the directory designations and "BOOT" program name to use.

For example, assume that a NPL application has been set up in the directory /usr/AR and
that the name of the "BOOT" program is "ARBOOT". A typical shell script file for exe-
cuting this application would be:

(cd /usr/AR; rtp ARBOOT)- using the Non-Interpretive RunTime

or

(cd /usr/AR; rti ARBOOT)- using the Interpretive RunTime

Configuring User’s Workstations CONFIGURATION

3-12 NPL Intel UNIX Supplement

NOTE: The semicolon is used to delimit multiple commands on a single command line.

rtp or rti is in lowercase. An attempt to execute RTP or RTI results in "program not
found" (UNIX is case sensitive).

To be recognized as a shell script, the file must be given execute access privileges
from the chmod command. For example, to make a shell script called "arstart" ex-
ecutable, enter the following UNIX command:

chmod a+x arstart

Upon exiting the AR application, the user’s current directory is unchanged. This is
because the "cd" statement in the above example is only in effect for the duration of
the shell script.

An alternative method of setting up the shell script would be:

cd /usr/AR
rtp ARBOOT (or rti ARBOOT)

However, this method would leave the user’s current directory as /usr/AR after exit-
ing rtp (or rti), until the end of the shell script. This may be undesirable if com-
mands follow the rtp (or rti) progname command.

A sample shell script is provided for executing the NPL utilities as part of the NPL Devel-
opment Package. This file is called "util". To invoke this shell script enter "util" from any
sub-directory.

3.10 Executing the RunTime from a Menu System

Under UNIX, it is very simple to create shell script files which can be used to invoke the
NPL RunTime. This method means that the operator does not have to remember which di-
rectory to select and what "BOOT" program name to use. However, if there are many dif-
ferent applications, the operator may still have difficulty remembering the names of the
various shell script files. This "problem" can easily be resolved by use of a menu instruc-
tion file.

CONFIGURATION Executing the RunTime from a Menu System

NPL Intel UNIX Supplement 3-13

3.10.1 Creating the Menu Instruction File

The menu instruction file contains a list of descriptions of the various applications avail-
able along with the associated shell script name. This file can be created by using one of
the standard UNIX text editors such as vi. This menu file may be displayed on the opera-
tor screen by means of the UNIX "cat" command. The operator then simply enters the
name of the shell script for the application desired.

For example, assume that a given installation has two applications, AR and AP. Shell
script files for both have been created (much like in the example in Section 3.9). The
names of these shell script files are arstart and apstart. A typical menu instruction file
may contain:

Enter the name of the program to run:
Accounts Receivables arstart
Accounts Payable apstart

This menu file may be given any convenient name. For purposes of this example, assume
the name used is "APPMENU".

3.10.2 Displaying the Menu Instruction File

The menu instruction file should be displayed in two places. The first is immediately fol-
lowing the user login. The second is following the completion of any application (redis-
play the menu so other options can be selected).

To display the menu instruction file when a user initially logs in, the following line is
added to the user’s .profile file (refer to Section 2.3.2 for details on .profile).

cat APPMENU

where APPMENU is the name of the menu instruction file.

To display the menu instruction file following completion of an application, add a line to
the end of the start up shell script file for the application:

(cd /usr/AR; rtp ARBOOT)
cat APPMENU

where APPMENU is the name of the menu instruction file.

For this to work properly, the shell script statement which invokes rtp (or rti) must be
coded as a subprocess. This ensures that the "current" directory is properly set when the
cat APPMENU instruction is executed.

Executing the RunTime from a Menu System CONFIGURATION

3-14 NPL Intel UNIX Supplement

3.10.3 An Example Menu Instruction File

An example menu instruction file is provided with the NPL Development Package. This
file is named "utilinst" and can be found in the /usr/BASIC2C directory following instal-
lation of the NPL Development Package.

3.11 Linking Start-Up and Menu Script Files

At this point additional users have been created on the system, the terminals have been
configured, start up shell scripts have been created, and a menu system has been estab-
lished. Now it is necessary to give the user access to the NPL applications. Although this
can be done by many methods under UNIX, the best method is to "link" the appropriate
start up shell scripts and menu instruction files into the user’s HOME directory. This can
be done by using the UNIX "ln" command. The ln command creates a directory entry in
the user’s HOME directory for files specified.

NOTE: This does not make a copy of the file. Rather, only a second pointer to the same
physical file is established. This means that if any changes are made to a "linked"
file, the changes are immediately available to all "links" to the file.

In the following example, assume that the start up shell scripts are called arstart in direc-
tory /usr/AR and apstart in directory /usr/AP. Assume that the menu shell script is called
APPINST and is located in the /usr/BASIC2C directory.

To link the start up shell scripts and menu instruction files, enter the following from the
UNIX shell:

ln /usr/AR/arstart /usr/username
ln /usr/AP/apstart /usr/username
ln /usr/BASIC2C/APPINST /usr/username

where username is the name of the user being set up.

Login as super-user to perform the above tasks. Also, be sure to set the access mode on
the "linked" files so that the user can access them. For example:

chmod a+x /usr/username/arstart
chmod a+x /usr/username/apstart
chmod a+r /usr/username/APPINST

CONFIGURATION Linking Start-Up and Menu Script Files

NPL Intel UNIX Supplement 3-15

The shell script files used to invoke NPL are given execute access while the menu instruc-
tion file is given only read access. The menu instruction file is never "executed", rather it
is "read" by the cat command.

If different users have different sets of applications that they may execute, it may be ad-
visable not to "link" the menu instruction file, but to copy it instead, and modify it to the
particular needs of the user. However, it is advisable to "link" the shell scripts, thus ensur-
ing that all users access the same application through the same procedure (and that
changes to the shell scripts affect all users immediately).

Linking Start-Up and Menu Script Files CONFIGURATION

3-16 NPL Intel UNIX Supplement

CHAPTER 4

RUNTIME OPERATION

4.1 Overview

This chapter covers the general operation of the NPL RunTime under Intel UNIX operat-
ing systems. The chapter discusses various methods of starting and exiting the RunTime
program, the available RunTime startup options, memory considerations, and the default
printer control values of NPL under UNIX.

Section 4.2 discusses the two RunTime programs available.

Section 4.3 discusses the general startup form of the RunTime.

Section 4.4 discusses the use of various startup options available in the RunTime.

Section 4.5 discusses the determination of available memory by the RunTime.

Section 4.6 discusses the default printer control values of the RunTime.

RUNTIME OPERATION Overview

NPL Intel UNIX Supplement 4-1

Section 4.7 discusses the various methods of exiting the RunTime under UNIX.

4.2 rtp Versus rti

Included in the RunTime package are two RunTime programs: One program is Non-Inter-
pretive, (rtp), and the other Interpretive (rti).

The Non-Interpretive version allows for execution of NPL object code, without any capa-
bilities for "immediate mode" command entry or functions.

The Interpretive RunTime program allows for full development capabilities, such as pro-
gram text editing and debugging. The interpretive version does require more memory. Re-
fer to Section 2.2 for details on memory requirements.

NPL developers may choose whether or not end-user sites have interpretive capabilities.
Installation of the "ENABLED" file is necessary to allow the Interpretive RunTime Pro-
gram to execute. Refer to Section 3.5.1 for details on the "ENABLED" file.

NOTE: Although interpretive capabilities at the end-user site may be useful for support pur-
poses, these capabilities allow an end-user access to the developer’s source code,
which may not be desirable.

Use of the Interpreter at end-user sites requires execution of the End-User Support
Only License Agreement. Refer to Section 3.5.1 for details on the "ENABLED" file
required for operation of the Interpretive RunTime program.

4.3 Starting the NPL RunTime

Several methods are available to begin the execution of either RunTime. This section dis-
cusses the RunTime’s general startup option form.

4.3.1 Starting From the Command Processor

When in the UNIX command processor (typically a korn shell), the general form of a
command line to execute either RunTime program is:

rtp Versus rti RUNTIME OPERATION

4-2 NPL Intel UNIX Supplement

4.3.2 Starting from Shell Script Files

Shell script files can be written to directly execute the RunTime. The script file can per-
form the various commands necessary to invoke the RunTime for a specific application.

Refer to Section 3.9 for additional information on starting the RunTime from a script file.

4.3.3 Starting from a Menu

For a more user-friendly approach to starting an NPL application, the RunTime program
can be started from a menu system. Many third-party products can be used for this pur-
pose. Refer to Section 3.10 for additional information on starting the RunTime from a
menu system.

rtp [option]...[progname] (non-interpretive version)

rti [option]...[progname] (interpretive version)

where:

option = RunTime startup option or combination of
startup options. Options can be entered in
either upper or lower case. For example -d=32
or -D=32 (this applies only to the single let-
ter after the "-"--not any filenames that may
follow which are case-dependent).

progname = the filename of the NPL object program to be
executed. If no progname is specified, the
RunTime Program assumes the program
"BOOT.OBJ" is to be executed. If an extension
is not supplied, NPL assumes an extension of
".OBJ" on the progname (the filename is oper-
ating system-dependent).

RUNTIME OPERATION Starting the NPL RunTime

NPL Intel UNIX Supplement 4-3

4.4 Command Line (Start-up) Options

The NPL RunTime environment is set up internally by the rtp and rti programs upon exe-
cution. The following section discusses the available RunTime startup options which may
be specified upon execution of the RunTime. These options allow for modification of the
default RunTime environment.

4.4.1 -B (Background Partition)

The -B option indicates that the NPL RunTime is to begin operation in a background par-
tition.

For example:

rti -B=40

Starts the RunTime in a background partition with a #PART value of 40.

Refer to Section 8.3 for details on background partitions.

Refer to Section 2.4 of the NPL Programmer’s Guide for a complete discussion of the -B
option.

rtp [-B=xx]

rti [-B=xx]

where:

 xx = the #PART value to be assigned.

Command Line (Start-up) Options RUNTIME OPERATION

4-4 NPL Intel UNIX Supplement

4.4.2 -D (DET Entries)

The -D RunTime option allows a programmer to specify the number of device equiva-
lence table entries. The number of DET entries may be a range of 16 to 255. If -D is not
specified, the default of 16 DET entries is used.

For example:

rti -D=32

specifies that 32 DET entries are available.

Special Considerations for -D Option
When using the -D option, be aware of the following operational considerations.

• Each DET entry above 16 results in the use of additional memory. The amount of
memory each additional DET entry requires is 64 bytes. This memory is de-
ducted from the available user partition.

NOTE: This memory requirement may increase with future revisions of NPL.

• Open file limits are set during the installation of the UNIX operating system. Re-
fer to the UNIX system documentation for details on installing and reconfiguring
the UNIX environment.

Refer to Section 2.4 of the NPL Programmer’s Guide, for a complete discussion of the -D
option.

rtp [-D=nnn]

rti [-D=nnn]

where:

 nnn = the number of device equivalence table entries.

RUNTIME OPERATION Command Line (Start-up) Options

NPL Intel UNIX Supplement 4-5

4.4.3 -G (Graphics Mode)

The -G option is not supported for use under UNIX.

4.4.4 -H (Handle Table Size)

The handle table is an internal table used by the RunTime to translate two-byte p-code
pointers into four-byte memory addresses. Handle table entries are created at program
resolution time and each handle table entry requires 4 bytes of memory. An entry is re-
quired for:

Every unique variable
Each unique line number
Each DO/ENDDO group
Each internal DEFFN’
Each loop construct
Each PROCEDURE or FUNCTION

If -H is not specified, the RunTime program allocates a small amount of memory for the
handle table and expands it as required.

For example:

rtp -H15

allocates a handle table of 60K bytes (4K x15) or 15360 entries (60 x 1024/4)..

rtp [-Hx]

rti [-Hx]

where:

x = the amount of space to be allocated for the
handle table, in units of 4K bytes

or

the number of handle table entries, in units
of 1024 bytes.

Command Line (Start-up) Options RUNTIME OPERATION

4-6 NPL Intel UNIX Supplement

HINT: A value of one (1) or two (2) for the handle table is typically sufficient.

Refer to Section 2.4 of the NPL Programmer’s Guide for a complete discussion of the -H
option.

4.4.5 -K (Mouse Support)

The -K option is not supported under UNIX.

4.4.6 -L (Leave Overhead Memory)

The -L option is not supported under UNIX.

4.4.7 -M (XMS Memory)

The -M option is not supported under UNIX.

4.4.8 -P (Pre-Boot)

The -P RunTime option allows for a "pre-boot" configuration program. If the -P option is
specified on the RunTime command line, NPL loads and executes a "pre-boot" program.

For example:

rti -PSTARTUP

specifies that the pre-boot program STARTUP.OBJ is to be executed.

Refer to Section 2.4 of the NPL Programmer’s Guide for a complete discussion of the -P
option.

rtp [-P[filename]]

rti [-P[filename]]

where:

filename = the filename of the pre-boot program to be
loaded.

RUNTIME OPERATION Command Line (Start-up) Options

NPL Intel UNIX Supplement 4-7

4.4.9 -R (Remote Control)

The -R option is used to force the RunTime to use terminal control codes instead of direct
video mapping. This option serves no real purpose under UNIX since all ports on the sys-
tem automatically assume they must use terminal control codes.

Refer to Section 2.4 and 2.9 of the NPL Programmer’s Guide for a complete discussion
of the -R option.

4.4.10 -S (Separate Program Segments)

The -S option performs no operation under UNIX.

Refer to Section 2.4 of the NPL Programmer’s Guide for a complete discussion of the -S
option.

4.4.11 -T (Terminal/Port Number)

The -T option is used for specifying a specific #TERM value.

For example:

rtp -T=2

Starts the RunTime overriding the default #TERM value with a #TERM value of 2.

HINT: This option is particularly useful if the terminal port in use has no corresponding entry in
the /usr/BASIC2C/ttys file and the "Cannot Determine Terminal Number" message ap-
pears.

rtp [-T=xx]

rti [-T=xx]

where:

xx = a numeric-constant which indicates which terminal
 number to use (overrides default terminal number
 determination).

Command Line (Start-up) Options RUNTIME OPERATION

4-8 NPL Intel UNIX Supplement

NOTE: Assignment of #TERM values using the /usr/BASIC2C/ttys file (the default method)
assures unique #TERM values are defined for each terminal. The -T option should
be used with caution since the RunTime does not detect duplicate #TERM values
when the -T option is used.

Refer to the Section 2.4 of the NPL Programmer’s Guide for a complete discussion of the
-T option.

4.4.12 -U (UMB Memory)

The -U option is not supported under UNIX.

4.4.13 The -X (Load External Library)

The -X option is not supported under UNIX. For details on implementing external subrou-
tines under UNIX, refer to Chapter 11.

4.4.14 The BOOT Program

The RunTime program assumes that the first program to be executed is not in an NPL
diskimage, but rather is a native operating system file. This first program can be thought
of as a "boot" program. The boot program generally sets up or customizes the Device
Equivalence Table and runs a start-up program in a diskimage.

The RunTime looks to the command line for the name of the BOOT file to load. If no
boot file is specified, the RunTime looks in the current directory for a file called
BOOT.OBJ. If this file is not found, the RunTime starts, but displays an error message in-
dicating that a BOOT file was not found.

Refer to section 4.3 for an example of the general form of starting the RunTime with a
BOOT file.

The last statement in the boot program typically is a LOAD RUN < progname > , which
loads the first program to execute in a selected diskimage.

Refer to Section 2.4 of the NPL Programmer’s Guide for more information on the BOOT
file.

RUNTIME OPERATION Command Line (Start-up) Options

NPL Intel UNIX Supplement 4-9

4.5 Available Memory

Under UNIX, the amount of memory available to the application is not limited by the
amount of memory physically present on the host system (provided certain minimum
memory requirements are met). However, frequently exceeding the physical memory
available significantly degrades performance.

Refer to Section 8.4 for additional details of memory management by the RunTime under
UNIX.

4.6 Default Printer Control

Printer control is a function of the RunTime’s HELP processor and may be accessed
whenever the NPL HELP processor is active. Refer to Chapter 11 of the NPL Program-
mer’s Guide for details on the HELP processor. This section discusses the default Run-
Time printer control values. For more information on the use of printer control, refer to
Section 3.5.

4.6.1 Default Values

The tables below list the default values built into the RunTime program for UNIX. These
control codes should work sufficiently for most printers which support default Epson dot
matrix printer codes. The following codes may need to be changed depending on the type
of printer.

The codes in this table are hex codes, except for single ASCII characters preceded by an
equal, "= ", sign.

For example:

1B=A181B=2 is the equivalent of 1B41181B32

This technique is supported for on-line entry of control codes during execution of print
control. This avoids the need to look up the hex codes for ASCII control sequences.

Available Memory RUNTIME OPERATION

4-10 NPL Intel UNIX Supplement

Characters per inch option
10 1412
N/A
N/A
16 140F

Lines per inch options
 3 1B=A181B=2

4 1B=A121B=2
6 1B=AOC1B=2
8T 1B=A091B=2

Line Feed
OA

Form Feed
OC

4.7 Exiting from the RunTime Program

There are several methods available to either the programmer or the end-user for exiting
the RunTime (and, consequently, the application it is executing). In most cases, exiting
the RunTime returns the system to the point at which the RunTime was invoked. That is,
if the RunTime was started from a UNIX command processor, exiting returns the system
there. If the RunTime was started from a menu, exiting returns to the same menu. A dis-
cussion of the various exiting methods follows.

Refer to Section 6.8 for details on command default keyboard equivalences.

4.7.1 Exiting Under Program Control

The RunTime may be exited under program control by any one of the following events:

• Execution of the NPL "END" or "STOP" statement. With either of these state-
ments, a ":" is placed on the screen with the cursor immediately following. When
in the Non-Interpretive RunTime, pressing CANCEL or HELP and the KILL
RUNTIME option at that point terminates the RunTime. Refer to Chapter 11 of
the NPL Programmer’s Guide for a complete discussion of the NPL HELP proc-
essor.

RUNTIME OPERATION Exiting from the RunTime Program

NPL Intel UNIX Supplement 4-11

• By program logic which falls through the logical end of the program. In this
event, the RunTime automatically exits without further action required. This is
only true for the Non-Interpretive RunTime.

• If an application error condition is encountered, the Non-Interpretive RunTime is
exited.

• By execution of a $END statement. This statement causes the RunTime program
to end operation, returning control to UNIX.

HINT: This is the preferred method of exiting under program control.

4.7.2 Exiting using the HELP Key

The end-user may call for cancellation of program execution using the NPL HELP key.
Depression of the HELP key causes current program execution to be suspended, the
screen is saved and the HELP screen is displayed, with various options. The end-user
may, at this point, select the KILL RUNTIME option to terminate program execution. If
the LEAVE HELP option is selected, the screen is restored and program execution re-
sumes.

The HELP key is active only when the application program is polling for keyboard input
(i.e., executing a KEYIN, INPUT or LINPUT). The HELP key with the KILL RUN-
TIME option can be thought of as a limited 2200 RESET key. For full details on the
HELP key, refer to Chapter 11 of the NPL Programmer’s Guide.

4.7.3 Exiting using the Interrupt Key

UNIX provides its own methods for terminating program execution. The interrupt key
(Ctrl-C) termination method is one of these. Upon depression of the interrupt key, the
usual NPL HELP display is provided and program execution may be terminated or re-
sumed in the same methods as described for the HELP key.

NOTE: The interrupt key only takes effect when the application program issues a disk I/O
request (i.e., DATALOAD, DATASAVE, DATALOAD DC, etc.). If the interrupt
key is pressed when the application is waiting for keyboard input, it is treated as a
normal keystroke.

Refer to Chapter 6 for a description of the interrupt key sequence for specific Niakwa sup-
ported terminals.

Exiting from the RunTime Program RUNTIME OPERATION

4-12 NPL Intel UNIX Supplement

CHAPTER 5

DEVICE SUPPORT

5.1 Overview

This chapter discusses devices supported under the UNIX implementation of NPL. In-
cluded in this discussion are any special requirements or implications for the program-
ming of NPL code under the UNIX operating environment.

Section 5.2 discusses supported diskette devices.

Section 5.3 discusses diskimage files.

Section 5.4 discusses supported monitors/controllers.

Section 5.5 discusses printer devices.

Section 5.6 discusses mouse support.

DEVICE SUPPORT Overview

NPL Intel UNIX Supplement 5-1

Section 5.7 discusses the use of serial devices.

Section 5.8 discusses the support of a tape drive.

Section 5.9 discusses math co-processor support.

Section 5.10 discusses the default device equivalences.

NOTE: The screen and keyboard characteristics of all supported terminals not specific to
the operating system are discussed in Appendix D of the NPL Programmer’s Guide.
All terminals that are specific to the UNIX operating system are discussed in Chap-
ter 6 of this Supplement.

5.2 Diskette Devices

NPL under UNIX has the ability of reading and writing "raw" diskettes in a variety of for-
mats. The table table in Section 5.2.1 lists all supported formats.

NOTE: $FORMAT DISK is not supported in any format. Attempts to execute $FORMAT
DISK result in an I93 error. As a result, diskettes must be preformatted before use
with NPL under UNIX.

The 320K raw format is not supported under NPL for UNIX.

The 360K is a 5-1/4" raw format compatible with other NPL versions which support this
media type and is partially compatible with the Wang 2200/CS. Refer to Section 5.2.2 for
details.

The 720K raw format for 5-1/4" diskettes is compatible with other NPL versions which
support this media type. Refer to Section 5.2.2 for details.

The 1.2MB is a 5-1/4" raw format compatible with other NPL versions which support
this media type. Refer to Section 5.2.2 for details.

The 720K raw format for 3-1/2" diskettes is compatible with other NPL versions which
support this media type. Refer to Section 5.2.2 for details.

Diskette Devices DEVICE SUPPORT

5-2 NPL Intel UNIX Supplement

The 1.44MB and 2.88MB are 3-1/2" raw format diskettes and are compatible with other
NPL versions which support these media types. Refer to Section 5.2.2 for details.

NOTE: Refer to Appendix D for more information on "raw" device compatibility between
current NPL-supported operating environments.

5.2.1 Naming Conventions

The following table displays the naming conventions and revisions of the RunTime re-
quired for the diskette devices supported under the Release IV UNIX implementation of
NPL.

Media Size Type Format Naming Convention
5-1/4" media 360K /dev/fd048ds9

720K /dev/fd096ds9
1.2MB /dev/fd096ds15

3-1/2" media 720K /dev/fd0135ds9
1.44MB /dev/fd0135ds18
2.88MB /dev/fd0135ds36

Under UNIX, each diskette drive is accessed by special device names which indicates
both which drive to access and what type of media to expect in the drive (the device
name may also be dependent on the flavor of UNIX being used). The drives are desig-
nated drive "0" and drive "1". For example, the device name /dev/fd048ds9 refers to
drive "0" and /dev/fd148ds9 refers to drive "1".

NOTE: The designation of drive "0" is used in this manual for purposes of example.

UNIX Diskette Device Names
UNIX uses two types of special file name to access each type of diskette. The NPL Run-
Time Program requires that both types of special file name be properly established. Most
of these special file names are established by the UNIX installation procedure.

The remainder of this section provides background information on these special file
names.

The first type of special file is the "block" type special file. This is used primarily by
standard UNIX I/O routines.

DEVICE SUPPORT Diskette Devices

NPL Intel UNIX Supplement 5-3

The second type of special file is the "character" type. This is used for access on a charac-
ter by character basis by certain UNIX routines. In the UNIX documentation, this charac-
ter type of special file is sometimes referred to as a "raw" file. Access to devices using
this type of special file is sometimes referred to as "raw" access. The term "raw" in this
context is not to be confused with the term "raw" diskette as used in reference to NPL
diskettes. In UNIX documentation, the term "raw" means access to the character type de-
vice. In the NPL documentation, a "raw" diskette is one which contains an NPL catalog
and index as its primary file structure, rather than the native operating system file struc-
ture.

For each type of diskette, both a block and character special file name are set up.

The device names for the character special files are the same as for the corresponding
block special files, except for the addition of an "r" (for "raw") at the start of the file
name. For example, the special file names for a 5-1/4", 1.2MB diskette on drive 0 are:

/dev/fd096ds15 Block type file for a 1.2MB diskette.
/dev/rfd096ds15 Character type file for a 1.2MB diskette.

NOTE: These files may be set up with read only access for users other than the super-user.
If users other than the super-user are going to require the ability to write to raw
diskettes, the access rights to these files should be modified with the UNIX "chmod"
command. For example, for use with the 1.2MB drive:

1. Login as "root"

2. Enter:

chmod a+w /dev/rfd096ds15 /dev/fd096ds15

5.2.2 Supported Media

The following section discusses the various NPL supported media.

NOTE: The default device equivalence for NPL address D10 is /dev/fd096ds15.

5-1/4" Media
320K Media

320K raw diskettes are not supported under the Release IV version of NPL.

Diskette Devices DEVICE SUPPORT

5-4 NPL Intel UNIX Supplement

360K Media

The $DEVICE clause "/dev/fd048ds9" defines a raw diskette as 360K format. This for-
mat is defined as a 360K, 5-1/4" double-sided, double density diskette containing 40
tracks per side, 9 sectors per track, and 512 bytes per sector.

For example:

0010 $DEVICE(/D10)="/dev/fd048ds9" : REM 360K raw media on drive 0
0010 $DEVICE(/D10)="/dev/fd148ds9" : REM 360K raw media on drive 1

720K Media

The $DEVICE clause "/dev/fd096ds9" defines a raw diskette as 720K format. This for-
mat is defined as a 720K, 5-1/4" double-sided, quad density diskette containing 80 tracks
per side, 9 sectors per track and 512 bytes per sector.

For example:

0010 $DEVICE(/D10)="/dev/fd096ds9" :REM 720K raw media on drive 0
0010 $DEVICE(/D10)="/dev/fd196ds9" :REM 720K raw media on drive 1

NOTE: The 5-1/4" 720K diskette format is not supported by all UNIX platforms.

1.2MB Media

The $DEVICE clause "/dev/fd096ds15" defines a raw diskette as 1.2MB (1200K) format.
This format is defined as a 1.2MB, 5-14" double-sided, high density diskette containing
80 tracks per side, 15 sectors per track and 512 bytes per sector.

For example:

0010 $DEVICE(/D10)="/dev/fd096ds15" :REM 1.2MB raw media on drive 0
0010 $DEVICE(/D10)="/dev/fd196ds15" :REM 1.2MB raw media on drive 1

3-1/2" Media
720K Media

The $DEVICE clause "/dev/fd0135ds9" defines a raw diskette as 720K format. This for-
mat is defined as a 720K, 3-1/2", double-sided, double density diskette, containing 80
tracks per side, 9 sectors per track and 512 bytes per sector.

DEVICE SUPPORT Diskette Devices

NPL Intel UNIX Supplement 5-5

For example:

0010 $DEVICE(/D10)="/dev/fd0135ds9" :REM 720K raw media on drive 0
0010 $DEVICE(/D10)="/dev/fd1135ds9" :REM 720K raw media on drive 1

1.44MB Media

The $DEVICE clause "/dev/fd0135ds18" defines a raw diskette as 1.44MB (1440K) for-
mat. This format is defined as a 1.44MB, 3-1/2", double-sided, high density diskette, con-
taining 80 tracks per side, 18 sectors per track and 512 bytes per sector.

For example:

0010 $DEVICE(/D10)="/dev/fd0135ds18" :REM 1.44MB raw media on drive 0
0010 $DEVICE(/D10)="/dev/fd1135ds18" :REM 1.44MB raw media on drive 1

2.88MB Media

The $DEVICE clause "/dev/fd0135ds36" defines a raw diskette as 2.88MB (2880K) for-
mat. This format is defined as a 2.88MB, 3-1/2", double-sided, high density diskette, con-
taining 80 tracks per side, 36 sectors per track and 512 bytes per sector.

For example:

0010 $DEVICE(/D10)="/dev/fd0135ds36" :REM 2.88MB raw media on drive 0
0010 $DEVICE(/D10)="/dev/fd1135ds36" :REM 2.88MB raw media on drive 1

5.2.3 Determination of Media Type

The media mounted in the diskette drive must match the type specified by the $DEVICE
clause (an "automatic" determination of media types is not supported). Attempting to
read or write a diskette which has been designated as the wrong media type results in an
NPL error I93 - format error.

Programs which must access different media types may do so by trying to read sector
zero, using each of the formats in turn, with appropriate error coding for recovery.

Diskette Devices DEVICE SUPPORT

5-6 NPL Intel UNIX Supplement

For example:

0010 $DEVICE(/D10)="/dev/fd048ds9" :REM try 360K format
 : S=1440 :REM 360K media size
 :DATALOAD BAT/D10,(0)A$
 : ERROR $DEVICE(/D10)="/dev/fd096ds15" :REM 360K failed, try 1.2MB
 : S=4800 :REM 1.2MB media size
 : DATALOAD BAT/D10,(0)A$
 : ERROR $DEVICE(/D10)="/dev/fd096ds9" :REM 1.2MB failed, try 720K
 : S=2880 :REM 720K media size
 : DATALOAD BAT/D10,(0)A$
 : ERROR PRINT "Cannot read diskette"
 : END
0020 PRINT S
 : REM At this pint we can access raw media in /D10. Media
 : REM size is S (256-byte) sectors.

HINT: It is recommended that the same NPL address (i.e. /D10) be used to access any one drive
(e.g., drive 0), if access to different types is required. Attempting to define, for example,
/D10 as "/dev/fd048ds9" and /D20 as "/dev/fd096ds15" at the same time may result in
spurious errors on some systems.

5.2.4 "Raw" Diskettes

In the context of this manual, a "raw" diskette is one that does not contain a UNIX operat-
ing system file structure, but rather contains an NPL catalog and index as the primary file
structure. The NPL RunTime treats the entire diskette as a diskimage file, and accesses
sectors on the diskette directly, as opposed to accessing a diskimage file stored on the
diskette using the UNIX file system.

Although "diskimage" files on diskettes can be used under UNIX, it would be necessary
to mount each diskette as a UNIX file system before access to the diskimage file and to
dismount the diskette after access.

Although the 360K, 720K, 1.2MB, 1.44MB, and 2.88MB diskette formats use 512-byte
sectors, an NPL "sector" continues to refer to 256 bytes of information. All access to the
diskettes (such as DATALOAD BA) determines the appropriate 512-byte sector contain-
ing the required information. The RunTime then performs a read of the 512-byte sector,
modifies the appropriate 256-byte section and rewrites the full 512-byte sector. Conse-
quently, the difference between diskettes, once they have been initialized (using $FOR-
MAT DISK and SCRATCH DISK statements) is transparent to most applications,
provided the $DEVICE specification contains the appropriate media type clause.

DEVICE SUPPORT Diskette Devices

NPL Intel UNIX Supplement 5-7

When raw diskettes of any class are formatted, bytes 3 and 4 of sector 0 are set to indi-
cate the media size in 256 byte units (320K=1280 sectors, 360K=1440 sectors,
720K=2880 sectors, 1.2MB=4800 sectors, 1.44MB=5760 sectors, 2.88MB=11520 sec-
tors) which may be used (after subtracting 1 sector) as the END= parameter to a sub-
sequent SCRATCH DISK statement.

NOTE: A value of zero was placed in these bytes by previous UNIX implementations of the
RunTime.

$FORMAT DISK is not supported on all UNIX hardware platforms.

