
NIAKWA PROGRAMMING LANGUAGE

MS-WINDOWS ADDENDUM

1st Edition - August 1993
COPYRIGHT  1993 Niakwa, Inc.

Niakwa, Inc.
23600 N. Milwaukee Avenue
Mundelein, IL 60060

PHONE (708) 634-8700 FAX (708) 634-8718 TELEX 3719965 NIAK UB

 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES AND
PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa) has taken due care in preparing this manual. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution Li-
cense Agreement, the End-User Support Only License Agreement, the Niakwa Software
License Agreement and Warranty and any other Niakwa License Agreement (collec-
tively, the "License Agreements") by which this software package was acquired.

This manual is to serve as a guide for use of the Niakwa software only and not as a
source of representations or additional undertakings by Niakwa. The licensee must refer
to the License Agreements for Niakwa product and service representations.

No ownership of Niakwa software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa, is prohibited.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information storage and retrieval system,
without prior written permission from Niakwa, Inc.

Niakwa is a registered trademark of Niakwa Management Services 1975 Ltd., and is licensed to Bluebird Sys-
tems.

Niakwa Programming Language (NPL), Bluebird and SuperDOS are registered trademarks of Bluebird Systems.

All other trademarks are the property of their respective holders.

PREFACE

This Niakwa Programming Language (NPL) Addendum for MS-Windows is designed as
an addition to the NPL Supplement for MS-DOS. This Addendum discusses the installa-
tion, operation, and MS-Windows specific features of the Niakwa Interpreter and Run-
Time Program. For more information, refer to the appropriate NPL documentation and
the MS-Windows documentation.

1.1 Prerequisite Knowledge

This Addendum assumes at least a basic knowledge of the IBM Personal Computer, the
Microsoft Disk Operating System (DOS) Version 3.10 or greater, and MS-Windows Ver-
sion 3.1 or greater.

This Addendum also assumes an understanding of the information contained in the NPL
MS-DOS Supplement.

1.2 How to Use this Addendum

This addendum should be used by the developer as a guide to understand how to create
and modify applications for use with NPL for MS-Windows.

PREFACE Prerequisite Knowledge

NPL MS-Windows Addendum P-1

All chapters should be reviewed thoroughly by the developer. Below is a summary of the
topics discussed in each chapter.

Chapter 1 introduces the MS-Windows RunTime, discusses the NPL Development and
RunTime Package diskette contents, and the specific features of the NPL RunTime under
MS-Windows.

Chapter 2 discusses the installation procedures necessary for NPL under MS-Windows.

Chapter 3 discusses the exact configuration requirements for NPL under MS-Windows.

Chapter 4 discusses the startup, operation, and closing of RunTime tasks under MS-Win-
dows.

Chapter 5 discusses the differences in device support for NPL under MS-Windows.

Chapter 6 discusses the multi-user capabilities made available under MS-Windows.

Chapter 7 discusses the operating environment-specific language statements under MS-
Windows.

Chapter 8 discusses the use of the External Call feature of NPL under MS-Windows.

Appendix A provides information on the common problems that may occur using the
MS-Windows RunTime.

Appendix B provides information on modifying the Niakwa Fonts.

Appendix C provides an example of DDL use.

Appendix D provides information on MS-Windows performance issues.

NOTE: This Addendum is intended to cover environment-specific differences from the ge-
neric NPL information provided in the NPL Programmer’s Guide and Statements
Guide or the operating system-specific information contained in the NPL MS-DOS
Supplement.

How to Use this Addendum PREFACE

P-2 NPL MS-Windows Addendum

TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge...1-1
How to Use this Addendum...1-1

INTRODUCTION
Overview...1-1
Contents of MS-Windows Development Package...1-2
Contents of MS-Windows RunTime Package ...1-3

MS-Windows RunTime Package Files ...1-3
MS-Windows Specific Features ...1-4

INSTALLATION
Overview...2-1
MS-Windows and Hardware Requirements...2-2
NPL Configuration Requirements..2-2

Files 2-2
Installing the NPL Development Software ..2-3

Installing the MS-Windows Supplementary Files Diskette.............................2-3
Installing the BESDK...2-3
Installing the Example .DLL Files ...2-3
Installing the Font Source Files..2-4

Niakwa RunTime Security for MS-Windows..2-4
NPL MS-Windows Gold Key Security..2-4
The Gold Key Security TSR ..2-4
User Limit...2-5

Installing the NPL RunTime Package ..2-5
Installing the Upgrade RunTime Package..2-6

CONFIGURATION
Overview...3-1
Configuring MS-Windows for NPL ..3-2

WIN.INI Parameters...3-2

TABLE OF CONTENTS PREFACE

NPL MS-Windows Addendum TOC - 1

DOS SHARE..3-2
SMARTDrive ...3-3
Installing Niakwa’s Fonts...3-3
Virtual Memory and Swap Files..3-4
Memory Management..3-4
MS-Windows Mode of Operation..3-4

Adding NPL Tasks to the Program Manager ...3-4
Command Line ...3-5

Associated Boot Programs ..3-6
Choosing Icons ...3-7

RTIWIN.INI ..3-8
Setup 3-8
Organization ...3-8
Editing...3-9
Parameters ..3-9

AutoSize...3-10

..BrightBackground 3-10

Browse...3-11

BrowseCapNamesFile..3-11

Caption ...3-12

CommFlushDelay...3-12

CommInputBufferSize ..3-12

CommOutputBufferSize..3-13

DllDupDirectory ...3-13

 ExclusiveWhenNetworkLocksHeld......................3-14

ExternalLibrary ..3-14

Follow ..3-15

FontCharSet..3-15

FontFaceName...3-16

HaltRequestPeriod..3-16

IconNumber...3-17

IconResourceFile..3-18

LockRetryDelay ..3-18

LockWaitTimeout ..3-18

MouseClickKeys...3-19

MouseDragNSEWKeys..3-20

CONFIGURATION TABLE OF CONTENTS

TOC - 2 NPL MS-Windows Addendum

NetworkIniFile ...3-20

NetworkPartitionsFile ...3-21

NiaksecVersion..3-23

ParallelFullDelay ..3-23

ParallelRetryCount ...3-23

Partition ...3-24

PerimiterIsBackground ..3-24

PrinterConfig ..3-25

ReservedPartitions..3-25

SFKeys..3-26

SFKeysCapNamesFile...3-26

SFKeysStyle...3-27

ShareWarning..3-27

StandardColorRGB0 to StandardColorRGB15...3-27

TerminalIsPartition ..3-29

WarnUnreferencedIni ...3-30
Window ...3-30

Customizing Special Function/Browse Key Names..3-31

RUNTIME OPERATION
Overview..4-1
MS-Windows Modes...4-2
Starting the RunTime...4-2

Starting the RunTime from the Program Manager..4-2
Starting the RunTime from a Command Line ...4-3

Menu Bar Options ..4-4
Interactive Options ...4-4

Browse Keys..4-5
Special Function Keys...4-6
Follow..4-7
Autosize ...4-7

Help Option ..4-8
Minimizing a Runtime Task...4-8
Resizing or Moving Task Windows...4-9
RunTime Startup Options...4-9

TABLE OF CONTENTS RUNTIME OPERATION

NPL MS-Windows Addendum TOC - 3

/G Option ..4-9
/H Option ..4-9
/K Option ..4-9
/M Option ...4-10
/R Option ..4-10
/U Option ..4-10
/X Option ..4-10

Closing the RunTime Task ...4-10
Using the Standard NPL Runtime ..4-11

Serial Number...4-11
User Limit...4-11
Device Sharing ...4-12

DEVICE SUPPORT
Overview...5-1
Storage Devices ..5-2

Diskimages ...5-2
$OPEN Under Novell NetWare ..5-2
Exclusive Use of The Windows Resources While a Diskimage is
Locked ...5-3

Diskettes ...5-4
On-line Printing..5-5

Printing to Local Devices ...5-5
Use of $OPEN ...5-5

Printing under Novell NetWare using LPTx Devices......................................5-5
Using the MS-Windows Print Manager ...5-6

Printer File Specification..5-6
DocName..5-8
Other Options ...5-9

Using the MS-Windows Printer Driver Configuration Box5-9
Locking in a Printer Specification...5-9

Using Control Codes with the MS-Windows Print Spooler5-9
Using the MS-Windows Print Manager Under Novell NetWare5-10

Serial Ports..5-11
Sharing Serial Ports..5-11

Monitor Support..5-11
Fonts 5-11

Available Font Files ..5-12
Adding a Font File to MS-Windows..5-12

DEVICE SUPPORT TABLE OF CONTENTS

TOC - 4 NPL MS-Windows Addendum

True Type Fonts..5-13
Dynamic Resizing ...5-13
Modifying the Niakwa Fonts...5-14

132-Column Support ..5-14
Keyboard Characteristics..5-14
Mouse Support..5-17

MULTI-USER CAPABILITIES
Overview...6-1
Unique Terminal Identification ..6-2

General Principles ..6-2
Creating Unique Network Partition Values ...6-3
Step-By-Step Example ...6-7

Device Sharing..6-11
Intertask Communications..6-11

$PSTAT..6-11
$MSG 6-11

PLATFORM-SPECIFIC LANGUAGE FEATURES
Overview...7-1
Environment-Specific Statements..7-2

$MACHINE ...7-2
$OPTIONS ...7-2
$PSTAT..7-3
$MSG 7-3
$SHELL..7-4

Release IV Modifications to $SHELL ..7-4
LAUNCH.EXE program...7-4
Starting Additional RunTime Tasks with $SHELL......................7-5

Background Partition Support ..7-5
Memory Management...7-5

MIXED LANGUAGE PROGRAMMING
Overview...8-1

Differences from MS-DOS/SuperDOS Releases...8-3
Choosing the Development Environment ..8-3

TABLE OF CONTENTS MULTI-USER CAPABILITIES

NPL MS-Windows Addendum TOC - 5

Security...8-4
Upgrades...8-4

Contents of the MS-Windows BESDK..8-4
Installation of the MS-Windows BESDK..8-10
MS-Windows Support ..8-11

Environments..8-11
Differences in the Flow Control Due to DLL Use...8-11
Exported Symbols and Reserved Names ...8-12
Debugging MS-Windows Applications ...8-12
Adapting MS-DOS Code for the MS-Windows Environment8-12

Loading the External Libraries ..8-13
Microsoft C under MS-WINDOWS...8-15

General..8-16
Mainline..8-16
Calling Conventions for BESDK Subroutines...8-17

Test RTP Subroutines..8-17
RTPEXT Subroutine...8-17
GOSUB’ Subroutines ..8-17

Linkage of Test Program..8-17
Linkage of Customized DLL..8-18

Microsoft MASM Macro Assembler ...8-18
General..8-19
Mainline..8-19
Calling Conventions for BESDK Subroutines...8-20

Test RTP Subroutines..8-20
RTPEXT Subroutine...8-20
GOSUB’ Subroutines ..8-20

Linkage of Test Program..8-21
Linkage of Customized DLL..8-21

Shared Data Segments in DLL’S ...8-22
Custom Resources in a DLL...8-23
Subclassing the Main NPL Window in a DLL..8-24
Flow Control for External Subroutines..8-25
Callbacks to NPL under MS-Windows..8-30

COMMON PROBLEMS
Overview..A-1
Problems ..A-1

Problem 1:...A-1

COMMON PROBLEMS TABLE OF CONTENTS

TOC - 6 NPL MS-Windows Addendum

Problem 2:...A-2
Problem 3:...A-2
Problem 4:...A-2
Problem 5:...A-3
Problem 6:...A-3

MODIFYING NPL FONTS
Overview.. B-1
Installation... B-2
Files B-2
Modifying Existing Fonts.. B-3
Creating New Fonts ... B-3

EXAMPLE DYNAMIC LINK LIBRARIES
Overview.. C-1
Installation... C-2
The WINCDEMO Example .. C-2

Implementation Notes ... C-2
Example DLL Files ... C-3
Starting the Example Programs... C-4
The DLL Examples ... C-5

Clipboard Example... C-5
Dialog Box Example .. C-5
Message Example... C-6
Text Box Example.. C-8

Programmer’s Notes.. C-11
WINCDIAL Example.. C-12

Notes: C-14
Description of Files in the Project... C-15

Source Files .. C-15
Externally Generated Files ... C-16
Intermediate Files Generated by Project Make.......................... C-16
Product Files Generated by Project Make: C-17
Application Files Generated by Project Make...........................C-17

PERFORMANCE ISSUES

TABLE OF CONTENTS MODIFYING NPL FONTS

NPL MS-Windows Addendum TOC - 7

Overview..D-1
RTIWIN.INI Options...D-1

HaltRequestPeriod ..D-2
LockWaitTimeout and LockRetryDelay ..D-2
ParallelFullDelay and ParallelRetryCount ..D-2
ExclusiveWhenNetworkLocksHeld and Byte 43 of $OPTIONS...................D-2

386 Enhanced Mode ..D-2
Memory..D-3

PERFORMANCE ISSUES TABLE OF CONTENTS

TOC - 8 NPL MS-Windows Addendum

CHAPTER 1

INTRODUCTION

1.1 Overview

The NPL MS-Windows Addendum is intended as an aid in the correct installation and
use of the MS-Windows version of the Niakwa Development Package and RunTime pro-
grams.

NOTE: This Addendum details the additional features of NPL operating under MS-Win-
dows. Refer to the MS-DOS Supplement for information on the standard NPL fea-
tures.

Section 1.2 describes the contents of the NPL MS-Windows Supplementary Files Disk-
ette.

Section 1.3 describes the additional contents of the NPL RunTime Package for MS-Win-
dows.

INTRODUCTION Overview

NPL MS-Windows Addendum 1-1

Section 1.4 discusses the MS-Windows specific features of the NPL RunTime program
for MS-Windows.

1.2 Contents of MS-Windows Development Package

The NPL Development Package is intended for software developer use in the develop-
ment and execution of application software on MS-DOS or Novell NetWare systems us-
ing MS-Windows. The Development Package for MS-Windows is the same as for
MS-DOS with the addition of the MS-Windows Supplementary Files Diskette.

The contents of the standard MS-DOS Development Package diskettes are listed in Sec-
tion 1.2 of the MS-DOS Supplement.The following is a description of the additional MS-
Windows-specific files included on the MS-Windows Supplementary Files Diskette.

\BFONTS All files necessary for modification of the Niakwa font file BAS-
FONTS.FON with the MS-Windows Software Development Kit or
other third-party font creation products. Refer to Appendix B for com-
plete information.

\IFONTS All files necessary for modification of the Niakwa font file
IBMFONTS.FON with the MS-Windows Software Development Kit
or other third-party font creation products. Refer to Appendix B for
complete information.

\WINCDEMO This directory contains the example DLL files which illustrate how
NPL can be used to interface with MS-Windows resources. Refer to
Appendix C for detailed information.

\WINCDIAL This directory contains example DLLs and other related files which il-
lustrate how NPL can be used to control a Window Dialog box. Refer
to Chapter 8 and Appendix C for details.

\ All other files contained in other directories on this diskette are for
the MS-Windows version of the NPL external call interface to pro-
grams written in other languages. Refer to Chapter 8 for more infor-
mation.

Contents of MS-Windows Development Package INTRODUCTION

1-2 NPL MS-Windows Addendum

1.3 Contents of MS-Windows RunTime Package

NOTE: The MS-Windows RunTime is designed to work only in the presence of a special ver-
sion of the Niakwa RunTime security.

The MS-Windows RunTime Package physically consists of the Niakwa RunTime Pack-
age User’s Guide and two 5-1/4" or three 3-1/2" diskettes.

The contents of the standard RunTime files are listed in Section 1.3 of the MS-DOS Sup-
plement. The following is a description of the additional MS-Windows specific files in-
cluded on the MS-Windows RunTime disk(s).

MS-Windows RunTime Package Files
BASFONTS.FON The Niakwa screen fonts provided for use with MS-Win-

dows for the standard NPL character set.

IBMFONTS.FON The Niakwa screen fonts provided for use with MS-Win-
dows for the standard IBM character set.

LAUNCH.EXE This file is used with the INVOKE ($SHELL) command to
allow the MS-Windows RunTime to start another task with-
out waiting for the task to complete.

RTINERR.HLP This file is an text file that contains the MS-Windows error
messages that are displayed optionally when using the Inter-
pretive RunTime program for MS-Windows.

RTINERR.IDX This file contains the index listings used when the RTIN-
ERR.HLP file is accessed.

RTIWIN.EXE The NPL Interpretive MS-Windows RunTime program.

RTPWIN.EXE The NPL Non-interpretive MS-Windows RunTime program.

SHAREDLL.DLL A file used internally by the MS-Windows RunTime.

INTRODUCTION Contents of MS-Windows RunTime Package

NPL MS-Windows Addendum 1-3

1.4 MS-Windows Specific Features

The MS-Windows version of NPL contains the features documented in Chapter 1 of the
MS-DOS Supplement and the following additional features:

• Support for the standard NPL RunTime so that applications that are not MS-Win-
dows compatible can still be run with the MS-Windows RunTime Package.

NOTE: This allows for any combination of MS-Windows and standard RunTime users up
to the available user limit on network installations.

• Multi-tasking with true multi-user capabilities including unique task identifica-
tion.

• The user limit is only decreased for the first RunTime task started under MS-Win-
dows (subsequent MS-Windows RunTime tasks do not affect the user limit).

• Extended memory support beyond 640K. As much memory as is physically avail-
able to MS-Windows is available to applications written with NPL.

• Operates in MS-Windows Standard or 386 Enhanced modes.

• Optional automatic resizing of fonts. Niakwa has provided a series of fonts spe-
cifically designed for use with NPL as well as instructions to modify these and
create new font files.

• Mouse support directly through the NPL MS-Windows RunTime or through the
Browse and SF Keys interactive option.

• 132-column screen support.

• Use of Dynamic Link Libraries (DLL) is supported for use with external calls.
This feature allows the many MS-Windows specific features to be used (dialog
boxes, text displays, message boxes, clipboard interface, etc.). NPL allows "C"
routines in DLLs to call NPL FUNCTIONs or PROCEDUREs. NPL also pro-
vides limited support for MS-Windows messages. Example DLLs with source
code that shows many of these features are provided in Appendix C of this Ad-
dendum.

MS-Windows Specific Features INTRODUCTION

1-4 NPL MS-Windows Addendum

• Fixed pitch MS-Windows True Type Font support

• $SHELL can either immediately return control back to the RunTime or respond
as it does under the standard NPL RunTime for MS-DOS.

INTRODUCTION MS-Windows Specific Features

NPL MS-Windows Addendum 1-5

CHAPTER 2

INSTALLATION

2.1 Overview

This chapter provides instructions for installing the Niakwa Development and RunTime
Packages for MS-Windows (where differences exist from those documented in Chapter 2
of the NPL MS-DOS Supplement).

Section 2.2 discusses the operating system, memory, and hardware requirements for the
NPL Software under MS-Windows.

Section 2.3 discusses the configuration requirements for NPL.

Section 2.4 discusses the installation of NPL MS-Windows Development software.

Section 2.5 discusses NPL Gold Key security for MS-Windows.

Section 2.6 discusses the installation of the NPL RunTime Package.

INSTALLATION Overview

NPL MS-Windows Addendum 2-1

Section 2.7 discusses the installation of the NPL Upgrade RunTime.

2.2 MS-Windows and Hardware Requirements

The MS-Windows version of the NPL is designed to operate on systems meeting the fol-
lowing requirements:

• An IBM PC/AT or compatible (80286 or higher) operating under MS-DOS 3.10
or higher.

• MS-Windows 3.1 or higher.

• Meeting all MS-Windows 3.1 hardware requirements.

• Developers who wish to work with external calls or who need to modify the font
files provided by Niakwa (refer to Appendix B), require the MS-Windows Soft-
ware Development Kit (SDK) version 3.1 or higher.

2.3 NPL Configuration Requirements

This section discusses the specific configuration requirements for the MS-Windows Run-
Times that differ from those documented in Chapter 2 of the NPL MS-DOS Supplement.
Refer to Appendix D for additional configuration information on enhancing performance.

2.3.1 Files

The number of open files established in the CONFIG.SYS file should be changed to 45
or higher for MS-DOS based systems and 61 or higher for Novell NetWare based sys-
tems. This can be accomplished by editing the CONFIG.SYS file with a text editor (i.e.,
the MS-Windows Notepad, EDIT, EDLIN, etc.) and changing or adding the FILES pa-
rameter as shown below.

FILES=45 - for MS-DOS systems

FILES=61 - for Novell Netware systems

MS-Windows and Hardware Requirements INSTALLATION

2-2 NPL MS-Windows Addendum

2.4 Installing the NPL Development Software

The following steps outline the installation of the MS-Windows Supplementary Files
Diskette.

NOTE: The Niakwa NPL Development Package should be installed before the MS-Windows
Supplementary Files Diskette is installed. Refer to Chapter 2 of the NPL MS-DOS
Supplement for details.

2.4.1 Installing the MS-Windows Supplementary Files Diskette

There are no files on the MS-Windows Supplementary Files Diskette that are necessary
for the NPL Development Software. Refer to Chapter 2 of the NPL MS-DOS Supplement
for details on installing the standard NPL Development Software.

2.4.2 Installing the BESDK

Two versions of the BESDK (NPL, formerly Basic-2C, External Subroutine Develop-
ment Kit) are provided with the Niakwa NPL Development Package. The first is con-
tained on the diskette labeled MS-DOS BESDK Diskette and is for the standard Niakwa
NPL RunTime. The second is the MS-Windows BESDK that is contained on the MS-
Windows Supplementary Files Diskette. Refer to Chapter 11 of the MS-DOS Supplement
for details on the standard BESDK and Chapter 8 of this Addendum for the MS-Win-
dows-specific BESDK.

2.4.3 Installing the Example .DLL Files

The MS-Windows Supplementary Files Diskette also contains a series of example dy-
namic Link Library files illustrating how NPL can make use of the various MS-Windows
resources. These examples and all associated files are automatically installed when the
MS-Windows BESDK files are installed. Refer to Appendix C for a detailed description
of the example DLL files and Chapter 8 for information on the MS-Windows-specific
BESDK.

INSTALLATION Installing the NPL Development Software

NPL MS-Windows Addendum 2-3

2.4.4 Installing the Font Source Files

The /BFONTS and /IFONTS directories on the MS-Windows Supplementary Files Disk-
ette contain source files used to create the BASFONTS.FON and IBMFONTS.FON font
files provided with the NPL RunTime. These may be modified by the developer. Refer to
Appendix B for installation instructions and further information.

2.5 Niakwa RunTime Security for MS-Windows

Before installing the MS-Windows RunTime Package, an understanding of the MS-Win-
dows RunTime security is required. This security is based on the proper installation of
the standard Niakwa RunTime Package (refer to Chapter 2 of the MS-DOS Supplement
for details).

2.5.1 NPL MS-Windows Gold Key Security

The MS-Windows Gold Key security operates slightly differently than that of the stand-
ard MS-DOS RunTime. These differences are discussed below. Refer to Chapter 2 of the
MS-DOS Supplement for the procedure necessary to install the MS-Windows RunTime
Gold Key Security.

2.5.2 The Gold Key Security TSR

Unlike the standard MS-DOS RunTime, the MS-Windows RunTime cannot automat-
ically load the required security TSR (Terminate and Stay-Resident program). The proper
TSR must be loaded before MS-Windows is started. It is recommended that this be done
from the AUTOEXEC.BAT file or from a batch file used to start MS-Windows.

This can be accomplished by adding the following statement to the AUTOEXEC.BAT or
batch file:

C:\BASIC2C\NIAKSECx

where x is one of the six files available (NIAKSECA.COM - NIAKSECF.COM). Typi-
cally, NIAKSECA is used. However, if a conflict occurs with an existing interrupt, at-
tempt to use one of the other NIAKSECx files provided (NIAKSECB.COM -
NIAKSECF.COM) until successful.

Niakwa RunTime Security for MS-Windows INSTALLATION

2-4 NPL MS-Windows Addendum

NOTE: The RTIWIN determines which interrupt to use based on the NiaksecVersion pa-
rameter (refer to Section 3.4 for details on the RTIWIN.INI file). If an interrupt
other than NIAKSECA is used, an RTIWIN.INI file with the correct NiaksecVer-
sion parameter setting must be created before the MS-Windows RunTime is exe-
cuted.

2.5.3 User Limit

The user limit for the MS-Windows RunTime on Novell network installations is charged
only for the first RunTime task started with the MS-Windows RunTime. All other
RTPWIN windows opened (on the same workstation), after the initial window, have no
effect on the user limit.

NOTE: Concurrent use of the MS-Windows version of the RunTime and the standard Run-
Time on the same system is not recommended. If this is done on a network worksta-
tion, both RunTimes count toward the user limit.

2.6 Installing the NPL RunTime Package

The installation of the MS-Windows RunTime is identical with that of the standard MS-
DOS NPL RunTime except for the additional diskette(s), described in Section 1.3 of this
Addendum. The additional diskettes should be installed in the same manner as described
in Section 2.6 of the MS-DOS Supplement.

Once all diskettes have been copied to the hard drive, enter the following from the DOS
prompt:

COPY C:\BASIC2C*.FON C:\WINDOWS

This will copy the NPL font files for MS-Windows into the MS-Windows directory.

INSTALLATION Installing the NPL RunTime Package

NPL MS-Windows Addendum 2-5

2.7 Installing the Upgrade RunTime Package

The Upgrade RunTime upgrades the existing NPL RunTime to Release IV. Refer to Sec-
tion 2.7 of the NPL MS-DOS Supplement for details on installing the Upgrade RunTime
Package.

NOTE: The upgrade procedures will overwrite the existing Release III RTIWIN.EXE and
RTPWIN.EXE files. If it is necessary to go back the Release III versions of these
files, they can be copied from the original Release III RunTime diskettes.

Installing the Upgrade RunTime Package INSTALLATION

2-6 NPL MS-Windows Addendum

CHAPTER 3

CONFIGURATION

3.1 Overview

Once MS-Windows and the Niakwa Development and RunTime software has been in-
stalled, MS-Windows must be configured to work with the Niakwa software. This proce-
dure is examined in this chapter.

Section 3.2 discusses configuring MS-Windows for use with NPL.

Section 3.3 discusses adding NPL RunTime tasks to the MS-Windows program manager.

Section 3.4 discusses the RTIWIN.INI file setup, organization, editing, and parameters.

Section 3.5 discusses customizing the special function and browse key names.

CONFIGURATION Overview

NPL MS-Windows Addendum 3-1

3.2 Configuring MS-Windows for NPL

While MS-Windows is much easier for the user to work with than MS-DOS, the configu-
ration of MS-Windows and MS-Windows applications is more complicated. This section
is intended to aid in the configuration of MS-Windows for NPL and NPL based applica-
tions.

3.2.1 WIN.INI Parameters

The WIN.INI file is a file used by MS-Windows to set various configuration parameters
for the operation of MS-Windows on the host system. This file is edited dynamically by
MS-Windows as changes are made to the MS-Windows configuration (i.e., the default
file is changed, new program icons added, etc.). As such, no direct modifications are nec-
essary for the Niakwa programs. For more information on this file, refer to the MS-Win-
dows documentation.

3.2.2 DOS SHARE

The MS-DOS SHARE program must be loaded on any PC where multiple tasks are ac-
cessing local disk files, print devices, or diskette devices. The MS-DOS SHARE com-
mand should be loaded from the AUTOEXEC.BAT file. This may be done by adding the
following statement to the AUTOEXEC.BAT file:

X:\DOS\SHARE

where X: is the drive and \DOS\ is the directory where the SHARE.EXE program is lo-
cated.

NOTE: A warning message appears if an attempt is made to access local resources from
multiple RunTime windows if the MS-DOS SHARE program is not loaded.

SHARE must also be used with Novell NetWare workstations when multiple tasks may
be concurrently accessing:

• Local disk files.

• On-line (local) LPTx devices.

• Local serial devices.

Configuring MS-Windows for NPL CONFIGURATION

3-2 NPL MS-Windows Addendum

SHARE is not required with Novell NetWare for concurrent access to:

• Disk files on the file server.

• The Novell NetWare spooler from the MS-Windows Print Manager.

• The same CAPTURED LPTx device.

Refer to Section 5.3 and 5.4 for more details on using the SHARE command with print-
ing under MS-Windows.

NOTE: Microsoft acknowledges that using SHARE under MS-Windows, although required
in many situations, can cause unpredictable results. This is a problem related to MS-
Windows and not the NPL RunTime. Developers should be aware that when using
SHARE, unexpected results could occur.

3.2.3 SMARTDrive

The Microsoft SMARTDrive (SMARTDRV.EXE) disk cache is installed and configured
automatically during MS-Windows 3.1 installation. SMARTDrive and other disk caching
software can significantly improve the performance of many MS-Windows functions, but
is application dependent. SMARTDrive can easily be removed by adding a "rem" at the
beginning of the line(s) that load it from the CONFIG.SYS and/or AUTOEXEC.BAT
file.

HINT: Niakwa recommends that write caching always be disabled to preserve data integrity.

3.2.4 Installing Niakwa’s Fonts

If use of either of the Niakwa-supplied font files, BASFONTS.FON or
IBMFONTS.FON, is desired, the file must be installed as a MS-Windows font. Refer to
Section 5.6.1 of this addendum for details.

CONFIGURATION Configuring MS-Windows for NPL

NPL MS-Windows Addendum 3-3

3.2.5 Virtual Memory and Swap Files

When running the MS-Windows RunTime in 386 Enhanced Mode, additional memory
for use by RunTime partitions (or any MS-Windows program) can be obtained by the use
of swap files. Swapping involves moving information between memory and the hard disk
to make room in memory for other information. This allows MS-Windows to use more
memory than the amount of RAM that is physically installed in the host system.

Use of swap files is transparent to the NPL application. However, significant perform-
ance degradation can occur if swapping is used.

NOTE: The use of swap files is also referred to as virtual memory. Refer to the MS-Win-
dows documentation for details on the use of swap flies.

3.2.6 Memory Management

If it is necessary to use the standard NPL MS-DOS RunTime with the /U option for use
of UMBs on an 80386 system that is setup for use with the MS-Windows RunTime, the
Microsoft HIMEM.SYS driver supplied with MS-Windows must be replaced with a sup-
ported 386 memory manager such as QEMM 386. Refer to Sections 4.4.12 and 8.4 of the
MS-DOS Supplement for details.

3.2.7 MS-Windows Mode of Operation

Niakwa strongly recommends that the NPL MS-Windows RunTime be used in 386 En-
hanced Mode. Standard Mode is supported, but 386 Enhanced Mode is preferred for the
best performance of the NPL RunTime and its features.

3.3 Adding NPL Tasks to the Program Manager

Niakwa recommends adding a RunTime Program Icon to the Program Manager for each
RunTime task that is to be run under MS-Windows. By adding the RunTime Program
Icon to a group window, the operator can execute the RunTime quickly and easily. Refer
to Section 4.3 for details on starting the MS-Windows RunTime.

Adding NPL Tasks to the Program Manager CONFIGURATION

3-4 NPL MS-Windows Addendum

The developer can add as many copies of the RunTime program icon to a Group Window
as necessary; however, Microsoft recommends that a group should contain no more than
40 program icons. For example, a developer may want a separate program icon for each
program or application on the system.

3.3.1 Command Line

The example below describes adding RunTime tasks to a program group window of the
MS-Windows Program Manager.

To add a program icon to a program group, follow these steps:

1. Select the group to which the program icon is being added. The program group must
be created if it does not exist (refer to the MS-Windows documentation on creating
program groups).