Performance
Since the minimum amount that may be read from or written to a diskette is one sector,
the access to the new types of media may be noticeably slower when writing single sec-
tors (this entails reading a 512-byte sector, modifying the appropriate part and then rewrit-
ing it.) Since rewriting incurs an overhead of a complete rotation period, single sector
writes can be expected to require an average of 1.5 rotational periods, compared to an av-
erage of .5 rotational periods for the 320K media (when supported by the operating sys-
tem). Multi-sector writes (COPY/MOVE/VERIFY) do not incur this performance
penalty, except possibly on the initial and final sectors of a multi-sector access. As a re-
sult, these operations (and reads of all types) perform at speeds that are approximately
equivalent to the 320K media.

NOTE: 320K raw format is not supported by NPL under UNIX. The above information, on
performance, is provided only as a reference for developers who use 320K raw ac-
cess on other platforms.

Media Defects
All types of raw diskettes used by NPL must be defect free. The $FORMAT DISK state-
ment will report an error if media defects are detected during the format procedure.

NOTE: The types of diskettes used for 360K media and 1.2MB (high density) diskettes are a
different type. These types of diskettes are not interchangeable in any way. This is
also true with the 720K, 1.44MB, and 2.88MB 3-1/2" diskettes in that the recom-
mended media for each are different types.

Drive/Media Compatibility
360K diskette drives are not capable of accessing 1.2MB media. 1.2MB diskette drives,
however, are capable of reading 360K diskettes, if the $DEVICE statement points to the
correct UNIX device name (e.g. /dev/fd048ds9).

Diskette Devices DEVICE SUPPORT

5-8 NPL Intel UNIX Supplement

NOTE Due to an inherent problem in 1.2MB drive technology, writing to 360K diskettes
with a 1.2MB drive may produce a diskette which cannot be read on a 360K diskette
drive.

The 3-1/2" 720K diskette drives are not capable of accessing 1.44MB media or 2.88MB
media nor the 1.44MB drives of accessing 2.88MB media. 1.44MB and 2.88MB diskette
drives, however, are capable of reading 720K diskettes, if the $DEVICE statement con-
tains the correct UNIX device name (e.g. /dev/fd0135ds9). Similarly, 2.88MB diskette
drives are capable of reading 1.44MB media if the $DEVICE statement contains the cor-
rect UNIX device name (e.g. /dev/fd0135ds18).

Data Integrity
A UNIX diskette cannot be read from or written to directly by NPL (unless the diskette
contains a UNIX filesystem and is mounted on the main file system, in which case it can
be accessed through the UNIX file system), and UNIX applications cannot read or write
NPL raw diskettes.

Developers should take precautions to ensure that application programs do not modify
diskettes unless they have been validated (e.g, locating an expected file by name).

WARNING--NPL does not attempt to prevent programs from modifying UNIX diskettes,
which could result in corrupting the data on the diskette. Similarly, it is possible that
UNIX applications could corrupt the NPL diskettes if direct access to the media is made.

Multi-User Access
Caution is recommended in shared access to "raw" diskettes. If two terminals are access-
ing diskettes without performing $OPEN statements, and multiple diskettes are being ac-
cessed, it is possible that UNIX buffering may result in data from a previous diskette
being returned to a READ operation. Of course, programs allowing shared access to a
diskette are likely to have problems in any environment.

$FORMAT DISK
The NPL statement $FORMAT DISK is not supported on all UNIX systems. As such, it
is necessary to preformat diskettes under UNIX before using them with NPL. The follow-
ing illustrates examples of formatting diskettes under UNIX.

format /dev/rfd048ds9 Formats media as 360K
format /dev/rfd096ds9 Formats media as 720K (5-1/4")
format /dev/rfd096ds15 Formats media as 1.2MB
format /dev/rfd0135ds9 Formats media as 720K (3-1/2")
format /dev/rfd0135ds18 Formats media as 1.44MB
format /dev/rfd0135ds36 Formats media as 2.88MB

DEVICE SUPPORT Diskette Devices

NPL Intel UNIX Supplement 5-9

HINT: If an application requires $FORMAT DISK be executed under program control, an alter-
native would be to replace the $FORMAT DISK commands with a $SHELL statement
that executes one of the above UNIX command lines.

5.2.5 Error Handling

UNIX always displays any I/O type errors on the system console. Many NPL programs,
including the NPL Utilities, are designed to capture (using ERROR statements) diskette
type errors and handle them programmatically. However, it is recommended that users be
advised to execute programs that access "raw" diskettes from the console only. This way
the spurious UNIX error messages only affect the terminal using the diskettes.

5.2.6 Programming Considerations

There are several issues in the handling of "raw" diskettes under UNIX. Please review
these carefully and make appropriate modifications to programs if required.

Mounting Diskettes
The UNIX operating system internally buffers data read from a diskette drive, and may
continue to rely on this buffered data even in the event that the diskette drive door has
been opened. The buffered data is not discarded until the device is logically closed and re-
opened. Although NPL automatically logically OPENs a file that has been CLOSED, it
cannot automatically perform a logical CLOSE on its own. Any NPL program using a de-
vice must logically CLOSE it whenever a new diskette is mounted. Programs should also
CLOSE devices when they are finished so other programs or terminals may successfully
access the respective drives.

To logically CLOSE a NPL device, either a $CLOSE statement or a $DEVICE statement
must be executed. For example, assume the NPL disk address for the diskette is D10, and
that D10 has been SELECTED as device #1 (SELECT #1/D10) in the internal NPL de-
vice equivalence table. Any of the following statements logically close the NPL device
D10 and the corresponding UNIX special file names:

$CLOSE
$DEVICE(/D10)=$DEVICE(/D10)
$DEVICE(#1)=$DEVICE(#1)

Diskette Devices DEVICE SUPPORT

5-10 NPL Intel UNIX Supplement

I93 Error if No Diskette in Drive
The NPL error code returned to programs that attempt to access a diskette that is not
mounted is an I93. This may cause some confusion for programs that expect an I93 error
when a diskette is in the drive, but is not formatted. The NPL General Backup, Copy, and
Restore Utilities are affected by this incompatibility.

NOTE: This incompatibility results from UNIX returning the same error code when a for-
mat error is encountered as when there is no diskette in the drive. There is no
method by which a NPL program can differentiate between these two conditions.

5.3 Diskimage Files

All features of diskimage files, as described in Section 7.3 of the NPL Programmer’s
Guide, are fully supported under UNIX. A diskimage file can have any valid UNIX file-
name.

HINT: Developers are advised to consider the file naming restrictions on all NPL-supported plat-
forms they wish their applications to run on when choosing names for diskimage files.

5.3.1 Naming Conventions

$DEVICE statements for diskimage files under UNIX should use the following form:

$DEVICE(/XXX)="[pathname/]diskimage"

where:

XXX Any valid NPL disk device address

pathname Any valid UNIX pathname (e.g., /usr/BASIC2C). If no pathname
is specified, the current working directory is used.

diskimage The name of the diskimage file.

HINT: It is recommended that the extension .BS2 be used for diskimage filenames to clearly dis-
tinguish diskimage files from other files stored in the UNIX file system.

NOTE: UNIX is case sensitive. Therefore, the upper and lower case of a $DEVICE state-
ment is respected for pathnames and filenames.

DEVICE SUPPORT Diskimage Files

NPL Intel UNIX Supplement 5-11

HINT: It is recommended that only uppercase pathnames and filenames be used to provide com-
patibility with other NPL platforms which are case-insensitive.

5.3.2 File Allocation Considerations

The following file allocation issues should also be considered under UNIX.

SCRATCH DISK
Under UNIX, SCRATCH DISK statements directed against a diskimage file write to all
sectors up to the specified end catalog area. Consequently, the SCRATCH DISK state-
ment takes several seconds to execute. This is necessary to ensure that UNIX actually ac-
cesses the physical space required for the diskimage file.

Non-Catalogued Diskimage Space
Use of non-catalogued diskimage space under UNIX may cause difficulties. Use of a
DATA SAVE statement beyond the end catalog of a given diskimage does not dynami-
cally expand the physical size of the diskimage file. Only the individual sector written to
is allocated to the file. Intervening space is not allocated until it is written to. Thus, it is
possible that subsequent attempts to write to sectors between the end catalog and the
physical end of file may fail if there is insufficient physical space to allocate on the disk
at that time. Any attempts to read sectors beyond the end catalog that have not been writ-
ten to results in the specified input variable being filled with HEX(00)s.

Programs relying on the use of non-catalogued disk space must be modified to write to
all sectors from the end catalog to the logical end of diskimage before attempting to use
non-catalogued disk space.

Altering Diskimage File Size
Under NPL, the physical size of diskimage files can be altered dynamically. One state-
ment that does this is the MOVE END statement, executed against a disk address speci-
fied by the operator.

When MOVE END is used to expand a diskimage file, all new sectors are written to (as
with SCRATCH DISK). However, when MOVE END is used to DECREASE the size of
a diskimage file, physical space is not de-allocated. Only the catalog end parameter inter-
nal to the diskimage is affected. To actually release the physical space for reuse by other
files requires a multiple step procedure:

1. MOVE END on old file to required size. This changes the catalog END, and does not
actually perform a file space de-allocation.

Diskimage Files DEVICE SUPPORT

5-12 NPL Intel UNIX Supplement

2. SCRATCH DISK on new platter address with new size.

3. COPY or MOVE from old platter address to new platter.

4. SCRATCH old platter with new size.

5. COPY new platter onto old platter.

6. DELETE new platter (using the UNIX "rm" command).

HINT: Steps 4, 5 and 6 may be replaced by the UNIX mv command (e.g., mv newfile oldfile),
which is much faster. This renames the new and deletes the old file.

NOTE: If disk space is not sufficient to make a second copy on-line, then steps 2 and 3 must
be replaced by a full disk backup procedure, and steps 5 and 6 must be replaced by
a full disk recovery.

5.3.3 Effect of Disk I/O on Task Interleave

All shared logic CPU’s must have some mechanism of sharing time between different
tasks operating on the system. Under UNIX, the time sharing method does not necessar-
ily provide an even distribution of CPU time among different terminals on the system (un-
like the Wang 2200 which provides a perfectly even distribution of CPU time among
active terminals). Under certain circumstances, when several terminals are performing
disk I/O, the time sharing between terminals may become highly skewed so that some ter-
minals perform very well while others perform poorly. The NPL RunTime incorporates a
time slice release option to help even out time sharing between all terminals.

The Timeslice Release Option
The NPL RunTime can be set to release the remaining time slice for a terminal following
the release of a diskimage file. Byte 14 of $OPTIONS controls this feature. If byte 14 of
$OPTIONS is set to HEX(00) (the default), no time slice release occurs. If byte 14 of
$OPTIONS is set to HEX(01), the remaining time slice is released whenever a diskimage
file lock is released.

For example:

10 DIM X$64 :REM ALWAYS USE A 64 BYTE VAR. WITH $OPTIONS
20 X$=$OPTIONS
30 STR(X$, 14, 1)=HEX(01)
40 $OPTIONS=X$

DEVICE SUPPORT Diskimage Files

NPL Intel UNIX Supplement 5-13

Puts the timeslice release option into effect. Refer to the NPL Statements Guide, $OP-
TIONS, for more details.

Release of Diskimage File Lock
As stated, if the timeslice release option is specified, the timeslice release occurs when-
ever a diskimage file lock is released. Diskimage files are released under two circum-
stances:

• If a $OPEN directed to that diskimage has been executed, the diskimage is re-
leased only after a $CLOSE directed to that diskimage or by activity which
causes the RunTime to logically close the diskimage (HELP or execution of
$SHELL).

• If no $OPEN has been issued, the diskimage is released following completion of
each disk I/O statement.

Performance Considerations
Although the timeslice release option improves the distribution of CPU time between ter-
minals, it decreases performance for disk intensive applications. The following guidelines
may help indicate what type of applications may benefit from the timeslice release option:

• Applications which perform intensive disk I/O operations and use
$OPEN/$CLOSE on multiple terminals with no keyboard input will benefit.

• Applications which perform intensive disk I/O, but do not use $OPEN/$CLOSE
experience the most significant decrease in performance. Here, the timeslice is re-
leased following every disk operation.

• Applications which are not disk intensive do not gain any benefit.

HINT: It is recommended that applications be tested in a multi-user environment before imple-
menting the timeslice release option. If performance on different terminals varies widely,
the timeslice release option can be implemented to see if any improvement occurs.

NOTE: Refer to Section 7.5.2 for details on the implementation of $BREAK on UNIX sys-
tems.

Diskimage Files DEVICE SUPPORT

5-14 NPL Intel UNIX Supplement

5.3.4 RAM Disks

A RAM disk is a device driver that provides a block interface to memory. A RAM disk
can be used like any other block device, including making it into a file system using the
mkfs command. Such a file system can be accessed by the application using traditional
disk I/O statements. The advantage is that response time for disk operations directed to
the RAM disk is much faster than for operations directed to a file system situated on the
hard disk. The disadvantage of a RAM disk is that all data stored there is lost whenever
the machine is turned off or when power is otherwise interrupted.

NOTE: RAM disks are implemented under SCO UNIX and Xenix, but may not be available
on all UNIX platforms. Refer to your system documentation for more information.

Creating a RAM Disk
The following steps will create a RAM disk under SCO UNIX V/386:

1. Create the device that the RAM disk will reside on, using the mknod command. For
example:

mknod /dev/ram1 b 31 145

creates a 64K permanent RAM disk (the size of the RAM disk can go up to 32MB).

2. Create a file system on the RAM disk, using mkfs command. For example:

mkfs /dev/ram1 64

creates a 64K file system.

3. Mount the selected device on a specified mount point, using the mount command. For
example:

mount /dev/ram1 /mnt

mounts the RAM disk on /mnt.

Refer to the UNIX system documentation for further configuration details.

Accessing a RAM Disk
Accessing a RAM disk from NPL is very easy. Typically the only statements that need to
be changed are the $DEVICE statements assigning the NPL disk address to the UNIX
file. For example:

$DEVICE(/D21)="/mnt/PLATTER1.BS2"

DEVICE SUPPORT Diskimage Files

NPL Intel UNIX Supplement 5-15

Some additional logic may be needed to copy the NPL programs or work files into the
RAM disk. This logic could be structured so that the first terminal to log in creates the
proper files in the RAM disk. Subsequent terminals would then detect the existence of
the files in the RAM disk and would skip the file creation step. The simplest technique in-
volves having all the files you intend to place in the RAM disk in one or more separate
diskimages on the hard disk and then copy the files to RAM disk during the start up rou-
tines.

NOTE: Should the RAM disk not be available, program operation could still continue using
the hard disk based files.

The program that creates the diskimage file in the RAM disk should check for errors dur-
ing file creation (insufficient space, for example) and remove any partial diskimage file
created.

Use of RAM Disks to Functionally Replace Global Partitions
One of the more common uses of the global partition is to store record-locking informa-
tion or other types of variable data that must be accessed by all terminals. For applica-
tions like this, RAM disks provide an excellent functional alternative to the global
partition.

The basic technique for converting these applications to NPL is to use a disk file to store
the common data that must be accessed by all terminals. This does require programming
modifications, but these changes are generally not extensive.

The major concern with this type of application has been performance. The additional
disk I/O required to read/write this common information has sometimes caused overall
performance of the application to degrade. Use of a RAM disk to store the file containing
the common information resolves all performance issues relating to this technique. Thus,
when the RAM disk is used, the disk I/O used to read/write this common information
now becomes memory transfer operations and performance is comparable to that of a
global subroutine.

HINT: Applications that are converted to this technique work well on NPL platforms where
RAM disks are not supported--they just will not work as fast.

Diskimage Files DEVICE SUPPORT

5-16 NPL Intel UNIX Supplement

5.3.5 UNIX umask and ulimit

All UNIX files have user access privileges assigned. The NPL RunTime program does
not set specific user access privileges to any files created during its operations. Instead,
these access privileges are determined by the umask setting of the individual user who
creates the file. Improper access privileges could result in difficulties in accessing
diskimage files. In addition, the UNIX operating system limits the largest sector location
in a file that can be accessed during a write to that file by the ulimit system variable.

Improper umask values could result in problems with the NPL RunTime security. Refer
to Appendix A for details.

umask
The value of umask is the system default. If there is a need to make files public, the start
up shell script should be changed to set umask to a suitable value. Refer to Section 2.6.2
for details on setting the umask value.

ulimit
The ulimit value under UNIX is a process specific value which indicates the largest sec-
tor location that can be written to in any file (files of any size can be read). For example,
the ulimit system variable might be set to only allow access of up to 16 MB of a file but
an application needs to access a full 32 MB of a larger file.

With the need to access files larger than 16 MB for extended diskimage files, the NPL
RunTime is required to set the ulimit to very large values. In addition, the original ulimit
is restored before running any processes created by Invoke (! command) or $SHELL op-
erations. This could produce problems if $SHELL statements are being used to work with
large diskimage files (e.g., restore, copy, move, etc.). In general, such operations should
only be carried out by procedures which have been granted super-user privileges and
which specifically set ulimit to a sufficiently larger value.

5.3.6 Other Issues

There are some additional factors to be aware of in a UNIX environment when working
with diskimage files.

• $DEVICE statements which reference directory paths or drive designations ex-
plicitly may need to be modified to include reference to the /usr (or other
mounted file system) directory. Refer to this Chapter and $DEVICE in the NPL
Statements Guide for details.

DEVICE SUPPORT Diskimage Files

NPL Intel UNIX Supplement 5-17

For example:

$DEVICE(/D11)="/usr/PROGS/ARPROGS.BS2"
$DEVICE(/D12)="/usr/DATA/ARMASTER.BS2"

• UNIX filenames are case sensitive. $DEVICE statements must be checked to en-
sure that the proper case is used.

• The use of diskimage files on diskettes is inconvenient under UNIX. UNIX re-
quires that a removable disk device be mounted as a file system each time a new
diskette is placed in the drive before normal disk access is permitted. Although
diskettes can be logically mounted as a file system from UNIX, this is awkward
from within an NPL program. This restriction does not apply for "raw" access to
removable devices, such as when accessing "raw" 720K diskettes.

• Byte 39 of $OPTIONS may be used to specify that no implicit $OPEN is to be
performed on DATA LOAD BA and DATA LOAD BM when the platter has not
been explicitly hogged by $OPEN. Refer to Section 8.2.2 and Section 7.2 for de-
tails.

• No file locking is performed on Read Only files. Refer to Section 7.2 for details.

5.4 Supported Console Monitors and Controllers

NPL for UNIX supports monochrome and color controllers and monitors for the console
terminal. Chapter 6 discusses the use of these controllers and monitors in detail.

5.4.1 File Naming Conventions

Under the UNIX implementation of NPL, the terminal type for an IBM-compatible PC
monitor on the console terminal is determined automatically by the NPL RunTime pro-
gram.

The monitor type for the console is stored in byte 3 of $MACHINE. The following are
valid monitor types.

Supported Console Monitors and Controllers DEVICE SUPPORT

5-18 NPL Intel UNIX Supplement

Monitor Type Value of byte 3 of $MACHINE
ASCII C
Monochrome M
Color C

The terminal type is stored in byte 9 of $MACHINE. The following are valid monitor
types:

Terminal Type Value of byte 9 of $MACHINE
HEX(00) Wang PC
HEX(01) Wang 2210a
HEX(02) Altos III
HEX(03) VT100/VT200, Bull HDS 3, NCR

4970
HEX(04) IBM PC (using /R)
HEX(05) Wyse 60,150,160
HEX(06) Wyse 50, Bull HDS 1
HEX(07) Wang 2x36DE/DW
HEX(08) Altos V
HEX(0B) Wang 370
HEX(0C) Spectrix SPX 701
HEX(0D) IBM 3151

The system console for an IBM AT (monochrome or color) is supported under NPL, but
requires that the terminal type for NPL be set up as "imon". Since the UNIX terminal
type for the console is "ansi", the BASIC2C_TERM variable should be set to "imon". To
do this, add the following statement to the .profile file:

if [$TERM=’ansi’]
then

BASIC2C_TERM=imon
export BASIC2C_TERM

fi

Refer to Section 6.4 for more information.

5.4.2 Using Emulation Products

Many emulation products allow the use of IBM compatible PCs as terminals for UNIX
systems.

DEVICE SUPPORT Supported Console Monitors and Controllers

NPL Intel UNIX Supplement 5-19

NOTE: Niakwa does not officially support the use of any emulation product. However,
Niakwa recommends the use of ANSI emulation modes (which supports local print-
ing in ANSI mode (imon)).

A $OPTIONS byte is available to provide better results with use with emulation prod-
ucts. The bytes are described below:

Byte 31 of $OPTIONS
This byte controls certain features for terminal emulators which do not provide 100% sup-
port of the terminal being emulated. Refer to the NPL Statements Guide, $OPTIONS, for
more information.

5.5 Printers

NPL under UNIX provides support for print output to parallel ports, serial ports, local
printers attached to supported terminals, or UNIX text files.

NPL permits the automatic translation of characters as they are sent to a printer (or
spooler) using a lookup table. This is performed using the Printer Translation Table op-
tion. For a full discussion of this facility, refer to Chapters 7 and 13 of the NPL Program-
mer’s Guide.

If no translation is performed, all characters sent by the NPL program are passed directly
to the specified print device with no modification. Thus, all printer control sequences are
the responsibility of the programmer.

5.5.1 On-Line Printing

Either parallel or serial system printers can be accessed under UNIX. Printing performed
to printers which do not have the hardware/software capabilities of setting auto line feed
attributes should be done on-line or local, so that output is properly formatted. In addi-
tion, should a program attempt to send control sequences to the print device, on-line or lo-
cal printing may also alleviate the problem of control code stripping that may occur
within the UNIX systems spooling facility.

Printers DEVICE SUPPORT

5-20 NPL Intel UNIX Supplement

Parallel Device Equivalences
Different UNIX platforms have specific device names to access device resources, espe-
cially the parallel printer port. The following device equivalences are used for parallel
printing under SCO System V UNIX, SCO Xenix, and Interactive UNIX:

$DEVICE(XXX)="/dev/lpxx"

where lpxx is defined as one of the following device names:
lp0 main parallel port
lp0i
lp1 parallel port on monochrome card
lp1i
lp2 alternate parallel port
lp2i

The "i" following each device will cause the printer device to send an "init" each time the
device is opened. This "init" will reinitialize the port canceling the current printer proc-
ess. For more details, refer to the operating system documentation.

The following device equivalence is used for parallel printing under Altos UNIX:

$DEVICE(XXX)="/dev/plp"

Serial Device Equivalences
The following device equivalence is used for serial printing under all NPL-supported In-
tel UNIX platforms:

$DEVICE(XXX)="/dev/ttyxx"

where ttyxx is the port number of the serial port to which the printer is attached.

NOTE: The device /dev/lp is the default for printer addresses /015 and /004. This may be
changed to an appropriate device name for the UNIX system being used. Alter-
nately, an existing printer device can be linked to the name /dev/lp (e.g. "ln /dev/lp0
/dev/lp", or "ln /dev/tty01 /dev/lp", etc.).

Line Feed (ALF) Handling
NPL automatically generates a line feed after a carriage return in all output directed to
printer devices. This line feed can be suppressed by the ALF option in the device equiva-
lence statement. For example:

$DEVICE(/215)="/dev/lp0 ALF=x"

where x is either Y (Yes) or N (No).

DEVICE SUPPORT Printers

NPL Intel UNIX Supplement 5-21

The designation of ALF=N suppresses the automatic line feeds for the selected 215
printer address. The designation of ALF=Y does not suppress the automatic line feeds for
the selected 215 printer address. If ALF is not specified, the default value of "Y" is used.

$OPEN/$CLOSE Considerations
$OPEN and $CLOSE should be used when directing output to on-line print devices. Re-
fer to Section 5.5.6 for more details.

Printer Not Ready
Printer not ready signals can be caused by one of two conditions:

• Print device is attached but not in ready mode (i.e., someone else is using it with
a valid $OPEN, or printer is deselected).

• Print device is not attached and has been selected erroneously.

If using a Parallel printer, the following occurs:

• The terminal hangs until the printer is ready. If this situation occurs, the condi-
tion must be corrected before the terminal can resume processing.

• If no device is attached the output and the terminal continue to hang. If this condi-
tion cannot be corrected, it is necessary to kill the task of the hung terminal. Re-
fer to Section 5.5.7 for details.

If using a Serial printer, the following occurs:

• The terminal hangs until the printer is ready. If this situation occurs, the condi-
tion must be corrected before the terminal can resume processing.

• If no device is attached, the output continues as if a printer was attached, how-
ever, all data is discarded.

5.5.2 Printing Using the UNIX Print Spooler

UNIX has a built in print spooling capability. Niakwa recommends using this capability
in multi-user environments which have both NPL and non-NPL applications running con-
currently to avoid intermingled printed output.

Printers DEVICE SUPPORT

5-22 NPL Intel UNIX Supplement

NOTE: Some flavors of UNIX provide support for local terminal printing through the use of
the UNIX print spooler. This provides an alternative to the NPL local printing op-
tions that may be considered. Refer to the UNIX documentation for more informa-
tion.

Device Equivalences
Print spooling on Intel UNIX platforms is handled by a print spooler program. The name
of the print spooler program and its available command line options vary between differ-
ent UNIX platforms.

The following device equivalence statements accesses spooled printing on an SCO Xenix
system:

$DEVICE(/XXX)="(lpr -s -ddest)"

 or

$DEVICE(/XXX)="(lpr -s)"

In the above examples, the -s silences the spooler from printing a "Request id" message
when a printer request is made. The "-ddest" specifies a particular destination for output,
either a printer name or printer class, which can be a parallel or serial printer. The second
example assumes that output is directed to the default system destination.

The following device equivalence statements accesses spooled printing on SCO System
V UNIX, Interactive UNIX, or Altos System V UNIX:

$DEVICE(/XXX)="(lp -s -ddest)"

or

$DEVICE(/XXX)="(lp -s)"

The -s and -d options function identically to those under SCO Xenix in the previous ex-
ample.

The following device equivalence statements also accesses spooled printing under Altos
System V UNIX:

$DEVICE(/XXX)="(lpr -px)"

or

$DEVICE(/XXX)="(lpr)"

In the first example, the -p option directs the output to a specific printer, where x is the
printer number assigned by the Altos pconfig program. The second example directs out-
put to the default system destination.

DEVICE SUPPORT Printers

NPL Intel UNIX Supplement 5-23

Line Feed (ALF) Handling
The NPL RunTime program automatically generates a line feed after a carriage return in
all output directed to printer devices. This line feed can be suppressed by the ALF option
in the device equivalence statement. For example:

$DEVICE(/215)="(lp -s) ALF=x"

where x is either Y (Yes) or N (No)

The designation of ALF=N suppresses the automatic line feeds for the selected 215
printer address. The designation of ALF=Y does not suppress the automatic line feeds for
the selected 215 printer address. If ALF is not specified, the default value of "Y" is used.

$OPEN/$CLOSE
A $OPEN statement always succeeds when directed to the UNIX print spooler.

Printer Not Ready
Any attempt to print to the UNIX print spooler succeeds providing the spooler has been
properly configured. A "printer not ready" condition should not occur.

Other Issues
The following issues should also be considered:

• Ordinarily, the use of the print spooling process works with most applications.
However, on some UNIX systems applications which use control code sequences
for printing, such as for use with graphics data, may find that spooling strips out
some of those control sequences. Therefore, programs of this type may have prob-
lems using the UNIX print spooler.

• A $CLOSE statement directed against a printer device defined as the print
spooler will halt the sending of the current file and release it to control of the de-
spooler for printing. In addition, any other action that closes the print file has this
same effect. This includes exiting from the NPL RunTime and pressing HELP.

5.5.3 Terminal Printers (Local Printing)

Many of the terminals supported by NPL under UNIX can support a serial or parallel
printer attached to the AUX port of the terminal. This is a particular advantage when us-
ing the terminal on a remote basis.

Printers DEVICE SUPPORT

5-24 NPL Intel UNIX Supplement

NOTE: Some flavors of UNIX provide support for local terminal printing through the use of
the UNIX print spooler. This provides an alternative to the NPL local printing op-
tions that may be considered. Refer to the UNIX documentation for more informa-
tion.

Device Equivalences
Terminal printers differ significantly from terminal printers on the Wang 2200 in that no
special NPL address is required.

The device equivalent for local printers is:

$DEVICE(xxx)="/dev/tty LCL=Y"

where xxx is a valid NPL printer address (/204 for example).

Refer to Section 6.2.5 in this Supplement for details on configuring local terminal print-
ers.

Line Feed (ALF) Handling
The NPL RunTime program automatically generates a line feed after a carriage return in
all output directed to printer devices. This line feed can be suppressed by the ALF option
in the device equivalence statement.

 For example:

$DEVICE(/215)="/dev/tty LCL=Y ALF=x"

where x is either Y (Yes) or N (No)

The designation of ALF=N suppresses the automatic line feeds for the selected 215
printer address. The designation of ALF=Y does not suppress the automatic line feeds for
the selected 215 printer address. If ALF is not specified, the default value of "Y" is used.

$OPEN/$CLOSE
Use of $OPEN/$CLOSE is optional when output is directed to a local printer, since only
the terminal that is attached to the printer may send output to it. $OPEN always succeeds
when directed to a local printer. Refer to Section 5.5.6 for more details on the use of the
$OPEN and $CLOSE statements.

Printer Not Ready
Printer not ready signals can be caused by one of two conditions:

• Printer is attached but not in ready mode.

DEVICE SUPPORT Printers

NPL Intel UNIX Supplement 5-25

• Print device is not attached and has been selected erroneously.

When using a local printer, the following occurs:

• The terminal hangs until the printer is ready. If this situation occurs, the condi-
tion must be corrected before the terminal can resume processing.

• If no device is attached the output and the terminal may hang, if this condition
cannot be corrected, it is then necessary to kill the task at the hung terminal. Re-
fer to Section 5.5.7 for details.

• If no device is attached the output may continue as if a printer was attached, how-
ever, all data is discarded.

The exact behavior depends on the type of terminal in use and may also depend on the
specific printer in use. Refer to the terminal and printer user’s manual for specific infor-
mation.

5.5.4 Text Files

Print output may be directed to standard text files by specifying the name of the file as a
device equivalence.

Device Equivalences
Print output can be directed to a text file by specifying the name of the file as a device
equivalence to any valid NPL printer address.

An example of a device equivalent for a text file is:

$DEVICE(xxx)="/usr/BASIC2C/test.dat"

where xxx is a valid NPL printer address.

If a file test.dat does not exist, UNIX automatically creates it (remember that UNIX is
case sensitive).

Printers DEVICE SUPPORT

5-26 NPL Intel UNIX Supplement

Line Feed (ALF) Handling
Output directed to ASCII text files do not have a carriage return inserted by the NPL Run-
Time program before each line feed. This makes the text file produced accessible to
UNIX utilities including the print spooler. This may be overridden by the ALF=N option
if output to the file contains control codes (HEX(0D)), (such as graphic data). If control
codes are needed, the NPL program must provide line feeds, (HEX(0A)), either explicitly
or by SELECT PRINT 0XX.

$OPEN/$CLOSE Considerations
$OPEN and $CLOSE should be used when directed to the text file. If a proper $OPEN is
not executed, the possibility of reports being intermingled when two or more users access
the file simultaneously may occur. Refer to Section 5.5.6 for more details on the use of
the $OPEN and $CLOSE statements.

Printer Not Ready
When printing to a text file, a printer not ready condition should not occur if the file is de-
fined properly in the $DEVICE statement. If the device is not properly defined, a P48 - Il-
legal Device Specification error is generated.

5.5.5 Line Feed Handling

UNIX expects printers to automatically perform a carriage return (HEX 0D) whenever a
line feed (HEX 0A) is encountered. NPL applications normally expect a printer to do a
line feed (HEX(0A) whenever a carriage return (HEX(0D) is encountered. NPL handles
this by replacing all carriage returns with either a CR/LF sequence (if printing to an on-
line device or local printer) or a LF (if printing to a spool file or another non-device).

The ALF (Auto Line Feed) Option
Special handling of carriage returns by the NPL RunTime program can be suppressed by
the operator at execution time from the NPL HELP processor (PRINTER CONTROL se-
lection, setting AUTO-LF OFF).

Alternatively, the Auto Line Feed option may be directly controlled by a NPL program.
This is accomplished by using a $DEVICE statement for printer type devices.

The form of the ALF option may be set to "Y" or "N". A "Y" indicates that the special
output options ARE used, while an "N" indicates that the special output options are not to
be used. For example:

$DEVICE(/215)="/dev/lp0 ALF=N"

DEVICE SUPPORT Printers

NPL Intel UNIX Supplement 5-27

suppresses special handling of carriage returns for the selected 215 printer address. If
ALF is not specified, the default of "N" is used.

5.5.6 $OPEN/$CLOSE Considerations

$OPEN and $CLOSE should be used when directed to the actual on-line print devices (re-
fer to the NPL Statements Guide for details on the use of the $OPEN and $CLOSE state-
ments). However, there are several points to consider.

• Printer hogging is only enforced by the NPL RunTime program (both the Inter-
pretive and Non-Interpretive). Printing from terminals running native UNIX ap-
plications while printing from the NPL RunTime program may result in output
from both programs printing simultaneously. For this reason, if other UNIX appli-
cations are being used on the system, it is a good idea to use the UNIX print
spooler, if possible.

• Printing to a printer without executing a $OPEN implicitly hogs the printer as
though a $OPEN statement was executed. This printer is released upon any of the
following:

- Executing a $CLOSE statement.

- Executing a LOAD RUN statement.

- Exiting from the NPL RunTime program.

- Invoking the NPL HELP processor.

5.5.7 Killing Output to a Non-Existent Device

UNIX does not provide a mechanism for program detection of a printer not ready status
when printing directly to UNIX print devices. Therefore, any attempt to print directly to a
UNIX print device which is not ready results in the terminal hanging until the printer is
ready (this includes printer ready checks).

If this situation occurs, it is necessary to correct the problem with the printer before the
terminal can resume processing. If the printer condition cannot be corrected, it will be
necessary to kill the task at the hung terminal.

Printers DEVICE SUPPORT

5-28 NPL Intel UNIX Supplement

To kill the task:

1. Login to another terminal as "root"

2. Enter:

ps - ef

This will list all processes currently in operation. The TTY column lists the con-
trolling terminal. The numbers shown under the PID and PPID columns are the
process ID and parent process ID for each unique task.

3. Enter:

kill PID

Where PID is the process ID number determined from the ps command.

4. If this fails, enter:

kill PPID

Where PPID is the parent process ID number determined from the ps command.

WARNING--Killing a process in this manner may have an adverse affect on the NPL ap-
plication if a critical update was being performed.

5.5.8 Printer Translation

NPL permits the automatic translation of characters (from the XLA=Y device clause) as
they are sent to a printer (or spool file) using a look up table. This is performed from the
NPL Printer Translation Table option. For a full discussion on printer translation and the
XLA=Y device clause, refer to Section 7.8.7 of the NPL Programmer’s Guide.

If no translation is performed, all characters sent by the NPL program are passed directly
to the specified print device with no modification. Thus, all printer control sequences are
still the responsibility of the programmer.

5.6 Mouse Support

A mouse device is not supported under the UNIX implementation of NPL.

DEVICE SUPPORT Mouse Support

NPL Intel UNIX Supplement 5-29

5.7 Serial Devices

The RunTime contains limited ability to read and write raw data from a serial port using
the C620 $GIO microcommand. The following section discusses the use of serial devices
under UNIX for NPL.

5.7.1 Naming Conventions

Serial ports under UNIX are accessed as a raw serial device through the device designa-
tion /dev/ttyxx in the $DEVICE statement, where xx is the logical port number.

NOTE: The port being accessed must not be enabled as a terminal port if it is to be used for
raw serial I/O operations.

For example:

$DEVICE(/01C)="/dev/tty05"

or

$DEVICE(/01C)="/dev/tty05 TMO=Y"

directs subsequent I/O operations directed to address /01C to the port tty05. The optional
designation TMO=Y instructs input operations directed to the serial port to return to pro-
gram control without waiting for an end-of-record indicator to be present. Refer to Sec-
tion 5.7.3 and Chapter 7 of the NPL Programmer’s Guide for more details on accessing
serial ports under NPL.

5.7.2 Sending Output to a Serial Port

NPL PRINT statements may be used to direct output to a serial port. In addition, the
$GIO output microcommands, both single character and multi-character, may be used.

NOTE: Output to a serial port is treated similarly to printer output: automatic line feed in-
sertion and character translation are in effect unless overridden by the appropriate
options of $DEVICE (ALF and XLA, respectively). Refer to Section 7.9 of the NPL
Programmer’s Guide for more details on accessing serial ports under NPL.

Serial Devices DEVICE SUPPORT

5-30 NPL Intel UNIX Supplement

5.7.3 Input from a Serial Port

NOTE: The following discussion refers to functionality when the TMO=Y option has been
specified in the $DEVICE statement, as explained above.

The UNIX version of NPL contains limited support for accepting input from a serial port.
This support is intended to provide a mechanism for using serial input devices where the
interface requirements are very simple and straightforward. Applications which require
the more sophisticated features of the Wang 2227 board or the Niakwa Scientific and
Communications package are not supported under NPL for UNIX.

The C620 $GIO micro-command accesses binary data in the buffer for the port specified
and returns as many bytes of data as are available or zero bytes, if no data is available.

For example:

10 DIM L$10,A$80 :REM GIO control, buffer
 : $DEVICE(/01C)="/dev/tty10 TMO=Y" :REM read from port 10

20 $GIO/01C(C620,L$)A$:REM look for data on port
 : L=VAL(STR(L$,9),2) :REM get # of bytes received
 : IF L=O THEN $BREAK :REM check no data available
 : IF L0 THEN GOSUB XXX :REM goto subroutine xxx
 : GOTO 20 :REM process data

In this example, the first L bytes of A$ contain the data returned from the port.

This method of accessing data as input on the serial port is very primitive and has several
restrictions that the programmer must consider:

• Communication parameters for the port must be established externally to NPL.
The UNIX command stty may be used to define the baud rate, number of data
bits, stop bits, and parity for serial ports.

• There is no error detection.

• There is no method for checking signals on-line (i.e., device not attached or not
ready).

• None of the $GIO micro-commands supported by the NPL 2227 emulation driver
are supported. Program modifications are required to support input from serial de-
vices on the UNIX version of NPL.

DEVICE SUPPORT Serial Devices

NPL Intel UNIX Supplement 5-31

• The input buffer for serial ports under UNIX is limited in size. If the buffer over-
flows, incoming characters are lost. However, under UNIX, XON/XOFF can be
enabled to ensure that the input does not overrun the input buffer. XON/XOFF is
user enabled by the UNIX stty command.

NOTE: The size of the character buffer is user configurable. The buffer size is defined by a
UNIX system parameter called NCLIST. Refer to your UNIX documentation for
more details on the UNIX parameter NCLIST. In addition, refer to the hardware
documentation of the serial board being used for further information on supported
communication parameters.

5.7.4 Asynchronous Serial Communications

When using the limited serial communication option of NPL under UNIX, the parameters
of the tty port (baud rate, I/O control flags, etc.) are normally set to the parameters ex-
pected by the application. This is usually accomplished with the stty command. For these
new parameters to be maintained, the UNIX tty ports must be kept open by a process.
This is not a problem for ports that have been enabled and are continually being polled
for login, but NPL communications require a disabled port. For an idle, disabled port, stty
sets the new parameters momentarily and the parameters then revert back to their default
states when the termination of the stty command closes the port.

To work around this problem, the parameters of both the tty port and a background proc-
ess to keep the port open must be established. When executed, the following script file,
"openport", will hold a port open indefinitely. This script file can be entered using any
text editor. It should be stored in /usr/bin and given execute privileges (chmod a+x
/usr/bin/openport).

@(#)openport
#

 while true ; do
 sleep 3600
 done

#
KEEPS A PORT OPEN BY PUTTING IT TO SLEEP FOR 1 HOUR
INTERVALS.

The following command line can be inserted into the user’s .profile or /etc/rc file to set
the parameters of a tty port and keep it open by executing the above shell script from
/usr/bin/openport, as shown below.

(stty 2400 ixon ixoff -ixany ; /usr/bin/openport) /dev/tty1a &

Serial Devices DEVICE SUPPORT

5-32 NPL Intel UNIX Supplement

NOTE: The above example is for setting the parameters for port tty1a and assumes the port
is disabled. If executed from the user’s .profile, the port will be closed when the user
logs off. When executed from the /etc/rc file, the port will remain open until the
process is killed or the system is shutdown.

5.8 The Tape Drive

NPL does not directly support access to a tape drive. However, all NPL diskimage files
(e.g, PLATTER1.BS2) may be backed up using the standard UNIX "tar" utility. The
$SHELL command can be used to access this method to perform a backup during pro-
gram operation.

For example:

 $SHELL "tar cvbf 126 /dev/rct filenames"

Where the filenames are the UNIX designations for the files or directories to be backed
up to tape (the device name (/dev/rct) and blocking factor (126) used for the tape drive
may vary from one system to the next).

5.9 Math Co-Processor Support

Use of the 80x87 math co-processor support is enabled by setting byte 16 of the $OP-
TIONS system variable. Valid values for the $OPTIONS byte include:

HEX(00) Do not use math co-processor even if available.
HEX(01) Use math co-processor for transcendentals if available.

Other values are reserved and should not be assigned to this byte.

Applications which use the math co-processor should set byte 16 to HEX(01) or they
may experience a decrease in performance, since the RunTime default is not to use the co-
processor.

DEVICE SUPPORT The Tape Drive

NPL Intel UNIX Supplement 5-33

For example:

 0010 DIM X$64
 : X$=$OPTIONS
 : STR(X$,16,1)=BIN(1)
 : $OPTIONS=X$

NOTE: The $MACHINE system variable indicates whether a math co-processor is avail-
able. Byte 10 of $MACHINE contains the following values:

HEX(00) No co-processor available.
HEX(01) 80x87-class co-processor available.

Developers making use of the math co-processor should be aware that there may be dif-
ferences in precision of results and range of functional domain to some functions. In par-
ticular, the 80x87-class co-processors are generally accurate with 48-bit precision and
have an exponent of 2 in the range +/- 16383. This does not normally present a problem,
except where results or arguments approach overflow or underflow values.

5.10 Default Device Equivalences

When the NPL RunTime program is started under UNIX, the Device Equivalence Table
contains the following default entries:

2200 Address UNIX Equivalent
/B10 or /D10 /dev/fd096ds15
/310 or /D11 PLATTER1.BS2 in the current directory
/D12 PLATTER2.BS2 in the current directory
/215 /dev/lp
/204 /dev/lp

"Current Directory" is the directory selected at the time the RunTime is started. No entry
is required for the keyboard or CRT screen. These are defaulted (/X01 and /X05, where
X= 0 or 2) by the RunTime.

Default Device Equivalences DEVICE SUPPORT

5-34 NPL Intel UNIX Supplement

CHAPTER 6

TERMINAL CHARACTERISTICS

6.1 Overview

This chapter discusses the terminals supported by NPL on approved UNIX systems. This
chapter also discusses the general operating system considerations regarding terminals
supported by NPL under UNIX.

Section 6.2 discusses operating system characteristics.

Section 6.3 discusses supported terminals.

Section 6.4 discusses the console terminal characteristics using a monochrome controller.

Section 6.5 discusses the console terminal characteristics using a color controller.

Section 6.6 discusses color support under NPL.

TERMINAL CHARACTERISTICS Overview

NPL Intel UNIX Supplement 6-1

Section 6.7 discusses graphics support with NPL under UNIX.

Section 6.8 discusses keyboard characteristics.

6.2 Operating System Characteristics

The following section discusses the characteristics of the UNIX operating system which
affect terminal support. Among the topics discussed are how the terminal type is deter-
mined by the RunTime and where the terminal files are to be found. The HALT key func-
tion, local printer support and terminal configuration requirements are also discussed.

6.2.1 Determination of Terminal Type

NPL under UNIX uses the system variable BASIC2C_TERM to determine the terminal
type. If BASIC2C_TERM is not defined, the UNIX TERM variable is used.

NOTE: The value for TERM is established at login time using the /etc/ttytype file.

BASIC2C_TERM should be used whenever the value of TERM does not correspond ex-
actly with the terminal type identification expected by NPL. Refer to Section 6.3 for a list
of supported terminals and the corresponding terminal types expected by NPL.

BASIC2C_TERM may be set and exported from the UNIX command line or from within
the user’s .profile file. The following example demonstrates setting BASIC2C_TERM
from within the .profile file (this is the recommended method):

Operating System Characteristics TERMINAL CHARACTERISTICS

6-2 NPL Intel UNIX Supplement

Set BASIC2C_TERM to Wyse 50 Terminal
export variable to the system
Redefine interrupt key to CONTROL/C
#
if [$TERM = wyse50]
then

BASIC2C_TERM=wy50
export BASIC2C_TERM
stty intr ’^C’

fi
#
Sets BASIC2C_TERM to VT200 Terminal
export variable to the system
Redefines interrupt key to CONTROL/C
Download VT200 font files
#
if [$TERM = vt200]
then

BASIC2C_TERM=vt200
export BASIC2C_TERM
STTY INTR ’^C’
cat /usr/BASIC2C/VTFONT.VT200
cat /usr/BASIC2C/VTKEYS.VT200

fi

NOTE: If BASIC2C_TERM is not defined for a given process, the UNIX TERM variable is
used.

The default interrupt key under most UNIX environments is generally the "DEL"
key. This may cause conflicts with some NPL RunTime applications, therefore the
above example redefines the interrupt key to CTRL-C.

The above lines that begin with a # are comment lines and are ignored by UNIX.

6.2.2 Location of Terminal Files

NPL searches for the screen translation table file (SCREEN.xxxxx) and keyboard transla-
tion table file (KEYBOARD.xxxxx) first in the current directory, then in the directory set
by the environment variable NIAKWA_RUNTIME, and finally in the default /usr/BA-
SIC2C directory.

Refer to Section 6.3 for a list of the SCREEN and KEYBOARD files associated with
each supported terminal. Refer to the NPL Statements Guide for details on using the
$KEYBOARD and $SCREEN system variables. Refer to Sections 13.14 and 13.15 of the
NPL Programmer’s Guide for details on the use of the NPL Utilities used to modify the
SCREEN and KEYBOARD tables and the FONT files.

TERMINAL CHARACTERISTICS Operating System Characteristics

NPL Intel UNIX Supplement 6-3

6.2.3 Downloading FONT and KEYS Files

Several of the supported terminals under UNIX have screen character sets which support
the use of "downloadable" fonts. In addition, the VT220 series and the Wyse 370 sup-
ports the use of a "downloadable" KEYS file. It is necessary to use the appropriate FONT
and KEYS files for terminals that support downloadable files.

NOTE: For the SCREEN.xxxxx and KEYBOARD.xxxx files to work correctly, the appro-
priate FONT and KEYS files must be downloaded.

The appropriate files can be downloaded to the terminal being used by use of the UNIX
"cat" command.

For example, to download the Wyse 60 font file, enter the following from the UNIX com-
mand prompt at a Wyse 60 terminal:

cat /usr/BASIC2C/WYFONT.WY60

Refer to Section 6.3 for a list of the FONT and KEYS files associated with each NPL-sup-
ported terminal.

NOTE: The Wyse 150 and 160 do not support application key mode like the Wyse 60. As
such, the file WYKEYS.ON must be downloaded on both the Wyse 150 and 160
prior to starting the RunTime. To return the keyboard back to its standard mode,
the file WYKEYS.OFF must be downloaded on both the Wyse 150 and 160 prior to
returning to the operating system. Refer to Appendix D of the NPL Programmer’s
Guide for more information.

6.2.4 HALT Key Functionality

Under UNIX, the "HALT" key is the native "intr" key (usually the DEL key). This can be
configured with the "stty intr" command. Niakwa recommends the use of the CONTROL-
C as the "intr" key. This key is implemented by placing the following command in each
user’s .profile file:

stty intr ’^C’

Refer to Section 2.3.2 for details on the .profile file.

Operating System Characteristics TERMINAL CHARACTERISTICS

6-4 NPL Intel UNIX Supplement

6.2.5 Local Printer Support

Local printers may be accessed under NPL by using a special device designation
"/dev/tty LCL=Y".

For example:

$DEVICE(/204)="/dev/tty LCL=Y"

directs all print output sent to the NPL print address /204 to the local printer port on the
terminal. Both serial and parallel local printers are supported. Refer to Appendix D of the
NPL Programmer’s Guide for specific features of each supported terminal.

NOTE: Local printers are accessed only by the terminal to which they are attached.

Support for local printing under ANSI terminals using "imon" is supported. The
use of the LCL=Y option on system consoles will be ignored.

6.2.6 Terminal Configuration Requirements

Under UNIX, supported terminals must be set for 8 data bits and XON/XOFF. There are
no special requirements for baud rate, stop bits or parity, but the terminal setup must
match the UNIX configuration for the serial port. Refer to Appendix D of the NPL Pro-
grammer’s Guide for the suggested configuration for each supported terminal.

NOTE: UNIX serial ports support communication rates up to 38400 baud. However, baud
rates higher than 9600 may have restricted cable length requirements.

HINT: If a terminal is experiencing intermittent flow control problems, it is recommended that
the "ixany" parameter be turned off. To turn off the "ixany" parameter, enter the follow-
ing from a UNIX prompt:

stty -ixany

For details on the stty parameters refer to the Commands Reference manual for your
UNIX operating system.

NOTE: Baud rate may be limited by the terminal which is in use. Refer to Appendix D of
the NPL Programmer’s Guide for details on maximum communication rates for
each supported terminal.

TERMINAL CHARACTERISTICS Operating System Characteristics

NPL Intel UNIX Supplement 6-5

6.3 Supported Terminals

The following section discusses the terminals supported under NPL for UNIX.

6.3.1 NPL Supported Terminals

The following table lists the terminals that NPL supports under UNIX. This table also
contains the "terminal kind" name which should be assigned to the BASIC2C_TERM
variable and the names of the auxiliary files supplied for each terminal. Refer to Appen-
dix D of the NPL Programmer’s Guide for a complete description of terminal charac-
teristics for all of the supported terminals.

Terminal
Name

"Terminal
kind"

Keyboard
File Name

Screen
File Name

Font File Name KEYS File
Name

Altos III altos3 KEYBOARD.altos SCREEN.altos3 N/A N/A
Altos V al5 KEYBOARD.al5 SCREEN.al5 VTFONT.al5 N/A
Bull HDS 1 wy50 KEYBOARD.wy50 SCREEN.wy50 N/A N/A
Bull HDS 3 vt200 or

vt220
KEYBOARD.vt200
or
KEYBOARD.vt220

SCREEN.vt200 or
SCREEN.vt220

VTFONT.vt200 VTKEYS.vt200

DEC VT100 vt100 KEYBOARD.vt100 SCREEN.vt100 N/A N/A
DEC VT200
Series

vt200 or
vt220

KEYBOARD.vt200
or
KEYBOARD.vt220

SCREEN.vt200 or
SCREEN.vt220

VTFONT.vt200 VTKEYS.vt200

IBM Console
 Monitor

imon KEYBOARD.imon SCREEN.imon N/A N/A

IBM 3151 i3151 KEYBOARD.i3151 SCREEN.i3151 N/A N/A
NCR 4970 vt200 or

vt220
KEYBOARD.vt200
or
KEYBOARD.vt220

SCREEN.vt200 or
SCREEN.vt220

VTFONT.vt200 VTKEYS.vt200

Spectrix SPX
701

vt100 KEYBOARD.vt100 SCREEN.vt100 N/A N/A

Wang 2110A w2110 KEYBOARD.w2110 SCREEN.w2110 N/A N/A

Wang 2236
DE/DW

w2236 KEYBOARD.w2236 SCREEN.w2236 N/A N/A

Wyse 50 wy50 KEYBOARD.wy50 SCREEN.wy50 N/A N/A

Supported Terminals TERMINAL CHARACTERISTICS

6-6 NPL Intel UNIX Supplement

Terminal
Name

"Terminal
kind"

Keyboard
File Name

Screen
File Name

Font File Name KEYS File
Name

Wyse 60,150,
160

wy60 KEYBOARD.wy60
KEYBOARD.wpc

SCREEN.wy60 WYFONT.wy60 N/A

Wyse 370 wy370 KEYBOARD.wy370 SCREEN.wy370 W370FONT.80
WY370FONT.132

WYKEYS.wy370

The Wyse 60, 150, and 160 support several different kinds of keyboards. Niakwa pro-
vides support for the ASCII and PC styles only. the file KEYBOARD.WY6 contains the
default keyboard translation for the ASCII style keyboard. KEYBOARD.WPC contains
the default translation for the PC style keyboard.

The PC style keyboard, KEYBOARD.WPC, if used on the Wyse 60, 150, or 160 termi-
nals, must be renamed to KEYBOARD.WY6 before entering the RunTime.

6.3.2 Supported Terminal Characteristics

This section lists in a tabular format the features of the various terminals and console
monitors supported by NPL on Intel UNIX platforms.

TERMINAL CHARACTERISTICS Supported Terminals

NPL Intel UNIX Supplement 6-7

Terminal Characteristics

6-7 of SuperDOS to be pasted here

Supported Terminals TERMINAL CHARACTERISTICS

6-8 NPL Intel UNIX Supplement

Terminal Features Notes
On terminals that support a single attribute, this attribute will be used for any NPL attrib-
ute or combination of attributes.

Bright, Blink, Reverse, and Underline attributes are supported in any combination. Cer-
tain restrictions may apply.

For terminals that support downloadable fonts, Niakwa provides a font file that provides
complete emulation of the standard NPL character set. These font files may be modified
by the developer. On terminals without downloadable fonts, the full NPL character set
cannot be emulated. Typically, pixel graphics (HEX(C0) through HEX(FF)) and special
characters may not be available.

The above terminal features chart is intended as an aid in determining the capabilities of
a particular terminal within the NPL environment.

NOTE: Limitations may exist that are unique from one terminal to the next. Developers
should refer to the appropriate terminal’s documentation for details on any restric-
tions that may apply.

Console Characteristics

Controller Monitor Mode Box
Type

Blink BrightReverse Underline Color Columns Fonts Alternate
Character
Set

Any Mono Char Char Yes Yes Yes* Yes No Only 80 No No
Any Color Char Char Yes Yes Yes* Yes** Yes Only 80 No No

Console Notes
* Reverse + any other attribute used jointly appears as reverse video On Altos System V
UNIX, SCO Xenix V, SCO System V UNIX, and Interactive UNIX.

** Underline is not supported on color consoles under XENIX/UNIX. On SCO UNIX
and AT&T UNIX the control sequence for "underline" is ignored on color consoles.
However, on Interactive UNIX, the "underline" control sequence generates a bright white
foreground on red background combination. This color combination cannot be changed
by the application.

TERMINAL CHARACTERISTICS Supported Terminals

NPL Intel UNIX Supplement 6-9

6.3.3 Wang 2x36 Terminal Support

UNIX supports the use of the Wang 2x36 terminals on Niakwa approved hardware as
supported by Digiboard. However, use of this terminal requires execution of a special pro-
gram to set up proper XON/XOFF codes. If this program is not executed, flow control
problems will occur and the terminal is not usable.

There are two methods that support the Wang 2x36 flow control under Intel UNIX based
systems: directly from the operating system or through add on hardware and drivers.
These options are discussed below.

Altos UNIX
Some older Altos UNIX based systems provided Wang 2x36 flow control through the op-
erating system. For these systems, refer to the NPL Release III Altos UNIX Addendum
or contact Niakwa’s technical support.

DigiBoard Support
Wang 2236 DE/DW terminals may be used in conjunction with DigiBoard’s DigiCHAN-
NEL C/X Multiterminal controller system, using the "2200flow" option in DigiBoard’s
Ditty driver. 2200flow must be enabled when configuring 2236 terminals for operation;
refer to the "Setting Terminal Options with Ditty" chapter in the DigiBoard Software In-
stallation and Operation Manual for detailed instructions.

All terminal features discussed in Appendix D of the NPL Programmer’s Guide are sup-
ported under UNIX with the following exceptions:

1. Terminal flow control settings should be set to: 19200 baud or lower, 8 bit transfer, 1
stop bit, and no parity.

2. The default stty value ^@ of the "swtch" and "susp" parameters must be remapped
since ^@ is the default value generated by FN 0 on a 2236 terminal. For example:

stty swtch ’^[’ susp ’^[’

3. The Wang 2236 HALT key is not supported with 2200flow, but is it mappable to an-
other key (e.g., CTRL-S).

Supported Terminals TERMINAL CHARACTERISTICS

6-10 NPL Intel UNIX Supplement

6.3.4 Use with Native Operating System and Functions

Although all the terminals listed in this chapter operate properly with NPL, some do not
fully support UNIX operating system functions and utilities, and are therefore not well
suited for use with native operating system features and utilities. Below is a summary of
the terminals which are well suited for native operating system use, and those that are not
well suited.

Terminals that are supported and well suited for use with the UNIX operating system
functions include:

IBM AT Console
Altos III
Altos V
DEC VT100
DEC VT200
Wyse 50
Wyse 60
Wyse 150
Wyse 160
Wyse 370

Terminals that are not supported or well suited for use with the UNIX operating system
functions and utilities include:

Wang 2x36 DE/DW
Wang 2110A

6.3.5 Common Default Keyboard Equivalences

The keys referenced in this section refer to a set of commonly used keys within NPL. De-
pending on the type of terminal being used, the keyboard may have differently defined
keys. The table below provides the default equivalences of these keys for the terminals
supported in this release. Refer to Appendix D of the NPL Programmer’s Guide for a
complete description of default keyboard equivalences for all terminals listed below.

TERMINAL CHARACTERISTICS Supported Terminals

NPL Intel UNIX Supplement 6-11

Supported Terminal Common Keys
EXECUTE CANCEL HELP

ALTOS III LINE FEED HOME HELP
ALTOS V LINE FEED HOME HELP
DEC VT100 LINEFEED ESC c ESC h
DEC VT200 SELECT FIND HELP
IBM CONSOLE MONITOR HOME END ESC,ESC
IBM 3151 HOME BACK TAB ESC,ESC
WANG 2110A EXECUTE CANCEL HELP
WANG 2x36 DE/DW RUN CANCEL SHIFT,RESET
WYSE 50 (ASCII Style KB) SEND DEL REPLACE
WYSE 60 (ASCII Style KB) SEND DEL REPLACE
WYSE 60 (PC Style KB) HOME END ESC,ESC
WYSE 150 (ASCII KB) SEND DEL REPLACE
WYSE 150 (PC Style KB) HOME END ESC,ESC
WYSE 160 (ASCII Style KB) SEND DEL REPLACE
WYSE 160 (PC Style KB) HOME END ESC,ESC
WYSE 370 (ASCII Style KB) SEND DEL HELP

6.4 Monochrome Console Characteristics

The following section discusses the console terminal characteristics using a monochrome
controller.

6.4.1 Graphics Availability

The -G (graphics) RunTime startup option is not supported under UNIX.

6.4.2 Screen Character Set

Downloadable Fonts
The console terminal does not support the use of downloadable fonts.

Alternate Character Set (Pixel Graphics)
Use of the alternate character set is not supported by the console terminal.

Monochrome Console Characteristics TERMINAL CHARACTERISTICS

6-12 NPL Intel UNIX Supplement

Non-English Character Sets
Use of non-English character sets through the $OPTIONS Font Designator is not sup-
ported on the console terminal.

Screen Translation
The default values for both screen and keyboard translation for the console terminal are
not built into the RunTime program. The file SCREEN.imon (and KEYBOARD.imon)
must be present, and these will be used by the RunTime instead of built in defaults.
Screen translation default values are the same as for an IBM PC.

6.4.3 Box Graphics Support

The console monitor does not support "true" box graphics under NPL. "Character" box
graphics are supported. To use "character" box graphics it is necessary to modify byte 1
of the NPL $BOXTABLE system variable. The default value of byte 1 is HEX(00) and
indicates the "character" boxes are disabled. A value of HEX(01) enables "character"
boxes.

Refer to the NPL Statements Guide for details on the use of the $BOXTABLE system
variable.

6.4.4 Attributes Support

Under UNIX, NPL screen attributes on the console monitor operate as documented in
Chapter 7 of the NPL Programmer’s Guide with the following exceptions:

• Inverse video does not work in conjunction with other video modes. When in-
verse video is combined with another video attribute, only the inverse video at-
tribute appears.

6.4.5 Cursor Appearance

The console monitor does not have the ability to display a "steady" cursor. A steady cur-
sor will appear the same as a blinking cursor.

6.4.6 Support for 132-Column Mode

The console terminal does not support 132-column mode.

TERMINAL CHARACTERISTICS Monochrome Console Characteristics

NPL Intel UNIX Supplement 6-13

6.4.7 Use With Native Operating System Functions and Utilities

The console terminal is supported (and well suited) for use with UNIX native operating
system functions and utilities.

6.5 Color Console Terminal Characteristics

The following sections discuss the console terminal characteristics for the Color Graphics
Controller.

6.5.1 Graphics Availability

The -G (graphics) RunTime startup option is not supported under UNIX.

6.5.2 Screen Character Set

Downloadable Fonts
The console terminal does not support the use of downloadable fonts.

Alternate Character Set (Pixel Graphics)
Use of the alternate character set is not supported by the console terminal.

Non-English Character Sets
Use of non-English character sets through the $OPTIONS Font Designator is not sup-
ported on the console terminal.

Screen Translation
The default values for both screen and keyboard translation for the console terminal are
not built into the RunTime program. The file SCREEN.imon (or KEYBOARD.imon)
must be present, and these will be used by the RunTime instead of built in defaults.
Screen translation default values are the same as for an IBM PC.

Color Console Terminal Characteristics TERMINAL CHARACTERISTICS

6-14 NPL Intel UNIX Supplement

6.5.3 Box Graphics Support

The console monitor does not support "true" box graphics under NPL. "Character" box
graphics are supported. To use "character" box graphics it is necessary to modify byte 1
of the NPL $BOXTABLE system variable. The default value of byte 1 is HEX(00) and
indicates the "character" boxes are disabled. A value of HEX(01) enables "character"
boxes.

Refer to the NPL Statements Guide for details on the use of the $BOXTABLE system
variable.

6.5.4 Attributes Support

Under UNIX, NPL screen attributes on the console monitor operate as documented in
Chapter 7 of the NPL Programmer’s Guide with the following exceptions:

• Inverse video does not work in conjunction with other video modes. When in-
verse video is combined with another video attribute, only the inverse video at-
tribute will appear.

• Underlines are not supported on the IBM color graphics monitor. Under SCO and
AT&T UNIX, the control sequence for "underline" is ignored on color consoles.
However, on Interactive UNIX, the "underline" control sequence is recognized
on color consoles and generates a bright white foreground on red background
combination. This color combination cannot be changed by the application.

6.5.5 Cursor Appearance

The console monitor does not have the ability to display a "steady" cursor. A steady cur-
sor will appear the same as a blinking cursor.

6.5.6 Support for 132-Column Mode

The console terminal does not support 132-column mode.

6.5.7 Use With Native Operating System Functions and Utilities

The console terminal is supported (and well suited) for use with UNIX native operating
system functions and utilities.