2. From the menu bar, choose the File Menu.

3. Select Program Item from the New Program Object dialog box.

4. Select OK or press Enter. The Program Item Properties dialog box displays as shown
in Figure 3-1.

Figure 3-1

5. Select the Description text box and enter the title to appear under the icon.

CONFIGURATION Adding NPL Tasks to the Program Manager

NPL MS-Windows Addendum 3-5

6. Select the Command Line text box. If the path of the MS-Windows RunTime direc-
tory is specified in the Working Directory text box, (refer to Step 7, below) it is not
necessary to specify the full drive and path name of the RunTime executables. In this
case, only the executable name (RTIWIN or RTPWIN) is necessary. If no entry is
made in the Working Directory text box, the full drive and path name must be speci-
fied in the Command Line text box. After the path name and/or RunTime executable
name, add the command line parameters and application program boot name. For ex-
ample, to create an icon to automatically load the Niakwa Utilities and allow for 20
device table entries, where the working directory is C:\BASIC2C the following
should be entered in the Command Line text box:

RTIWIN /D=20 UTILITY

NOTE: Specifying the full path name for the RunTime program (RTIWIN.EXE or
RTPWIN.EXE), whether in the Command Line or Working Directory text box,
does an implicit change directory to the directory specified in the path. Because of
this, it is not necessary to specify the full path for the BOOT program name if it re-
sides in the same directory as the RunTime program.

7. An entry in the Working Directory text box is not required, but is recommended to
simplify the Command Line entry. The path name specified in the Working Directory
box is used to set the current directory prior to execution of the RunTime.

8. No entry is required for the Shortcut Key text box.

9. MS-Windows automatically selects the default RunTime icon unless the operator
uses the Change Icon option. Refer to Section 3.3.2 below or the MS-Windows docu-
mentation for more information on choosing different icons (Niakwa provides three
icon options).

9. Select OK to create the program icon. The new icon appears in the Main Group.

If the program icon must be redefined, access the File menu from the MS-Windows
Menu Bar and select the Properties option. A program properties box appears. Make any
necessary changes and Choose OK or press Enter.

Associated Boot Programs
It may also be useful to set up an "association" between the NPL Boot programs (with a
.OBJ extension) and the MS-Windows RunTime. This may be done with the MS-Win-
dows File Manager using the File Associate command. Refer to the MS-Windows docu-
mentation of the File Manager for details.

Adding NPL Tasks to the Program Manager CONFIGURATION

3-6 NPL MS-Windows Addendum

For example, to associate a boot file with the MS-Windows Non-interpretive RunTime,
follow these steps:

1. Activate the MS-Windows File Manager.

2. Select the directory window containing the boot programs to be associated with the
RunTime.

3. Highlight any .OBJ file as the file to be associated with the RunTime.

4. Select the File Associate option.

5. Enter the full path and name of the RunTime program to be associated with the boot
program in the text box (i.e., C:\BASIC2C\RTPWIN.EXE).

6. Select OK or press Enter.

Once this association is set up, command lines given to the MS-Windows Program Man-
ager may specify the full name of the .OBJ file (including the .OBJ extension, followed
by any required options).

3.3.2 Choosing Icons

There are two icons that may be selected when defining an MS-Windows RunTime task.
The first is the icon that appears on the Program Manager screen, the second is the icon
that appears when the task is open and minimized. These two icons need not be the same.

The icon that appears with the Program Manager is selected by the Properties options
when the task is originally setup (refer to Section 3.3.1). To change this icon, return to
the Properties dialog box and use the Change Icon option as documented in the MS-Win-
dows documentation.

NOTE: Niakwa provides three icons. These include: a Running man, Gold Key, and a
Niakwa logo swiggle.

The icon the RunTime uses when a RunTime task is minimized must be changed by us-
ing the IconResourceFile and IconNumber options in the RTIWIN.INI file. This icon
caption and the task window’s title area are controlled by the Caption option in the RTI-
WIN.INI file.

CONFIGURATION Adding NPL Tasks to the Program Manager

NPL MS-Windows Addendum 3-7

NOTE: Additional icon figures are available from many third party MS-Windows develop-
ers or may be designed by using the MS-Windows Software Development Kit if the
three provided by Niakwa are not adequate.

3.4 RTIWIN.INI

The RTIWIN.INI file provides the configuration link between NPL and MS-Windows.
The customization of this file is extremely important in the setup of all NPL applications
to be run in the MS-Windows environment. The following section provides a detailed de-
scription of the setup, organization, editing, and options available.

3.4.1 Setup

The RTIWIN.INI file is created automatically (in the directory where MS-Windows is in-
stalled), if it does not exist, when the MS-Windows Niakwa RunTime is started the first
time. However, there are several options contained in this file that the developer can cus-
tomize for particular application setup and use.

For network installations, it is important that each user has an individual copy of the RTI-
WIN.INI file in the user’s own Windows directory (MS-Windows requires that each user
have an individual working directory on network installations). Parameters that are com-
mon to all users may be stored in a network-wide RTIWIN.INI file. The location of this
file is specified with the NetworkIniFile parameter in each user’s RTIWIN.INI files.
This file is never modified by the MS-Windows RunTime.

NOTE: Options specified in the local RTIWIN.INI file take precedence over options speci-
fied in the network-wide RTIWIN.INI file.

3.4.2 Organization

The RTIWIN.INI file is divided into two distinct descriptive areas. These include:

General Section: Used to specify options that are general to all tasks for the
user.

Individual Section: Used to specify the option for each Niakwa application boot
program.

RTIWIN.INI CONFIGURATION

3-8 NPL MS-Windows Addendum

These sections are automatically created if they do not exist. Some options in the individ-
ual sections are modified by the RunTime based on actions taken by the user. For exam-
ple, resizing or relocating the window for the task causes the window’s parameters to be
updated. This allows the RunTime to "remember" changes made by the user and use the
last selections as defaults the next time the task is executed.

The following example illustrates a typical RTIWIN.INI file.

[GENERAL]
NiaksecVersion=D
WarnUnreferencedIni=1
NetworkIniFile=K:\WINDOWS\RTIWIN.INI
[C:\BASIC2C\UTILITY.OBJ]
Window=22 87 594 479 0
SFKeys=280 150 0
Browse=184 -1 0
Follow=1
AutoSize=1 7 13 80

[C:\BASIC2C\DIAGBOX.OBJ]
Caption=Diagnostics
IconResourceFile=PROGMAN.EXE
IconNumber=5
Window=407 301 630 441 0
SFKeys=40 379 0
Browse=256 327 0
Follow=0
AutoSize=0 7 13 80
SFKeysCapNamesFile=K:\WINDOWS\MYWINDIR\MYSFKEYS.DAT
BrowseCapNamesFile=K:\WINDOWS\MYWINDIR\MYBROWSE.DAT

3.4.3 Editing

The RTIWIN.INI file may be customized by using any of the parameters discussed in
Section 3.4.4. Editing can be performed with any text editor (i.e., MS-Windows Notepad,
EDIT, EDLIN, etc.).

 NOTE: It is strongly recommended that, if this file is to be edited manually, the
WarnUnreferencedIni option be used to check for entry mistakes.

3.4.4 Parameters

The following is a complete description of the various RTIWIN.INI parameters. If a pa-
rameter is not specified, the default value, as described for each parameter below, is used.

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-9

NOTE: The options specified in this file apply both to the Interpretive (RTIWIN.EXE) and
Non-interpretive (RTPWIN.EXE), RunTime programs--there is not a separate RTI-
WIN.INI file for each.

AutoSize
Purpose: Allows specification of the status of the autosize flag (on or off) and

the font sizes to be used if off. In addition, the maximum width of the
screen used by the application is specified (usually 80 columns, but
may also be 132 for applications that select a wide display).

The Autosize option and font size may be changed by the user by
resizing the window. The values are saved in the application’s option
section when the window is closed as the defaults for the next session.

Values are, in order:

1. 0 for off or non zero for on
2. Font width in pixels when Autosizing is off
3. Font height in pixels when Autosizing is off
4. Application display size in columns (usually 80 or 132)

Value: Four numeric values separated by blanks

Default: 1 0 0 80

Example: AutoSize= 0 6 9 80

BrightBackground
Purpose: A display preference option that specifies whether background colors

in the RunTime window should be bright.

Value: Numeric, 0= normal background, not 0= bright

Default: 0

Example: BrightBackground= 1

RTIWIN.INI CONFIGURATION

3-10 NPL MS-Windows Addendum

Browse
Purpose: A display option that specifies where and if the Browse Key window

should appear. Three numbers are required, specifying the x and y co-
ordinates (in pixels) from the top left of the screen, and a third num-
ber showing whether the window is initially visible.

NOTE: If the number of pixels is out of range for the display being used (i.e., set to 790
when the monitor can only display 748 pixels horizontally), the window is automat-
ically moved to make it at least partially visible.

The location and visibility of the window may be changed by the user. The values
are saved in the application’s RTIWIN.INI option section when the window is closed
as the defaults for the next session.

Value: 3 Numeric, 1. Specifies x pixels from the top left of the screen
2. Specifies y pixels from the top left of the screen
3. 0= don’t display initially, not 0= display initially

Default: 0 0 0

Example: Browse = 448 284 1

BrowseCapNamesFile
Purpose: A pop-up preference option that specifies a file name that contains re-

placement labels for the Browse Key window display. The format of
this file is detailed in Section 3.5 of this chapter.

Value: String, full path name of file.

Default: Null string= no replacement

Example: BrowseCapNamesFile= C:\WINDOWS\MYBROWSE.TXT

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-11

Caption
Purpose: A display option that specifies the string that appears in the RunTime

window’s caption (title) area. The default value is derived from the
name of the boot program used to start the application.

Value: String

Default: Derived from boot program

Example: Caption= Niakwa Utilities

NOTE: If no boot program is specified, the default boot program (BOOT.OBJ) appears as
the RunTime window caption.

CommFlushDelay
Purpose: Specifies the delay time (in seconds) for characters to leave the serial

port output buffers before generating a timeout error.

Value: Numeric

Default: 30

Example: CommFlushDelay= 30

CommInputBufferSize
Purpose: Specifies the size in bytes required for the input buffers used when ac-

cessing serial ports.

Value: Numeric

Default: 512

Example: CommInputBufferSize= 1024

RTIWIN.INI CONFIGURATION

3-12 NPL MS-Windows Addendum

CommOutputBufferSize
Purpose: Specifies the size in bytes required for output buffers used when ac-

cessing serial ports.

Value: Numeric

Default: 512

Example: CommInputBufferSize= 1024

DllDupDirectory
Purpose: When using external libraries, which are non-shareable, the RunTime

must make temporary copies of the DLL. This option specifies where
the temporary copies should be located.

NOTE: This option may only appear in the [General] section of the RTIWIN.INI file.

Value: Drive and directory

Default: . (same drive and directory as the original DLL).

Example: DllDupDirectory= C:\DLLTEMP

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-13

 ExclusiveWhenNetworkLocksHeld
Purpose: Switching to another window while network file locks are held by

NPL causes other network users waiting for the same files to wait
longer for these resources. If the window which is switched to run a
task in exclusive mode issues a system modal dialog box, this delay
can be considerable.

For applications that lock network files for brief durations, setting
this flag to 1 causes the RunTime to run in exclusive mode while net-
work locks are held.

NOTE: The application may override this option by setting byte 43 of $OPTIONS.

Value: Numeric

Default: 0

Example: ExclusiveWhenNetworkLocksHeld= 1

ExternalLibrary
Purpose: Allows the specification of the names of the external libraries

(DDL’s) that should be loaded upon execution of the application.

The option should be in the general or application section of the RTI-
WIN.INI file.

The value of x is an integer index number. If more than one External-
Libraryx = option is entered in a section, the index (x value) must
start at 1 and be consecutive. Refer to Section 8.5 for more informa-
tion on loading multiple DLL’s.

Value: String

Default: Null

Example: ExternalLibrary1= C:\BASIC2C\NPLWIN.DLL
ExternalLibrary2= C:\BASIC2C\NPLDVS.DLL

RTIWIN.INI CONFIGURATION

3-14 NPL MS-Windows Addendum

Follow
Purpose: Specify whether scroll bars should adjust automatically to keep the

cursor visible when awaiting input. This option may be changed by
the user from the MS-Windows menu bar.

The status is saved in the application’s RTIWIN.INI option section
when the window is closed as the default for the next session.

Value: Numeric, 0= do not follow cursor, not 0= follow cursor

Default: 0

Example: Follow= 1

FontCharSet
Purpose: A display option that specifies the character set type used in the Run-

Time window. This option is typically used only when using a font
file other than BASFONTS.FON. The value specified must corre-
spond to the character set type specified in the font file to be used.
The actual character set used may vary depending on available fonts.

Changing the font character set effects the available character set dis-
played by the NPL. In particular, the NPL graphic characters may not
be available unless the provided Niakwa fonts are used.

Defined Value: 0 ANSI
2 Symbol
178 NPL character set (BASFONTS.FON)
179 IBM character set (IBMFONTS.FON)
255 OEM

Value: Numeric

Default: 178 (BASFONTS.FON)

Example: FontCharSet= 179

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-15

FontFaceName
Purpose: A display option that specifies the name of the font used in the Run-

Time window.

This should be the name of a fixed pitch font. The actual font used
may vary depending on the available fonts. To select a particular
font, it may also be necessary to change the FontCharSet option.

Value: String

Default: BASIC2C

Example: FontFaceName= IBASIC

HaltRequestPeriod
Purpose: HaltRequestPeriod is a performance tuning parameter that specifies

the number of times the RunTime can "branch" within a program be-
fore checking for MS-Windows messages. Decreasing the value in-
creases the responsiveness of the Niakwa RunTime to MS-Windows
messages. Increasing the value improves performance by reducing
the amount of time the Niakwa RunTime spends checking for MS-
Windows messages, but may reduce responsiveness to operate ac-
tions.

NOTE: The default value of 100 is suitable for most applications.

"Branches" are defined as any GOTO, NEXT, or RETURN statement
or falling through from one program line to the next.

Windows "messages" are used by the RunTime for:

- The HALT Key(CTRL/BREAK)
- Mouse-Input
- Window resizing

RTIWIN.INI CONFIGURATION

3-16 NPL MS-Windows Addendum

HaltRequestPeriod is also used by the Niakwa RunTime to deter-
mine how often to synchronize the screen display. Because scrolling
speed under MS-Windows is fairly slow, the MS-Windows version
of the RunTime performs optimization on screen output. Any output
that would be scrolled without waiting for operator input (KEYIN,
LINPUT, INPUT) is buffered until the next HaltRequestPeriod ex-
pires. At that time, the screen is updated with current contents of the
internal screen buffer. The effects of this buffering can be seen by en-
tering a LISTF command with a lengthy program in memory.

Any keyboard input, disk I/O, or $BREAK statements cause the Run-
Time to terminate the current HaltRequestPeriod and check for MS-
Windows messages and synchronize the screen.

Value: Numeric, maximum 65535, 1= check for HALT at each branch.

Default: 100

Example: HaltRequestPeriod= 50

IconNumber
Purpose: If IconResourceFile is specified, this option defines which icon from

the resource file is displayed when the window is minimized. If the
resource file contains multiple icons (i.e., a .EXE or .DLL file), the
option IconNumber must be set to the number of the icon that is
wanted (starting at 1). If the resource file contains only one icon (i.e.,
a .ICO file) the IconNumber must be set to 0.

Value: Numeric

Default: 0

Example: IconNumber= 1

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-17

IconResourceFile
Purpose: This option allows for selecting an icon from a resource file that is to

be displayed when the window is minimized. If the resource file con-
tains multiple icons (i.e., a .EXE or .DLL file), the option IconNum-
ber must be set to the number of the icon that is wanted (starting at
1). If the resource file contains only one icon (i.e., a .ICO file) Icon-
Number must be set to 0.

Value: String, full path name of file

Default: Null (use standard icon)

Example: IconResourceFile= PROGMAN.EXE

LockRetryDelay
Purpose: Specifies the time to wait (in milliseconds) before retrying if a file

lock request is refused by the file server. Refer to Section 5.2.1 for
more details.

Value: Numeric

Default: 1000

Example: LockRetryDelay= 0

LockWaitTimeout
Purpose: Specifies the time to delay at the file server (in timer ticks, 18= 1 sec-

ond) waiting for a locked file to be released before reporting the file
is locked. Refer to Section 5.2.1 for more details.

Value: Numeric

Default: 18

Example: LockWaitTimeout= 90

RTIWIN.INI CONFIGURATION

3-18 NPL MS-Windows Addendum

MouseClickKeys
Purpose: Allows redefinition of the key values returned to an application when

the mouse keys are clicked, released, or double-clicked. Six values
may be specified, separated by blanks or commas.

Value: Six key values, separated by blanks or commas.