TERMINAL CHARACTERISTICS Color Console Terminal Characteristics

NPL Intel UNIX Supplement 6-15

6.6 Color Support under NPL

When color is used by the application, NPL sends ANSI standard color control sequences
to the console. Some versions of Intel UNIX do not provide ANSI compatible color sup-
port for the monitor. On these systems, color support will be erratic. Incorrect colors may
be displayed.

NOTE: Color support is provided on the Wyse 370 color terminal. Refer to Appendix D of
the NPL Programmer’s Guide for more information.

6.7 Graphics Support under NPL

The -G (graphics mode) option is not supported under the UNIX implementation of NPL.
True box graphics are only supported on the Wang 2236 terminal. Refer to Appendix D
for terminal specific information and Section 7.4.7 for NPL color support of the NPL Pro-
grammer’s Guide for details on

6.8 Keyboard Characteristics

The IBM AT console should be configured to use UNIX keyboard table "KEY-
BOARD.imon" and not MS-DOS keyboard tables.

Default equivalences for commonly used keys are:

HALT CTRL/C (configurable by the UNIX stty intr command)
EXECUTE HOME
CANCEL END
HELP ESC,ESC

Color Support under NPL TERMINAL CHARACTERISTICS

6-16 NPL Intel UNIX Supplement

The following editing keys are available:

Keypad arrows (NORTH, SOUTH, EAST, and WEST)

Right arrow Recalls the previous command entry. If a line number is en-
tered before pressing the right arrow key, that specific pro-
gram line will be recalled.

? Inserts a linefeed within a line of text.

? Deletes characters from the current cursor position to the
end of line.

INSERT Inserts a blank space within a line of text.

DELETE Deletes a character at the current cursor position.

PREV/PAGE Causes the screen display to shift to the previous screen (if
more than 23 lines of text exist) or cause cursor movement
to the first line of text.

NEXT/PAGE Causes the screen display to shift to the next screen (if more
than 23 lines of text exist) or cause cursor movement to the
last line of text.

CTRL-P Recalls the previous command from the "multi-command"
keyboard buffer. Refer to Chapter 5 of the Programmer’s
Guide for more information.

CTRL-N Recalls the next command from the "multi-command" key-
board buffer. Refer to Chapter 5 of the NPL Programmer’s
Guide for more information.

TERMINAL CHARACTERISTICS Keyboard Characteristics

NPL Intel UNIX Supplement 6-17

In Edit Mode, SF keys are assigned the following functions:

F5 Moves the cursor to end of line being edited.
F6 Moves the cursor down one line.
F7 Moves the cursor up one line.
F8 Moves the cursor to the beginning of line being edited.
F9 Erases all text from current position to end of line.
F10 Deletes one character at the current cursor position

(use DELETE under Interactive and AT&T UNIX).
SHIFT/CTRL F1 Inserts one space at the current cursor position.

(use INSERT under Interactive and AT&T UNIX).
SHIFT/CTRL F2 Moves the cursor 5 spaces to the right.

(use F12 under Interactive and AT&T UNIX).
SHIFT/CTRL F3 Move the cursor one space to the right.

(use EAST under Interactive and AT&T UNIX).
SHIFT/CTRL F4 Moves the cursor one space to the left.

(use WEST under Interactive and AT&T UNIX).
SHIFT/CTRL F5 Moves the cursor 5 spaces to the left.

(use ESC,r under Interactive and AT&T UNIX).
SHIFT/CTRL F6 Recalls the current line.

(use SHIFT/F4 under Interactive and AT&T UNIX).

6.8.1 Default Equivalence Table

When determining a key sequence in the default Keyboard Equivalences Table, the fol-
lowing terminology is used. When a "-" (dash) is used in a key sequence, it indicates that
the keys should be pressed simultaneously. When a "," (comma) is used in a key se-
quence, it indicates that the keys should be pressed in sequential order. A "/" is used to
separate different key sequences that are assigned to one NPL virtual key. For example,
CTRL-x indicates press and hold the CTRL key while pressing x; ESC, x indicates press
and release the ESC key, then press x, and; SHIFT-PREV / CTRL-P indicates that both
the SHIFT-PREV and the CTRL-P perform the same function.

Keyboard Characteristics TERMINAL CHARACTERISTICS

6-18 NPL Intel UNIX Supplement

UNIX Console Compatible Default Keyboard Equivalences Tale
NPL Code Key NPL Virtual Key Console Terminal Key
08 BACKSPACE BACKSPACE
0D RETURN ENTER
5F ? UNDERLINE
81 CLEAR ?
82 EXEC 7-HOME
84 CONTINUE(LOAD) ?
A1 LOAD CTRL-X
E5 SHIFT-ERASE CTRL-W
FF’A0’xx UNDERLINE(DEAD KEY) ?
’00 ... ’09 SF ’0 ... ’9 F1 ... F10

UNIX Function keys (F1-F10)
Use F1...F12 under Interactive
and AT&T UNIX.

’0A ... ’0F SF ’10 ...’15 SHIFT/CTRL F1 ... F6
UNIX Function keys (F37-F42)
Use ESC, (w,e,r,t) under
Interactive and AT&T UNIX.

’10 ... ’19 SHIFT SF ’0...’9 SHIFT F1 ... F10
UNIX Function keys (F13-F22)
Use SHIFT F1...F12 under
Interactive and AT&T UNIX.

’1A ... ’1F SHIFT SF’10...’15 CTRL F1 ...F6
UNIX Function keys (F25-F30)
Use ESC, SHIFT (W,E,R,T)
under Interactive and AT&T
UNIX.

’42 PREV-SCREEN 9-PG UP
’43 NEXT-SCREEN 3-PG DN
’45 SOUTH 2-SOUTH
’46 NORTH 8-NORTH
’48 ERASE CTRL-E
’49 DELETE ./DEL
’4A INSERT 0/INS
’4C EAST 6/EAST
’4D WEST 4/WEST

TERMINAL CHARACTERISTICS Keyboard Characteristics

NPL Intel UNIX Supplement 6-19

UNIX Console Compatible Default Keyboard Equivalences Tale
NPL Code Key NPL Virtual Key Console Terminal Key
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K
’52 SHIFT-PREV-SCREEN CTRL-P
’53 SHIFT-NEXT-SCREEN CTRL-N
’55 SHIFT-SOUTH ?
’56 SHIFT-NORTH ESC, NORTH ?
’59 SHIFT-DELETE (LINE DEL) ?
’5A SHIFT-INSERT (LINE INS) ?
’5C SHIFT-EAST (EAST-5) ?
’5D SHIFT-WEST (WEST-5) ?
’5F D TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT-TAB
’E1 HELP ESC, ESC
’F0 EDIT 1-END

A question mark (?) indicates that no key is assigned to the NPL code. The column "Con-
sole Key" represents default values under UNIX.

when a "-" (dash) is used in a key sequence it indicates that the keys should be pressed si-
multaneously. when a "," (comma) is used in a key sequence it indicates that the keys
should be pressed in sequential order.

Keyboard Characteristics TERMINAL CHARACTERISTICS

6-20 NPL Intel UNIX Supplement

CHAPTER 7

MULTI-USER CAPABILITIES

7.1 Overview

Multi-user capabilities are supported for NPL under UNIX. This chapter provides a sum-
mary of these capabilities.

Section 7.2 discusses device sharing and "hogging"

Section 7.3 discusses global partitions.

Section 7.4 discusses terminal identification.

Section 7.5 discusses intertask communications.

Section 7.6 discusses the user count.

Section 7.7 discusses network operation.

MULTI-USER CAPABILITIES Overview

NPL Intel UNIX Supplement 7-1

Section 7.8 discusses multi-screen products.

7.2 Device Sharing and "Hogging"

Device sharing and "hogging" is commonly performed by use of the NPL statements,
$OPEN and $CLOSE. In some cases, $GIO statements may also be used. The $OPEN
and $CLOSE statements, when directed to disk devices, are fully implemented and func-
tional in NPL for UNIX. This is also true when directed to PRINT class devices (refer to
Section 5.5 for the discussion on printer handling). $GIO statements which perform de-
vice "hogging" are not supported.

NOTE: Due to differences between NPL and the Wang 2200’s handling of $OPEN when
multiple devices are specified and one of the devices is "hogged" by another user, a
$OPTIONS byte has been implemented to apply either Wang logic or Niakwa logic
to the $OPEN operation. Refer to Section 8.2.2 of this Supplement for more informa-
tion on this option.

Refer to the NPL Statements Guide for more information on the exact syntax and use of
the $OPEN and $CLOSE statements.

7.2.1 Suppress Implicit $OPEN Logic

Byte 39 of $OPTIONS can be used to specify that no implicit $OPEN is to be performed
on DATA LOAD BA and DATA LOAD BM when the platter has not been explicitly
hogged by $OPEN.

Byte 39 of $OPTIONS may contain the following values:

HEX(00) (default) Indicates the implicit $OPENs are to occur as they have in
prior releases.

HEX(01) Indicates that implicit $OPENs are to be suppressed.

HINT: Niakwa highly recommends use of this feature. It should increase performance for appli-
cations that do not use explicit $OPENs. In particular, performance will be improved in
environments such as NFS where file lock calls have a heavy performance penalty.

Device Sharing and "Hogging" MULTI-USER CAPABILITIES

7-2 NPL Intel UNIX Supplement

7.2.2 Suppress $OPEN on Read Only Files

NPL automatically suppresses all file lock calls to files that are Read Only. Under UNIX,
Read Only is defined as no user having write ("w") privileges. File privileges can be ex-
amined using the ls -l command. File privileges can be modified using the chmod com-
mand. For example, to remove write privileges from a file, enter the following from a
UNIX prompt:

chmod a-w filename

For files that can be Read Only, such as program diskimages, this will improve perform-
ance, particularly on systems such as NFS where file lock calls have a heavy perform-
ance penalty.

7.3 Global Partitions

Global partitions are not supported by NPL. However, global variables are supported. Ap-
plications that depend upon the global partitions for record locking must be modified to
use a disk-based record-locking system.

HINT: Placing lock files in a RAM disk will substantially improve performance. Refer to Sec-
tion 5.3.4 for details.

NOTE: Applications which can handle a multiplexed 2200 environment will likely handle re-
cord locking without the global partition since in a multiplexed 2200 environment,
the global partition cannot be used for record locking.

7.4 Terminal Identification

Under UNIX, NPL has the ability to uniquely identify individual terminals through the
use of system variables #TERM, #PART, and #ID. This allows multi-user applications to
share information, while maintaining data integrity, by having control over individual ter-
minals.

MULTI-USER CAPABILITIES Global Partitions

NPL Intel UNIX Supplement 7-3

7.4.1 #TERM

Terminal identification (#TERM) is determined by finding the terminal device name in
the "ttys" file in the current directory. If the ttys is not found, the RunTime checks for this
file in the directory specified by the NIAKWA_RUNTIME environment variable and fi-
nally in the /usr/BASIC2C directory. If this file is not found at these locations, the Run-
Time tries to use the system default file /etc/ttys.

NOTE: On some UNIX operating systems, the /etc/ttys file does not exist. On these systems,
the /usr/BASIC2C/ttys file must be set up. The NPL RunTime program will not exe-
cute if it cannot determine the terminal number.

An example ttys file (/usr/BASIC2C/ttys.exp) is provided on the Terminal Support Files
Diskette contained in the NPL Development Package.

Example ttys Use
The following is an example of how this file is used.

Assume the system is configured as follows:

16console #TERM=1
06tty01 #TERM=2
T16tty02 #TERM=3
16tty03 #TERM=4
16tty04 #TERM=5
16tty05 #TERM=6
06lpT #TERM=7

Assuming tty01 and lp are both printers (both unusable as NPL terminals) and that tty03
is restricted from accessing NPL, the /usr/BASIC2C/ttys file would be set up as follows:

16console #TERM=1
16tty02 #TERM=2
T16tty04 #TERM=3
16tty05 #TERM=4

NOTE: The first blank or tab is treated as the start of a comment and #TERM=x comments
can be included in the ttys.

Terminal Identification MULTI-USER CAPABILITIES

7-4 NPL Intel UNIX Supplement

The terminal number can also be set explicitly by using the -T command line option to
rti/rtp. Refer to Section 2.4.11 in the NPL Programmer’s Guide for details and Section
8.3.1 and 8.3.2 in this Supplement for the use of the -T option for a background partition.

If the -T option is not set, and the device name is not found in the appropriate ttys file, the
NPL RunTime exits with the message "cannot determine terminal number".

7.4.2 #PART

#PART is maintained for compatibility with other systems on which it is used to indicate
the physical partition of memory that the RunTime process is running in.

Under UNIX, #PART for a foreground partition has the same value as #TERM. For back-
ground partitions, #PART has the value specified by the -B start up option. Refer to Sec-
tion 8.3 for further details on background partitions.

7.4.3 #ID

NPL supports a system variable (BASIC2C_ID) to establish #ID values for the RunTime.
This provides a method of unique terminal identification on UNIX networks.

NOTE: Niakwa currently does not officially support the use of UNIX network environ-
ments. NPL is expected to work well in a network environment, but Niakwa has not
evaluated any UNIX networks and has no plans to do so.

The BASIC2C_ID variable can be set by entering BASIC2C_ID=x (where x is a numeric
value between 1 and 255) at the UNIX command line or in a shell script. The following is
an example of how to set the BASIC2C_ID system variable in a user .profile file:

#Sets the BASIC2C_TERM for a Wyse 50 Terminal.
BASIC2C_TERM=wy50

#Sets the BASIC2C_ID for this terminal.
BASIC2C_ID=5

#Exports both BASIC2C_TERM and BASIC2C_ID
export BASIC2C_TERM BASIC2C_ID

#Sets the UNIX Interrupt key to Control/C
stty intr ’^C’

The above lines that begin with a # are comment lines and are ignored by UNIX.

MULTI-USER CAPABILITIES Terminal Identification

NPL Intel UNIX Supplement 7-5

7.5 Inter-task Communication

The following section discusses inter-task communication options for NPL under UNIX.

7.5.1 $PSTAT

NPL applications can use $PSTAT to pass information between partitions.

The $PSTAT statement is a special instruction that returns various status information for
the partition specified in the expression. The argument for the function must be specified
as a numeric expression equal to the partition number.

An alpha variable can be set to the contents of $PSTAT. This variable contains the fol-
lowing:

Byte Contents
1-8 User-defined area
9 Operating system type
10 RunTime revision number
11 Bank # - set to #PART in packed (##) format
12-13 Always contains SPACEK in packed (##.##) format
14 Programmability ("P" or " ")
15 Terminal number in packed (##) format
16 Partition status
17-24 Blank
25 ERR function value (numeric portion of the last error encountered (in hex))
26-28 Partition # assignments, respectively
29 Device-address

For example:

0010 Q$ = $PSTAT(#PART)
0010 B$(),STR(A$,1,30) = $PSTAT(#PART)

Inter-task Communication MULTI-USER CAPABILITIES

7-6 NPL Intel UNIX Supplement

Refer to the NPL Statements Guide, $PSTAT, for details on the exact syntax and use of
this statement. Refer to Section 8.2 for details on use of $PSTAT with background parti-
tions.

7.5.2 $BREAK

The $BREAK statement is used to relinquish CPU time to another task.

The delay caused by $BREAK is about 20 milliseconds times the number of "timeslices"
specified (the default = 1). Under the UNIX implementation of of NPL, all timeslices
specified are always released. The amount of time released is rounded to the nearest
whole second. This is a variance from the Wang 2200 implementation where each re-
leased timeslice may cause a delay varying from 0 (no other activity) to 20 milliseconds
times n (where n = the number of other partitions executing and using a full timeslice).

For this reason, $BREAK with large values should be avoided. For example, $BREAK
255 delays for 255 x 20 = 5100 milliseconds, or over 5 seconds.

Byte 14 of $OPTIONS may be used to cause an implicit $BREAK to be performed after
disk I/O. Refer to Section 8.2.2 for details.

Refer to the NPL Statements Guide for the exact syntax and use of the $BREAK state-
ment.

NOTE: The special case $BREAK! causes an exit from the RunTime Program.

UNIX Versus Xenix Timeslicing
On UNIX/386 systems, the timeslice algorithm differs from XENIX systems in that the
timeslice is much longer than on XENIX systems. This means that $BREAK cannot be
used to release small units of time as intended. The effects of this are sometimes subtle
since $BREAK is implicitly used by several NPL statements. In particular $BREAK is
used implicitly by:

• KEYIN Polling form.

• $DEMO

• $CLOSE Implicit $BREAK set by byte 14 of $OPTIONS.

MULTI-USER CAPABILITIES Inter-task Communication

NPL Intel UNIX Supplement 7-7

Since releasing the full UNIX timeslice for each $BREAK unit specified would signifi-
cantly slow down many applications, the UNIX implementation of NPL, by default, is-
sues one UNIX timeslice (one second) for each 50 $BREAK units, rounded to the nearest
integer (e.g., 25=1 second, 74=1 second, 75=two seconds, 100= 2 seconds, 125=3 sec-
onds, 150=3 seconds, 175=4 seconds, and 24 or less is rounded down to 0). Thus, in
cases where $BREAK is specified with less than 25 units, no time is released.

For applications that repeatedly loop through a $BREAK (either explicitly or implicitly
using one of the statements discussed above) with less than 25 units, this does not pro-
vide a good solution. Therefore, byte 36 of $OPTIONS may be used to indicate that the
number of $BREAK units released is to be accumulated and that a UNIX timeslice re-
lease should occur when the number of units accumulated is equal to or greater than the
binary value specified in byte 36 of $OPTIONS. The amount of UNIX timeslices re-
leased is equal to the amount accumulated divided by 50. For example, if byte 36 is set to
50, and a $BREAK 40 is done, no timeslices are released. If a $BREAK 165 is then
done, it releases 4 seconds (i.e., ((165+40)/50) and any remainder is thrown away (i.e.,
the accumulated total is reset to 0).

The following describes the possible values of byte 36 of $OPTIONS:

HEX(00) Default. No accumulation of $BREAK units will occur.

HEX(xx) Where xx is a value from HEX(00) to HEX(FF). $BREAK will execute a
timeslice release when the number of units accumulated is equal to or greater
than the binary value of xx.

For example, a value of 25 in byte 36 would indicate that the RunTime would accumu-
late $BREAK units and would perform a UNIX timeslice release after each 25 accumu-
lated $BREAK units. A value of 100 in byte 36 would indicate that the RunTime would
accumulate $BREAK units and would release two UNIX timeslices after each 100 accu-
mulated $BREAK units.

Inter-task Communication MULTI-USER CAPABILITIES

7-8 NPL Intel UNIX Supplement

HINT: This solution is not ideal, but it probably is the best that can be done given the inherent
limitation of UNIX. For applications where performance problems are noted, some trial
and error may be needed to find the best value to use in byte 36 of $OPTIONS. A value
of HEX(50) would be a good first try. Applications that rely on a polling KEYIN to input
data may require a higher value to provide smooth operator keyboard response, but this
will result in using more system resources when the operator is not active, thus slowing
down other tasks. If performance problems prove severe, programmers may want to con-
sider use of the non-polling KEYIN instead of the polling KEYIN.

NOTE: This feature is specific to the NPL 386 Runtime operating in a UNIX environment.
If used in an environment other than UNIX, byte 36 of $OPTIONS will be ignored.

7.5.3 DATE and TIME

The DATE and TIME functions operate normally with the following exception:

An attempt to execute a DATE= or TIME= statement by any user other than the super-
user results in an error X78. This is the same error that is generated if an incorrect pass-
word is used in specifying DATE= or TIME= on the Wang 2200.

NOTE: This X78 error occurs even if the password is properly specified.

Use of DATE or TIME functions on the right side of a LET statement are not affected.

7.5.4 System Messages

The broadcast message ($MSG) may be assigned and inspected from any terminal. Refer
to the NPL Statements Guide, $MSG, for details.

7.6 User Count

Under UNIX, each terminal using NPL counts as one user against the total user limit.
There are no charges against the user count for operating background partitions or for re-
invoking the RunTime from a $SHELL statement. Refer to Section 8.3 for details on
background partitions.

MULTI-USER CAPABILITIES User Count

NPL Intel UNIX Supplement 7-9

7.6.1 userfix Utility

The userfix utility contained on the UNIX Runtime diskettes, allows the user to reset the
user count in situations where the user count is greater than the actual number of NPL us-
ers on the system (typically this occurs when the RunTime is aborted improperly or the
UNIX "kill -9" command is used to kill a task.

NOTE: The userfix utility is available only for the UNIX (386) RunTime. It is not available
with the Xenix (286) RunTime. If the user count is greater than the actual number
of NPL users under Xenix, contact Niakwa for information on how to proceed.

To adjust the user count with this utility, follow the steps shown below:

1. Change directories to the directory where the NPL files are located (typically /usr/BA-
SIC2C).

2. Enter the following:

./userfix

The program version number and copyright notice are then displayed. The user count be-
fore and after the operation of the utility are also displayed with an "End of processing"
message. Once completed, the user count is reset to reflect the current number of users in
the RunTime.

NOTE: Users currently using NPL are not affected by the operation of this program.

7.7 Use on Networks

Although operation of NPL on UNIX networks has not been tested and is not officially
supported by Niakwa, the following guidelines may be useful for those developers who
wish to pursue this issue.

• The NPL RunTime security and user limit checks are always performed on the lo-
cal node. Therefore, each node must have its own NPL RunTime installed for the
proper number of users on that node.

• $PSTAT and $MSG are always local. That is, each node has its own value for
$PSTAT and $MSG.

Use on Networks MULTI-USER CAPABILITIES

7-10 NPL Intel UNIX Supplement

• It is the responsibility of the application to ensure that unique logical terminal
number identification is generated by use of the BASIC2C_ID system variable
described above.

• Files can be accessed across the network by proper specifications of the $DE-
VICE equivalence. Typically, this involves specification of nodename/path-
name/filename. The format for nodename/pathname should be identical to the
format required to access the file by any UNIX command (ls, for example).

• All auxiliary files, such as the screen and keyboard tables, the ttys file, the EN-
ABLED file, etc., are accessed locally. Therefore, copies of the files must be pre-
sent on each node where use of NPL is desired.

• File locking ($OPEN/$CLOSE) is accomplished from standard UNIX system
calls.

• Use byte 39 of $OPTIONS to specify that no implicit $OPEN is to be performed
with DATA LOAD BA and DATA LOAD BM statements when the platter has
not been explicitly hogged by $OPEN. This should increase performance signifi-
cantly in a UNIX networked environment. Refer to Sections 7.2 and 8.2.2 in this
Supplement for more information on this feature.

• Suppress all file lock calls to read only files by setting the file to Read Only. Un-
der UNIX, Read Only is defined as no user having write ("w") privileges. For
files that can be Read Only, such as program diskimages, this will improve per-
formance significantly in a UNIX networked environment. Refer to Section 7.2
and 8.2.2 or more information on this feature.

7.8 Multi-Screen Products and Issues

SCO System V/386 UNIX Multi-screen capability gives the user the ability to operate the
video display and keyboard as ten separate tasks (tty01 .. tty10). NPL was tested running
under these separate tasks. The #TERM value within each task is individually unique
from one task to the next.

MULTI-USER CAPABILITIES Multi-Screen Products and Issues

NPL Intel UNIX Supplement 7-11

NOTE: When SCO is configured to run with Multiscreen capability, it causes a conflict with
NPL. SCO System V/386 assigns ALT F1-F10 as the means to switch from one task
to another. When using a keyboard with twelve function keys, function keys F11
and F12 return the same value as function keys ALT F1 and ALT F2, causing the
console to switch tasks. Therefore, these keys cannot be used by NPL when Multis-
creen capability is enabled.

Multi-Screen Products and Issues MULTI-USER CAPABILITIES

7-12 NPL Intel UNIX Supplement

CHAPTER 8

PLATFORM-SPECIFIC
LANGUAGE FEATURES

8.1 Overview

There are a series of NPL statements which are specific to the type of hardware/operating
environment in which they are executed. This chapter discusses the language features spe-
cific to NPL under UNIX.

Section 8.2 discusses the environment-specific statements

Section 8.3 discusses background partition support.

Section 8.4 discusses memory management.

PLATFORM-SPECIFIC LANGUAGE FEATURES Overview

NPL Intel UNIX Supplement 8-1

8.2 UNIX-Specific Statements

This section discusses the NPL language features that are specific to the UNIX operating
system

8.2.1 $MACHINE

The $MACHINE system variable contains information about the hardware environment
in which the RunTime is executing. In the UNIX implementation, the following platform-
specific values are set:

Byte Description
Byte 1 RunTime Version: A = UNIX (386) version X = Xenix (286) version.
Byte 2 Hardware Manufacture Code:

HEX(00) (for IBM)
HEX(02) (for Altos)

Byte 3 Monitor Type:
Blank = ASCII terminal
M = Monochrome
C = Color (dependent on type of console monitor)

Byte 4 Graphics Enabled -
 "G" = graphics enabled (if using a Wang 2236 terminal)
 " " (blank) = "true" box graphics are not available

Byte 5 Hardware Model Code. The model code varies from one manufacturer
to another.

Byte 6 Number of users active at boot time.
Byte 8 Display width in binary (80 or 132 column).

UNIX-Specific Statements PLATFORM-SPECIFIC LANGUAGE FEATURES

8-2 NPL Intel UNIX Supplement

Byte Description
Byte 9 Current Terminal Type:

HEX(00) = Wang PC
HEX(01) = Wang 2110A
 HEX(02) = Altos III
HEX(03) = VT100/VT200
HEX(04) = IBM PC
HEX(05) = Wyse 60,150,160
HEX(06) = Wyse 50
HEX(07) = Wang 2236
HEX(08) = Altos V
HEX(09) = IBM AT
HEX(0B) = Wyse 370

Byte 10 Math co-processor present. A HEX(00) indicates that no co-processor is
present. A HEX(01) indicates that a co-processor is present and may be
used for some math operations by setting byte 16 of $OPTIONS to a
value of HEX(01).

Byte 12 Number of colors available. Refer to Chapter 6 for details on color
support for NPL under UNIX.

Byte 13 Maximum number of authorized users, displayed in binary.
Byte 18 Foreground or Background Task

HEX(00) = Foreground
HEX(01) = Background

Byte 21 Contains the maximum number of entries (in binary) allocated to the
handle table (in K) during a RunTime session.

Byte 25, 26 Extended field equivalent to $MACHINE byte 6 (number of active
users in the RunTime before this task booted). For systems with 256 or
more users, these bytes must be used to get an accurate user count.

Byte 27, 28 Extended field equivalent to $MACHINE byte 13 (maximum number of
authorized users). Fore systems with 256 or more users, these bytes
must be used to determine the maximum user count.

NOTE: $MACHINE is a 64 byte variable. The above bytes are specific to the UNIX operat-
ing environment. for a complete description of all bytes within the $MACHINE sys-
tem variable, refer to the NPL Statements Guide, $MACHINE.

PLATFORM-SPECIFIC LANGUAGE FEATURES UNIX-Specific Statements

NPL Intel UNIX Supplement 8-3

8.2.2 $OPTIONS

The NPL RunTime allows for the inspection or modification of the $OPTIONS system
variable, which consists of a variety of options. Bytes which have specific meanings un-
der the UNIX version of NPL include:

Byte Description
Byte 7 Keyboard translation complex key lead value. When this value is

received by the keyboard handlers from the native operating system, a
complex key sequence is assumed to follow.
HEX(20 = Blank

Byte 8 Defines terminal functionality type
Byte 9 Trailing code to finish the complex key sequence. HEX(00) = No

trailing code
Byte 10 Alternate keyboard translation complex key lead value. When this

alternate value is received by the keyboard handlers from the native
operating system, a complex key sequence is assumed to follow.
HEX(00) = No alternate code follows

Byte 11 Trailing code to finish the complex key sequence. HEX(00) = No
trailing code

Byte 15 Font designator for non-English character sets. Refer to the appropriate
sections in Appendix D of the NPL Programmer’s Guide for specific
details on each terminal type.

Byte 16 Switch for using a math co-processor. A value of HEX(00), the default,
indicates that the math co-processor should not be used. A value of
HEX(01) indicates that the math co-processor should be used.

Byte 21 Controls display of "bright" attribute on terminals where "normal" is
actually "dim". Refer to Chapter 6 for information on specific
controller/monitors where this feature is supported. A value of HEX(00)
indicates that "bright" is displayed as "bright" and "normal" is displayed
as "dim". A value of HEX(01) indicates that "bright" is displayed as
"dim" and "normal" is displayed as "bright".

Byte 22 Provides power-on default background/foreground color selection for
supported color terminals. Refer to Chapter 6 for details. HEX(00) is the
default - no color.

Byte 23 Provides power-on default perimeter/underline color selection for
supported color terminals. Refer to Chapter 6 for details. HEX(00) is the
default - no color.

UNIX-Specific Statements PLATFORM-SPECIFIC LANGUAGE FEATURES

8-4 NPL Intel UNIX Supplement

Byte Description
Byte 31 Controls certain features for terminal emulators which do not provide

100% support of the terminal being emulated. This feature is provided
strictly as a convenience for the users who must use emulation products.
These emulation products are not supported for use with NPL. Each
defined bit can be used to suppress an NPL feature for the terminal in
use. Defined bits include:
HEX(00) Default - No features supplied.
HEX(01) The HELP display highlights only the current field.
HEX(02) The terminal has no local printer capability.
HEX(04) 132 column mode is not supported.

Byte 36 Indicates that the number of $BREAK units released is to be
accumulated and that a UNIX timeslice release should occur when the
number of units accumulated is equal to or greater than the binary value
specified in this byte.
HEX(00) Default - no UNIX timeslice is released

Byte 37 Specifies if the characters input as response to LINPUT and INPUT
statements are echoed by NPL. If set to HEX(01) and the UNIX echo
parameter is set OFF before entering the RunTime, no characters are
echoed to the screen when keys are pressed in response to the LINPUT
or INPUT statements. IF echo is on before entering the RunTime, then
the standard LINPUT or INPUT is used despite the value of this byte.
When this byte is set to any value other than HEX(01), the standard
LINPUT or INPUT is used despite the status of the UNIX echo
parameter. No other NPL statements are modified. The operation of
KEYIN is not affected by this byte. HEX(00) - No suppression takes
place.
HEX(00) Default - Standard input.
HEX(01) No characters echoed.
By using the status command on the echo parameter, the developer is
able to avoid complex logic in determining whether to set byte 37 of
$OPTIONS on sites where some terminals are local and should echo
characters normally while others are operating remotely and the echoing
should be suppressed. The normal setting for the echo parameter is ON
in UNIX environments.

PLATFORM-SPECIFIC LANGUAGE FEATURES UNIX-Specific Statements

NPL Intel UNIX Supplement 8-5

Byte Description
Byte 39 Used to specify that no implicit $OPEN is to be performed on DATA

LOAD BA and DATA LOAD BM when the platter has not been
explicitly hogged by any $OPEN.
HEX(00) Default. Implicit $OPENs are to occur as they

have in prior releases.
HEX(01) Implicit $OPENs are suppressed.

Byte 46 Allows customization of the HELP processor’s use of keys:
HEX(01) - 0 Return = TAB/EAST
HEX(01) - 1 Return = EXEC

NOTE: $OPTIONS is a 64 byte variable and must be treated as such or unpredictable re-
sults may occur. Refer to the NPL Statements Guide, $OPTIONS, for details on the
exact syntax and use of this statement, as well as the contents of the remaining bytes
of the variable.

8.2.3 $PSTAT

Refer to the NPL Statements Guide, $PSTAT, for details on the exact syntax and use of
this statement.

8.2.4 $SHELL

All NPL tasks have $SHELL (INVOKE) capabilities. This allows a temporary exit from
the NPL environment to allow for interfacing with UNIX functions and commands.

When a $SHELL operation is executed, a new UNIX shell process is started and control
is transferred to it. The shell used is always the standard shell (/bin/sh) despite the value
of the SHELL system variable.

UNIX-Specific Statements PLATFORM-SPECIFIC LANGUAGE FEATURES

8-6 NPL Intel UNIX Supplement

Because the invoke operation runs as a child process to the process executing the NPL
RunTime, any changes made to the process’ environment, such as changing the current
directory or the value of system variables, do not affect the environment of the NPL Run-
Time itself. For example, if the NPL RunTime was invoked from the /usr/BASIC2C di-
rectory, and the following commands were entered:

!cd /usr/ARPROGS; pwd
!pwd

the first "pwd" (print working directory) command would print "/usr/ARPROGS", and
the second one would print "/usr/BASIC2C". This occurs because each process under
UNIX has a unique "environment" (set of system variables), which is copied from its par-
ent process when the new process is started. If the new process changes its system vari-
ables, those of the parent process are not affected.

NOTE: The effect of changing process information from within $SHELL may vary between
different NPL-supported platforms. For example, under MS-DOS, changing the cur-
rent directory with $SHELL changes the current directory within NPL. Program-
mers developing NPL applications for multiple platforms should take this into
account when using $SHELL.

8.3 Background Partition Support

The background partition capability of NPL is supported under UNIX. This makes it pos-
sible to run multiple occurrences of the NPL RunTime program as separate UNIX proc-
esses, all attached to the same terminal. This section discusses the implementation and
use of NPL background partitions under UNIX.

8.3.1 Configuration Requirements

The following details the use of background partitions under UNIX.

• The NPL RunTime may be directed to run as a background task by specifying
the -B option on the rti (or rtp) command line. The background task may be
started in the user’s .profile file, from any UNIX command line, or from within a
currently running NPL RunTime by using $SHELL. The -B option informs the
RunTime that it is to operate in a background partition and what partition number
it is assigned.

PLATFORM-SPECIFIC LANGUAGE FEATURES Background Partition Support

NPL Intel UNIX Supplement 8-7

The following example starts the Interpretive RunTime program as a back-
ground partition with a #PART value of 25 and instructs it to run the boot pro-
gram /usr/BASIC2C/MYBOOT.OBJ:

rti -B=25 /usr/BASIC2C/MYBOOT

This example illustrates starting a background RunTime partition from the
$SHELL command:

$SHELL "rti -B=25 MYBOOT"

NOTE: The NPL RunTime does not check for duplicate #PART values. It is the responsibil-
ity of the application to ensure the #PART values specified for any background task
are unique.

• The -T option may be used to associate the background partition with a specific
port. Otherwise, the background partition is associated with the port from which
it is started. The #TERM value is the same for all partitions, background and fore-
ground, associated with the same port.

NOTE: Background tasks can be started from either foreground or background and do not
have to be associated with a specific port if the -T option is used (refer to Section
7.4.1 for more information).

• Multiple background partitions may be assigned to the same port.

8.3.2 Operation of the Background Partition

The following should be considered when using the background partition.

• Write attempts to the screen by the application when running in a background
partition are stored in an internal buffer. When the partition is switched to fore-
ground, the buffered screen contents are displayed.

• Values for byte 16 of $PSTAT (terminal status byte) are maintained as follows:

- "A" for partitions in foreground.

- "D" for partitions in background, which are not waiting for a terminal to be at-
tached.

Background Partition Support PLATFORM-SPECIFIC LANGUAGE FEATURES

8-8 NPL Intel UNIX Supplement

- "W" for background partitions, which are waiting for a terminal to be at-
tached. This state is caused by execution of a non-polling keyboard input re-
quest by the background partition.

• #PART is equal to the value assigned with the -B option. Refer above for details.

• #TERM is generated based on the /usr/BASIC2C/ttys file. #TERM is identical
for all partitions initiated from a given terminal, whether foreground or back-
ground. The -T option may be used to assign a specific #TERM value. Refer to
Section 7.4.1 for more information.

• Byte 15 of $PSTAT (terminal number) is handled like #TERM described above.

• $RELEASE TERMINAL is supported with restrictions as noted in Section 8.3.3
below.

• $IF ON directed to addresses 005 or 001 returns a status of "BUSY" if a terminal
is not attached to the partition or a status of "READY" if a terminal is attached to
the partition. This is consistent with operation on the Wang 2200.

• Terminal type is determined by the terminal type of the foreground partition.

8.3.3 Restrictions

The following restriction apply the background tasks:

• Background partitions cannot be assigned to terminal number zero. Each back-
ground partition must be associated with a specific terminal and may be accessed
only from that terminal. If the -t option is used to assign a specific #TERM value,
then the background partition can only be accessed from the terminal specified.

• $RELEASE PART performs no operation. On the Wang 2200, $RELEASE
PART releases the current partition to terminal number zero, so it may be ac-
cessed by another terminal. Since in NPL background partitions must be associ-
ated with a specific terminal, this statement is meaningless.

• Printing to local printers from a background partition is not supported. Attempt-
ing to access the local printer results in a P48-Illegal Device Specification error.
Printing to system printers or ASCII text files from the background partition is
fully supported.

PLATFORM-SPECIFIC LANGUAGE FEATURES Background Partition Support

NPL Intel UNIX Supplement 8-9

• Limitations for $RELEASE TERMINAL:

- $RELEASE TERMINAL TO x is successful only when the background partition
 specified is waiting for keyboard input.

- The HALT key may not function properly when a background task is in the foreground.

8.4 Memory Management

This section discusses Release IV memory allocation as it pertains to the UNIX imple-
mentation of NPL. For additional information concerning RunTime memory usage, refer
to Chapter 3 of the NPL Programmer’s Guide and Chapter 2 and Section 4.5 of this Sup-
plement.

8.4.1 UNIX Considerations

Most UNIX environments use paging for memory management. Paging involves the
copying of small portions of memory (pages) in and out of memory as they are needed by
the application. The maximum task size is determined by parameters specified during the
installation of the operating system. This value is usually much greater than the amount
of physical memory available to the system.

Xenix operating systems, designed to run on an 80286 processor, use swapping instead of
paging for memory management. This involves copying the user task back and forth from
memory to disk whenever physical memory is exceeded. When swapping is used, the
maximum task size is limited to the amount of physical memory available to the system.

8.4.2 Dynamic Partition Size

All NPL program code and defined variables reside within a section of memory defined
as the "user partition." The maximum size of the user partition is limited by the task size
of the host operating system (see previous section).

Due to the dynamic nature of memory allocation by UNIX, the NPL RunTime allocates
an initial 141K to the user partition. This is the minimum size of the user partition and is
returned by the SPACEW function. The minimum allocation is used because attempting
to allocate the full amount of virtual memory available would cause performance degrada-
tion.

Memory Management PLATFORM-SPECIFIC LANGUAGE FEATURES

8-10 NPL Intel UNIX Supplement

At any given time, the amount of memory currently available within the user partition is
returned by the SPACEF function. When the value of SPACEF drops below 64K, NPL
automatically attempts to allocate another 64K of memory to the user partition. The result
of this increase is reflected by a 64K increase in SPACEW. If the RunTime is unable to
allocate the memory, the value of SPACEF then drops below 64K.

To illustrate this, consider the following:

UNIX RunTime Environment SPACEW Value SPACEF Value
Initial RunTime Memory 139664 139456
Allocate 64K Variable 139664 73920
Allocate 8300 Bytes 139664 65600
Allocate 2nd 64K Variable 205168 65600*
Allocate 20K Variable 205168 45080**

* Additional 64K segment allocated to user partition.

** Value of SPACEF below 64K indicates the NPL RunTime was unable to allocate the
 extra 64K.

NOTE: Once memory is allocated in this fashion, it is never released. Thus, in the example
above, executing a CLEAR statement results in both SPACEW and SPACEF report-
ing 205168. The reason for this is very simple: UNIX does not provide a method of
deallocating memory.

PLATFORM-SPECIFIC LANGUAGE FEATURES Memory Management

NPL Intel UNIX Supplement 8-11

CHAPTER 9

COMPILER OPERATION

9.1 Overview

This chapter provides an overview of the general operation of the NPL Compiler (b2c)
under Intel UNIX. For a complete discussion of the NPL Compiler, refer to Chapter 14 of
the NPL Programmer’s Guide.

Section 9.2 discusses how to invoke the NPL Compiler.

Section 9.3 discusses file-naming conventions under Intel UNIX based operating systems.

Section 9.4 discusses the print devices available under the NPL Compiler.

Section 9.5 discusses the use of UNIX script files to operate the NPL Compiler.

COMPILER OPERATION Overview

NPL Intel UNIX Supplement 9-1

9.2 Invoking the Compiler

The NPL Compiler may be invoked in one of two ways. The first and most common form
of invoking the compiler is using the command line method.

For example:

 b2c -srcloc /usr/BASIC2C/2200DISK.BS2 PROG1 PROG2

the designation of "b2c" at beginning of the UNIX command line, refers to the name of
the NPL compiler and causes UNIX to invoke it. Upon execution, the compiler inspects
the balance of the command line to determine the desired compiler options and the list of
input programs to compile. All compiler options are discussed fully in Chapter 14 of the
NPL Programmer’s Guide.

The second method of invoking the compiler is to enter "b2c" at the UNIX command line
with no specified programs to compile. This implicitly invokes the use of the user-
friendly compiler display. This display provides an easy-to-use, alternate method of speci-
fying compiler parameters. Refer to Section 14.19 of the NPL Programmer’s Guide for a
detailed explanation of the user-friendly compiler display.

9.3 File Naming Conventions

File naming conventions vary from one operating system to the next. This section dis-
cusses the Intel UNIX conventions and their implications to NPL.

9.3.1 Supported Characters

The file-naming conventions of UNIX are not entirely compatible with the names of files
within NPL diskimages. Specifically, within diskimages, filenames may be any eight
characters, with no restrictions. UNIX allows fourteen (14) character filenames, but the
permitted character set is restricted. Only the letters A-Z, a-z, 0-9, and a few additional
special characters are allowed. Refer to the UNIX documentation for more information.

Invoking the Compiler COMPILER OPERATION

9-2 NPL Intel UNIX Supplement

Consequently, situations may arise where it may not be possible to specify the exact form
of an input program name on the command line. For example program names with em-
bedded blanks are legal in NPL diskimages but are not allowed under the UNIX operat-
ing system. The problem has no general solution, but it can be circumvented with the
TRANSLATE option.

The TRANSLATE Option
The TRANSLATE option is used to inform the compiler of the assumed character equiva-
lences between UNIX filenames and filenames within a diskimage file. The TRANS-
LATE verb is followed by pairs of characters, each preceded by an "=" character. Each
group specifies a from/to pair of hexcodes, the first two hexdigits representing the UNIX
character, the second two representing the equivalent character to be used for filenames
within diskimage files.

For example:

-translate 5F20

informs the compiler that underline characters (HEX(5F)) in UNIX filenames are equiva-
lent to space characters (HEX(20)) in names of files within NPL diskimage files. Conse-
quently, whenever the compiler needs to place names of files from within NPL
diskimage files directly into an UNIX directory, it replaces the embedded blanks in the
filenames from within the diskimage file with underlines. Conversely, when the compiler
needs to place an UNIX filename into a diskimage, it replaces underlines with spaces.

HINT: For legibility, groups of codes may be separated by a decimal point (".").

For example:

-translate 5F20.7B3C.7D3E.=%=/

Defines the following equivalences (where D.I. stands for Diskimages):

UNIX Filenames Filenames in Diskimage
HEX Display HEX Display
5F 7B 7D 25
_ (underscore) { } %

< > /
20 3C 3E 2F

NOTE: Trailing spaces in a filename are not considered to be part of the name. For obvious
reasons, use of filenames which use only upper and lower case alphanumeric charac-
ters is preferred in the UNIX environment and is strongly encouraged.

COMPILER OPERATION File Naming Conventions

NPL Intel UNIX Supplement 9-3

For a complete discussion of the NPL Compiler, refer to Chapter 14 of the NPL Program-
mer’s Guide.

9.3.2 Case Sensitivity

Since the NPL compiler may compile from ASCII text files, the fact that UNIX is case
sensitive has several implications when compiling to or from ASCII text files:

1. The compiler only recognizes an uppercase .SRC extension. When creating an ASCII
text file using a text editor or copy program, be sure to make the .SRC extension up-
percase. The compiler always produces .OBJ and .SRC files in uppercase.

2. Program names must be specified correctly relative to case. If there is a program
named BOOT.SRC and it is specified as boot.SRC, the compiler cannot find it.

3. The names of diskimage files must be specified correctly relative to case.

9.3.3 Wildcard Usage

Beyond single program names, the compiler accepts "wildcard" names. The presence of a
wildcard name in the input program list causes the compiler to compile all programs in
the specified directory or diskimage (as specified with srcloc) that "match" the wildcard
pattern. A wildcard name is any program name which contains at least one of the "?" or
"*" wildcard characters.

A "?" in a wildcard matches any single character in the same position of the input pro-
gram name.

A "*" in a wildcard matches any characters or no characters to the end of the program
name.

However, since the UNIX shell analyzes the entire command line and replaces all wild-
cards with filenames before passing control to the compiler, wildcards or program names
containing wildcard characters must be entered in single quotes. For example:

’AR?UPD’ Matches "AR1UPD", "ARXUPD", "AR@UPD", but not
"AR1UPD2".

’AR*’ Matches all file names beginning with "AR".

File Naming Conventions COMPILER OPERATION

9-4 NPL Intel UNIX Supplement

b2c -srcloc /dev/fd048ds9 -objloc PLATTER1.BS2 ’*’

Compiles all programs on a 360K format diskette in drive 0 placing compiled output in
diskimage file PLATTER1.BS2 in the current directory.

b2c -srcloc /dev/fd048ds9 -objloc PLATTER1.BS2 ’AR??001’

Compiles all programs with the first two characters "AR" and the ending characters as
"001" from the raw 360K format diskette in drive 0 to the diskimage file PLAT-
TER1.BS2.

NOTE: Do not enter wildcard program names in single quotes when using the compiler dis-
play. When using the compiler display, the compiler program (b2c) is in control and
the UNIX shell cannot perform any filename substitutions. However, if a shell script
file is used which invokes the compiler display, any wildcard program names in the
shell script file must still be enclosed in single quotes. The quotes are removed when
the display is generated.

Failure to enclose wildcard program names in single quotes at the UNIX command line
or shell script files causes all filenames which match the wildcard in the current directory
to be passed on to the compiler as program names, including even those files which do
not have a .SRC extension.

When wildcard scanning a directory, the scanner automatically adds the .SRC extension.
When wildcard scanning a diskimage, the scanner ignores data files even if they match
the wildcard pattern.

9.3.4 Pathnames

The NPL compiler (b2c) assumes that all input and output files reside in the current direc-
tory. This is modifiable by specifying an alternate pathname in the compiler command
line.

For example:

b2c -srcloc /usr/PROGS/PLATTER1.BS2 -objloc /usr/PROGS/PLATTER2.BS2 ’*’

would locate the "PROGS" directory in the /usr directory and compile all the programs
found in PLATTER1.BS2, into PLATTER2.BS2 in the "PROGS" directory.

Output for any of the compiler operations can be discarded by specification of the null de-
vice as the output parameter. Under UNIX, the null device must be specified as /dev/null.

COMPILER OPERATION File Naming Conventions

NPL Intel UNIX Supplement 9-5

For example:

b2c -srcloc /usr/PROGS/PLATTER1.BS2 -objloc /dev/null -lstloc /source -
lstformat 2200 ’*’

Creates files in 2200 atomized format, directly from a diskimage file containing already
compiled programs (/usr/PROGS/PLATTER1.BS2). The /dev/null designator for the -ob-
jloc option is used to suppress the generation of a second set of compiled programs. Refer
to the discussion on the "lstloc" option in Section 14.9 NPL Programmer’s Guide.

9.4 Print Devices

Hard copy listings may be produced by specifying -lstloc as the name of a native operat-
ing system print-device. The following device designations are valid print device names
for the UNIX operating system.

-lstloc lpx Direct listing to a preconfigured printer device. Where "x"
indicates the device number to use. Refer to Section 5.5 for
details on configuring printers within the system for use
with the NPL.

-lstloc ttyxx Direct listing to a preconfigured serial device. Where ’xx’ in-
dicates the serial port number to use.

-lstloc /dev/null Suppresses listing.

-lstloc /pathname Store source listing for each file in the specified directory.
Filenames are derived from the input program name, with an
extension of .LST or .SRC depending on the -lstformat des-
ignation.

-lstloc /pathname/filename Concatenates all program listings into the specified filename
(with a .SRC file extension) in the specified directory.

Print Devices COMPILER OPERATION

9-6 NPL Intel UNIX Supplement

9.5 Shell Scripts

Shell script files are used to set up and invoke UNIX commands and parameters. Shell
script files can be used to invoke the NPL compiler. For example, the following example
compiler command line:

b2c -srcloc PLATTER1.BS2 -objloc PLATTER2.BS2 -lstloc . -lstformat
.SRC ’AR*’

can be set up as a shell script called COMPAR, and then be executed from the command
processor by entering the name of the script file:

COMPAR

Here, the shell script file would perform the same as the example command line it was
taken from.

It is possible to generalize shell script files so that some options may be entered during
execution of the shell script file. This is handy for specifying the list of input program
names to compile. This can be done by a simple modification to the example above. The
modification would be to replace the literal program name designation with a replaceable
parameter value ("$*") which allows any number of program names to be specified.

NOTE: The quotation marks surrounding the parameter are required.

For example:

b2c -srcloc PLATTER1.BS2 -objloc PLATTER2.BS2 -lstloc . -lstformat
.SRC "$*"

This batch file would now be able to accept up to any number of program names. For ex-
ample:

COMPAR AR* GL101 OE*

Compiles the following sets of programs:

• All programs with the prefix "AR".

• Program GL101.

• All programs with the prefix "OE".

The same compiler options are used for all programs.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-7

9.5.1 Example Shell Script Files

Niakwa has provided several shell script files as examples. These examples are located in
the /usr/BASIC2C directory and may be invoked from the UNIX command processor by
name. These script files were designed to meet the most frequent requirements of the pro-
grammer.

The following are the four script files supplied by Niakwa:

b2ca

b2c -display on -srcloc /dev/fd048ds9 -objloc PLATTER1.BS2 -translate
5F20.252F "$*"

The above script file compiles input programs from a raw diskette in 360K format, creat-
ing p-code files in UNSCRAMBLED format which are placed in the diskimage file
PLATTER1.BS2 in the current directory, displaying any compiler warning messages on
the screen.

NOTE: The translate option has no effect since conversion of filenames between UNIX and
filenames within a NPL diskimage is not performed. However, if the options are
changed during the compiler display, conversion of filenames between those within
NPL diskimages and UNIX filenames would be performed for the character pairs
" " (NPL) and "_" (UNIX), and "/" (NPL) and "%" (UNIX).

b2cb

b2c -display on -srcloc /dev/fd0 -objloc /dev/null -lstloc .
-lstformat .src -warnings off -translate 5F20.252F "$*"

The above batch file compiles input programs from a raw diskette in 720k or 1.44MB for-
mat, creating ASCII text files in the current directory, which may be edited and resubmit-
ted to the compiler.

NOTE: Conversion of filenames between those within the NPL diskimages and UNIX file-
names is performed for the character pairs " " (NPL) and "_" (UNIX), and "/"
(NPL) and "%" (UNIX) when creating the text files.

Shell Scripts COMPILER OPERATION

9-8 NPL Intel UNIX Supplement

b2cc

b2c -display on -rem$ on -objloc PLATTER1.BS2 -translate 5F20.252F "$*"

The above batch file compiles input programs in ASCII format from the current direc-
tory, creating p-code files in UNSCRAMBLED format which is placed in the diskimage
file PLATTER1.BS2 also in the current directory, compiling any statements which start
with a "REM $ PC", and displaying any compiler warning messages on the screen.

NOTE: The translate option is used when determining the name of the filename in the
PLATTER1.BS2 diskimage, based on the .SRC files used as input.

b2cd

b2c -display on -lstloc /dev/fd048ds9 -objloc /dev/null -lstformat
2200 -warnings off -translate 5F20.252F "$*"

The above batch file compiles input programs in ASCII format from the current direc-
tory, creating output programs in 2200 atomized format directly on a 720K or 1.44MB
diskette, which may then be ported over to the 2200.

NOTE: If the UNIX filenames contain " " or "/" characters, the names of the files within
the diskimage are automatically replace any "%" characters with the "/" character,
and replace the " " with a " ".

The use of the replaceable parameter ("$*") is not required since the DISPLAY ON
option is specified. When the display option is specified, the compiler allows the en-
try of the input program name selections in the display despite the replaceable pa-
rameters. However, it does allow specification of the source program names on the
command line and have them displayed automatically.

The Intel UNIX of the NPL supports the use of raw 360K diskettes. Refer to the NPL Pro-
grammer’s Guide for details on the use of raw 360K diskettes on the Wang 2200.

9.5.2 Example Compiles

Chapter 14 of the NPL Programmer’s Guide describes each option available for use when
compiling programs. The remainder of this chapter provides several examples of com-
monly used compilations, indicating both the particular compiler command line and the
compiler display. A brief discussion of what each compile is accomplishing, as well as an
explanation of each compiler option is also included.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-9

From a Compiled Diskimage to a Compiled Diskimage
Command line:

b2c -display on -srcloc /usr/PROGS/PLATTER1.BS2 -objloc
/usr/PROGS/PLATTER2.BS2 -errloc errors -rem$ on ’*’

Display:

Discussion:

The above example indicates the procedure which would be used to create compiled pro-
grams in a diskimage file, directly from a diskimage file containing already compiled pro-
grams. With the KEEPREMS option set to OFF, REMs and spacing information are
suppressed from the object programs. This would be useful for generating compressed
program code which would then occupy less space on the end user’s system. Unless warn-
ings appear indicating that a statement requires a later revision of the RunTime, the code
is considered compatible with all prior revisions of the RunTime. The diskimage file
could then be copied onto diskette(s) using the NPL utilities and ported over to another
machine operating under the same revision of the RunTime or an earlier release.

Shell Scripts COMPILER OPERATION

9-10 NPL Intel UNIX Supplement

Explanation of Options:

SOURCE Programs: The "*" indicates that all programs in the specified srcloc are
to be compiled.

Location: Indicates that the input programs are located in a diskimage
file named PLATTER1.BS2, in the /usr/PROGS directory.

OBJECT Location: Indicates a diskimage file, PLATTER2.BS2, in the
/usr/PROGS directory, which receives the compiled
programs.

Format: The default UNSCRAMBLED indicates that program
encryption does not take place.

Extra Sectors: The default 0 indicates that extra free sectors are not
allocated to the programs.

LISTING Location: "/dev/null" indicates that no list output is generated.

Format: The .LST default is irrelevant since no list output is
generated.

ERRORS Location: "errors" indicates the name of the file in the current directory
which receives all warnings and errors during the
compilation.

OTHER Warnings: ON indicates that all warnings encountered during the
compile is displayed on the screen.

Numbers: The default OFF indicates that additional object code to keep
track of multiple program statements is not generated.

Display: ON indicates that the compiler display screen is shown for
review.

Comp. REM$: ON indicates that any statements beginning with REM $ PC
has the program code contained in the statement compiled.
The REM $ PC designation is then removed, due to
KEEPREMS OFF.

Keep L. Case: Use of this compiler option is ignored under UNIX.

Keep REMs: The default OFF together with the REM$ option set to on,
instructs the compiler to compile statements beginning with
REM $ PC and then remove the REM $ PC designation from
the statement. Also, the original format of certain literals
(either HEX or quote string) may not be retained, and
"special" program spacing is removed.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-11

Prog. $TRAN: The default 5F20 is irrelevant since it only pertains to
filename translations between programs stored as stand-alone
UNIX files and programs stored in NPL diskimage files.

From a 2200 to a Compiled Diskimage
Command line:

b2c -display on -srcloc /dev/fd048ds9 -objloc /usr/PROGS/PLATTER1.BS2
-errloc errors ’*’

Display:

Discussion:

The above example indicates the compilation procedure which would be used for the in-
itial porting of programs from a Wang 2200 to a diskimage file on the system.

Shell Scripts COMPILER OPERATION

9-12 NPL Intel UNIX Supplement

Explanation of Options:

SOURCE Programs: The "*" indicates that all programs in the specified srcloc are
to be compiled.

Location: /dev/fd048ds9 indicates that the input programs are located
on a 360K raw format diskette in drive 0.

OBJECT Location: Indicates a diskimage file, PLATTER1.BS2 in the
/usr/PROGS directory, will receive the compiled program.

Format: The default UNSCRAMBLED indicates that program
encryption does not take place.

OBJECT Extra Sectors: The default 0 indicates that extra free sectors are not
allocated to the programs.

LISTING Location: "/dev/null" indicates that no list output is generated.

Format: The .LST default is irrelevant since no list output is
generated.

ERRORS Location: "errors" indicates the name of the file in the current directory
which receives all warnings and errors during the
compilation.

OTHER Warnings: ON indicates that all warnings encountered during the
compile are displayed on the screen.

Numbers: The default OFF indicates that additional object code to keep
track of multiple program statements is not generated.

Display: ON indicates that the compiler display screen is shown for
review.

Comp. REM$: The default OFF indicates that any program statement
beginning with REM $ PC is ignored by the compile.

Keep L. Case: Use of this compiler option is ignored under UNIX.

Keep REMs: The default OFF indicates that any program statement
beginning with a REM is removed during the compile, the
original format of certain literals (either HEX or quote string)
may not be retained, and "special" program spacing is
removed.

Prog. $TRAN: The default 5F20 is irrelevant since it only pertains to
filename translations between programs stored as stand-alone
UNIX files and programs stored in NPL diskimage files.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-13

From a Compiled Diskimage to 2200 Atomized Code
Command line:

b2c -display on -srcloc /usr/PROGS/PLATTER1.BS2 -objloc /dev/null
-lstloc /dev/fd048ds9 -lstformat 2200 -errloc errors ’*’

Display:

Discussion:

The above example indicates the procedure which would be used to create programs in
2200 atomized format, directly from a diskimage file containing already compiled pro-
grams. These programs could be created directly on a diskette in 360K raw format, as the
example indicates, if they fit on one diskette. If not, then the LSTLOC should be a
diskimage file on the hard disk, which could then be copied onto multiple diskettes using
the NPL utilities, and ported over to the 2200.

Shell Scripts COMPILER OPERATION

9-14 NPL Intel UNIX Supplement

Explanation of Options:

SOURCE Programs: The "*" indicates that all programs in the specified srcloc are
to be compiled.

Location: Indicates that the input programs are located in a diskimage
file named PLATTER1.BS2, in the /usr/PROGS directory.

OBJECT Location: "/dev/null" indicates that the compiler suppresses generating
a second set of compiled programs.

Format: The default UNSCRAMBLED is irrelevant since an objloc
of "/dev/null" is specified.

Extra Sectors: The default 0 is irrelevant since an objloc of "/dev/null" is
specified.

LISTING Location: /dev/fd048ds9 indicates that the compiler generates output
programs directly on a raw diskette in 360K format.

Format: The 2200 option indicates that the programs generated on the
specified LSTLOC is in 2200 atomized format. Use of the
2200S option would additionally remove syntactically
insignificant spaces from all programs, thus creating
"compressed" program code.

ERRORS Location: "errors" indicates the name of the file in the current directory
which receives all warnings and errors during the
compilation.

OTHER Warnings: ON indicates that all warnings encountered during the
compile are displayed on the screen. Warnings are not sent to
the "lstloc" if the lstformat option is either 2200 or 2200S.

Numbers: The default OFF is irrelevant since an objloc of "/dev/null" is
specified.

Display: ON indicates that the compiler display screen is shown for
review.

Comp. REM$: The default OFF is irrelevant since an objloc of "/dev/null" is
specified.

Keep L. Case: Use of this compiler option is ignored under UNIX.

Keep REMs: The default OFF is irrelevant since an objloc of "/dev/null" is
specified.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-15

Prog. $TRAN: The default 5F20 is irrelevant since it only pertains to
filename translations between programs stored as stand-alone
UNIX files and programs stored in NPL diskimage files.

From a 2200 to a Compiled Diskimage and ASCII Text Files
Command line:

b2c -display on -srcloc /dev/fd048ds9 -objloc /usr/PROGS/PLATTER1.BS2
-lstloc /usr/SOURCE -lstformat .SRC -rem$ on -errloc errors ’*’

Display:

Discussion:

The above example indicates the compilation procedure which would be used for the in-
itial porting of programs from a Wang 2200 to Intel UNIX, creating both a diskimage file
containing the compiled programs, and "source" code listings as ASCII text files in an
UNIX directory.

Shell Scripts COMPILER OPERATION

9-16 NPL Intel UNIX Supplement

Explanation of Options:

SOURCE Programs: The "*" indicates that all programs in the specified srcloc are
to be compiled.

Location: /dev/fd048ds9 indicates that the input programs are located
on a raw 360K format diskette in drive 0.

OBJECT Location: Indicates a diskimage file, PLATTER1.BS2 in the
/usr/PROGS directory, which will receive the compiled
programs.

Format: The default UNSCRAMBLED indicates that program
encryption does not take place.

OBJECT Extra Sectors: The default 0 indicates that extra free sectors are not
allocated to the programs.

LISTING Location: Indicates that source program listings are generated in the
/usr/SOURCE directory.

Format: .SRC indicates that the programs generated in the specified
lstloc are in ASCII text format.

ERRORS Location: "errors" indicates the name of the file in the current directory
which receives all warnings and errors during the
compilation.

OTHER Warnings: ON indicates that all warnings encountered during the
compile are displayed on the screen and in the .SRC files.

Numbers: The default OFF indicates that additional object code to keep
track of multiple program statements is not generated.

Display: ON indicates that the compiler display screen is shown for
review.

Comp. REM$: The ON option indicates that any program statement
beginning with REM $ PC has the program code contained in
the statement compiled.

Keep L. Case: Use of this compiler option is ignored under UNIX.

Keep REMs: The default OFF, in conjunction with the REM$ option set to
ON, instructs the compiler to compile statements beginning
with REM $ PC, and then remove the REM $ PC designation
from the program statement. Also, the orginal format of
certain literals (either HEX or quote string) may not be
retained, and "special" program spacing is removed.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-17

Prog. $TRAN: The default 5F20 indicates that spaces in input program
names are converted to underline characters when creating
ASCII text files in the specified lstloc.

From a Compiled Diskimage to ASCII Text Files
Command line:

b2c -display on -srcloc /usr/PROGS/PLATTER1.BS2 -objloc /dev/null
-lstloc /usr/SOURCE -lstformat .SRC -errloc errors ’*’

Display:

Discussion:

The above example indicates the procedure which would be used to create "source" code
program listings in ASCII text format in an UNIX directory, directly from a diskimage
file containing already compiled programs.

Shell Scripts COMPILER OPERATION

9-18 NPL Intel UNIX Supplement

Explanation of Options:

SOURCE Programs: The "*" indicates that all programs in the specified srcloc are
to be compiled.

Location: Indicates that the input programs are located in a diskimage
file named PLATTER1.BS2, in the /usr/PROGS directory.

OBJECT Location: "/dev/null" indicates that the compiler suppresses generating
a second set of compiled programs.