In order, the key values specify replacement values for:

Default Key value
’F1 (1) Left mouse button pressed
’F2 (2) Left mouse button released
’F3 (3) Left mouse button double-click pressed
’F4 (4) Right mouse button pressed
’F5 (5) Right mouse button released
’F6 (6) Right mouse button double-click pressed

An empty value (shown by commas with no value between them)
leaves the generated value as the default. Values must be hexadeci-
mal (special function values should be preceded by a "’"). The non-
special key value, 0 is reserved to show that no key is generated for
this mouse event.

Default: Null (use defaults for all mouse click keys).

Example: MouseClickKeys= 0,0,82,0,0,’7E

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-19

MouseDragNSEWKeys
Purpose: Allows redefinition of the key values returned to an application when

the mouse is dragged (moved while a key is pressed). Four values
may be specified, separated by blanks or commas.

Value: Four-key values, separated by blanks or commas.

In order, the key values specify replacement values for:

Default Key value
’F7 (1) Mouse dragged North (up)
’F8 (2) Mouse dragged South (down)
’F9 (3) Mouse dragged East (right)
’FA (4) Mouse dragged West (left)

An empty value (shown by commas with no value between them)
leaves the generated value as the default. Values must be hexadeci-
mal (special function values should be preceded by a "’"). The non-
special key value, 0 is reserved to show that no key is generated for
this mouse event.

Default: Null (use defaults for all mouse drag keys).

Example: MouseDragNSEWKeys= ’46,’45,’4C,’4D

NetworkIniFile
Purpose: Initialization values for applications may be set up in a common file

that is referenced by all users on a networked system. The name of
the network configuration file is specified by this option. This file is
not changed by the MS-Windows RunTime and options in the local
RTIWIN.INI file take precedence over the network file.

NOTE: This option should only appear in the [General] section of the local RTIWIN.INI
files.

Value: String, full path name of file.

Default: Null (no network-wide options).

Example: NetworkIniFile= K:\WINDOWS\NWRTIWIN.INI

RTIWIN.INI CONFIGURATION

3-20 NPL MS-Windows Addendum

NetworkPartitionsFile
Purpose: When used with TERMINAL.TBL (which generates unique #TERM

values for each node on a network), this option allows generation of
unique values for #PART for each window on a network wide basis.
The option specifies the name of a configuration file for the applica-
tion. This configuration file limits access to the application to a lim-
ited number of values of #TERM and #PART (as they would be set
without this option). Each line of the specified file must have the for-
mat:

#TERM-value #PART-value [;comment]

The RunTime assigns a new #PART value by searching for an entry
containing the original #TERM value (as generated by TERMI-
NAL.TBL) and the original #PART value (as generated by the order
in which tasks are executed on a given workstation and as modified
by use of the ReservedPartitions and Partition options of RTI-
WIN.INI). The new #PART value assigned is the entry number of the
matching entry in the NetworkPartitionsFile. A task matching entry
one is assigned a #PART value of 1, a task matching entry 2 is as-
signed a #PART value of 2, and so on.

The name for the this file is generated by use of the NetworkParti-
tionsFile option. If no value is set for NetworkPartitionsFile, remap-
ping of the #PART values does not occur.

If NetworkPartitionsFile is used, only tasks whose original #TERM
and #PART values appear in the specified file are permitted to run. If
the specified file is not found, or a matching entry is not found or the
Partition number has already been mapped to another Partition num-
ber, the RunTime is terminated with a message "Cannot Determine
Partition Number".

Use of NetworkPartitionsFile is only meaningful on Novell Net-
ware networks where a TERMINAL.TBL file is in use (otherwise,
#TERM is always 1).

Different NetworkPartitionsFile files may be used for different ap-
plications on the same system.

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-21

HINT: To ensure consistent assignment of the NetworkPartitionsFile name, it is recommended
that this option be specified in the NetworkIniFile rather than the local RTIWIN.INI file.

Any #TERM remapping performed by the TerminalIsPartition op-
tion occurs after #PART remapping is performed by NetworkParti-
tionsFile.

The standard MS-DOS/Novell RunTime does not use the Network-
PartitionsFile. To ensure unique #PART generation for installations
where some workstations are using the MS-Windows RunTime ver-
sion and some workstations are using the standard MS-DOS/Novell
NetWare RunTime version, two steps are necessary:

1. Specify ReservedPartitions= 1 either in the NetworkIniFile or in
each of the local RTIWIN.INI files. This ensures that the original
#PART generated for each MS-Windows task is always 2 or
greater.

2. At the start of the NetworkPartitionsFile , place one entry for each
workstation, specifying the #TERM value for the workstation and
a #PART value of 1. This, in effect, reserves the first X #PART
values for MS-DOS tasks. The #PART values reserved are the
same as the #PART values generated by TERMINAL.TBL.

On large networks, it is easy to generate high #PART and #TERM
values. If #PART or #TERM values are greater than 99, $PSTAT
will not correctly reflect the #TERM value.

NOTE: #PART and #TERM values greater than 999 cannot be generated.

Refer to Section 6.2 for further information and guidelines for estab-
lishing unique task identification. Refer to Section 6.2.3 for a detailed
example in setting up the NetworkPartitionsFile.

Value: String, full path name of file.

Default: Null (no network partitions file).

Example: NetworkPartitionsFile= K:\BASIC2C\NETPARTS.TBL

RTIWIN.INI CONFIGURATION

3-22 NPL MS-Windows Addendum

NiaksecVersion
Purpose: In situations where the standard security TSR program (NIAK-

SECA.COM) cannot be used because interrupt 61H is already in use,
this option must be used to indicate that a different version (NIAK-
SECB.COM - NIAKSECF.COM) is used instead.

NOTE: This option may only appear in the [General] section of the RTIWIN.INI file.

Value: Letter value (A, B, C, D, E, or F) of version used.

Default: A (use standard program)

Example: NiaksecVersion= B

ParallelFullDelay
Purpose: Specifies the number of time units (in milliseconds) to delay when

LPT drivers indicate that transmit buffers are full before sending
more data.

Value: Numeric

Default: 200

Example: ParallelFullDelay= 10

ParallelRetryCount
Purpose: Specifies the number of times to ask LPT drivers to send data before

accepting an indication from the driver that transmit buffers are full.

Value: Numeric

Default: 20

Example: ParallelRetryCount= 10

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-23

Partition
Purpose: In situations where a specific application must always have the same

partition number, it may be directly assigned using this option. If the
option is not specified, the first available partition number is allo-
cated.

To ensure that partition numbers allocated by this option are not used
by other applications, use the ReservedPartitions option.

NOTE: This option normally does not appear in the [General] section of the RTIWIN.INI
file.

Partition numbers generated by the Partition parameter may be re-
mapped by use of the NetworkPartitionsFile parameter. Refer to
Section 6.2 for more information and guidelines on unique task identi-
fication.

Value: Numeric starting at 1 to 999.

Default: None (first free non-reserved partition dynamically assigned)

Example: Partition= 2

PerimiterIsBackground
Purpose: A display preference option that specifies whether the perimeter area

of the RunTime window (area outside normal display area) should al-
ways be the same as the default background color (overriding any
value specified by program).

Value: Numeric, 0= program specifies perimeter, not 0= use background
color

Default: 0

Example: PerimiterIsBackground= 1

RTIWIN.INI CONFIGURATION

3-24 NPL MS-Windows Addendum

PrinterConfig
Purpose: If a $DEVICE specification in the form of "> (@printerid)" is used,

the value of this option is used as an indirect print spooler specifica-
tion. The printer id may be any legal string, but recommended values
are numbers starting at 1.

The format of this option is the same as that for the WIN.INI "de-
vice= " option (i.e., three strings separated by commas) specifying
DeviceName, DriverName, Output in that order. DeviceName
specifies the specific device to be supported. DriverName specifies
the MS-DOS filename (without extension) of the device driver. Out-
put specifies the MS-DOS file or device name for the physical output
medium. Refer to the MS-Windows documentation on the MS-Win-
dows Print Spooler and Section 5.4 of this Addendum for more infor-
mation.

Value: Three strings separated by commas.

Default: None

Example: PrinterConfig1= HP ThinkJet (2225 C-D),THINKJET,LPT1:

ReservedPartitions
Purpose: In situations where specific applications must always have the same

partition number, it is usually desirable to reserve these partition num-
bers so applications that use dynamically assigned partition numbers
do not conflict.

This option specifies the partition numbers (1 to n) that are never as-
signed dynamically (i.e., only are used by applications with a Parti-
tion option in the RTIWIN.INI file).

NOTE: This option may only appear in the [General] section of the RTIWIN.INI file and
must be used with the Partitions option.

Value: Numeric 0-999

Default: 0

Example: ReservedPartitions= 2

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-25

SFKeys
Purpose: A display option that specifies where and if the SF Keys window

should appear. Three numbers are required, specifying the x and y co-
ordinates (in pixels) from the top left of the screen, and a third num-
ber showing whether the window is initially visible.

NOTE: If the number of pixels is out of range for the display being used (i.e., set to 790
when the monitor can only display 748 pixels horizontally), the window is automat-
ically moved to make it at least partially visible.

The location and visibility of the window may be changed by the
user. The values are saved in the application’s option section of the
RTIWIN.INI file when the window is closed as the defaults for the
next session.

Value: 3 Numeric

1. Specifies x pixels from the top left of the screen
2. Specifies y pixels from the top left of the screen
3. 0= don’t display initially, not 0= display initially

Default: 0 0 0

Example: SFKeys= 0 403 0

SFKeysCapNamesFile
Purpose: A display preference option that specifies a file name that contains re-

placement labels for the SF Keys window display. The format of this
file is detailed in the Section 3.5 .

Value: String, full path name of file.

Default: Null string= no replacement

Example: SFKeysCapNamesFile= C:\WINDOWS\MYSFKEYS.TXT

RTIWIN.INI CONFIGURATION

3-26 NPL MS-Windows Addendum

SFKeysStyle
Purpose: A display preference option that specifies which style of SF Keys

window should appear.

Value: Numeric, 0= one row of 16 keys, 1= two rows of 8 keys

Default: 0

Example: SFKeysStyle= 1

ShareWarning
Purpose: To suppress the warning message box when the MS-Windows Run-

Time detects that the MS-DOS SHARE command is not running and
a second MS-Windows RunTime attempts to access local files (i.e.,
non-network files).

WARNING--This option should never be used if file or device sharing is to be used.

Value: Numeric,

0= suppress SHARE warning,
1= display SHARE warning box

Default: 1

Example: ShareWarning= 0

StandardColorRGB0 to StandardColorRGB15
Purpose: Allows explicit definition of the 24-bit RGB (red-green-blue) values

used by the MS-Windows RunTime to request colors from the MS-
Windows display driver. The default values are typically suitable for
drivers (VGA, EGA) which can display at most 16 solid colors.

On displays with more color capability, this option allow selection of
different shades of color.

If non-solid colors are specified, MS-Windows automatically uses the
closest solid color.

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-27

The standard colors are normally:

0 black 8 gray (= bright black = dark gray)
1 blue 9 bright blue
2 green 10 bright green
3 cyan 11 bright cyan
4 red 12 bright red
5 magenta 13 bright magenta
6 brown 14 bright brown (yellow)
7 white (= light gray) 15 bright white

HINT: If the colors are remapped, remember the bright video attributes are obtained by adding 8
to the color value of the foreground. Monochrome displays use standard color 0 for black
and 15 for white.

Each entry requires 3 numbers, which should each be in the range 0-
255, separated by spaces. The values specify the intensity of each of
the color values red, green and blue (in that order). The custom color
display in the MS-Windows Control Panel may be used to determine
appropriate RGB values.

Value: 3 Numerics in range 0-255

RTIWIN.INI CONFIGURATION

3-28 NPL MS-Windows Addendum

Default:

StandardColorRGB0 0 0 0
StandardColorRGB1 0 0 128
StandardColorRGB2 0 128 0
StandardColorRGB3 0 128 128
StandardColorRGB4 128 0 0
StandardColorRGB5 128 0 128
StandardColorRGB6 128 128 0
StandardColorRGB7 192 192 192
StandardColorRGB8 85 85 85
StandardColorRGB9 0 0 255
StandardColorRGB10 0 255 0
StandardColorRGB11 0 255 255
StandardColorRGB12 255 0 0
StandardColorRGB13 255 0 255
StandardColorRGB14 255 255 0
StandardColorRGB15 255 255 255

Example: StandardColorRGB1= 0 0 192

NOTE: The default colors used by MS-Windows can, on some configurations, cause various
attribute combinations to become invisible. In particular, REVERSE/BRIGHT is
often affected by this. Remapping the colors may resolve this.

TerminalIsPartition
Purpose: To allow #TERM values to be set equal to #PART values.

NOTE: This change is made after any remapping of partitions caused by the NetworkParti-
tionsFile option.

Refer to Section 6.2 for more information and guidelines on unique
task identification.

Value: Numeric, 0= do not change #TERM, 1= set #TERM from #PART

Default: 0

Example: TerminalIsPartition= 1

CONFIGURATION RTIWIN.INI

NPL MS-Windows Addendum 3-29

WarnUnreferencedIni
Purpose: This option checks for possibly misspelled or duplicate values in the

RTIWIN.INI file. If set to a non-zero value, key values of the RTI-
WIN.INI file in the general or application section that are not known
to the RunTime generate warning messages at start-up time.

Value: Numeric 0= no warnings, not 0= display warnings

Default: 0

Example: WarnUnreferencedIni= 1

Window
Purpose: A display preference option that specifies where and how large the

RunTime window should appear. Five numbers are required, specify-
ing the x and y coordinates (in pixels) from the top left of the screen,
the x and y size of the screen (in pixels) and a fifth number showing
whether the window is initially expanded to full screen size.

NOTE: If the number of pixels is out of range for the display being used (i.e., set to 790
when the monitor can only display 748 pixels horizontally), the window is automat-
ically moved to make it at least partially visible.

The location, size and visibility of the window may be changed by
the user. The values are saved in the application’s RTIWIN.INI op-
tion section when the window is closed as the defaults for the next
session.

Value: 5 Numeric

1. Specifies x pixels from the top left of the screen
2. Specifies y pixels from the top left of the screen
3. Specifies x horizontal size in pixels from 1.
4. Specifies y vertical size in pixels from 2.
5. 0= don’t display full screen, non 0= display full screen

Default: Defaults provided by system

Example: Window= 1 3 640 271 0

RTIWIN.INI CONFIGURATION

3-30 NPL MS-Windows Addendum

3.5 Customizing Special Function/Browse Key Names

These files allow the developer to customize the key labels as they appear on the Browse
and SF Key windows described in Section 4.3. The following is a discussion of the op-
tion for these files.

These files are ASCII text files, created by any text editor (i.e., the MS-Windows
Notepad, EDIT, EDLIN, etc.), to specify the replacement information for the default la-
bels.

Each line may have one of the following formats:

1. To specify the source file is OEM character set, include the line oem as shown below.

oem

This line must precede any lines that require character set translation to ANSI.

2. To specify source file is ansi character set, include the line ansi as shown below.

ansi

This line may precede any lines that do not need character set translation.

3. To add comments to a line, add a ";" before the comments as shown below.

;optional comment

4. To specify a new caption for the window name, add a line that sets the caption equal
to a new string as shown below.

Caption="string" ;optional comment

5. To specify a new label for a key, add a line renaming the label as shown below.

OldLabel="string" ;optional comment

6. To specify a new label and a new non-function key value, add a line renaming the la-
bel and defining the key in hex as shown below.

OldLabel="DEL"=7F ;optional comment

CONFIGURATION Customizing Special Function/Browse Key Names

NPL MS-Windows Addendum 3-31

7. To specify a new label and new function key value, add a line renaming the label and
defining the key in hex as shown below.

OldLabel="QUIT"=’7F ;optional comment

8. To specify a new label and new function key values for unshifted and shifted values,
add a line renaming the label and defining the key in hex as shown below.

OldLabel="QUIT"=’7E,’7F ;optional comment

NOTE: The "OldLabel" value must match the standard label for the key in the uncusto-
mized dialog box (e.g., in SF Keys labels are ’0, ’1, etc.).

The following examples illustrate actual replacement files.