Format: The default UNSCRAMBLED is irrelevant since an objloc
of "/dev/null" is specified.

Extra Sectors: The default 0 is irrelevant since an objloc of "/dev/null" is
specified.

LISTING Location: Indicates that source program listings are generated in the
/usr/SOURCE directory.

Format: .SRC indicates that the programs generated in the specified
lstloc are in ASCII text format.

ERRORS Location: "errors" indicates the name of the file in the current directory
which receives all warnings and errors during the
compilation.

OTHER Warnings: ON indicates that all warnings encountered during the
compile are displayed on the screen and in the .SRC files.

Numbers: The default OFF is irrelevant since an objloc of "/dev/null" is
specified.

Display: ON indicates that the compiler display screen is shown for
review.

Comp. REM$: The default OFF is irrelevant since an objloc of "/dev/null" is
specified.

Keep L. Case: Use of this compiler option is ignored under UNIX.

Keep REMs: The default OFF is irrelevant since an objloc of "/dev/null" is
specified.

Prog. $TRAN: The default 5F20 indicates that spaces in input program
names are converted to underline characters when creating
ASCII text files in the specified lstloc.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-19

From ASCII Text Files to Compiled Format in a Directory
Command line:

b2c -display on -srcloc /usr/AR/PROGS -objloc /usr/AR/PROGS -errloc
errors BOOT

Display:

Discussion:

The above example indicates the procedure which would be used to take a single "boot"
program stored in ASCII text format, and compile it into a stand-alone .OBJ object file
stored in an UNIX directory. Here is an example of a simple boot program:

10 $DEVICE(/D11)="/usr/AR/PROGS/PLATTER1.BS2"
20 $DEVICE(/D12)="/usr/AR/DATA/PLATTER1.BS2"
30 SELECT DISK D11
40 LOAD RUN"ARSTART"

Shell Scripts COMPILER OPERATION

9-20 NPL Intel UNIX Supplement

Explanation of Options:

SOURCE Programs: Indicates that a single program named BOOT is to be
compiled.

Location: Indicates that the input program is an ASCII text file with an
extension of .SRC, and is located in the /usr/AR/PROGS
directory.

OBJECT Location: Indicates that the compiler creates an object file with an
extension of .OBJ in the /usr/AR/PROGS directory.

Format: The default UNSCRAMBLED indicates that program
encryption does not take place.

Extra Sectors: The default 0 is irrelevant since a stand-alone .OBJ object
file is being created.

LISTING Location: "/dev/null" indicates that no list output is generated.

Format: The .LST default is irrelevant since no output is generated.

ERRORS Location: "errors" indicates the name of the file in the current directory
which receives all warnings and errors during the
compilation.

OTHER Warnings: ON indicates that all warnings encountered during the
compile are displayed on the screen.

Numbers: The default OFF indicates that additional object code to keep
track of multiple program statements is not generated.

Display: ON indicates that the compiler display screen is shown for
review.

Comp. REM$: The default OFF indicates that any program statement
beginning with REM $ PC is ignored by the compile.

Keep L. Case: The default OFF is irrelevant since it only pertains to
filename translations between programs stored as stand-alone
UNIX files and programs stored in NPL diskimage files.

Keep REMs: The default OFF indicates that any program statement
beginning with a REM is removed during the compile, the
original format of certain literals (either HEX or quote string)
may not be retained, and "special" program spacing is
removed.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-21

Prog. $TRAN: The default 5F20 is irrelevant since it only pertains to
filename translations between programs stored as stand-alone
UNIX files and programs stored inNPL diskimage files.

From ASCII Text Files to a Compiled Diskimage
Command line:

b2c -display on -srcloc /usr/SOURCE -objloc /usr/PROGS/PLATTER1.BS2
-errloc errors -rem$ on -keeprems on *

Display:

Discussion:

The above example indicates the procedure which would be used to take input "source"
programs stored in ASCII text format, and compile them into a diskimage file.

Shell Scripts COMPILER OPERATION

9-22 NPL Intel UNIX Supplement

Explanation of Options:

SOURCE Programs: The "*" indicates that all programs in the specified srcloc are
to be compiled.

Location: Indicates that the input programs are ASCII text files with an
extension of .SRC, and are located in the /usr/SOURCE
directory.

OBJECT Location: Indicates a diskimage file, PLATTER.BS2 in the
/usr/PROGS directory, which will receive the compilied
program.

Format: The default UNSCRAMBLED indicates that program
encryption does not take place.

Extra Sectors: The default 0 indicates that extra free sectors are not
allocated to the programs.

LISTING Location: "/dev/null" indicates that no list output is generated.

Format: The .LST default is irrelevant since no output is generated.

ERRORS Location: "errors" indicates the name of the file in the current directory
which receives all warnings and errors during the
compilation.

OTHER Warnings: ON indicates that all warnings encountered during the
compile are displayed on the screen.

Numbers: The default OFF indicates that additional object code to keep
track of multiple program statements is not generated.

Display: ON indicates that the compiler display screen is shown for
review.

Comp. REM$: The ON option indicates that any program statement
beginning with REM $ PC has the program code contained in
the statement compiled.

Keep L. Case: The default OFF is irrelevant because of the use of the
program name wildcard. If individual programs were
specified and it was desirable to specify the case of the
program name for the files generated in the diskimage, the
lower case option should be set to ON.

COMPILER OPERATION Shell Scripts

NPL Intel UNIX Supplement 9-23

Keep REMs: The ON option indicates that REM statements and spacing
information is retained in the object program. Also, the
original format of certain literals (either HEX or quote string)
is retained.

Prog. $TRAN: The default value of 5F20 causes underline characters in
stand-alone UNIX ".SRC" files to be converted to a space
within the object diskimage.

Shell Scripts COMPILER OPERATION

9-24 NPL Intel UNIX Supplement

CHAPTER 10

PORTING PROGRAMS AND DATA

10.1 Overview

This chapter provides an overview of porting NPL applications and data files to or from a
UNIX system.

Section 10.2 discusses NPL specific options available for porting.

Section 10.3 discusses options for porting to/from specific environments outside the Run-
Time.

NOTE: The discussions in this chapter are intended to provide general information on file
transfer and porting options. For a complete description of the options mentioned in
this chapter, refer to Chapter 15 of the NPL Programmer’s Guide.

PORTING PROGRAMS AND DATA Overview

NPL Intel UNIX Supplement 10-1

10.2 Porting Options

Two options can be used for transfer of NPL applications and data on UNIX/Xenix sys-
tems. The following sections discuss these options.

10.2.1 Serial Communications

Direct file transfer from or to a UNIX system is possible using serial communications.
For serial transfer of NPL programs and data to or from a UNIX system, any program
that supports binary file transfer can be used. Many of these products also support termi-
nal emulation. Be aware that the features used by NPL (downloadable fonts, local printer
support, etc.) may not function properly on terminal emulation products. This can cause
problems for NPL users.

Often the easiest method for transferring files serially between a UNIX system and an-
other system is to use an MS-DOS system as an intermediate step. Most Intel-based
UNIX systems are capable of reading MS-DOS format diskettes.

NOTE Some communication programs may use keys that conflict with NPL key mapping.
These conflicts can be avoided using the $KEYBOARD feature.

Any file transfer product used must be capable of transferring eight-bit binary data.

10.2.2 "RAW" Diskette Transfer

The ability of NPL to access "raw" diskettes provides a means of transferring NPL
diskimages from one machine to another regardless of the respective file formats of the
native operating systems. A "raw" device is a physical disk which does not contain a na-
tive file system.

The UNIX implementation of NPL supports 5-1/4" 360K, 720K, and 1.2MB "raw" for-
matted diskettes, and 3-1/2" 720K, 1.44MB, and 2.88MB "raw" formatted diskettes.
Most NPL-supported systems support one or more of the above formats. Refer to Appen-
dix D for a list of all supported media on all NPL-supported machines.

Provided that diskette compatibility exists between two supported platforms, the follow-
ing steps are required to port between a UNIX system and another supported platform.

Porting Options PORTING PROGRAMS AND DATA

10-2 NPL Intel UNIX Supplement

1. Select a "raw" diskette format compatible with both the source and destination sys-
tems.

2. Use either the NPL Backup and Recovery Utilities or custom transfer utilities to trans-
fer the programs and data between systems.

NOTE: Although the "raw" formatted diskettes are identical from one system to the next,
the naming conventions of these diskettes may change from one operating system to
the next.

For example:

MS-DOS

$DEVICE(/D10)="A: 720=Y" Defines drive A: as a "raw" 720K device.
$DEVICE(/D10)="A: 1.44=Y" Defines drive A: as a "raw" 1.44MB diskette.

SuperDOS

$DEVICE(/D10)="1: 720=Y" Defines drive 1: as a "raw" 720K device.
$DEVICE(/D10)="1: 1.44=Y" Defines drive 1: as a "raw" 1.44MB device.

UNIX

$DEVICE(/D10)="/dev/fd1135ds9" Defines drive 1 as a "raw" 720K device.
$DEVICE(/D10)="/dev/fd1135ds18" Defines drive 1 as a "raw" 1.44MB

device.
$DEVICE(/D10)="/dev/fd1135ds36" Defines drive 1 as a "raw" 2.88MB

device.
AIX on the IBM RS/6000

$DEVICE(/D10)="/dev/fd0" Defines drive 0 to read 720K or 1.44MB
"raw" diskettes.

$DEVICE(/D10)="/dev/fd0.9"
$DEVICE(/D10)="/dev/fd0l" Defines drive 0 to read/write 720K

"raw" diskettes.
$DEVICE(/D10)="/dev/fd0.18
$DEVICE(/D10)="/dev/fd0h" Defines drive 0 to read/write 1.44MB

and 2.88MB diskettes.

Refer to Chapter 5 of the appropriate NPL operating system-specific supplement for
more information on supported diskette naming conventions.

Refer to Chapter 15 of the NPL Programmer’s Guide for more information on porting.

PORTING PROGRAMS AND DATA Porting Options

NPL Intel UNIX Supplement 10-3

10.3 Specific Environments

The following section discusses the methods available to port NPL applications for
UNIX from specific environments. Several of the methods described below require port-
ing the application to an MS-DOS system first and then porting it to the UNIX environ-
ment.

10.3.1 From a Wang 2200

Direct transfer from the 2200 to UNIX file systems using serial communications is possi-
ble. However, Niakwa does not know of any existing software which does this. For now,
the recommended method of porting from a 2200 to a UNIX filesystem is to use an IBM
or compatible PC as an intermediate step. Refer to 10.3.2 for more information.

10.3.2 From an MS-DOS-based system

Some Intel-based UNIX systems are capable of reading and writing MS-DOS format
diskettes. Niakwa programs and data can be ported from MS-DOS based systems to
UNIX by copying them to diskette with the standard DOS copy commands, then reading
them into the UNIX file system using the UNIX’s dos copy (e.g., doscp) command. Refer
to the UNIX system commands reference for more information.

10.3.3 From a SuperDOS-Based System

The simplest way to transfer files from a SuperDOS system to a UNIX system is to first
transfer them to MS-DOS, then transfer to UNIX as described in Section 10.3.2 above.

The simplest way to transfer data between MS-DOS and SuperDOS is to use the PCFILE
utility which is part of the SuperDOS operating system package. This program runs on
SuperDOS and has a menu interface. However, PCFILE can only be used in SuperDOS
real mode. SuperDOS 6.0 runs only in protected mode, and has a different DOS file trans-
fer utility called PCXFER. For further details, refer to the SuperDOS Utilities Guide.

Alternatively, PC2200 by Computer Concepts transfers NPL data and programs between
DOS and SuperDOS. It can receive as well as transmit between SuperDOS and an MS-
DOS based system. This program emulates a Wang 2236/DW terminal. There are several
considerations in using such a terminal with a SuperDOS system. Refer the NPL Super-
DOS Supplement regarding Wang 2x36 terminal support under SuperDOS.

Specific Environments PORTING PROGRAMS AND DATA

10-4 NPL Intel UNIX Supplement

10.3.4 From Another UNIX Based System

The "tar" utility may be used to transfer programs or data between two UNIX based NPL
systems. Diskimage files or other files related to the operation of the developer’s soft-
ware can be copied using the tar utility.

The following guidelines should be followed when using the tar utility:

• When restoring large files, be sure to set ulimit to 65000.

• Login as the super-user.

• Use of a blocking factor of 20 or greater substantially improves performance of
the tar utility.

The following example shows how to copy the diskimage file /usr/BASIC2C/PLAT-
TER1.BS2 using the tar utility from one UNIX system to another:

1. Login on the first machine as "root".

2. From the UNIX shell:

cd /
tar cvfbk /dev/rfd048ds9 20 360 /usr/BASIC2C/PLATTER1.BS2

copies diskimage file PLATTER1.BS2 from the /usr/BASIC2C/directory to one or
more 360K diskettes.

or

cd /
tar cvfbk /dev/rfd096ds15 20 1200 /usr/BASIC2C/PLATTER1.BS2

copies diskimage file PLATTER1.BS2 from the /usr/BASIC2C directory on one or
more 1.2MB diskettes.

NOTE: Other formats of diskette may be used by specifying the appropriate raw device
name and diskette size (in kilobytes) on the appropriate parameters of the tar com-
mand.

3. Login to UNIX on the second machine as "root".

PORTING PROGRAMS AND DATA Specific Environments

NPL Intel UNIX Supplement 10-5

4. From the UNIX shell:

cd /
umask 0000 Set protection mode to full access for all users, if

required.
ulimit 65000 Set maximum file creation size to 32 MB.
tar xvf /dev/fd048ds9

copies the diskimage file PLATTER1.BS2 from the 360K diskettes(s) to the /usr/BA-
SIC2C directory.

or

tar xvf /dev/fd096ds15

copies the diskimage file PLATTER1.BS2 from the 1.2MB diskettes(s) to the /usr/BA-
SIC2C directory.

NOTE: Refer to Chapter 15 in the NPL Programmer’s Guide for more information on port-
ing.

Specific Environments PORTING PROGRAMS AND DATA

10-6 NPL Intel UNIX Supplement

CHAPTER 11

MIXED LANGUAGE
PROGRAMMING

11.1 Overview

The NPL External Subroutine Development Kit (BESDK), formerly Basic-2C, provides
an interface to external subroutines written in other programming languages. However,
there are both benefits and penalties which may occur as a result of using mixed language
programming under NPL. The benefits include a potential increase in execution speed for
selected processor-intensive functions, and the capability to access resources and features
of a specific environment. The penalties include increased memory requirements, limited
portability to other NPL environments, and a potentially less friendly environment for
testing and error diagnosis.

MIXED LANGUAGE PROGRAMMING Overview

NPL Intel UNIX Supplement 11-1

This chapter concerns itself with the operating environment-specific features of the NPL
External Subroutine Development Kit (BESDK) for UNIX and Xenix. For a complete dis-
cussion on the general operations of mixed language programming, refer to Chapter 16 of
the NPL Programmer’s Guide.

Section 11.2 discusses the contents of the BESDK.

Section 11.3 discusses the installation of the BESDK.

Section 11.4 discusses Xenix support.

Section 11.5 discusses Microsoft C under Xenix.

Section 11.6 discusses support of Microsoft Macro Assembler under Xenix.

Section 11.7 discusses UNIX support.

Section 11.8 discusses Microsoft C under UNIX V/386.

Section 11.9 discusses support of Microsoft Macro Assembler under UNIX.

Section 11.10 discusses flow control.

11.1.1 Differences from DOS/SuperDOS Releases

The MS-DOS and SuperDOS releases of NPL use the quick library mechanism of the Mi-
crosoft Linker, allowing the standard NPL RunTime program to load a specified set of
routines after NPL starts. This approach does not work under the UNIX or Xenix environ-
ments where code, in general, cannot be dynamically linked at execution time.

Instead, the user subroutines must be linked with the NPL code itself, to produce an ex-
ecutable file which is a customized version of NPL with the user subroutines "built in."
This is the approach used to support external subroutines under UNIX and Xenix.

Another major difference is that there are two versions of the NPL RunTime: one for
standard Xenix (286) systems and a true UNIX (386) version that can only be used on ap-
proved 386/UNIX implementations. Therefore, there are two BESDK packages provided:
one Xenix/286 BESDK for the standard Xenix version and one UNIX V/386 BESDK for
the UNIX version.

Overview MIXED LANGUAGE PROGRAMMING

11-2 NPL Supplement for AIX

NOTE: A custom RunTime made with the Xenix/286 BESDK is a 286 version. One made
with the UNIX V/386 BESDK is a 386 version.

11.1.2 Choosing the Development Environment

When coding and linking external routines, the following implications must be consid-
ered:

• The operating system, BESDK version, and RunTime version the custom Run-
Time will work on.

• Because the user subroutines must be linked to produce a Xenix or UNIX binary
executable file, the Xenix or UNIX software development system utilities, par-
ticularly the linker ("ld") and the C startup and support libraries, must have been
installed on the development system.

• In addition to the issues relating to which version of the BESDK package to use
on which operating system environment, there are issues relating to the actual
coding of the external routines that depend on which BESDK package is used.
These issues are explained in detail below in the specific sections on Xenix and
UNIX support.

NOTE: Some Xenix system calls are not supported by UNIX and vice versa. To ensure port-
ability between systems, use only those system calls that are common to both Xenix
and UNIX.

Some UNIX V/386 systems may be capable of running Xenix large model binary ex-
ecutable files, but the software development tools may not support cross-develop-
ment of Xenix executable files. Production of Xenix executable files on a UNIX
system requires installation and modification of the Xenix/286 BESDK files. If
UNIX executable files are also being produced, then the Xenix/286 and UNIX/386
sets of BESDK files have to be installed in separate directories on the UNIX system.
Because of the complexities involved, it is strongly recommended that you do not at-
tempt to produce Xenix executable files on UNIX systems. All compiling and linking
should be done on the same type of system that you intend the executable file to run
on.

MIXED LANGUAGE PROGRAMMING Overview

NPL Intel UNIX Supplement 11-3

11.1.3 Security

Any custom version of rti or rtp produced by using the BESDK procedures, although not
physically copy protected, does not execute unless a standard RunTime is installed on the
system where the custom version is to be used.

NOTE: The standard RunTime installed must be of the same type as the custom RunTime.
That is, a standard Xenix RunTime must be installed for custom RunTimes created
using the Xenix/286 BESDK and a standard UNIX RunTime must be installed for
custom RunTimes created with UNIX V/386 BESDK. In addition, the revision level
of the installed standard RunTime must be equal to or greater than the revision
level of the custom RunTime.

When executed, the custom RunTime extracts the Serial Number from the installed
"standard" RunTime and uses the Serial Number to perform the security check. If the
Gold Key security from the standard RunTime is installed on the system, the security
check is passed based on that. Otherwise, the Gold Key security check is performed. If
this is needed, the Gold Key from the installed standard RunTime must be used.

NOTE: The custom RunTime also extracts and enforces the user limit from the standard
RunTime installed on the system.

Installation of the Custom RunTime at End-User Sites
The procedure for installation of custom RunTimes at end-user sites is simple:

1. Install a standard RunTime of the same type (Xenix or UNIX) and version (or
greater) as the custom RunTime on the end user’s system using the normal installa-
tion procedure.

2. Copy the custom RunTime produced on the development system to the end user’s ma-
chine.

11.1.4 Upgrades

When new releases of NPL become available, updates of the libraries used to make the
customized versions of NPL will also be made available. Periodically, releases of the li-
braries with bug corrections corresponding to interim patches may also be made. It is the
developer’s responsibility to produce new versions of their customized RunTime pro-
grams and distribute them to customers.

Overview MIXED LANGUAGE PROGRAMMING

11-4 NPL Supplement for AIX

NOTE: For formal upgrades of the RunTime, the standard RunTime at end user sites must
be upgraded before installing an upgraded custom RunTime.

11.2 Contents of the BESDK

As explained above, there are two BESDK packages provided with the NPL Develop-
ment Package. The first package, Xenix/286 BESDK, is contained on a single diskette
and is intended for use within a Xenix operating environment. The second package,
UNIX V/386 BESDK, is contained on two diskettes and is intended for use within a
UNIX System V/386 operating environment. The BESDK diskettes are stored in
UNIX/Xenix tape archive ("tar") format, and must be installed before they can be used.
Within each BESDK package, files within the archive are separated into directories, each
of which illustrates an example of linking an external subroutine in a particular environ-
ment using a particular language. The function performed by the subroutine is the same
in each case, and is analogous to the Microsoft C example followed in the text.

The examples are provided mainly to test normal versions of compilers, linkers, etc.; that
are being used with the source files that have been pretested, and to help clarify any
points that may be unclear in the text.

HINT: It is recommended that example standalone and customized versions of the BESDK ex-
ample be produced before starting a customized project, to ensure the various utilities
work together as they should.

The contents of the BESDK are listed below:

NOTE: The names of the files contained on the Xenix BESDK are identical to those con-
tained on the UNIX BESDK. The only difference between the two is the name of the
root directory on the archive. The root directory on Xenix/286 BESDK is named
/xextrn; whereas, the UNIX V/386 BESDK root is named /uextrn.

/xextrn Xenix/286 BESDK.

/uextrn UNIX/386 BESDK.

MIXED LANGUAGE PROGRAMMING Contents of the BESDK

NPL Intel UNIX Supplement 11-5

Contains all subdirectories pertaining to the operation of BESDK. The only file in this di-
rectory is the "readme" file. This file may contain amendments to existing documentation
or additional information not available at press time. It is advisable to read this document
before using BESDK.

The remaining files are separated into the following subdirectories under /xextrn or
/uextrn directories respectively:

/bin Contains two batch command files that can be used to link a
set of external subroutines with either rti or rtp:

makertix Links the specified object files with NPL to create an Inter-
pretive RunTime with external subroutines (rtix).

makertpx Links the specified object files with NPL to create a Non-In-
terpretive RunTime with external subroutines (rtpx).

/include This directory contains files that are common to all imple-
mentations or to all implementations of a specific language.
It is recommended that you do not change the files in this di-
rectory. The files provided in this directory are:

MYBOOT.SRC An NPL source file, which performs a simple test of the ex-
ample external subroutine.

MYBOOT.OBJ Compiled version of the MYBOOT.SRC boot program to
test the example external subroutines and FUNCTIONs.
MYBOOT contains only configuration commands and loads
MYSTART form the MYMODULE.BS2 diskimage.

MYSTART.SRC Source version of the NPL program used to test the example
subroutines and FUNCTIONs.

MYMODULE.SRC Source version of the NPL library module used to specify
the interface to the example subroutines and FUNCTIONs
and containing a sample CALLBACK function.

MYMODULE.BS2 Compiled version of the MYMODULE.SRC and the MYS-
TART.SRC programs in a diskimage.

Contents of the BESDK MIXED LANGUAGE PROGRAMMING

11-6 NPL Supplement for AIX

makefile A make script that compiles MYBOOT.OBJ and MY-
MODULE.BS2. This assumes that the necessary source files
(MYBOOT.SRC, MYSTART.SRC, MYMODULE.SRC)
and the diskimage MYMODULE.BS2 are in the current di-
rectory, and that b2c is accessible on the PATH. To use,
type "make".

rtpall.h Standard include file for C programs, containing the struc-
ture and type definitions needed to write C code for the
BESDK. The Release IV version of this file is expanded and
contains a number of macros and types that did not exist in
Release III.

rtpall.inc For programmers that have BESDK libraries in Microsoft
Assembler. Release IV features are not supported under this
language.

rtpdeffn.h Operating system dependent macros to define the attributes
of external routines.

/lib Contains the object files for NPL in archive library form.

/noextern Contains two files for creating a RunTime without external
subroutines; these are provided to allow a simple test of the
linking procedure.

noextern Object file containing "_main" and "_RTPEXT" routines
that have no external subroutines.

makefile Make file to link "noextern.o" with NPL and create an Inter-
pretive RunTime "rtin". To use, select yourself to this direc-
tory and enter "make rtin".

/cexam Contains example files for Xenix/UNIX implementations of
external subroutines using C.

/mexam Contains example files for Xenix/UNIX implementations of
external subroutines using MASM.

MIXED LANGUAGE PROGRAMMING Contents of the BESDK

NPL Intel UNIX Supplement 11-7

In each of the example directories, the following files are provided:

mymain.x Source file for example mainline.

myrtp.x Source file for example rtp test subroutine.

myrtpext.x Source file for example RTPEXT subroutine.

mysub.x Source file for example DEFFN’ subroutine.

where x =
c for C programs
s for MASM programs

makefile Script for "make" utility to produce both mainline, custom-
ized rti and customized rtp. To run it, enter any of the follow-
ing commands:

"make mymain" Compiles and links example mainline.

"make rtix" Compiles & links example customized rti (Interpretive),
called "rtix".

"make rtpx" Compiles & links example customized rtp (Non-Interpre-
tive), called "rtpx".

NOTE: The makefile in the /mexam directory comes in two versions, named makefile.altos
and makefile.sco. The two are functionally identical, except that makefile.sco con-
tains an additional command to convert object files from OVF format to Common
Object Format, which is required by most UNIX/386 environments. Depending on
the system needs, choose the appropriate makefile, and rename it (or copy or link it)
to "makefile". (e.g. "cp makefile.sco makefile")

The /cexam directory also contains the following files, specifically for Release IV call-
back features:

mycallbk.c Source code to illustrate the use of a C function (mykeyin)
that performs a callback to the NPL function ’CallBack-
Keyin.

Contents of the BESDK MIXED LANGUAGE PROGRAMMING

11-8 NPL Supplement for AIX

mycallbk.h Include file containing the parameter block specifications re-
quired by mycallbk.c

myproc.c Source code to illustrate the implementation of the example
external PROCEDURE in C.

myproc.h Include file containing the parameter block specifications re-
quired by myproc.c.

NOTE: If the makefile itself is changed, delete all previously made .o files in the directory
before running make again.

The "makefile" make scripts assume:

• The compiler executables (such as cc, masm, ld, b2c, etc.) that may be required
can be accessed (the environment variable PATH is set to allow these to be
found),

• The example source files and makefile are in the current directory.

• The example include directory can be accessed as "../include".

• The command files "makertix" and "makertpx" can be found in "../bin".

• All required system libraries are in the default directory assumed by the standard
utilities (/usr/lib).

The make script files assume the current (4.10 or later) version of the NPL compiler
"b2c" is on the execution PATH.

11.3 Installation of the BESDK Diskette

The BESDK diskette(s) have been produced in UNIX/Xenix Archive format on two dif-
ferent media: 5-1/4" 1.2MB diskettes and 3-1/2" 720K diskettes. This is commonly
known as "tar" format.

MIXED LANGUAGE PROGRAMMING Installation of the BESDK Diskette

NPL Intel UNIX Supplement 11-9

To install the BESDK diskette(s), select the directory to install the BESDK in and enter
the following command for the appropriate media type you are installing (this command
must be entered for each diskette):

1.2MB media:

tar xvf /dev/fd096ds15

720K media:

tar xvf /dev/fd135ds9

The BESDK directories and files are extracted to the currently selected directory.

11.4 Xenix Support

External subroutines are supported for Xenix in the native environment. Compiling, link-
ing and running customized versions of rti and rtp under Xenix can be executed provided
access to the Xenix software development system is available.

The entry point of the program must be labeled "__start" (two underlines) and must be a
PUBLIC symbol. Linking with the standard C startup and support library meets this con-
dition.

11.5 Microsoft C under Xenix

As indicated in the example, writing external subroutines in Microsoft C for Xenix is rela-
tively straightforward. Examples assume SCO Xenix 3.2 or later. Earlier versions may
also work but are not tested.

NOTE: The C compiler adds an underscore ("_") to the start of all labels. In the following
discussion, labels are presented the way they must appear in the source files of the C
routines. For example, the RTPEXT routine must be defined with the name
"RTPEXT", and not "_RTPEXT". When it is compiled, the resulting object file con-
tains the symbol "_RTPEXT". This fact is mentioned here in case it is necessary to
examine the object files.

Xenix Support MIXED LANGUAGE PROGRAMMING

11-10 NPL Supplement for AIX

11.5.1 General

Use the large model 286 with extensions (-M2le) option on all "cc" compile commands,
or ensure that this is part of the COPTS make variable.

Make sure the include files provided with the BESDK are available either in a directory
specified by a "-Idirectory" option to the "cc" command or as part of the COPTS make
variable.

11.5.2 Mainline

The starting label of user code is called "main".

NOTE: Substantial startup code from the C library is executed before reaching the "main"
routine. The standard entry point of an image linked using Microsoft C is "__start",
a library routine.

The RTP subroutine should be referenced as an external with the C naming conventions.

11.5.3 Calling Conventions for BESDK Subroutines

Test rtp Subroutines
Declare all GOSUB’ routines using "pascal" and "far" calling conventions. The
"rtpdeffn.h" include file for Xenix defines "rtpdeffn_ext" as equivalent to this designation.

RTPEXT Subroutine
The RTPEXT subroutine should be defined as a procedure with the C naming conven-
tions. When called, the address of the rtpdef structure (defined in the include file rtpall.h)
is the only parameter. The first field of this structure is a rtpreq structure (defined in the
include file rtpall.h).

GOSUB’ Subroutines:
Use the "pascal" designation of declarations of all subroutines that are called using the
GOSUB’ interface. The "rtpdeffn.h" include file for Xenix defines "rtpdeffn_ext" as
equivalent to this designation.

Formats of strings in NPL do not have a zero-terminator and are not variable length. If
strings are to be used by C library routines, you must make copies which have trailing
spaces removed and a zero terminator added.

MIXED LANGUAGE PROGRAMMING Microsoft C under Xenix

NPL Intel UNIX Supplement 11-11

11.5.4 Linkage of Test Program

If the "cc" command is provided with the names of all source files (or .o files produced
on previous compiles), it automatically invokes the linker with appropriate options (un-
less the -c option is specified) to produce the standalone test program. There is no need to
specify which libraries are to be used by the compiler, provided the appropriately named
libraries can be found in the standard system library directory (/usr/lib).

The files required for production of the standalone should include:

• The mainline

• The RTP test subroutine

• The RTPEXT subroutine (optional but recommended)

• The GOSUB’ subroutines

• Any FUNCTION or PROCEDURE subroutines. If these are used, the rtpparm.o
module must also be included.

Implied in the linkage are:

• The C support library Llibc.a (name may vary)

• The C segment module Lseg.o (may be in support library)

• The C startup module Lcrt0.o (may be in support library)

11.5.5 Linkage of Customized rti or rtp

If the "cc" command is provided with the names of all source files (or .o files produced
on previous compiles) and the provided support libraries in the required order, it automat-
ically invokes the linker with appropriate options (unless the -c option is specified) to pro-
duce the customized rti or rtp program. All libraries to be used by the compiler must be
specified, except those located in the standard system library directory (/usr/lib). The re-
sultant file name should be specified to indicate a variant version of rti or rtp, e.g. "-o
rtix".

Microsoft C under Xenix MIXED LANGUAGE PROGRAMMING

11-12 NPL Supplement for AIX

On some systems the linker may generate a "too many public symbols" warning. This is
caused by the large size of NPL, and can be safely ignored.

The files required for production of the customized rti or rtp should include:

• ../lib/start (from BESDK)

• The mainline

• The RTPEXT subroutine

• The GOSUB’ subroutines

• Any FUNCTION or PROCEDURE subroutines. If these are used, the rtpparm.o
module must also be included.

• ../lib/rtplib (from BESDK)

• ../lib/rtpblib (Non-Interpretive rtp only)

• ../lib/srclib (Interpretive rti only)

• ../lib/srcblib (Interpretive rti only)

• ../lib/last (from BESDK)

Implied in the linkage are:

• The C support library Llibc.a (name may vary)

• The C segment module Lseg.o (may be in support library)

• The C startup module Lcrt0.o (may be in support library)

For example:

cc -Ml ../lib/start mymain.o myrtpext.o mysub.o ../lib/rtplib \
 ../lib/rtpblib ../lib/last -o rtpx

produces "rtpx" (Non-Interpretive RunTime, with extensions).

MIXED LANGUAGE PROGRAMMING Microsoft C under Xenix

NPL Intel UNIX Supplement 11-13

cc -Ml ../lib/start mymain.o myrtpext.o mysub.o ../lib/rtplib \
 ../lib/srclib ../lib/srcblib ../lib/last -o rtix

produces "rtix" (Interpretive RunTime, with extensions).

The batch command files supplied on the BESDK diskette may also be used to simplify
the above commands to the following:

../bin/makertpx mymain.o myrtpext.o mysub.o

produces "rtpx" (Non-Interpretive RunTime, with extensions).

and

../bin/makertix mymain.o myrtpext.o mysub.o

produces "rtix" (Interpretive RunTime, with extensions).

11.6 Microsoft Macro Assembler Under Xenix

External subroutines and the mainline can be written entirely in MASM Macro assembler
if required. Macro assembler has the advantage that support code dragged in from the li-
braries is usually minimal, and so the resulting library is often more compact than if writ-
ten in a high-level language. However, the code is generally much more difficult to write
and less portable when complete.

Microsoft masm may not be included in the software development package for all
Xenix/286 systems. Examples assume Microsoft MASM ver 4.00 or later. Earlier ver-
sions may also work but are not tested.

External libraries written in Macro Assembler do not support the FUNCTION or PROCE-
DURE interfaces or callbacks to NPL.

11.6.1 General

Make sure the include files provided with the BESDK are available in a directory speci-
fied by the "-Idirectory" option to the "masm" command.

If a module refers to an external routine which is located in a library, linkage is simplified
by adding an INCLUDELIB statement to the module referring to the required library.

Microsoft Macro Assembler Under Xenix MIXED LANGUAGE PROGRAMMING

11-14 NPL Supplement for AIX

11.6.2 Mainline

While it is possible to write an entire standalone module in macro assembler, interface to
the Xenix kernel on most systems is not supported unless the standard C segmentation
and startup modules are the first two modules linked. In this case, the entry point of the
assembly mainline must be labeled "_main" (one underline) and must be a PUBLIC sym-
bol. The module containing this label should be assembled with the "Mx" option to en-
sure that the lower case label is not translated by the assembly to upper case. The entry
point _main is assumed by the C startup module, and must have this name.

The rtp subroutine should be referenced as a far external with the name "_RTP".

Use Microsoft conventions for segment names. Explicit segment names must be used. Be
sure that:

• All code segments have combine class "CODE".

• All near-data segments (and standard stack) have combine class "DATA", and
are part of the group named DGROUP.

The module must not depend on any specific segment ordering. Segment ordering is de-
fined by the C segmentation module (i.e., all "CODE" first, DGROUP last, others in be-
tween). DGROUP segments of class "BSS" and "STACK" are always moved to the end
of DGROUP. External symbols "_edata" and "_end" are defined by the linker to be offset
DGROUP:BSS and offset DGROUP:STACK respectively.

At entry point _main, SS:SP are set to the system stack area. Do not attempt to use a dif-
ferent stack area.

If additional memory is required, use the system routines (malloc() or sbrk()) to obtain a
pointer to new memory. Freeing memory by using brk() or sbrk() is usually inadvisable
under Xenix.

Some additional restrictions apply (because code is running in protected mode at privi-
lege level 3) that should be noted by those used to programming in real mode. These in-
clude:

• Segment addresses are no longer directly related to physical addresses. Opera-
tions which use this dependence, (e.g. to address huge data objects) will not work.

MIXED LANGUAGE PROGRAMMING Microsoft Macro Assembler Under Xenix

NPL Intel UNIX Supplement 11-15

• Modifications to code segments are prohibited.

• Execution of code located in data segments is prohibited.

• Privileged instructions may not be used (e.g., port I/O, CLI/STI).

11.6.3 Calling Conventions for BESDK Subroutines

Test rtp Subroutines
Declare rtp subroutine as public with name "_RTP".

Call GOSUB’ subroutines using pascal calling conventions (push arguments in order
used in GOSUB’ statements, assume arguments popped by subroutine).

RTPEXT Subroutine:
The RTPEXT subroutine should be defined as a far procedure with the name
"_RTPEXT". When called, the address of the RTPDEF structure (defined in the include
file rtpall.inc) is on the stack as a far pointer. The first field of this structure is an
RTPREQ structure (defined in the include file rtpall.inc).

GOSUB’ Subroutines
Each subroutine should be defined as a far procedure. When called, the parameters are on
the stack below the return address. The first parameter of the GOSUB’ is pushed first and
the last parameter pushed last.

A string parameter is passed as:

PUSH SEG <string>
PUSH OFFSET <string>
PUSH SIZE <string>

A numeric parameter is passed as:

PUSH SEG <rtpnum structure>
PUSH OFFSET <rtpnum structure>

The rtpnum structure is defined in the include file rtpall.inc.

To conform to pascal calling conventions, use the form of the "RET" instruction that auto-
matically pops parameters from the stack (4 bytes per numeric parameter + 6 bytes per
string parameter).

Microsoft Macro Assembler Under Xenix MIXED LANGUAGE PROGRAMMING

11-16 NPL Supplement for AIX

11.6.4 Linkage of Test Program

Programs written in Macro Assembler must be linked to produce an executable file. All
input files to "ld" must be the result of previously run assemblies or libraries of files.

HINT: Although "ld" can be used to invoke the linker directly, it is easier to invoke it by using
the "cc" command. The advantage of this is that "cc" automatically links in the C startup
and support libraries which are required so they do not have to be named explicitly, pro-
vided the appropriately named libraries can be found in the standard system library direc-
tory (usr/lib).

On some systems, the linker may generate a "too many public symbols" warning. This is
caused by the large size of NPL, and can be safely ignored.

The files required for production of the standalone should include:

• The mainline (e.g. mymain.o)

• The RTP test subroutine (e.g. myrtp.o)

• The RTPEXT subroutine (optional but recommended)

• The GOSUB’ subroutines (e.g. mysub.o)

Implied in the linkage are:

• The C support library Llibc.a (name may vary)

• The C segment module Lseg.o (may be in support library)

• The C startup module Lcrt0.o (may be in support library)

For example:

cc -Ml -o mymain mymain.o myrtp.o myrtpext.o mysub.o

11.6.5 Linkage of Customized rti or rtp

As stated in the previous section, "cc" can be used to invoke the linker and automatically
link the required C startup routines and support libraries.

MIXED LANGUAGE PROGRAMMING Microsoft Macro Assembler Under Xenix

NPL Intel UNIX Supplement 11-17

The files required for production of the customized rti or rtp should include:

• ../lib/start (from BESDK)

• The mainline

• The RTPEXT subroutine

• The GOSUB’ subroutines

• ../lib/rtplib (from BESDK)

• ../lib/rtpblib (Non-Interpretive rtp only)

• ../lib/srclib (Interpretive rti only)

• ../lib/srcblib (Interpretive rti only)

• ../lib/last (from BESDK)

Implied in the linkage are:

• The C support library Llibc.a (name may vary)

• The C segment module Lseg.o (may be in support library)

• The C startup module Lcrt0.o (may be in support library)

For example:

cc -Ml ../lib/start mymain.o myrtpext.o mysub.o ../lib rtplib \
 ../lib/rtpblib ../lib/last -o rtpx

produces "rtpx" (Non-Interpretive RunTime, with extensions).

cc -Ml ../lib/start mymain.o myrtpext.o mysub.o ../lib/rtplib \
 ../lib/srclib ../lib/srcblib ../lib/last -o rtix

produces "rtix" (Interpretive RunTime, with extensions).

The batch command files supplied on the BESDK diskette may also be used to simplify
the above commands to the following:

../bin/makertpx mymain.o myrtpext.o mysub.o

Microsoft Macro Assembler Under Xenix MIXED LANGUAGE PROGRAMMING

11-18 NPL Supplement for AIX

produces "rtpx" (Non-Interpretive RunTime, with extensions).

and

../bin/makertix mymain.o myrtpext.o mysub.o

produces "rtix" (Interpretive RunTime, with extensions).

11.7 UNIX Support

External subroutines are supported for UNIX V/386 in the native environment. Compil-
ing, linking and running customized versions of rti and rtp under UNIX V/386 can be exe-
cuted provided access to the UNIX software development system is provided

The entry point of the program must be labeled "_start" (one underline) and must be a
PUBLIC symbol. Linking with the standard C startup and support library meets this con-
dition.

11.8 Microsoft C under UNIX

As indicated in the example, writing external subroutines in Microsoft C for UNIX V/386
is relatively straightforward. Examples assume Altos UNIX System V5.3bT1 or later, or
SCO UNIX version 3.2 or later. Earlier versions may also work but are not tested.

11.8.1 General

No special models are used with UNIX V/386 - all addresses are 32 bit offsets (seg-
mented addresses are not generally used by applications under UNIX V/386).

Make sure the include files provided with the BESDK are available either in a directory
specified by a "-Idirectory" option to the "cc" command or as part of the COPTS make
variable.

11.8.2 Mainline

The starting label of user code is called "main".

MIXED LANGUAGE PROGRAMMING UNIX Support

NPL Intel UNIX Supplement 11-19

NOTE: Substantial startup code from the C library is executed before reaching the "main"
routine. The standard entry point of an image linked using Microsoft C is "_start",
a library routine.

The RTP subroutine should be referenced as an external with the C naming conventions.

11.8.3 Calling Conventions for BESDK Subroutines

Test rtp Subroutines
Declare all GOSUB’ routines with the parameters listed in reverse order. The
"rtpdeffn.h" include file for UNIX defines "rtpdeffn_ext" as equivalent to a null symbol
for this implementation.

RTPEXT Subroutine
The RTPEXT subroutine should be defined as a procedure with the C naming conven-
tions. When called, the address of the rtpdef structure (defined in the include file rtpall.h)
is the only parameter. The first field of this structure is a rtpreq structure (defined in the
include file rtpall.h).

GOSUB’ Subroutines
All subroutines called using the GOSUB’ interface must be declared with the parameters
listed in reverse order. The "rtpdeffn.h" include file for UNIX defines "rtpdeffn_ext" and
"rtpdeffn_ptr" as equivalent to null symbols for this implementation.

Formats of strings in NPL do not have a zero-terminator and are not variable length. If
strings are to be used by C library routines, you must make copies which have trailing
spaces removed and a zero terminator added.

11.8.4 Linkage of Test Program

If the "cc" command is provided with the names of all source files (or .o files produced
on previous compiles), it automatically invokes the linker with appropriate options (un-
less the -c option is specified) to produce the standalone test program. There is no need to
specify which libraries are to be used by the compiler, provided the appropriately named
libraries can be found in the standard system library directory (/usr/lib).

The files required for production of the standalone should include:

• The mainline

Microsoft C under UNIX MIXED LANGUAGE PROGRAMMING

11-20 NPL Supplement for AIX

• The RTP test subroutine

• The RTPEXT subroutine (optional but recommended)

• The GOSUB’ subroutines

• Any FUNCTION or PROCEDURE subroutines. If these are used, the rtpparm.o
module must also be included.

Implied in the linkage are:

• The C startup module crt1.o

• The C ending module crtn.o

11.8.5 Linkage of Customized rti or rtp

If the "cc" command is provided with the names of all source files (or .o files produced
on previous compiles) and the provided support libraries in the required order, it automat-
ically invokes the linker with appropriate options (unless the -c option is specified) to pro-
duce the customized rti or rtp program. All libraries to be used by the compiler must be
specified, except those located in the standard system library directory (/usr/lib). The re-
sultant file name should also be specified to indicate a variant version of rti or rtp, e.g. "-o
rtix".

The files required for production of the customized rti or rtp should include:

• ../lib/start (from BESDK)

• The mainline

• The RTPEXT subroutine

• The GOSUB’ subroutines

• Any FUNCTION or PROCEDURE subroutines. If these are used, the rtpparm.o
module must also be included.

• ../lib/rtplib (from BESDK)

MIXED LANGUAGE PROGRAMMING Microsoft C under UNIX

NPL Intel UNIX Supplement 11-21

• ../lib/rtpblib (Non-Interpretive rtp only)

• ../lib/srclib (Interpretive rti only)

• ../lib/srcblib (Interpretive rti only)

• ../lib/last (from BESDK)

Implied in the linkage are:

• The C startup module crt1.o

• The C ending module crtn.o

For example:

cc ../lib/start mymain.o myrtpext.o mysub.o ../lib/rtplib \
 ../lib/rtpblib ../lib/last -o rtpx

produces "rtpx" (Non-Interpretive RunTime, with extensions).

cc ../lib/start mymain.o myrtpext.o mysub.o ../lib/rtplib \
 ../lib/srclib ../lib/srcblib ../lib/last -o rtix

produces "rtix" (Interpretive runTime, with extensions).

The batch command files supplied on the BESDK diskette may also be used to simplify
the above commands to the following:

../bin/makertpx mymain.o myrtpext.o mysub.o

produces "rtpx" (Non-Interpretive RunTime, with extensions).

and

../bin/makertix mymain.o myrtpext.o mysub.o

produces "rtix" (Interpretive RunTime, with extensions).

Microsoft C under UNIX MIXED LANGUAGE PROGRAMMING

11-22 NPL Supplement for AIX

11.9 Microsoft Macro Assembler Under UNIX

External subroutines and the mainline can be written entirely in Macro assembler if re-
quired. Macro assembler has the advantage that support code dragged in from the librar-
ies is usually minimal, and so the resulting library is often more compact than if written
in a high-level language. However, the code is generally much more difficult to write and
less portable when complete.

Microsoft masm may not be included in the software development package for all UNIX
V/386 systems. Examples assume Microsoft MASM ver 4.00 or later. Earlier versions
may also work but are not tested.

External libraries written in Macro Assembler do not support the FUNCTION or PROCE-
DURE interfaces or callbacks to NPL.

11.9.1 General

Make sure the include files provided with the BESDK are available in a directory speci-
fied by the "-Idirectory" option to the "masm" command.

If a module refers to an external routine which is located in a library, linkage is simplified
by adding an INCLUDELIB statement to the module referring to the required library.

11.9.2 Mainline

While it is possible to write an entire standalone module in macro assembler, interface to
the UNIX kernel on most systems is not supported unless the standard C startup and end
modules are the first and last modules linked. In this case, the entry point of the assembly
mainline must be labeled "_main" (one underline) and must be a PUBLIC symbol. The
module containing this label should be assembled with the "Mx" option to ensure that the
lower case label is not translated by the assembly to upper case. The entry point _main is
assumed by the C startup module, and must have this name.

The rtp subroutine should be referenced as a near external.

Use Microsoft conventions for small model segment names. Explicit segment names
must be used. Be sure that:

MIXED LANGUAGE PROGRAMMING Microsoft Macro Assembler Under UNIX

NPL Intel UNIX Supplement 11-23

• All code segments have combine class "CODE".

• All data segments (and standard stack) have combine class "DATA", and are part
of the group named DGROUP.

At entry point _main, SS:SP are set to the system stack area. Do not attempt to use a dif-
ferent stack area.

All segments should have a 32-bit wordsize (USE32 directive).

Avoid using the segment registers.

If additional memory is required, use the system routines (malloc() or sbrk()) to obtain a
pointer to new memory. Freeing memory by using brk() or sbrk() is usually inadvisable
under UNIX.

Some additional restrictions apply (because code is running in protected mode at privi-
lege level 3) that should be noted by those used to programming in real mode:

• Modifications to code segments are prohibited.

• Execution of code located in data segments is prohibited.

• Privileged instructions may not be used (e.g. port I/O, CLI/STI).

11.9.3 Calling Conventions for BESDK Subroutines

Test rtp Subroutines
Declare rtp subroutine as public.

Call GOSUB’ subroutines using pascal calling conventions (push arguments in order
used in GOSUB’ statements, assume arguments popped by subroutine).

RTPEXT Subroutine
The RTPEXT subroutine should be defined as a near procedure. When called, the address
of the RTPDEF structure (defined in the include file rtpall.inc) is on the stack as a near
pointer. The first field of this structure is an RTPREQ structure (defined in the include
file rtpall.inc).

Microsoft Macro Assembler Under UNIX MIXED LANGUAGE PROGRAMMING

11-24 NPL Supplement for AIX

GOSUB’ Subroutines
Each subroutine should be defined as a near procedure. When called, the parameters are
on the stack below the return address. The first parameter of the GOSUB’ is pushed first
and the last parameter pushed last.

A string parameter is passed as:

PUSH OFFSET <string>
PUSH SIZE <string>

A numeric parameter is passed as:

PUSH OFFSET <rtpnum structure>

The rtpnum structure is defined in the include file rtpall.inc.

To conform to pascal calling conventions, use the form of the "RET" instruction that auto-
matically pops parameters from the stack (4 bytes per numeric parameter + 8 bytes per
string parameter).

11.9.4 Linkage of Test Program

Programs written in Macro Assembler must be linked to produce an executable file. All
input files to "ld" must be the result of previously run assemblies or libraries of files.

HINT: Although "ld" can be used to invoke the linker directly, it is easier to invoke it by using
the "cc" command. The advantage of this is that "cc" automatically links in the C startup
and support libraries which are required so they do not have to be named explicitly, pro-
vided the appropriately named libraries can be found in the standard system library direc-
tory (usr/lib).

On some systems, the linker may generate a "too many public symbols" warning. This is
caused by the large size of NPL, and can be safely ignored.

The files required for production of the standalone should include:

• The mainline (e.g. mymain.o)

• The RTP test subroutine (e.g. myrtp.o)

• The RTPEXT subroutine (optional but recommended)

MIXED LANGUAGE PROGRAMMING Microsoft Macro Assembler Under UNIX

NPL Intel UNIX Supplement 11-25

• The GOSUB’ subroutines (e.g. mysub.o)

Implied in the linkage are:

• The C startup module crt1.o

• The C ending module crtn.o

For example:

cc -o mymain mymain.o myrtp.o myrtpext.o mysub.o

11.9.5 Linkage of Customized rti or rtp

As stated in the previous section, "cc" can be used to invoke the linker and automatically
link the required C startup routines and support libraries.

The files required for production of the customized rti or rtp should include:

• ../lib/start (from BESDK)

• The mainline

• The RTPEXT subroutine

• The GOSUB’ subroutines

• ../lib/rtplib (from BESDK)

• ../lib/rtpblib (Non-Interpretive rtp only)

• ../lib/srclib (Interpretive rti only)

• ../lib/srcblib (Interpretive rti only)

• ../lib/last (from BESDK)

Implied in the linkage are:

• The C startup module crt1.o

Microsoft Macro Assembler Under UNIX MIXED LANGUAGE PROGRAMMING

11-26 NPL Supplement for AIX

• The C ending module crtn.o

Linkage of .o object files produces by masm can be done using exactly the same com-
mands as for object files produced by the C compiler. See the section on linking of cus-
tomized rti or rtp with external subroutines written in C.

11.10 Flow Control for External Libraries

The flow control (in chronological order) for rtp or rti using external subroutines is as fol-
lows:

1. C startup routines execute and perform some initialization, and eventually call the ex-
ternal library mainline (i.e., main()).

2. The mainline performs some initialization work for the external subroutines, and calls
RTP(). If assembly language is used, initialization of the memory allocation support
module is required prior to calling RTP.

3. NPL runs and does some initial configuration work, including processing command-
line options and loading the bootstrap program.

4. NPL scans the external library for numbered DEFFN’s with named aliases, using the
LIST’ calls starting at function number 0. An internal table of identifiers and equiva-
lent externals is built.

5. NPL execution proceeds. At some point, a GOSUB’, (e.g., GOSUB’100) is executed,
and no local GOSUB’ subroutine is found. If the GOSUB’ is to a named DEFFN’,
and the identifier is found in the table created in step 4, the equivalent number is used
to query RTPEXT.

6. NPL calls RTPEXT to find out whether an external ’100 subroutine exists, and if so,
where it is and what parameter types it needs.

7. RTPEXT supplies the requested information (i.e., GOSUB’100 exists, has 3 parame-
ters with types string, string, and numeric, which is located at mysub()) and returns
(to NPL).

MIXED LANGUAGE PROGRAMMING Flow Control for External Libraries

NPL Intel UNIX Supplement 11-27

8. If the RTPEXT indicated that the subroutine does not exist, or if the number and type
of parameters do not match, a NPL error is generated on the GOSUB’ statement. Oth-
erwise, NPL evaluates parameters and calls the external subroutine (mysub) whose ad-
dress was provided by RTPEXT.

9. The external subroutine (mysub) executes and returns to NPL. NPL execution pro-
ceeds until we are back at step 5 (another GOSUB’) or the rtp is ending ($END,
Killed from HELP, etc.). In the second case, go to the next step.

10. NPL does its cleanup, then the RTP () subroutine returns to the caller (in the external
library mainline).

11. The external library mainline does C or Pascal library shutdown, and eventually ex-
its back to UNIX.

NOTE: RTPEXT can be called by LIST’ to find out information about DEFFN’ subroutines
without actually calling the subroutines.

Subroutines should not DEPEND on the above flow control order to work (i.e., a
subroutine should not expect RTPEXT to always be called immediately before it).

The above outline is provided merely as a guide to your understanding of how the
external mainline, rtp, RTPEXT and external subroutines interact.he following dia-
gram shows how execution proceeds using the various software components with the
above steps labeled.

Flow Control for External Libraries MIXED LANGUAGE PROGRAMMING

11-28 NPL Supplement for AIX

1. Library startup
Call to main()

11. C lib cleanup
Exit to DOS

rtp
NPL startup

3. Run BOOT.OBJ
4. Scan for named

 DEFFN aliases by
 following
 rtpdef_next_number
chain starting at 0
(multiple calls)

5. Run application
GOSUB’ 100 met

6. Call to RPTEXT()

8. Evaluate Parameters
Call to mysub()

Continue Application

$END met

10. NPL cleanup
RTP returns

External Library
components

NPL (rtp or rti)
components

main
2. my_initialization()

Call to RTP()

my_cleanup()
main returns

RTPEXT.
sets fields .
rtpdef_name_pointer.
rtpdef_name_length.
if DEFFN has.
alias

RTPEXT
7. RTPEXT provides

address of ’100
(mysub)

RTPEXT returns

mysub
9. mysub executes

mysub returns

MIXED LANGUAGE PROGRAMMING Flow Control for External Libraries

NPL Intel UNIX Supplement 11-29

The following diagram shows the execution picture for the FUNCTION/PROCEDURE
(interface):

rtp

resolve
FUNCTION or
PROCEDURE with
/EXTERNAL

call
FUNCTION or
PROCEDURE
declared with
/EXTERNAL

rtpfn_getparminfo()
provide parameter
info and pseudo
address

rtpfn_callfunction()
PROCEDURE CallbackKeyin

END PROCEDURE
or RETURN ERROR (x)

RTPEXT
validate parameters and
provide address
(myproc)

myproc

mycallbk
check exists
("CallBackKeyin")

call callback
with pseudo address

myproc returns

[while executing in external library, callbacks to NPL are permitted]

[while executing in NPL, callbacks to NPL are not permitted]

Flow Control for External Libraries MIXED LANGUAGE PROGRAMMING

11-30 NPL Supplement for AIX

APPENDIX A

COMMON PROBLEMS

A.1 Overview

Many of the problems discussed below are associated with how files and devices are ac-
cessed under the UNIX operating system. These problems typically fall into these catego-
ries:

1. Locating files and programs. If directories are specified explicitly in boot programs or
in compiler batch files, be sure to include the /usr specification. Also be sure that the
alternate path is properly set up for the user from the .profile file or set the
NIAKWA_RUNTIME environment variable is not set. Refer to Section 2.3.2 for de-
tails on the .profile file.

COMMON PROBLEMS Overview

NPL Intel UNIX Supplement A-1

2. Access privileges to files, devices, and programs. If attempting to access a given file
or device, make sure that the user has read and/or write privileges to the file or de-
vice. Read and/or write privileges must also exist for the directory in which the file or
device is located. For programs (rti, rtp, b2c, and shell script files), the user must have
execute privileges. Refer to the UNIX Commands Directory for details on estab-
lishing or changing access privileges.

3. Case sensitivity under UNIX. UNIX filenames are case sensitive. If a P48 error oc-
curs while executing the NPL RunTime check the $DEVICE statements for proper
case of the file names.

Section A.2 discusses problems and errors generated by the RunTime.

Section A.3 discusses the general problems and errors generated by the Niakwa NPL Up-
grade RunTime program.

Section A.4 discusses problems and errors generated by the NPL Compiler.

A.2 Runtime Problems

This section describes specific problems that may be encountered using the NPL Run-
Time program along with possible solutions.

Problem 1: Program rtp (or rti) not found.
The rtp or rti programs are not in the /usr/BASIC2C directory.

The rtp or rti programs do not have execute privileges.

The /usr/BASIC2C directory has not been properly set up as an alternate path.

The directory specified by the NIAKWA_RUNTIME environment variable has not been
properly set up as an alternate path.

Install the NPL RunTime Package.

Use the UNIX "chmod" command to set up execute privileges for /usr/BASIC2C/rti or
/usr/BASIC2C/rtp (run setup.nodes).

Runtime Problems COMMON PROBLEMS

A-2 NPL Intel UNIX Supplement

Modify the user’s .profile file as described in Section 2.3.2. It is necessary for the user to
logoff and login after this change has been made in order for it to take effect.

Set the NIAKWA_RUNTIME environment variable to point to the correct directory or
modify the user’s .profile as described in Section 2.3.2.

NOTE: This problem may also apply to any shell script files used to invoke the NPL Run-
Time. The same solutions apply.

Problem 2: A RunTime error P48 is generated.
The NPL RunTime program was unable to open the specified diskimage file.

The user does not have access rights to the specified diskimage file.

The $DEVICE statement used for raw diskette access may be wrong.

Be sure that the $DEVICE equivalence is specified correctly (case sensitive). If the $DE-
VICE statement does not include a directory specification (e.g., is simply a file name -
PLATTER1.BS2), be sure that the current directory is established properly with a cd
statement before execution of the RunTime.

Use the UNIX "chmod" statement to modify access rights. Read/write access is required
for the diskimage. The directories in which the diskimage file resides must also be set up
with appropriate read/write privileges.

If the device being accessed is a 5-1/4" 360K, or 1.2MB or 3-1/2" 720K, 1.44MB, or
2.88MB "raw" diskette, check that the $DEVICE statement references the proper UNIX
device. Refer to Section 5.2 for the proper $DEVICE statement.

Be sure that these devices have been created in the /dev directory and that the user has
read/write privileges for them. Refer to Section 5.2 for details.

Problem 3: The NPL RunTime program generates an I90 (or any
other I series) error.
The user may not have read/write privileges to the diskimage file or "raw" device being
accessed.

Use the chmod command to set up proper access privileges.

COMMON PROBLEMS Runtime Problems

NPL Intel UNIX Supplement A-3

Problem 4: The NPL RunTime program generates an immediate
D82 error stating that the boot program cannot be found.
The current directory has been improperly defined.

The boot program exists, but the case is different than specified.

The boot program exists, but the .OBJ extension is not in uppercase.

Check the shell script files used to invoke the NPL RunTime.

Either modify your shell script file or rename the boot program.

The NPL RunTime program will only look for boot programs with an uppercase .OBJ ex-
tension.

Problem 5: When reading from "raw" diskettes, data from a diskette
previously in the drive is accessed.
This problem is due to the restrictions that UNIX imposes on accessing diskettes. When-
ever the diskette drive door is opened, UNIX requires that the logical file associated with
the diskette drive be closed and reopened.

NPL programs which access diskettes must use either $CLOSE statements or a "$DE-
VICE (#X)=$DEVICE(#X)" statement (where X is the NPL device number used for the
diskette) whenever a new diskette is mounted (before the first access to the new diskette)
and after the last access to the last diskette (before exiting the program). Refer to Section
5.2 for further details on diskette handling under UNIX.

Problem 6: "Cannot Determine Terminal Number" is displayed upon
execution of rti or rtp.
The /usr/BASIC2C/ttys file is not properly setup or does not exist.

The system is in single user mode.

Create or properly setup the /usr/BASIC2C/ttys file. Refer to Section 7.4 or 8.3 for more
details.

Bring system up in multi-user mode.

Problem 7: The 2200 character set does not display properly on the screen.
The rtp or rti is unable to load the proper NPL screen translation file.

Runtime Problems COMMON PROBLEMS

A-4 NPL Intel UNIX Supplement

The SCREEN translation file does not exist. Reinstall from the Terminal Support files
diskette or recopy to the end user’s system from your system.

The user does not have read privileges to the file. Use the chmod command to correct this.

The characters may not be displayable on the terminal in use, or for terminals that sup-
port downloadable fonts, the appropriate font file may not have been downloaded to the
terminal.

The NPL RunTime may think that it is working with a different terminal than what is in
use. Check the UNIX system variables TERM or BASIC2C TERM to verify that the cor-
rect terminal type is set.

Problem 8: The keyboard does not generate expected key codes.
The rtp or rti is not able to load the NPL keyboard translation file

The KEYBOARD translation file does not exist.

The user does not have read privileges to the file.

The characters may not be defined on the keyboard in use.

The NPL RunTime may think that it is working with a different terminal than what is in
use.

Reinstall from the Development Package diskette.

Use the chmod command to correct this.

Download the keyboard font file if applicable.

Check the UNIX system variables TERM or BASIC2C TERM to verify that the correct
terminal type is set.

Problem 9: The message "the Niakwa Programming Language
authorized user limit exceeded. Access denied." appears.
The maximum number of authorized users for the NPL RunTime Package has been ex-
ceeded.

COMMON PROBLEMS Runtime Problems

NPL Intel UNIX Supplement A-5

Wait until one of the current users exits the NPL RunTime program. Access is then al-
lowed.

The problem may have also been caused by a situation where the user count is greater
than the actual number of NPL users on the system. Typically this occurs if tasks are
killed with a kill -9 command. The /usr/BASIC2C/userfix utility allows the developer to
reset the user count in this situation (UNIX only, Xenix users must reboot or rename the
commonmem file in /usr/BASIC2C). Refer to Section 7.6.1.

Problem 10: The message "Interpreter not enabled." appears.
The Interpretive RunTime Package (rti) has not been enabled on the system.

Use the Non-Interpretive version of the NPL RunTime program (rtp), or install the EN-
ABLED file (found on the NPL Development Package Compiler Diskette) in the /usr/BA-
SIC2C directory.

Problem 11: The message "cannot execute Access denied" appears.
The rti or rtp program does not have execute privileges.

Ensure that the rtp and rti file has execute privileges. The /usr/BASIC2C/setup.nodes
shell script will ensure that this is done.

Problem 12: The message "No more process available" appears.
In addition, the message "no files" may appear on the console.
The default UNIX files and inodes parameters are inadequate for use with NPL. This can
be cause by a high number of terminals being used with NPL, or a lower number of termi-
nals is being used, but each terminal is using a large number of files.

To correct this situation, it is necessary execute the UNIX Configure utility (typically
/usr/sys/conf/configure). Niakwa suggests that the following parameters be modified:

Option: Files, Inodes, and Filesystems
Parameter Description From To
(NINODE) Inodes 100 150
(NFILE) Open Files 100 150
Option: Processes, Memory, and Swapping
Parameter Description From To
(NPROC) Max Processes 60 100

Runtime Problems COMMON PROBLEMS

A-6 NPL Intel UNIX Supplement

NOTE: The above setting should be adequate for a sixteen user system. Higher values may
be required for a higher number of terminals or other special cases. Refer to the
UNIX User’s Guide for more information on using the UNIX "configure" utility.