Example 1 - SF Keys:

’0= "Add"
’1= "Sub"
’2= "Mult"
’3= "Div"
’4= "Total"
’5= "Calc"
’6= "Del"
’7= "Help"

Example 2 - Browse Keys:

Cancel= "Quit"
Prev= "Pg Up"
Next= "Pg Dn"
Insert= "Add"
Delete= "Subtract"
Exec= "Run"
Back= "Reverse"
Space= "Blank"
Return= "Enter"

Customizing Special Function/Browse Key Names CONFIGURATION

3-32 NPL MS-Windows Addendum

CHAPTER 4

RUNTIME OPERATION

4.1 Overview

This chapter discusses the operation of the Niakwa MS-Windows RunTime.

Section 4.2 discusses the various MS-Windows modes and their effect on the MS-Win-
dows RunTime.

Section 4.3 discusses starting the MS-Windows RunTime.

Section 4.4 discusses the menu bar options available to all MS-Windows RunTime tasks
(Browse Keys, SF Keys, Follow, and Autosize) and HELP Processor options

Section 4.5 discusses minimizing a RunTime task.

Section 4.6 discusses resizing or moving a RunTime window.

RUNTIME OPERATION Overview

NPL MS-Windows Addendum 4-1

Section 4.7 discusses the RunTime startup options that are specific to MS-Windows.

Section 4.8 discusses the various methods of closing a RunTime task.

Section 4.9 discusses using the standard Niakwa RunTime.

4.2 MS-Windows Modes

The MS-Windows RunTime can be executed in either MS-Windows Standard or 386 En-
hanced Mode. Refer to the MS-Windows documentation for more information on the
various MS-Windows modes and their requirements and start up options.

4.3 Starting the RunTime

The MS-Windows RunTime can be started from the MS-Windows Program Manager or
from a command line using the MS-Windows Run Program feature.

NOTE: The NIAKSECx command must be executed prior to starting the MS-Windows envi-
ronment. If NIAKSECx has not been run, exit MS-Windows and run the command.
NIAKSECx is necessary for the RunTime to execute. Refer to Section 2.5 of this ad-
dendum for more information on the security for the MS-Windows RunTime.

4.3.1 Starting the RunTime from the Program Manager

To start the MS-Windows RunTime from the MS-Windows Program Manager, follow
these steps:

1. Start the MS-Windows Program Manager if it is not currently displayed. The Main
Group icons or the window that contains the RunTime icon should be displayed.

2. Select the RunTime icon to be run by double-clicking on the program icon to be run
or highlighting it and pressing Enter. Refer to Section 3.3 for information on creating
and installing the RunTime icon.

MS-Windows Modes RUNTIME OPERATION

4-2 NPL MS-Windows Addendum

NOTE: If the Gold Key security has not been installed, the operator is prompted to insert
the Gold Key Diskette. Enter the appropriate drive letter in the Text Entry Box and
select the OK command button.

3. The MS-Windows RunTime loads into memory and starts executing the application
boot program that was specified in the task command line.

NOTE: Refer to Appendix A of this addendum for a list of common problems if the Run-
Time task does not execute properly.

4.3.2 Starting the RunTime from a Command Line

The MS-Windows RunTime can also be started from the File Run command in the Pro-
gram Manager. To start the MS-Windows RunTime by using this option, follow the steps
shown below:

1. Choose the File Run command from the Program Manager’s File Menu. The Run dia-
log box appears as shown in Figure 4-1.

Figure 4-1

2. Enter the full path name of the MS-Windows RunTime. For example, if the RunTime
is located in the C:\BASIC2C directory, the following would be entered in the text-en-
try box:

C:\BASIC2C\RTIWIN.EXE <options> <bootname>

where < options> represents any start-up options needed for the application
and < bootname> is the application boot file.

RUNTIME OPERATION Starting the RunTime

NPL MS-Windows Addendum 4-3

3. Select OK or press Enter. The RunTime then loads and begins to execute the boot pro-
gram specified in step 2.

4. If an entry exists in RTIWIN.INI for the specified boot file, the options specified in
that section are used. Otherwise, a new section for the task is created in the RTI-
WIN.INI file automatically.

4.4 Menu Bar Options

The standard MS-Windows menu bar for the NPL RunTime for MS-Windows contains
two pull down menus.

The Options Menu is discussed in Section 4.4.1 and the HELP menu is discussed in Sec-
tion 4.4.2.

NOTE The menu bar can be modified by external DLLs. Refer to Chapter 8 for details.

4.4.1 Interactive Options

The RunTime provides four user-selectable options from the Option Menu accessible
from the RunTime Menu Bar. These options are:

• Browse Keys

• SF Keys

• Follow

• Autosize

To activate any of these options, it is necessary to "check" it. To do this, first select the
Option Menu from the menu bar (the Option Menu displays the four interactive options).
To check an item, highlight the option and click the left button of the mouse once. When
an option is selected, a checkmark appears next to the item to show that it is active. To de-
activate an option, select it again and the checkmark is removed.

HINT: The Browse Keys and SF Keys options may also be deactivated by double-clicking the
option bar on the appropriate option keys window.

Menu Bar Options RUNTIME OPERATION

4-4 NPL MS-Windows Addendum

NOTE: The default values are stored in the RTIWIN.INI file. Refer to Section 3.4 for more
information on this file.

Any of these options can be used simultaneously. The following describe these options in
detail.

NOTE: The RTIWIN.INI file is automatically updated with the status of these options when
the RunTime task is closed. The next time the RunTime task is opened, it uses this
information as its default.

Browse Keys
This option allows the NPL virtual keys to be accessed directly from the screen by using
a mouse. When this option is active, a window appears on the screen with the names of
the NPL keys that can be accessed with a mouse.

The default keys are set as: Cancel, Prev, Insert, Exec, Tab, Next, Delete, Back Space,
Return, and the North, South, East and West directional keys as shown in Figure 4-2.

Figure 4-2

The key labels and caption displayed can be changed by the developer. This can be done
by using the BrowseCapNamesFile option in the RTIWIN.INI file. Refer to Section 3.4
and 3.5 for more information.

Keys are selected by locating the mouse cursor to the desired key and clicking the left
button. Holding the right button while pressing the left button produces the shifted value
of the key (i.e., SHIFT-INSERT).

To move the Browse Key window to another position on the desktop, use the mouse to
drag the window to the new location as if it were any other window. If the associated par-
ent task for the Browse Key window is minimized, the Browse Key display is not visible
as long as the task remains minimized.

RUNTIME OPERATION Menu Bar Options

NPL MS-Windows Addendum 4-5

NOTE: The status (active or not active) and the last location of the Browse window, before
the RunTime task is closed, is automatically stored by the Browse option in the RTI-
WIN.INI file. Refer to Section 3.4 for more information on this feature.

Special Function Keys
This option allows the NPL Special Function (SF) keys to be accessed directly from the
screen by using a mouse. When this option is active, a window appears on the screen
with the names of the NPL SF Keys that can be accessed with a mouse.

The default keys are set as SF Keys 0-15 in a single strip as shown in Figure 4-3.

Figure 4-3

By using the SFKeysStyle option in the RTIWIN.INI file, the developer can split the
function keys into two rows of 8 each as shown in Figure 4-4.

Figure 4-4

HINT: The key labels and caption displayed can be changed by the developer. This can be done
by using the SFKeysCapNamesFile option in the RTIWIN.INI file. Refer to Section 3.4
and 3.5 for more information.

Keys are selected by locating the mouse cursor to the desired key and clicking the left
mouse button. SF Keys 16-31 can be accessed through this option by holding the right
mouse button and clicking the left mouse button when the mouse cursor is on the appro-
priate SF Key. For example, to generate the SF Key 17, press and hold the right mouse
button and click the left button when over the SF Key 1.

Menu Bar Options RUNTIME OPERATION

4-6 NPL MS-Windows Addendum

To move the SF Keys window to another position on the desktop, use the mouse to drag
the window to the new location as if it were any other window. If the associated parent
task for the SF Keys window is minimized, the SF key display is not visible as long as
the task remains minimized.

NOTE: The status (active or not active) and the last location of the SF Keys window, before
the RunTime task is closed, is automatically stored by the SFKeys option in the RTI-
WIN.INI file. Refer to Section 3.4 for more information on this feature.

Follow
In cases where the visible window is too small to display the entire RunTime screen, the
Follow option keeps the cursor visible in the RunTime task window. When this option is
active, the window automatically scrolls to keep the cursor visible when awaiting input.
When switched off, the cursor can move off the visible screen area displayed on the win-
dow to other parts of the full screen display (the MS-Windows scroll bars can be used to
reposition the active display to show the cursor).

NOTE: The status of this option is saved by the Follow option in the RTIWIN.INI file when
the current task is closed. The next time the RunTime task is started, it uses the
saved status as its default. Refer to Section 3.4 for more information on this feature.

Autosize
When this option is selected, the MS-Windows RunTime selects the closest available
font to fit a full screen (24 rows x 80 or 132 columns) into the current window size.
Scroll bars only appear if the window size and font size combination do not allow the full
Niakwa screen to appear in the resized window. When the option is not selected, chang-
ing the size of the window does not affect the font size. Scroll bars always appear when
the full screen does not fit in the current size window with the font setting being used.

HINT: The best way to use this option is to select the option and resize the window until a com-
fortable font size is displayed. This font size can then be saved by switching the Autosize
option to off. When switched off, the font size does not change even if the window is
resized.

NOTE: The status of this option as saved by the AutoSize option in the RTIWIN.INI file
when the current task is closed. The next time the RunTime task is started, it uses
the saved status as its default. Refer to Section 3.4 for more information on this fea-
ture.

RUNTIME OPERATION Menu Bar Options

NPL MS-Windows Addendum 4-7

The following options of the RTIWIN.INI file also affect font size:

• Window

• FontFaceName

• FontCharSet.

4.4.2 Help Option

Selecting the Help Option on the menu bar displays a sub-menu with the following
choices:

 Topic Invokes the NPL Help Processor. Selecting this menu item
is equivalent to entering the HELP key from the keyboard.
This item is available only if $HELP is set to a non-blank
value. Refer to Chapter 11 of the NPL Programmer’s Guide
for details.

About RTI Selecting this menu item displays a message box showing
the current RunTime version in use.

4.5 Minimizing a Runtime Task

To minimize a RunTime task, select the minimize icon (refer to the MS-Windows docu-
mentation for detailed information).

NOTE: When a task is minimized it continues to execute, but any Browse or SF Key win-
dows displayed are not visible as long as the task remains minimized.

The RunTime Program icon is used as a default icon by MS-Windows for the minimized
task. The developer can choose another icon to be used when a RunTime task is mini-
mized. This icon can be specified by using the IconResourceFile and IconNumber op-
tions in the RTIWIN.INI file. Refer to Section 3.4 for more information on this option.

Minimizing a Runtime Task RUNTIME OPERATION

4-8 NPL MS-Windows Addendum

4.6 Resizing or Moving Task Windows

RunTime tasks, Browse Keys, or SF Keys windows can all be moved by using the stand-
ard MS-Windows method of moving a window (select and drag). In addition, RunTime
task windows can be resized using the standard MS-Windows method of resizing win-
dows. The last size and position of these windows is saved by the appropriate option in
the RTIWIN.INI file when the task is closed. The size and position parameters are then
used as the default values the next time the RunTime task is started. Refer to Section 3.4
of this Addendum for more information.

4.7 RunTime Startup Options

All RunTime startup options available under the MS-DOS version are available under the
MS-Windows versions except for those noted below. Refer to Section 4.4 of the NPL
MS-DOS Supplement for a complete discussion of the startup options under the MS-
DOS version of NPL.

4.7.1 /G Option

Under the MS-Windows version of NPL, graphics mode is always active. Therefore, the
/G option has no effect on the MS-Windows RunTime operation.

4.7.2 /H Option

The /H option is not supported under the MS-Windows version of NPL. The dynamic na-
ture of the MS-Windows environment allows the handle table to expand to the necessary
size as required by the RunTime.

4.7.3 /K Option

The /K option is not necessary under MS-Windows. Mouse support is automatic under
MS-Windows.

RUNTIME OPERATION Resizing or Moving Task Windows

NPL MS-Windows Addendum 4-9

4.7.4 /M Option

The /M option is not supported under the MS-Windows version of NPL. Under MS-Win-
dows, the RunTime has access to all available system memory.

4.7.5 /R Option

The /R option is not supported under the MS-Windows version of NPL.

4.7.6 /U Option

The /U option is not supported under the MS-Windows version of NPL. Under MS-Win-
dows, the RunTime has access to available system memory.

4.7.7 /X Option

Under MS-Windows the /X option has been enhanced to allow more than one external li-
brary (DLL) to be specified. Refer to Chapter 8 for details.

4.8 Closing the RunTime Task

A RunTime task can be closed by using the Niakwa $END command. This can be issued
in Interpretive mode or as part of the program code. The RunTime task can also be closed
by using the MS-Windows "Exit Program" menu option.

The HEX(10) bit of byte 33 of $OPTIONS is used to instruct the MS-Windows RunTime
to suppress the ability to kill RunTime tasks from MS-Windows. If this bit is set, then:

• The Close Task option from the MS-Windows menu bar is not available.

• Attempting to close the task using a double-click is not available.

• A warning is generated if the user attempts to kill the task from the Task Man-
ager.

• A warning is generated if the user attempts to exit MS-Windows while a Run-
Time task is open.

Closing the RunTime Task RUNTIME OPERATION

4-10 NPL MS-Windows Addendum

NOTE: If the HEX(02) bit of byte 33 (suppress Kill RunTime, from the HELP Processor) is
on, then suppression of the MS-Windows methods of killing the task is automat-
ically on, whether or not the HEX(10) bit is set.

Refer to the NPL Statements Guide for more information on $OPTIONS.

HINT: This may be desirable to prevent users from accidentally exiting the RunTime.

WARNING -- Exiting the MS-Windows RunTime abnormally can lead to data corruption.

4.9 Using the Standard NPL Runtime

The standard NPL RunTime is also included with the MS-Windows RunTime Package.
Niakwa recommends using only the MS-Windows version of the RunTime on any sys-
tem operating with MS-Windows. However, there may be situations when the use of the
standard version is necessary. For example, users of a Novell NetWare network who do
not have access to MS-Windows, running under MS-DOS only, must use the standard
RunTime version.

NOTE: For instructions on using the standard RunTime, please refer to the MS-DOS Sup-
plement for more details.

4.9.1 Serial Number

The serial number used by the standard NPL RunTime is the same as that used by the
MS-Windows RunTime. If the Gold Key security is installed on the hard drive, either
RunTime can pass security from the hard drive, otherwise the RunTime prompts the user
to insert the Gold Key diskette to pass security as discussed in Section 2.5 of the MS-
DOS Supplement.

4.9.2 User Limit

If an application must have multiple tasks of the NPL RunTime executing, the developer
should use the MS-Windows RunTime (using MS-Windows, as many tasks as can fit into
the system memory are allowed to execute simultaneously).

RUNTIME OPERATION Using the Standard NPL Runtime

NPL MS-Windows Addendum 4-11

NOTE: Niakwa strongly recommends using the MS-Windows version of the RunTime,
when using MS-Windows.

For the standard Novell NetWare RunTime, the user count is adjusted by one each time a
regular RunTime is executed.

4.9.3 Device Sharing

Device sharing, particularly non-network files and devices, is not allowed under the
standard version of the Niakwa RunTime. Attempts to use the standard RunTime under
MS-Windows should be avoided, particularly when the MS-Windows RunTime or an-
other standard RunTime window is being used.

WARNING -- Data corruption can result if the standard RunTime and a MS-Windows
RunTime concurrently access the same local file.

NOTE: The MS-Windows RunTime fully supports device sharing. Refer to Chapter 6 for
more information on device sharing with the MS-Windows RunTime.

Using the Standard NPL Runtime RUNTIME OPERATION

4-12 NPL MS-Windows Addendum

CHAPTER 5

DEVICE SUPPORT

5.1 Overview

This chapter discusses the various devices supported by the NPL under MS-Windows.

Section 5.2 discusses the handling of storage devices (diskimages and diskettes) with the
MS-Windows RunTime.

Section 5.3 discusses on-line printing with the MS-Windows RunTime.

Section 5.4 discusses using the MS-Windows Print Manager for printing with the MS-
Windows RunTime.

Section 5.5 discusses using serial devices with the MS-Windows RunTime.

Section 5.6 discusses monitor support with the MS-Windows RunTime.

DEVICE SUPPORT Overview

NPL MS-Windows Addendum 5-1

Section 5.7 discusses keyboard support with the MS-Windows RunTime.

Section 5.8 discusses mouse support with the MS-Windows RunTime.

5.2 Storage Devices

The following sections discuss how the MS-Windows RunTime addresses NPL storage
devices (i.e., diskimages and diskettes).

5.2.1 Diskimages

"Hogging" diskimage devices is fully supported with the MS-Windows RunTime. Refer
to Chapter 5 of the MS-DOS Supplement for additional information.

NOTE: The MS-DOS SHARE program must be loaded for this to operate correctly with lo-
cal files.

Files not "hogged" are released back to the system during a KEYIN execution to make
the file handles available to other windows. These files are reopened automatically on de-
mand. Consequently, "hogged" diskimages can generate several additional open files that
may require an increase in the open files parameter specified in the CONFIG.SYS file.
Refer to Section 2.3.1 more information.

$OPEN Under Novell NetWare
Under Novell NetWare, if a $OPEN is attempted on a diskimage that is hogged by an-
other workstation, all tasks on the workstation (NIAKWA and non-NIAKWA) slow
down considerably. This is because all lock requests that are "wait for it" types (without
line number exit) use a NetWare call which requests the lock with a time-out at the serv-
er.

This time-out is intended to keep the network from filling up with traffic in cases where
there is temporary file contention. Only one network request every five seconds goes to
the file server, and returns immediately if the lock is released.

While waiting for the results of the lock request, MS-Windows cannot service any other
DOS requests or MS-Windows messages. This results in extremely slow performances
and response in other windows (while the lock request is pending).

Storage Devices DEVICE SUPPORT

5-2 NPL MS-Windows Addendum

To allow the developer to fine tune this delay and improve performance, two RTI-
WIN.INI options, LockWaitTimeOut and LockRetryDelay, are available to control the
behavior of these lock requests.

Refer to Section 3.4 for details on the use of these options.

NOTE: No single value is likely to work well in all environments. If the time-out and retry
delays are both short, the network will fill up with lock request traffic whenever file
contention occurs. If the time-out delay is too long, there is a risk of waiting an un-
necessarily long time for a locked file after it had been released or of missing the
chance of locking the file to another user’s workstation.

Exclusive Use of The Windows Resources While a Diskimage is Locked
Under Novell NetWare, if a non-Niakwa application that requires exclusive use of the
Windows resource starts while a Niakwa task has a diskimage locked (using $OPEN), the
diskimage remains locked until the non-Niakwa application completes the task and the
Niakwa task is reactivated. During this period, other nodes that attempt to access the
locked diskimage are forced to wait, giving the appearance that the entire network is very
slow.

To avoid this odd timing problem, a $OPTIONS byte is available that indicates that the
RunTime should not yield to other MS-Windows tasks while $OPEN’s are active. The
"no-yield" behavior can be implemented by use of byte 43 in $OPTIONS.

Byte 43 of $OPTIONS is implemented as follows:

HEX(00) [default] - yield to other Windows tasks even if $OPEN’s are outstanding.

HEX(01) yield to other Windows tasks only if no $OPENs to network files have been
granted.

Refer to Chapter 7 for details on $OPTIONS settings under MS-Windows.

DEVICE SUPPORT Storage Devices

NPL MS-Windows Addendum 5-3

NOTE: A RTIWIN.INI option is also available to avoid this timing problem. This is the Ex-
clusiveWhenNetworkLocksHeld option. Refer to Section 3.4 for details on this op-
tion.

The application can override the ExclusiveWhenNetworkLocksHeld option by set-
ting byte 43 in $OPTIONs to HEX(01).

Use of $OPTIONS is recommended for situations where the developer wishes to avoid
modification of the RTIWIN.INI file. This can also be used with specific parts of the ap-
plication (i.e., one that is likely run in the background or take long enough that the con-
trol is most likely be passed to other window applications). The
ExclusiveWhenNetworkLocksHeld RTIWIN.INI option is intended for situations where
the developer does not want to make modifications to the original software.

NOTE: The implementation of the Byte 43 in $OPTIONS and/or the ExclusiveWhenNet-
workLocksHeld option in RTIWIN.INI could cause uneven operation of other open
Windows (they could effectively stop running while $OPEN’s are active).

Due to the specifics of Niakwa’s MS-Windows implementation, the "no-yield" be-
havior does not apply when waiting for keyboard input. While waiting for keyboard
input, the RunTime releases locked files and yields control to other MS-Windows
tasks.

5.2.2 Diskettes

Raw diskette support is provided as documented in Chapter 6 of the MS-DOS NPL Sup-
plement with the exceptions noted below.

The requirements for DOS base memory under MS-Windows for raw diskette buffering
is 32K under Release IV. This memory is only required when accessing raw media. If the
required base memory is not available, the statement attempting to access the raw disk-
ette fails with a NPL P48 (Illegal Device Specification), with an MS-DOS error code of
two (2), (file not found).

Storage Devices DEVICE SUPPORT

5-4 NPL MS-Windows Addendum

WARNING--"Hogging" of raw diskettes excludes access to the diskette from other
Niakwa RunTime tasks only. This does not prevent other programs running concurrently
under MS-Windows from accessing the diskette.

5.3 On-line Printing

To send output to a printer without the use of the MS-Windows Print Manager, the NPL
device statements should use the normal NPL naming conventions. Refer to Chapter 5 of
the NPL MS-DOS Supplement.

Several differences exist on how printing to on-line devices functions under the MS-Win-
dows RunTime. These differences are discussed in the following sections.

5.3.1 Printing to Local Devices

The following section discusses printing to local print devices under the MS-Windows
RunTime.

Use of $OPEN
Printer sharing using $OPEN/$CLOSE is fully supported between NPL tasks on the same
workstation. Use of $OPEN/$CLOSE is requried to prevent intermingled output.

Under the NPL MS-Windows RunTime, PRINT statements used with $OPEN to a local
printer may be slower than when no $OPEN is used. This is due to a 200ms delay pro-
duced by the RunTime if the parallel port output is refused (due to the internal buffer be-
ing full). This delay assumes that the buffer, approximately 512K, needs to be flushed.

Due to this delay and the fact that the MS-Windows print drivers expect large blocks of
data, but can only keep track of a small number of blocks of any size, excessive delays
may appear for PRINT statements with few or no characters. To address these issues two
RTIWIN.INI options, ParallelFullDelay and ParallelRetryCount are available. Refer to
Section 3.4 for details on these options.

5.3.2 Printing under Novell NetWare using LPTx Devices

The following section discusses printing under NPL for MS-Windows on a Novell Net-
Ware system.

DEVICE SUPPORT On-line Printing

NPL MS-Windows Addendum 5-5

The Novell NetWare CAPTURE command redirects output from the designated LPTx de-
vice to the Novell NetWare spooler as under the standard Novell NetWare version of
NPL. If several RunTimes tasks are running concurrently, and each sending output to a
LPTx device, the Novell NetWare spooler creates a different spool file for each task.
Thus, each tasks output is printed separately

5.4 Using the MS-Windows Print Manager

Use of the MS-Windows Print Manager is supported by the Niakwa MS-Windows Run-
Time. This support allows for many variations as described below.

NOTE: This section assumes an understanding of the MS-Windows Print Manager. Refer to
the MS-Windows documentation for more information.

The syntax used in the $DEVICE statement for accessing the MS-Windows Print Man-
ager is as follows:

$DEVICE(/215)=">(printer file specification)DocName XXX=X"

Each of the individual parameters (printer file specification, DocName, and other op-
tions) are described in detail below.

NOTE: Output directed to the MS-Windows Print Manager may itself be redirected to a
Novell NetWare Spooler. This operates transparently to the NPL application.

5.4.1 Printer File Specification

The "printer file specification" can be set to one of the following options:

1. To use the MS-Windows default printer device.

A null string specifies that the [windows]/device= specification in the MS-Windows
WIN.INI file is to be used.

For example:

">()"

Using the MS-Windows Print Manager DEVICE SUPPORT

5-6 NPL MS-Windows Addendum

2. To use one of the predefined MS-Windows print devices.

The following format should be used as described in the MS-Windows documenta-
tion for MS-Windows print device specifications.

DeviceName, DriverName, Output

For example:

">(HP ThinkJet (2225 C-D)THINKJET,LPT1:)"

3. To select a RunTime configured printer device.

This option uses the print device specified in the Niakwa RTIWIN.INI file by
PrinterConfig and the @partialkey keyword. Refer to Section 3.4 for details.

For example:

(@partialkey)

4. To display a dialog box for operator-assisted printer selection.

This option asks the operator, from a dialog box, which MS-Windows print device is
to be used at the first attempt to access the device. The entries that are displayed are
the descriptive driver names for the predefined MS-Windows print devices are main-
tained by the Printers Option of the MS-Windows Control Panel.

 The format of this printer file specification is as follows:

For example:

>(?initialselect)

where the initialselect string may be one of the following options:

Null The MS-Windows default printer is selected.
@partialkey The RTIWIN.INI is looked at for the actual selectstring.
Other The string specified is used to select a printer if one matches.

The actual value of the select string is used to decide which printer entry is initially
highlighted.

NOTE: If the Dialog Box is canceled without selecting a printer, a P48 (Illegal Device Speci-
fication) error is generated.

DEVICE SUPPORT Using the MS-Windows Print Manager

NPL MS-Windows Addendum 5-7

 For example:

">(?Generic)"

 It is also possible to combine the above syntax for the printer file specification as in
the examples shown below:

Example 1:

$DEVICE(/204) = ">(@1)"

and the RTIWIN.INI file(s) have

PrinterConfig1=?

is equivalent to

$DEVICE(/204) = ">(?)"

 Here the dialog box appears and the default printer is highlighted.

 Example 2:

$DEVICE(/204) = ">(?@1)"

and the RTIWIN.INI file(s) have

PrinterConfig1=Generic

is equivalent to

$DEVICE(/204) = ">(?Generic)"

 Here the dialog box appears and default printer starting with Generic (if any) is high-
lighted.

NOTE: MS-Windows printer specifications must be enclosed within matched parentheses.

5.4.2 DocName

The DocName must appear immediately after the ending parenthesis for the printer file
specification and may not contain any spaces.

Documents in the MS-Windows Print Spooler can be identified in the Print Manager dis-
play by looking for the name (DocName) that immediately follows the ending parenthe-
sis in the $DEVICE statement. If no document name is specified, the document name
submitted to the MS-Windows Print Spooler is of the form:

"Caption Partition#"

Using the MS-Windows Print Manager DEVICE SUPPORT

5-8 NPL MS-Windows Addendum

where caption is the current window’s caption.

5.4.3 Other Options

Other options are available with the MS-Windows Print Manager as described below:

Using the MS-Windows Printer Driver Configuration Box
The MS-Windows print driver configuration box can be invoked by using the CFG= Y/N
parameter with the $DEVICE statement.

For example:

$DEVICE(/215)=">() CFG=Y"

If this option is set to Y, the first attempt to use the printer after assigning $DEVICE in-
vokes the MS-Windows printer configuration dialog box. If the MS-Windows printer se-
lection dialog box appears, the status can be checked, modified, or canceled.

Locking in a Printer Specification
A printer specification also can be set by using the MS-Windows SET= Y/N (default N)
option. If this option is set to Y, any printer selection that is used successfully sets the
$DEVICE value to the option selected, replacing any specification that is shown.

For example:

">(?) SET=Y"

At the first print attempt, the MS-Windows printer select dialog box appears, with the de-
fault printer highlighted. If an item such as "HP ThinkJet (2225 C-D),THINKJET,LPT1:"
was selected and successfully opened, the $DEVICE would be set to:

">(HP ThinkJet (2225 C-D),THINKJET,LPT1:) SET=Y"

Effectively, this "locks in" the printer unless the $DEVICE is reset by the application.

NOTE: The value inside the parentheses is replaced, the options outside the parentheses are
retained. If the total length exceeds the maximum for a legal $DEVICE (50 charac-
ters), no replacement occurs.

5.4.4 Using Control Codes with the MS-Windows Print Spooler

All control codes in the range HEX(00) to HEX(1F) (after optional translation due to the
Niakwa XLA= Y option) that are sent to the MS-Windows Print Spooler are interpreted
by the MS-Windows RunTime and removed from the data stream.

DEVICE SUPPORT Using the MS-Windows Print Manager

NPL MS-Windows Addendum 5-9

NOTE: The MS-Windows Spooler is different from the XENIX/UNIX spooler and the
Novell NetWare spooler which can accept arbitrary data and control codes.

The MS-Windows RunTime interprets the following control codes:

• HEX(0D) Go to start of line.

• HEX (0A)Advance to next line. If off page limits, go to new page.

• HEX(0C) Form feed. Multiple HEX(0C) at the top of the page are ignored.

Closing the printer device by $CLOSE or $DEVICE= < any value > completes the page
and ends the spool stream.

If ERR= Y is specified in the $DEVICE specification, an error may occur only at a page
break.

An ALF= N specification in the $DEVICE line may allow overprinting on the same line
depending on the printer driver.

NOTE: Make sure the printer settings, the applications settings, and the MS-Windows Print
Manager settings are the same for the number of lines per page. If the application is
tracking printer setup parameters and the values are different from the MS-Win-
dows settings, the number of lines printed per page may vary significantly.

5.4.5 Using the MS-Windows Print Manager Under Novell NetWare

Applications that can accept the limitations of the MS-Windows Print Manager (the pri-
mary limitation is that printer control sequences other than HEX(0D), HEX(0A), and
HEX(0C) cannot be used when directing output to the Print Manager), can access the
Novell NetWare spooler using the MS-Window Print Manager (Print Spooler).

Using the MS-Windows Print Manager DEVICE SUPPORT

5-10 NPL MS-Windows Addendum

NOTE: Output directed to the MS-Windows Printer Manager may itself be redirected to a
Novell NetWare spooler. This operates transparently to the NPL application.

5.5 Serial Ports

Serial as communications is supported by the MS-Windows RunTime. Serial communica-
tions as described in Section 5.7 of the NPL MS-DOS Supplement is supported. In addi-
tion, several options in the RTIWIN.INI file can be used to configure the serial ports for
communication. For details refer to the options: CommInputBufferSize, CommOutput-
BufferSize, and CommFlushDelay in Section 3.4.

5.5.1 Sharing Serial Ports

Sharing of serial devices is not supported. If an attempt is made to access an existing de-
vice while it is already in use by another RunTime window or by another MS-Windows
task (such as terminal emulation or the MS-Windows Print Spooler), the RunTime HELP
Screen appears with the message "xxx is busy" and the other application must release the
device before processing can continue.

5.6 Monitor Support

The Niakwa RunTime operates in graphics mode under MS-Windows. Monitor charac-
teristics, except as noted in this section, are identical with characteristics described in
Chapter 6 of the appropriate NPL Supplement for /G mode.

This section discusses the MS-Windows RunTime support of different fonts and 132 col-
umn screen mode.

5.6.1 Fonts

The following sections discuss the different fonts and font options available to the MS-
Windows RunTime.

DEVICE SUPPORT Serial Ports

NPL MS-Windows Addendum 5-11

Available Font Files
The MS-Windows RunTime Package includes two font files, BASFONTS.FON and
IBMFONTS.FON. Both font files contain a series of fonts that have been specially de-
signed to work with the NPL MS-Windows RunTime.

The BASFONTS.FON font file contains the standard NPL character set. Use of this font
allows the display of all standard NPL characters while using the MS-Windows RunTime.

The IBMFONTS.FON font file contains the standard IBM PC character set. Use of this
font allows the display of all standard IBM PC characters while using the MS-Windows
RunTime.

NOTE: The BASFONTS.FON font file is the default font file used by the MS-Windows Run-
Time. Use of this font file requires no additions to the RTIWIN.INI file.

To allow the MS-Windows RunTime to use the IBMFONT.FON font file, it is neces-
sary to add the following lines to the [GENERAL] or application section of the the
system or local RTIWIN.INI file:

FontCharSet = 179
FontFaceName = IBASIC

Refer to Section 3.4 for more information on the RTIWIN.INI file.