Problem 13: The message: "Serial number not found on floppy diskette.
Please contact your distributor for assistance the NPL RunTime Canceled" appears.
The GOLD KEY diskette in the drive is not the Gold Key that is installed on the system.

Use the original Gold Key diskette that was used for the installation.

Verify that the drive door is closed.

Problem 14: The message "Please mount your Gold Key diskette"
appears on the screen when executing the NPL RunTime.
The Gold Key diskette is not mounted in the floppy drive.

Place the Gold Key diskette in the floppy drive and continue executing the NPL Run-
Time.

Check to see that the NPL RunTime has been installed. This can be done by running the
"xeninst" installation program. If the installation was not done, the installation program
continues. Otherwise, the installation program aborts with the error message "No installs
left on this diskette."

Problem 15: When executing the Gold Key installation program, the
message "Enter ’xeninst I’ to install or ’xeninst D’ to recall NPL."
An attempt was made to install or recall security without specifying the appropriate pa-
rameters.

Reenter the xeninst command making sure that the correct program is specified. For ex-
ample:

./xeninst X Y

where: X = I for install or D for de-install.

Y = 0 for drive 0 or 1 for drive 1 (drive 0 is the default).

Problem 16: The message "No installs left on this diskette" appears
when trying to install the security.
The security is already installed on another system.

COMMON PROBLEMS Runtime Problems

NPL Intel UNIX Supplement A-7

Recall the protection from the other system.

Problem 17: The message "Serial number not found on floppy
diskette" appears when trying to recall the security.
The original Gold Key diskette is not in the floppy drive.

Verify that the original Gold Key diskette is in the floppy drive.

Problem 18: The message "NIAKSER.DAT missing or damaged
(Error Code) appears on the screen when executing the NPL RunTime.
The NIAKSER.DAT file is not in the /usr/BASIC2C directory or the directory specified
by the NIAKWA_RUNTIME environment variable.

Invalid data is contained in the NIAKER.DAT file.

Make sure that the NIAKSER.DAT file is in the /usr/BASIC2C directory. It may be nec-
essary to copy this file again from the original Gold Key diskette.

Below are the description for the Error Code) values that may occur.

Error Code Description
Code 0 Cannot find NIAKSER.DAT.
Code 1 Cannot read NIAKSER.DAT.
Code 2-5 Invalid data in NIAKSER.DAT. File is probably damaged

Problem 19: The message "Please Mount your Gold Key diskette"
remains on the screen with an error code 1706 displayed on the screen
after the NPL RunTime has been executed.
The encrypted serial number in the NPL RunTime on the hard drive does not match the
encrypted serial number on the Gold Key diskette. This would occur when attempting to
use a different diskette than was used to install the NPL RunTime.

Be sure that the Gold Key that is mounted is the original diskette that was used to install
the NPL RunTime.

Runtime Problems COMMON PROBLEMS

A-8 NPL Intel UNIX Supplement

Problem 20: An error code "1706" appears in the upper left hand
corner during the security install process or when starting up the
NPL RunTime.
Security has not yet been installed on the hard drive. This message appears during the
normal security install process.

Install the Gold Key security on the hard drive.

A.3 Upgrade Problems

This section describes general problems which may be encountered in upgrading an exist-
ing NPL Release III RunTime to Release IV with a Niakwa NPL Upgrade Package.

Problem 1: When upgrading, a "This upgrade is for a site with x"
message appears.
The upgrade being used does not match the original system being upgraded. Contact
Niakwa on obtaining the correct Niakwa NPL Upgrade Package for the system to be up-
graded.

Problem 2: When upgrading, an Error #XX message appears.
Causes for this vary. The text for these various upgrade error messages are intended to be
self explanatory. Correct the indicated problem or contact Niakwa for information on ob-
taining the correct Niakwa NPL Upgrade Package for the system to be upgraded.

A.4 Compiler Problems

This section describes specific problems and their solution that may be encountered when
using the NPL compiler.

Problem 1: Program b2c not found.
The b2c program is not in the /usr/BASIC2C directory. Install the compiler.

The user does not have execute privileges for the file b2c or the directory /usr/BASIC2C.

The /usr/BASIC2C directory has not been properly set up as an alternate path.

COMMON PROBLEMS Upgrade Problems

NPL Intel UNIX Supplement A-9

Modify the user’s .profile file as described in Section 2.3.2. It is necessary for the user to
logoff and login after this change has been made for it to take effect.

Use the chmod command to set up execute privileges. Refer to the UNIX Commands Di-
rectory for details on the chmod command.

NOTE: This problem may also apply to any shell script files used to invoke the compiler.
The same solutions apply.

Problem 2: The compiler generates a message "No source programs
matching wildcard".
The compiler could not find any programs in the "srcloc" specified which matched any of
the program names or program name wildcards entered.

The "srcloc" has been improperly specified.

If attempting to compile ASCII text programs, be sure that the .SRC extension is in upper-
case as the file is named. The compiler ignores programs with lowercase .src extensions.

If using a batch file to compile programs, be sure that the "srcloc" includes /usr as part of
the path name.

Problem 3: The compiler states "cannot open "srcloc" (or "objloc")
as a diskimage file" when compiling from or to diskimage files.
The compiler cannot locate the specified diskimage file.

The user does not have access rights to the specified diskimage file.

Be sure that the "srcloc" (or "objloc") is specified correctly (case sensitive). If the
"srcloc" (or "objloc") does not include a directory specification (i.e., is simply a file name
- PLATTER1.BS2 for example), be sure the current directory has been properly specified.

Use the UNIX "chmod" statement to modify access rights. Read access is required for the
"srcloc" diskimage. Read/write access is required for the "objloc" diskimage. The directo-
ries in which the diskimage file resides must also be setup with appropriate read/write
privileges.

Problem 4: The compiler states "cannot open "srcloc" as a diskimage
file" when compiling from 2200 format diskettes.
The "srcloc" is not properly specified.

Compiler Problems COMMON PROBLEMS

A-10 NPL Intel UNIX Supplement

The "srcloc" does not have read access privileges.

NOTE: The Wang 2200 does not directly support 3-1/2" diskettes.

Be sure that the "srcloc" is properly specified. For compiling from 2200 format diskettes,
the specification is:

/dev/fd048ds9

Be sure that the user has read access privileges to the device (in the /dev directory). Use
the chmod command to change access to the device.

COMMON PROBLEMS Compiler Problems

NPL Intel UNIX Supplement A-11

APPENDIX B

UNIX ERROR CODES

B.1 Overview

In the Intel UNIX implementation of the Niakwa RunTime program, the Error Processor
displays a UNIX Error Code (displayed on the screen as "UNIX Error Code: xxxx")
whenever possible. This code shows the operating system error code received by the NPL
RunTime during execution of the statement producing the error. This code contains infor-
mation which is useful in diagnosing the problem. Refer to the appropriate UNIX refer-
ence manual for further details on the error message.

All UNIX Error Codes are reported in hexadecimal format, not decimal. The following
are some of the more frequently encountered UNIX error codes and their meanings:

0002 File not found. This code is most often displayed with a NPL error code P48 when
an attempt is made to access a diskimage file or UNIX device which does not ex-
ist. This error may also be displayed with an initial D82 error when the specified
BOOT program is not found.

UNIX ERROR CODES Overview

NPL Intel UNIX Supplement B-1

0005 General I/O error. This code is most often displayed with a NPL error code of I93.
It usually indicates a disk format error. This code is also returned when an attempt
is made to access a diskette that is not in the drive.

000D Permission Denied. This error code indicates that the user does not have proper ac-
cess privileges for the file or device being accessed. It is most often associated
with a NPL error code of I90.

NOTE: Located on the NPL RunTime diskette are two files, RTIXERR.HLP and RTIX-
ERR.IDX, which must be installed in the /usr/BASIC2C directory (or the specified
default RunTime directory) to display descriptive error messages for all UNIX oper-
ating system error codes.

Overview UNIX ERROR CODES

B-2 NPL Intel UNIX Supplement

APPENDIX C

PERFORMANCE ISSUES

C.1 Overview

The purpose of this Appendix is to provide suggestions on ways to manage performance
when using UNIX-based operating environments with NPL.

Section C.2 discusses the use of RAM disks.

Section C.3 discusses $OPTIONS settings.

Section C.4 discusses configuration issues.

PERFORMANCE ISSUES Overview

NPL Intel UNIX Supplement C-1

C.2 RAM Disks

UNIX operating environments typically support the use of RAM disks. Performance can
be significantly enhanced by implementing this feature, especially in the areas of pro-
gram loading and record locking. Refer to Section 5.3.4 and the UNIX documentation for
details.

C.3 $OPTIONS Settings

There are several $OPTIONS setting that can have a significant impact on NPL perform-
ance under UNIX. These include:

• Byte 14 for timeslice release. Refer to Section 5.3.3, 7.5.2, 8.2.2, and the NPL
Statements Guide, $OPTIONS.

• Byte 35 for no $BREAK behavior. Refer to Section 7.5.2, 8.2.2 and the NPL
Statements Guide, $OPTIONS.

• Byte 39 for no implicit $OPEN. Refer to Section 5.3.6, 7.2.1, 8.2.2, and the NPL
Statements Guide, $OPTIONS.

C.4 Configuration Issues

There are several NPL performance issues under UNIX that can be considered related to
configuration. These include:

• The use of polling KEYINs and $BREAK. Refer to Section 5.3.3 for options re-
lated to this UNIX specific issue.

• Using read only files to avoid file locks. Refer to Section 7.2 for details.

RAM Disks PERFORMANCE ISSUES

C-2 NPL Intel UNIX Supplement

APPENDIX D

"RAW" DEVICE COMPATIBILITY
CHART

D.1 "Raw" Diskette Chart

This chart lists the "raw" diskette compatibility for all operating system groups currently
supported by NPL.

"RAW" DEVICE COMPATIBILITY CHART "Raw" Diskette Chart

NPL Intel UNIX Supplement D-1

NPL "RAW" DEVICE COMPATIBILITY TABLE
5-1/4" Diskettes 3-1/2" Diskettes

System Drive Type $FORMAT 320K 360K 720K 1.2MB 720K 8 1.44MB
8

2.88MB9

Wang 2200/CS 360K X X X1 - - - - -
1.2MB* X2 - - - -3 - - -

MS-DOS 360K X X X4 - - - - -
720K X - - - - X4 - -
1.2MB* X X X4 - X4 - - -
1.44MB X - - - - X4 X4 -
2.88MB X - - - - X4 X4 X4

Intel UNIX
&Xenix

360K 5 - X X - - - -

720K 5 - - - - X - -
1.2MB* 5 - X X X - - -
1.44MB 5 - - - - X X -
2.88MB 5 - - - - X X X

SuperDOS 360K X6 - X4 - - - - -
720K X6 - - - - X4 - -
1.2MB* X6 - X4 - X4 - - -
1.44MB X6 - - - - X4 X4 -
2.88MB - - - - - - - -

Honeywell
XPS-100

720K 7 - -7 X - - - -

Bull DPX/2 720K 7 - -7 X - - - -
NCR TOWER 1.2MB 10 X11 X11 X11 - - - -
IBM RS/6000 1.44MB 5 - - - - X X -

X = SUPPORTED

* Any 360K diskette (DSDD) which has been written to in a 1.2MB drive may be unreli-
able when accessed on a 360K drive. This is a stated hardware limitation of the
1.2MB drive technology.

"Raw" Diskette Chart "RAW" DEVICE COMPATIBILITY CHART

D-2 NPL Intel UNIX Supplement

NOTE: Diskettes which have been written to on 1.2MB drives can always be read success-
fully on another 1.2MB drive. In addition, diskettes which have been created on a
360K drive can always be read successfully on any 1.2MB drive. This restriction
applies only to reading diskettes on a 360K drive which have been written to on a
1.2MB drive.

NOTES:

(1) Using the "PC Interchange" format, a special $GIO microcommand sequence is re-
quired to format 360K diskettes. Refer to Section 15.7.1 of the Programmer’s Guide
for details.

(2) Neither 360K nor 320K diskettes can be formatted in the 1.2MB diskette drive on
the DS. 1.2MB diskettes created in the native 2200 format (256 byte sectors) on the
Wang DS are not supported on any NPL machine.

(3) Although the Wang documentation specifies that "PC Interchange" format is sup-
ported on the 1.2MB diskette, our testing to date has not yielded positive results.

(4) Access to 360K, 1.2MB, 720K, 1.4MB, and 2.88MB "raw" diskettes under MS-
DOS and SuperDOS (excluding 2.88MB) is supported by RTP and RTI, but not by
B2C, which requires 320K "raw" formatted diskettes. Under Release IV, Super-
DOS, 320K "raw" formatted diskettes are not supported under B2C.

(5) $FORMAT DISK is not supported under Intel UNIX or Xenix. Refer to the Intel
UNIX Supplement for details.

(6) $FORMAT DISK for 3-1/2" or 5-1/4" inch diskettes is not supported under Pro-
tected Mode SuperDOS.

(7) Many restrictions apply to the use of 360K "raw" diskettes on the Honeywell Bull
XPS-100 and Bull DPX/2. Refer to Section 10.3 of the appropriate UNIX Adden-
dum in the NPL Release III UNIX V Supplement for more information.

(8) Support of 3.5" 720K and 1.44MB diskettes requires Release 3.00 or higher.

(9) Support of 3.5" 2.88MB diskettes requires Release 4.00 or higher.

(10) The $FORMAT DISK command is not supported for any "raw" diskettes on the
NCR Tower 32.

"RAW" DEVICE COMPATIBILITY CHART "Raw" Diskette Chart

NPL Intel UNIX Supplement D-3

(11) Only read and write operations of "raw" diskettes are supported. It is possible to
format 640K diskettes using the UNIX format command. According to the NCR
documentation, 720K diskettes are not supported. This is because the UNIX format
command does not always succeed when a 720K diskette is specified. As a result,
you may not be able to format 720K diskettes on the NCR TOWER 32 systems. It
is not possible to format 320K or 360K diskettes. Therefore, 320K and 360K disk-
ettes must be preformatted on another system.

For information regarding naming conventions and accessing "raw" diskettes within spe-
cific hardware environments, refer to Chapter 5 of the appropriate NPL Supplement.

"Raw" Diskette Chart "RAW" DEVICE COMPATIBILITY CHART

D-4 NPL Intel UNIX Supplement

	TABLE OF CONTENTS
	PREFACE
	The NPL Intel UNIX Supplement P-1
	Prerequisite Knowledge P-2
	How to Use the NPL Documentation P-2
	How to Use this Supplement P-2
	Notational Conventions P-2
	Terminology P-5

	INTRODUCTION
	Overview 1-1
	Contents of the Niakwa Development Package 1-2
	Compiler Diskette 1-2
	Utilities Diskette 1-3
	Terminal Support Files Diskette 1-3
	BESDK Diskette 1-5

	Contents of the Niakwa NPL Runtime Package 1-5
	Niakwa RunTime Package Files 1-6
	Niakwa NPL RunTime Package File Listing 1-6

	Niakwa NPL Upgrade RunTime Package 1-7
	Niakwa NPL Upgrade RunTime Package File Listing 1-7

	UNIX-Specific Features of the NPL Runtime 1-8
	Intel UNIX Supplement Overview 1-9

	INSTALLATION
	Overview 2-1
	OS and Hardware Requirements 2-2
	System Requirements 2-2
	Supported Terminals 2-3
	Printer Support 2-3

	NPL Configuration Requirements 2-3
	System Parameters 2-4
	Modifying the .profile File 2-4

	Installing the NPL Development Package 2-6
	Intel UNIX Diskette Drives 2-7
	Installing the Development Software 2-7
	Installation Steps 2-7

	Installing the NPL External Subroutine Development Kit (BESDK) 2-8

	NPL Runtime Security 2-8
	Security Overview 2-8
	The NIAKSER.DAT File 2-9
	The Security Check 2-9
	NIAKWA_RUNTIME Environment Variable 2-10
	Locating the NPL Software in a Directory other than /usr/BASIC2C 2-11
	SIC2C 2-11

	The Security Screen 2-11
	Once-a-Day Security 2-12
	What to Do if the Gold Key Security is Lost 2-12
	Replacement RunTimes 2-13

	Installing the NPL Runtime Package 2-13
	NIAKWA_RUNTIME Environment Variable 2-13
	Copying the Software to the Hard Disk 2-13
	Installation Steps 2-14

	Installing the Gold Key Security 2-14
	Installation Steps 2-15

	Access Privileges 2-16
	setup.nodes 2-16

	Terminal Configuration 2-17
	Recalling the Gold Key Security 2-17
	Recall Steps 2-18

	Installing the Upgrade RunTime Package 2-19
	Requirements for Upgrading 2-19
	How the Upgrade Works 2-20
	Performing the Upgrade 2-21
	Upgrade Steps 2-21

	Recalling the Upgraded RunTime Package 2-23
	Reinstalling the Upgrade RunTime Package 2-24
	Reinstallation Steps 2-24

	CONFIGURATION
	Overview 3-1
	 The UNIX File System 3-2
	 Location of NPL Software 3-2
	Installation of Application Software 3-3
	Locating Application Programs and Data 3-4

	Auxiliary Files 3-5
	The "ENABLED" File 3-5
	Keyboard Files 3-6
	Screen and Font Files 3-7
	Printer Control Values 3-9
	Error Descriptions 3-9
	Terminal Identification 3-10
	Additional End-User Security (#GOLDKEY) 3-10

	Configuring Additional Users for Operation 3-11
	Adding a User to UNIX 3-11
	The User Directory 3-11
	The .profile File 3-11

	Configuring User's Workstations 3-12
	Required Access Privileges 3-12
	Executing the Runtime from a Shell Script 3-12
	Executing the RunTime from a Menu System 3-13
	Creating the Menu Instruction File 3-14
	Displaying the Menu Instruction File 3-14
	An Example Menu Instruction File 3-15

	Linking Start-Up and Menu Script Files 3-15

	RUNTIME OPERATION
	Overview 4-1
	rtp Versus rti 4-2
	Starting the NPL RunTime 4-2
	Starting From the Command Processor 4-2
	Starting from Shell Script Files 4-3
	Starting from a Menu 4-3

	Command Line (Start-up) Options 4-4
	-B (Background Partition) 4-4
	-D (DET Entries) 4-5
	Special Considerations for -D Option 4-5

	-G (Graphics Mode) 4-6
	-H (Handle Table Size) 4-6
	-K (Mouse Support) 4-7
	-L (Leave Overhead Memory) 4-7
	-M (XMS Memory) 4-7
	-P (Pre-Boot) 4-7
	-R (Remote Control) 4-8
	-S (Separate Program Segments) 4-8
	-T (Terminal/Port Number) 4-8
	-U (UMB Memory) 4-9
	The -X (Load External Library) 4-9
	The BOOT Program 4-9

	Available Memory 4-10
	Default Printer Control 4-10
	Default Values 4-10

	Exiting from the RunTime Program 4-11
	Exiting Under Program Control 4-11
	Exiting using the HELP Key 4-12
	Exiting using the Interrupt Key 4-12

	DEVICE SUPPORT
	Overview 5-1
	Diskette Devices 5-2
	Naming Conventions 5-3
	UNIX Diskette Device Names 5-3

	Supported Media 5-4
	5-1/4" Media 5-4
	3-1/2" Media 5-5

	Determination of Media Type 5-6
	"Raw" Diskettes 5-7
	Performance 5-8
	Media Defects 5-8
	Drive/Media Compatibility 5-8
	Data Integrity 5-9
	Multi-User Access 5-9
	$FORMAT DISK 5-9

	Error Handling 5-10
	Programming Considerations 5-10
	Mounting Diskettes 5-10
	I93 Error if No Diskette in Drive 5-11

	Diskimage Files 5-11
	Naming Conventions 5-11
	File Allocation Considerations 5-12
	SCRATCH DISK 5-12
	Non-Catalogued Diskimage Space 5-12
	Altering Diskimage File Size 5-12

	Effect of Disk I/O on Task Interleave 5-13
	The Timeslice Release Option 5-13
	Release of Diskimage File Lock 5-14
	Performance Considerations 5-14

	RAM Disks 5-15
	Creating a RAM Disk 5-15
	Accessing a RAM Disk 5-15
	Use of RAM Disks to Functionally Replace Global Partitions 5-16

	UNIX umask and ulimit 5-17
	umask 5-17
	ulimit 5-17

	Other Issues 5-17

	Supported Console Monitors and Controllers 5-18
	File Naming Conventions 5-18
	Using Emulation Products 5-19
	Byte 31 of $OPTIONS 5-20

	Printers 5-20
	On-Line Printing 5-20
	Parallel Device Equivalences 5-21
	Serial Device Equivalences 5-21
	Line Feed (ALF) Handling 5-21
	$OPEN/$CLOSE Considerations 5-22
	Printer Not Ready 5-22

	Printing Using the UNIX Print Spooler 5-22
	Device Equivalences 5-23
	Line Feed (ALF) Handling 5-24
	$OPEN/$CLOSE 5-24
	Printer Not Ready 5-24
	Other Issues 5-24

	Terminal Printers (Local Printing) 5-24
	Device Equivalences 5-25
	Line Feed (ALF) Handling 5-25
	$OPEN/$CLOSE 5-25
	Printer Not Ready 5-25

	Text Files 5-26
	Device Equivalences 5-26
	Line Feed (ALF) Handling 5-27
	$OPEN/$CLOSE Considerations 5-27
	Printer Not Ready 5-27

	Line Feed Handling 5-27
	The ALF (Auto Line Feed) Option 5-27

	$OPEN/$CLOSE Considerations 5-28
	Killing Output to a Non-Existent Device 5-28
	Printer Translation 5-29

	Mouse Support 5-29
	Serial Devices 5-30
	Naming Conventions 5-30
	Sending Output to a Serial Port 5-30
	Input from a Serial Port 5-31
	Asynchronous Serial Communications 5-32

	The Tape Drive 5-33
	Math Co-Processor Support 5-33
	Default Device Equivalences 5-34

	TERMINAL CHARACTERISTICS
	Overview 6-1
	Operating System Characteristics 6-2
	Determination of Terminal Type 6-2
	Location of Terminal Files 6-3
	Downloading FONT and KEYS Files 6-4
	HALT Key Functionality 6-4
	Local Printer Support 6-5
	Terminal Configuration Requirements 6-5

	Supported Terminals 6-6
	NPL Supported Terminals 6-6
	Supported Terminal Characteristics 6-7
	Terminal Characteristics 6-8
	Terminal Features Notes 6-9
	Console Characteristics 6-9
	Console Notes 6-9

	Wang 2x36 Terminal Support 6-10
	Altos UNIX 6-10
	DigiBoard Support 6-10

	Use with Native Operating System and Functions 6-11
	Common Default Keyboard Equivalences 6-11

	Monochrome Console Characteristics 6-12
	Graphics Availability 6-12
	Screen Character Set 6-12
	Downloadable Fonts 6-12
	Alternate Character Set (Pixel Graphics) 6-12
	Non-English Character Sets 6-13
	Screen Translation 6-13

	Box Graphics Support 6-13
	Attributes Support 6-13
	Cursor Appearance 6-13
	Support for 132-Column Mode 6-13
	Use With Native Operating System Functions and Utilities 6-14

	Color Console Terminal Characteristics 6-14
	Graphics Availability 6-14
	Screen Character Set 6-14
	Downloadable Fonts 6-14
	Alternate Character Set (Pixel Graphics) 6-14
	Non-English Character Sets 6-14
	Screen Translation 6-14

	Box Graphics Support 6-15
	Attributes Support 6-15
	Cursor Appearance 6-15
	Support for 132-Column Mode 6-15
	Use With Native Operating System Functions and Utilities 6-15

	Color Support under NPL 6-16
	Graphics Support under NPL 6-16
	Keyboard Characteristics 6-16
	Default Equivalence Table 6-18

	MULTI-USER CAPABILITIES
	Overview 7-1
	Device Sharing and "Hogging" 7-2
	Suppress Implicit $OPEN Logic 7-2
	Suppress $OPEN on Read Only Files 7-3

	Global Partitions 7-3
	Terminal Identification 7-3
	#TERM 7-4
	Example ttys Use 7-4

	#PART 7-5
	#ID 7-5

	Inter-task Communication 7-6
	$PSTAT 7-6
	$BREAK 7-7
	UNIX Versus Xenix Timeslicing 7-7

	DATE and TIME 7-9
	System Messages 7-9

	User Count 7-9
	userfix Utility 7-10

	Use on Networks 7-10
	Multi-Screen Products and Issues 7-11

	PLATFORM-SPECIFIC LANGUAGE FEATURES
	Overview 8-1
	UNIX-Specific Statements 8-2
	$MACHINE 8-2
	$OPTIONS 8-4
	$PSTAT 8-6
	$SHELL 8-6

	Background Partition Support 8-7
	Configuration Requirements 8-7
	Operation of the Background Partition 8-8
	Restrictions 8-9

	Memory Management 8-10
	UNIX Considerations 8-10
	Dynamic Partition Size 8-10

	COMPILER OPERATION
	Overview 9-1
	Invoking the Compiler 9-2
	File Naming Conventions 9-2
	Supported Characters 9-2
	The TRANSLATE Option 9-3

	Case Sensitivity 9-4
	Wildcard Usage 9-4
	Pathnames 9-5

	Print Devices 9-6
	Shell Scripts 9-7
	Example Shell Script Files 9-8
	b2ca 9-8
	b2cb 9-8
	b2cc 9-9
	b2cd 9-9

	Example Compiles 9-9
	From a Compiled Diskimage to a Compiled Diskimage 9-10
	From a 2200 to a Compiled Diskimage 9-12
	From a Compiled Diskimage to 2200 Atomized Code 9-14
	From a 2200 to a Compiled Diskimage and ASCII Text Files 9-16
	From a Compiled Diskimage to ASCII Text Files 9-18
	From ASCII Text Files to Compiled Format in a Directory 9-20
	From ASCII Text Files to a Compiled Diskimage 9-22

	PORTING PROGRAMS AND DATA
	Overview 10-1
	Porting Options 10-2
	Serial Communications 10-2
	"RAW" Diskette Transfer 10-2

	Specific Environments 10-4
	From a Wang 2200 10-4
	From an MS-DOS-based system 10-4
	From a SuperDOS-Based System 10-4
	From Another UNIX Based System 10-5

	MIXED LANGUAGE PROGRAMMING
	Overview 11-1
	Differences from DOS/SuperDOS Releases 11-2
	Choosing the Development Environment 11-3
	Security 11-4
	Installation of the Custom RunTime at End-User Sites 11-4

	Upgrades 11-4

	Contents of the BESDK 11-5
	Installation of the BESDK Diskette 11-9
	Xenix Support 11-10
	Microsoft C under Xenix 11-10
	General 11-11
	Mainline 11-11
	Calling Conventions for BESDK Subroutines 11-11
	Test rtp Subroutines 11-11
	RTPEXT Subroutine 11-11
	GOSUB' Subroutines: 11-11

	Linkage of Test Program 11-12
	Linkage of Customized rti or rtp 11-12

	Microsoft Macro Assembler Under Xenix 11-14
	General 11-14
	Mainline 11-15
	Calling Conventions for BESDK Subroutines 11-16
	Test rtp Subroutines 11-16
	RTPEXT Subroutine: 11-16
	GOSUB' Subroutines 11-16

	Linkage of Test Program 11-17
	Linkage of Customized rti or rtp 11-17

	UNIX Support 11-19
	Microsoft C under UNIX 11-19
	General 11-19
	Mainline 11-19
	Calling Conventions for BESDK Subroutines 11-20
	Test rtp Subroutines 11-20
	RTPEXT Subroutine 11-20
	GOSUB' Subroutines 11-20

	Linkage of Test Program 11-20
	Linkage of Customized rti or rtp 11-21

	Microsoft Macro Assembler Under UNIX 11-23
	General 11-23
	Mainline 11-23
	Calling Conventions for BESDK Subroutines 11-24
	Test rtp Subroutines 11-24
	RTPEXT Subroutine 11-24
	GOSUB' Subroutines 11-25

	Linkage of Test Program 11-25
	Linkage of Customized rti or rtp 11-26

	Flow Control for External Libraries 11-27

	COMMON PROBLEMS
	Overview A-1
	Runtime Problems A-2
	Problem 1: Program rtp (or rti) not found. A-2
	Problem 2: A RunTime error P48 is generated. A-3
	Problem 3: The NPL RunTime program generates an I90 (or any
	other I series) error. A-3
	Problem 4: The NPL RunTime program generates an immediate
	D82 error stating that the boot program cannot be found. A-4
	Problem 5: When reading from "raw" diskettes, data from a diskette
	ette
	previously in the drive is accessed. A-4
	Problem 6: "Cannot Determine Terminal Number" is displayed upon
	upon
	execution of rti or rtp. A-4
	Problem 7: The 2200 character set does not display properly on the screen. A-4
	screen. A-4
	Problem 8: The keyboard does not generate expected key codes. A-5
	Problem 9: The message "the Niakwa Programming Language
	authorized user limit exceeded. Access denied." appears. A-5
	Problem 10: The message "Interpreter not enabled." appears. A-6
	Problem 11: The message "cannot execute Access denied" appears. A-6
	Problem 12: The message "No more process available" appears.
	In addition, the message "no files" may appear on the console. A-6
	Problem 13: The message: "Serial number not found on floppy diskette.
	diskette.
	Please contact your distributor for assistance the NPL RunTime Canceled" appears. A-7
	Canceled" appears. A-7
	Problem 14: The message "Please mount your Gold Key diskette"
	appears on the screen when executing the NPL RunTime. A-7
	Problem 15: When executing the Gold Key installation program, the
	the
	message "Enter 'xeninst I' to install or 'xeninst D' to recall NPL." A-7
	Problem 16: The message "No installs left on this diskette" appears
	pears
	when trying to install the security. A-7
	Problem 17: The message "Serial number not found on floppy
	diskette" appears when trying to recall the security. A-8
	Problem 18: The message "NIAKSER.DAT missing or damaged
	(Error Code) appears on the screen when executing the NPL RunTime. A-8
	Time. A-8
	Problem 19: The message "Please Mount your Gold Key diskette"
	remains on the screen with an error code 1706 displayed on the screen
	screen
	after the NPL RunTime has been executed. A-8
	Problem 20: An error code "1706" appears in the upper left hand
	corner during the security install process or when starting up the
	NPL RunTime. A-9

	Upgrade Problems A-9
	Problem 1: When upgrading, a "This upgrade is for a site with x"
	message appears. A-9
	Problem 2: When upgrading, an Error #XX message appears. A-9

	Compiler Problems A-9
	Problem 1: Program b2c not found. A-9
	Problem 2: The compiler generates a message "No source programs
	grams
	matching wildcard". A-10
	Problem 3: The compiler states "cannot open "srcloc" (or "objloc")
	as a diskimage file" when compiling from or to diskimage files. A-10
	Problem 4: The compiler states "cannot open "srcloc" as a diskimage
	diskimage
	file" when compiling from 2200 format diskettes. A-10

	UNIX ERROR CODES
	Overview B-1

	PERFORMANCE ISSUES
	Overview C-1
	RAM Disks C-2
	$OPTIONS Settings C-2
	Configuration Issues C-2

	"RAW" DEVICE COMPATIBILITY CHART
	"Raw" Diskette Chart D-1