Adding a Font File to MS-Windows
To use either font file, it is necessary to add the font to the MS-Windows fonts in the MS-
Windows Control Panel. This is accomplished by the steps shown below.

NOTE: This example assumes the use of the BASFONTS.FON font file. If the
IBMFONTS.FON font file is needed, substitute that file for BASFONTS.FON.

1. Make sure the file BASFONTS.FON is located in the \WINDOWS directory.

2. Select the MS-Windows Program Manager.

3. From the Program Manager, select the Control Panel option.

4. From the MS-Windows Control Panel, select the Fonts option.

Monitor Support DEVICE SUPPORT

5-12 NPL MS-Windows Addendum

5. From the Font option, select the Add option. This displays a list of the available
*.FON files in the \WINDOWS directory.

6. Select the BASFONTS.FON file.

7. Select OK.

This procedure adds the Niakwa fonts to the installed MS-Windows fonts.

WARNING--Niakwa recommends the use of the BASFONTS.FON font file. Use of other
font files do not allow the entire NPL character set to be available to the RunTime.

Several options in the RTIWIN.INI file can be used to set the default font when a Run-
Time task starts. These options are: FontFaceName, and FontCharSet. For more infor-
mation on these options, refer to Section 3.4.

True Type Fonts
Support for MS-Windows True Type fonts is limited to those which have a fixed pitch
(non-proportional fonts). When fixed pitch True Type fonts are used, the MS-Windows
RunTime ensures that the spacing of characters on the screen is correct (if the correct
RTIWIN.INI options for selecting alternate fonts have been used).

The only fixed pitch True Type font that ships with MS-Windows is called "Courier
New", which has an ANSI character set. To select this font, enter the following in the
[GENERAL] or application section of the RTIWIN.INI file:

FontFaceName=Courier New
FontCharSet=0

NOTE: True Type fonts do not use the standard NPL character set, consequently not all
NPL characters may not display when using this font (the $SCREEN table selects
the closest ANSI value to the standard NPL character set).

Dynamic Resizing
The size of the current font used can be automatically resized if the size of the current
window is changed. Dynamic resizing is accomplished through the Autosize feature of
the MS-Windows RunTime. Refer to Section 4.4 for more information on this interactive
option.

DEVICE SUPPORT Monitor Support

NPL MS-Windows Addendum 5-13

NOTE: The last size and type of font used before the RunTime task is closed is stored in the
RTIWIN.INI file.

Modifying the Niakwa Fonts
Source files for the Niakwa fonts are provided with the NPL MS-Windows Development
Package and can be modified by the developer. The MS-Windows Supplementary Files
Diskette contains a series of files in the \BFONTS and \IFONTS directories, which con-
tain all files necessary to modify the Niakwa fonts using the MS-Windows Software De-
velopers Kit.

NOTE: Information on revising the Niakwa-supplied font files is provided in Appendix B.

HINT: If it is necessary to modify the screen translation table with the Niakwa Utilities, the de-
veloper should name the modified file SCREEN.WIN. The MS-Windows RunTime al-
ways looks for this file before using the internal screen table built into the MS-Windows
RunTime.

Screen translation values are ignored unless the selected FontCharSet is not an NPL char-
acter set (178).

5.6.2 132-Column Support

Support for 132-column mode is supplied with the MS-Windows RunTime. This feature
is supported as documented in Section 7.4.12 of the NPL Programmer’s Guide.

5.7 Keyboard Characteristics

The following are the default keyboard mappings for the MS-Windows RunTime. In
most cases, these keyboard mappings are the same as the MS-DOS version of NPL ex-
cept:

1. All keyboard combinations using ALT or F10 are reserved by MS-Windows and con-
sequently not used. Special function keys ’9-’15 and shifted versions of these keys are
remapped from the MS-DOS conventions.

2. Some combinations of keystrokes that generate the same keystrokes under MS-DOS
can be distinguished under MS-Windows (i.e., SHIFT-ARROW keys). The MS-DOS
key combinations are also supported (except where this is not possible due to item 1).

Keyboard Characteristics DEVICE SUPPORT

5-14 NPL MS-Windows Addendum

Commonly used key differences:

HALT CTRL-BREAK

Editing key differences:

SHIFT-CTRL-F3 or SHIFT-INS Inserts a line feed within a line of text.

SHIFT-CTRL-F10 Deletes characters from the current cursor
position to the end of line.

Edit Mode SF key differences:

CTRL-F2 Deletes one character at the current cursor position.

MS-Windows Default Keyboard Equivalences Table:
Niakwa Code Niakwa Virtual Key MS-Windows Key

08 BACKSPACE BACKSPACE
0D RETURN ENTER
81 CLEAR ?
82 EXECUTE HOME
83 CONTINUE ?
A1 LOAD CTRL-7/HOME

CTRL-ENTER
E5 SHIFT-ERASE CTRL-W
FF’A0’xx UNDERSCORE (DEAD KEY) ?
’00-’08 SF ’0...’8 F1...F9
’08-’0F SF ’8...’15 CTRL-F1...F9
’10-’18 SHIFT SF ’0...’8 SHIFT F1...F9
’18-’1F SHIFT SF ’8...’15 SHIFT-CTRL-F1...CTRL-F8
’42 PREV-SCREEN 9/PG UP
’43 NEXT-SCREEN 3/PG DN
’45 SOUTH 2/SOUTH
’46 NORTH 8/NORTH
’49 DELETE ./DEL
’4A INSERT INS

DEVICE SUPPORT Keyboard Characteristics

NPL MS-Windows Addendum 5-15

MS-Windows Default Keyboard Equivalences Table:
Niakwa Code Niakwa Virtual Key MS-Windows Key

’4C EAST 6/EAST
’4D WEST 4/WEST
’4F RECALL CTRL-R
’50 SHIFT-CANCEL CTRL-K

SHIFT-1/END
’52 SHIFT-PREV-SCREEN CTRL-P

CTRL-9/PG UP
SHIFT-9/PG UP

’53 SHIFT-NEXT-SCREEN CTRL-N
CTRL-2/PG DN
SHIFT-3/PG DN

’55 SHIFT-SOUTH SHIFT-2/SOUTH
CTRL-2/SOUTH

’56 SHIFT-NORTH SHIFT-8/NORTH
CTRL-8/NORTH

’59 SHIFT-DEL SHIFT-./DEL
CTRL-./DEL

’59 SHIFT-INS SHIFT-0/INS
CTRL-0/INS

’5C SHIFT-EAST CTRL-4/EAST
SHIFT-4/EAST

’5D SHIFT-WEST CTRL-6/WEST
SHIFT-6/WEST

’5F DEC TAB CTRL-T
’7C GL CTRL-G
’7D SHIFT-GL CTRL-Z
’7E TAB TAB
’7F SHIFT-TAB SHIFT-TAB
’E1 HELP ESC
’F0 EDIT 1/END
HALT HALT CTRL-BREAK

Keyboard Characteristics DEVICE SUPPORT

5-16 NPL MS-Windows Addendum

NOTE: The SF’8 and SF’24 keys appearing twice in the above table is correct as they can be
entered two ways.

If it is necessary to modify the keyboard translation table with the Niakwa Utilities, the
developer should name the modified file KEYBOARD.WIN. The RunTime always looks
for this file before using the internal keyboard table built into the MS-Windows RunTime.

WARNING--If the keyboard is to be remapped under MS-Windows, the simple and com-
plex codes generated under MS-Windows differ substantially from the same values gen-
erated under MS-DOS. Consequently, direct modifications to the $KEYBOARD system
variable that work under MS-DOS do not function correctly under MS-Windows. Most
combinations of keys with SHIFT, CTRL, or both SHIFT and CTRL generate distinct
complex codes under the MS-Windows version.

5.8 Mouse Support

The following section details the support for the mouse interface with the MS-Windows
RunTime. Refer to Section 4.4 for details on the support of the Browse and SF Keys with
the mouse.

The location of the mouse is reported to $MACHINE each time a mouse button is
pressed. Mouse events are reported to the NPL application by generation of special func-
tion key codes as follows:

’F1 - left button pressed
’F2 - left button released
’F3 - left button pressed (within double click time)
’F4 - right button pressed
’F5 - right button released
’F6 - right button pressed (within double click time)
’F7 - dragged north (up)
’F8 - dragged south (down)
’F9 - dragged east (right)
’FA - dragged west (left)

DEVICE SUPPORT Mouse Support

NPL MS-Windows Addendum 5-17

When a key is read by the NPL KEYIN statement, bytes 23 and 24 of $MACHINE con-
tain the Y (row) and X (column) address of the current location of the mouse when the
event occurred, if it is "on screen". When the cursor is outside the screen area (or if there
is no mouse) these bytes contain high values (HEX(FF)).

NOTE: Several utilities included in UTILITY.BS2 have been modified to support the mouse
using the above settings.

There are two RTIWIN.INI options that can control the key codes generated by the
mouse, MouseClickKeys and MouseDragNSEWKeys. Refer to Section 3.4 for more in-
formation on these options.

For example:

MouseClickKeys=0,0,82,0,0,82
MouseDragNSEWKeys=’46,’45,’4C,’4D

changes the mouse function so that dragging the mouse is equivalent to cursor keys, the
press and release don’t generate any keys, and either the right or left mouse button dou-
ble-clicked generates an EXECUTE. This setup may be used for applications that cannot
accommodate the use of the mouse keys or can’t be modified to recognize the mouse
keys.

It is recommended that applications that support the mouse assume the standard keys are
generated.

Mouse Support DEVICE SUPPORT

5-18 NPL MS-Windows Addendum

CHAPTER 6

MULTI-USER CAPABILITIES

6.1 Overview

Multi-user capabilities are supported with the Niakwa MS-Windows RunTime. This chap-
ter details the specific features of this support.

Section 6.2 discusses unique terminal identification and provides an example of creating
unique network-wide partition values.

Section 6.3 discusses device sharing.

Section 6.4 discusses intertask communications.

MULTI-USER CAPABILITIES Overview

NPL MS-Windows Addendum 6-1

6.2 Unique Terminal Identification

The following section discusses the methods available with the NPL MS-Windows Run-
Time for unique terminal identification.

6.2.1 General Principles

Configuration of unique terminal identification is quite flexible with the MS-Windows
RunTime. By default, the MS-Windows RunTime operates as follows:

• #ID is always zero on MS-DOS versions. On Novell NetWare network installa-
tions, #ID is generated as described in Chapter 5 of the Novell Addendum.

• $NETID works as documented in Chapter 5 of the Novell Addendum.

• #TERM on MS-DOS is always one. On Novell NetWare network installations,
#TERM values are generated as described in Chapter 5 of the Novell Addendum.

• #PART is generated sequentially for each task, in order of execution of the task,
on each workstation. The first task executed is assigned a #PART of 1, the sec-
ond is assigned a value of 2, and so on.

Several options can be set in the RTIWIN.INI file to modify this default behavior:

• The Partition option can be used to assign a specific #PART value to a specific
task.

• The ReservedPartitions option can be used to reserve one or more #PART val-
ues.

• The NetworkPartitionsFile option can be used to remap initial #PART values to
network-wide unique #PART values.

• The TerminalIsPartition option can be used to remap #TERM to be equal to
#PART.

Refer to Section 3.4 for further details on these options.

Unique Terminal Identification MULTI-USER CAPABILITIES

6-2 NPL MS-Windows Addendum

The following guidelines may be useful for determining how best to use these options for
Niakwa MS-Windows applications:

• Applications that require the same #PART value to be generated each time the ap-
plication is executed should use the Partition option. If it is desirable to allow
the user to execute multiple copies of the application with a consistent #PART
value for each copy, then it is necessary to make copies of the BOOT program un-
der different names, set up separate Program Menu icon entries for each BOOT
program, and assign specific #PART values for each boot program in RTI-
WIN.INI (or NetworkIniFile).

• On Novell NetWare network installations where some users are using the MS-
Windows RunTime and some are using the standard MS-DOS or Novell Net-
Ware RunTime, set ReservedPartitions = 1 in the NetworkIniFile. This ensures
that all MS-Windows tasks have #PART values of 2 or greater.

• Applications that internally use #ID and #PART (whether or not #TERM is also
used) to generate unique terminal identification need do nothing further.

• Applications that use #ID and #TERM to generate unique terminal identification
should use the TerminalIsPartition option.

• Applications that use #PART and #TERM to generate unique terminal identifica-
tion but do not use #ID, should use a TERMINAL.TBL file.

• Applications that use only #PART to generate unique terminal identification
must use a TERMINAL.TBL file and NetworkPartitionsFile .

• Applications that use #TERM only to generate unique terminal identification
must use a TERMINAL.TBL file, NetworkPartitionsFile , and must specify Ter-
minalIsPartition .

6.2.2 Creating Unique Network Partition Values

The following section provides an example of the steps necessary to implement and set
up unique network-wide #PART values.

If the use of #PART is the only factor available to determine unique tasks, then the steps
shown below should be followed. Refer to Section 3.4 and 6.2 for more information.

MULTI-USER CAPABILITIES Unique Terminal Identification

NPL MS-Windows Addendum 6-3

NOTE: Niakwa recommends that, whenever possible, an application use a combination of
#ID, #TERM and #PART to determine unique tasks.

Three files must be created or modified to allow for unique network-wide #PART values.
These files are:

RTIWIN.INI Local to each workstation using the network version of MS-Windows.

NetworkIniFile F:\BASIC2C\RTIWIN.INI in this example

NetworkPartitionsFile F:\BASIC2C\NETPARTS.TBL in this example

The examples below describe modifying or creating the above files. Editing can be per-
formed with any text editor (i.e., MS-Windows Notepad, EDIT, EDLIN, etc.).

1. Modify the GENERAL section of the NetworkIniFile (F:\BASIC2C\RTI-
WIN.INI) to appear as:

[GENERAL]
ReservedPartition= 1
TerminalisPartition= 1
NetworkPartitionsFile= F:\BASIC2C\NETPARTS.TBL

where:

ReservedPartition= 1 reserves the first partition value so that unique network-
wide partition numbers are generated using either the MS-Windows RunTime
or the standard Novell NetWare RunTime (this will always have a partition
number equal to 1).

TerminalIsPartition= 1 sets the #TERM values equal to the #PART values (if
desired).

NetworkPartitionsFile= F:\BASIC2C\NETPARTS.TBL sets the NetworkParti-
tionsFiles, from which the #PART values are determined to the NET-
PARTS.TBL file on drive F on the BASIC2C directory on the host file server.

2. Create a separate BOOT program for each task to appear on the MS-Windows
Program Manager. This can be a copy of the original BOOT program under a
slightly different name.

Unique Terminal Identification MULTI-USER CAPABILITIES

6-4 NPL MS-Windows Addendum

3. Create an entry in the user’s local RTIWIN.INI file for each task. Use the
BOOT program names as defined by the tasks in step 2 and specify the Parti-
tion option to assign a unique initial partition number.

NOTE: Steps 2 and 3 are necessary to assure that the initial #PART value generated for
each task to be executed on a workstation is unique and can, therefore, be mapped
to a unique entry in the NetworkPartitionsFile.

For example, if a boot file is named \BASIC2C\MYAPP\BOOT1.OBJ and its
initial unmapped #PART value should be 2, the following would be located in
the user’s local RTIWIN.INI file:

[F:\BASIC2C\MYAPP\BOOT1.OBJ]
Partition= 2

NOTE: Any MS-Windows RunTime task that will be executed on a particular workstation
must be set up in the user’s local RTIWIN.INI file with a Partition option value. If
an attempt is made to execute a task that does not have a ReservedPartition value as-
signed to it, two different error messages may be generated depending on the re-
mapped partition values of the tasks already executing.

One error message that may be generated is caused when the same initial #PART
value (the value before remapping) is generated as a previous partition (assuming
that the remapped #PART value is different from the initial value). This causes the
following error message to be displayed:

Partition X mapped to Network partition Y already used,
cannot start this application.

One way to prevent this error is to make sure that every boot file specified in the
RTIWIN.INI file uses the Partition option and has a unique value.

The other error message that may be generated is caused when no previous remap-
ping of the new partition has already occurred. If this is the case, then the following
error message displays:

MULTI-USER CAPABILITIES Unique Terminal Identification

NPL MS-Windows Addendum 6-5

Terminal X partition Y not configured in NetworkPartititonsFile
 < filename>.

Once either of the above error messages is cleared, the following error message also
displays:

Cannot determine Partition number.

4. Create the NetworkPartitonsFile (F:\BASIC2C\NETPARTS.TBL).

This file, when used with TERMINAL.TBL (which generates unique
#TERM/#PART values for each node on a network), allows the MS-Windows
RunTime to generate unique #PART values for each MS-Windows RunTime
task running from workstations on a network-wide basis.

The MS-Windows RunTime assigns a new #PART value by searching for an
entry containing the original #TERM value and the original #PART value (as
generated by use of the Partition option for each task in the user’s local RTI-
WIN.INI file). The new #PART value assigned is the number of the matching
entry in the NetworkPartitionsFile. For example, a task matching entry 7 is
assigned a #PART value of 7; a task matching entry 8 is assigned a #PART of
8.

To ensure unique #PART generation for installations where some operators
are using the MS-Windows version and some workstations are using the stand-
ard Novell NetWare RunTime (this is normally the case and is assumed in this
example), two steps are necessary:

a. Set the ReservedPartitions= 1 option in either the NetworkIniFile or the
user’s local RTIWIN.INI file.

Unique Terminal Identification MULTI-USER CAPABILITIES

6-6 NPL MS-Windows Addendum

b. At the start of the NetworkPartitionsFile , place an entry for each user,
specifying the #TERM value of the workstation and a #PART value of 1.
This reserves the first X #PART values for the DOS tasks. The first X val-
ues are then reserved, so that network-wide partition numbers generated us-
ing the MS-Windows RunTime are never identical to those generated using
the standard Novell NetWare RunTime. This allows users to switch be-
tween the MS-Windows RunTime or the standard Novell NetWare Run-
Time as required by the application. The #PART and #TERM values
reserved are the same as the #PART and #TERM values generated by TER-
MINAL.TBL.

6.2.3 Step-By-Step Example

The following is a step by step example using sample #ID, #TERM, and #PART values.
This example assumes that only three workstations exist on the example network.

In this example, the TERMINAL.TBL file contains the following values:

123
148
167

Based on the above values, the following are the #TERM values generated by the MS-
Windows RunTime for the #ID values in the TERMINAL.TBL file.

#ID #TERM (from TERMINAL.TBL)
123 1
148 2
167 3

NOTE: The NPL variable, $NETID, can be used in conjunction with the NETID.TBL file to
determine the #ID values used initially by the RunTime. Refer to Chapter 5 of the
NPL Novell Netware Addendum for details.

Since this example assumes only three workstations on the network, the first three entries
in the NetworkPartitionsFile specify a #PART value of 1. This reserves the
#TERM/#PART values of 1, 2, and 3 for use by the standard Novell NetWare RunTime
(refer to the first three entries in the example below).

MULTI-USER CAPABILITIES Unique Terminal Identification

NPL MS-Windows Addendum 6-7

For our example programs, the number of partitions necessary on each workstation run-
ning the MS-Windows RunTime is as follows:

Max. Number of
Windows Tasks for

Workstation #TERM value This Workstation
Workstation A 1 3
Workstation B 2 2
Workstation C 3 4

The NetworkPartitionsFile for this example would then contain the following:
1 1
2 1
3 1
1 2
1 3
1 4
2 2
2 3
3 2
3 3
3 4
3 5

NOTE: The above example would generate the following #PART values for each worksta-
tion:

Unique Terminal Identification MULTI-USER CAPABILITIES

6-8 NPL MS-Windows Addendum

#TERM

Original #PART
Value Assigned for
Each Workstation

New #PART
Value from
NetworkPartitionsFile

1 1 1*
2 1 2*
3 1 3*

1 2 4
1 3 5
1 4 6
2 2 7
2 3 8
3 2 9
3 3 10
3 4 11
3 5 12

* These partition entries are reserved for the standard DOS RunTime when used in
conjunction with the MS-Windows RunTime in a Novell NetWare environment.

The values shown for each task remain constant (i.e., the task run on the workstation with
#TERM= 2 with a Partition value of 3 always generates a unique #PART value of 8 for
that task).

NOTE: The first three #PART values are reserved for the standard RunTime Tasks.
#PART is set equal to #TERM for the standard RunTime since TERMINAL.TBL is
in use.

To understand the above example, notice that workstation C (#TERM= 3) can have only
four RunTime tasks active at any one time and that the fourth RunTime task
(BOOT4.OBJ) on workstation C is always assigned #PART= 12. The local RTIWIN.INI
file for workstation C would contain the following entries:

MULTI-USER CAPABILITIES Unique Terminal Identification

NPL MS-Windows Addendum 6-9

NOTE: The entries in boldface apply directly to the discussions above. The other entries are
for illustration only.

[GENERAL]

NetworkIniFile = F:\BASIC2C\RTIWIN.INI

ReservedPartitions = 1

NetworkPartitionsFile = F:\BASIC2C\NETPARTS.TBL

TerminalsPartition = 1

[F:\BASIC2C\MYAPP\BOOT1.OBJ]

Partition = 2

Window = 22 87 594 479 0

SFKeys = 280 150 0

AutoSize = 1 7 13 80

[F:\BASIC2C\MYAPP\BOOT2.OBJ]

Partition = 3

Window = 122 187 294 379 0

SFKeys = 280 150 0

[F:\BASIC2C\MYAPP\BOOT3.OBJ]

Partition = 4

Window = 210 47 394 279 0

AutotSize = 1 7 13 80

[F:\BASIC2C\MYAPP\BOOT4.OBJ]

Partition = 5

Window = 22 87 594 479 0

where BOOT1.OBJ - BOOT4.OBJ are identical boot programs.

Based on the above example, the following are the mapped network-wide partition values
that would be generated by the RunTime:

Original Mapped
BOOT File Name #PART Value #PART Value
BOOT1.OBJ 2 9
BOOT2.OBJ 3 10
BOOT3.OBJ 4 11
BOOT4.OBJ 5 12

Unique Terminal Identification MULTI-USER CAPABILITIES

6-10 NPL MS-Windows Addendum

6.3 Device Sharing

Device sharing is permitted using the MS-Windows RunTime. This includes the availabil-
ity of $OPEN and $CLOSE to allow one partition to take control (hog) a device for its
own use, while the other partition waits. Refer to Chapter 5 for more information.

6.4 Intertask Communications

This section describes the NPL $PSTAT and $MSG statements and how they can be used
for intertask communications with the MS-Windows RunTime.

6.4.1 $PSTAT

$PSTAT can be used to pass information between MS-Windows RunTime partitions on
the same PC. Refer to the NPL Statements Guide under $PSTAT for details on using the
syntax of this statement.

NOTE: Each workstation on a Novell NetWare network has a different set of $PSTAT val-
ues.

6.4.2 $MSG

$MSG can be used to set the system message displayed for different tasks on the same
workstation whenever a RESET or CLEAR is performed within a task. Refer to the NPL
Statements Guide under $MSG for details on using the syntax of this statement.

NOTE: Each workstation on a Novell NetWare network has a separate $MSG value.

MULTI-USER CAPABILITIES Device Sharing

NPL MS-Windows Addendum 6-11

CHAPTER 7

PLATFORM-SPECIFIC
LANGUAGE FEATURES

7.1 Overview

This chapter discusses the platform-specific language features for the MS-Windows Run-
Time.

Section 7.2 discusses MS-Windows environment-specific statements.

Section 7.3 discusses background partition support under MS-Windows.

Section 7.4 discusses memory management under MS-Windows.

PLATFORM-SPECIFIC LANGUAGE FEATURES Overview

NPL MS-Windows Addendum 7-1

7.2 Environment-Specific Statements

The following section discusses the NPL environment-specific statements under MS-Win-
dows

7.2.1 $MACHINE

The following are the MS-Windows specific $MACHINE values for the MS-Windows
RunTime. All other $MACHINE values are the same as those for the standard NPL Run-
Time. Refer to Chapter 8 of the MS-Supplement for details.

Byte 1 RunTime Version
"N" for MS-Windows

Byte 3 Monitor Type
"W" for MS-Windows

Byte 4 Graphics Enabled
"G" indicates that true box graphics are available.

Byte 29 Indicates whether keyboard mouse events are
supported
HEX(00) Default, mouse not available
HEX(01) Occurs upon detection of an

installed mouse

NOTE: $MACHINE is a 64-byte variable and must be treated as such or unpredictable re-
sults may occur. Refer to the Statements Guide, $MACHINE, for details on the ex-
act syntax and use of this statement, as well as the contents of the remaining bytes of
the variable.

7.2.2 $OPTIONS

The following are the MS-Windows specific $OPTIONS values for the MS-Windows
RunTime. All other $OPTIONS values are the same as those for the standard NPL Run-
Time. Refer to Chapter 8 of the MS-Supplement for details.

Environment-Specific Statements PLATFORM-SPECIFIC LANGUAGE FEATURES

7-2 NPL MS-Windows Addendum

Byte 33 The hex values under MS-Windows are the same
as documented in the Statements Guide, but
under MS-Windows the following new values
exist.
HEX(10) bit - 0 Can Close RunTime tasks

using the MS-Windows menu
bar etc.

HEX(10) bit - 1 Suppress the ability to Close
RunTime tasks using the MS-
Windows menu bar.

Byte 43 Specifies that the RunTime will not yield to
another MS-Windows task while an $OPEN is
active.
HEX(00) Default Yield to other MS-Windows

tasks even if $OPEN’s are
outstanding.

HEX(01) Yield to other MS-Windows
tasks only if no $OPEN’s to
network files have been
granted.

NOTE: $MACHINE is a 64-byte variable and must be treated as such or unpredictable re-
sults may occur. Refer to the Statements Guide, $MACHINE, for details on the ex-
act syntax and use of this statement, as well as the contents of the remaining bytes of
the variable.

7.2.3 $PSTAT

Refer to Section 6.4.1 or the NPL Statements Guide, $PSTAT for more information on
$PSTAT.

7.2.4 $MSG

Refer to Section 6.4.1 or the NPL Statements Guide, $MSG for more information on
$MSG.

PLATFORM-SPECIFIC LANGUAGE FEATURES Environment-Specific Statements

NPL MS-Windows Addendum 7-3

7.2.5 $SHELL

The behavior of $SHELL under MS-Windows is quite different than under MS-DOS.
Since MS-Windows is a true multi-tasking environment, $SHELL does not execute a sub-
shell as it does under MS-DOS; it creates a new task. Refer to the NPL Statements Guide,
$OPTIONS and Chapter 8 of the MS-DOS Supplement for more information on $OP-
TIONS.

Release IV Modifications to $SHELL
Under the original versions of the NPL for MS-Windows (Revision 3.20), program con-
trol returned back to the MS-Windows RunTime immediately after issuing the $SHELL
command.

When a $SHELL command is issued under Release IV, the task or command issued by
the $SHELL command is completed before returning control to the RunTime. For exam-
ple:

$SHELL "COPY FILE1 FILE2"

$SHELL copies FILE1 to FILE2 and then return control back to the MS-Windows Run-
Time.

LAUNCH.EXE program
To allow the MS-Windows RunTime to operate as it did under Revision 3.20, in regards
to the $SHELL command, a utility program named "LAUNCH.EXE" can be used.

For example:

$SHELL "LAUNCH COPY FILE1 FILE2"

$SHELL would start the LAUNCH program which in turn launches the DOS command
COPY as a separate task. Launch then returns control to the RunTime without waiting for
the launched program to complete. This COPY command is then completed as a separate
task running concurrently.

Use of the $SHELL in this manner can cause potential negative side effects for the appli-
cation since:

1. The application can not determine whether the launched task successfully completed.

Environment-Specific Statements PLATFORM-SPECIFIC LANGUAGE FEATURES

7-4 NPL MS-Windows Addendum

2. Applications may attempt to access files that are expected to be produced by the
launched task before they are available. If the launched task is a MS-DOS task that
has files opened, attempting to access these files within the RunTime while the
launched task is still active produces a SHARE error (the MS-DOS task has the files
opened exclusively).

The above facts should be considered when designing applications that use LAUNCH.

The LAUNCH.EXE program is provided on the MS-Windows RunTime disks.

Starting Additional RunTime Tasks with $SHELL
$SHELL can also be used to start additional Niakwa RunTime and MS-Windows task
(with the use of the LAUNCH.EXE command). The task is started and processed just as
though the command line was entered from the MS-Windows Run command. Since there
is no parent/child relationship between the originating task and the created task, closing
or killing the originating task has no effect on the task created with $SHELL.

7.3 Background Partition Support

Background partitions are not supported under MS-Windows. $RELEASE TERMINAL
performs no operation.

The MS-Windows environment does allow more than one RunTime task to be active at
one time. The tasks can be run as MS-Windows minimized tasks as well. When a task is
minimized it continues to execute, but any Browse of SF Key windows displayed are not
visible as long as the task remains minimized. Refer to Section 4.5 for details.

HINT: Addition MS-Windows RunTime tasks can be spawned by using the LAUNCH program.

7.4 Memory Management

All NPL code and defined variables reside within a section of memory defined as the
"user partition". With the MS-Windows RunTime, the size of the user partition is limited
only by the memory available to MS-Windows.

PLATFORM-SPECIFIC LANGUAGE FEATURES Background Partition Support

NPL MS-Windows Addendum 7-5

Due to the dynamic nature of memory allocation in the MS-Windows environment, the
MS-Windows RunTime allocates an initial 141K to the user partition. Unlike MS-DOS
in which the maximum size of the user partition is reported, this is the minimum size of
the user partition and is returned by the SPACEW function. The minimum allocation is
used because attempting to allocate the full amount of memory available would leave in-
sufficient memory for other tasks.

At any given time, the amount of memory currently available within the user partition is
returned by the SPACEF function. When the value of SPACEF drops below 64K, the
MS-Windows RunTime automatically attempts to allocate another 64K of memory to the
user partition. The result of this increase is reflected by a 64K increase in SPACEW. If
the MS-Windows RunTime is unable to allocate the memory, the value of SPACEF then
drops below 64K. To illustrate this, consider the following:

MS-Windows RunTime
Environment

SPACEW Value SPACEF Value

Initial RunTime Memory 139664 139456
Allocated 64K Variable 139664 73920
Allocate 8300 Bytes 139664 65600*
Allocate 20K Variable 205168 45080**

* Additional 64K segment allocated to user partition.

** Value SPACEF reports in the event the MS-Windows RunTime was unable to allocate
the extra 64K.

Memory Management PLATFORM-SPECIFIC LANGUAGE FEATURES

7-6 NPL MS-Windows Addendum

CHAPTER 8

MIXED LANGUAGE
PROGRAMMING

8.1 Overview

The NPL External Subroutine Development Kit (BESDK), formerly Basic-2C, provides
an interface to external subroutines written in other programming languages. However,
there are both benefits and penalties which may occur as a result of using mixed lan-
guages programming under NPL. The benefits include a potential increase in execution
speed for selected processor-intensive functions, and the capability to access resources
and features of a specific environment. The penalties include increased memory require-
ments, limited portability to other NPL environments and a potentially less friendly envi-
ronment for testing and error diagnosis.

MIXED LANGUAGE PROGRAMMING Overview

NPL MS-Windows Addendum 8-1

This chapter concerns itself with the operating environment-specific features of the NPL
External Subroutine Development Kit (BESDK) for MS-Windows. For a complete dis-
cussion on the general operation of mixed language programming, refer to Chapter 11 of
the MS-DOS Supplement and Chapter 16 of the NPL Programmer’s Guide.

The remainder of this Section continues to provide an overview of MS-Windows environ-
ment.

Section 8.2 discusses the contents of the MS-Windows BESDK.

Section 8.3 discusses the installation of the MS-Windows BESDK.

Section 8.4 discusses NPL external call support specific to the MS-Windows environ-
ment.

Section 8.5 discusses loading external libraries under MS-Windows

Section 8.6 discusses support of Microsoft C under MS-Windows.

Section 8.7 discusses support of Microsoft MASM Macro Assembler under MS-Win-
dows.

Section 8.8 discusses shared data segments in DLL’s.

Section 8.9 discusses custom resources in a DLL.

Section 8.discusses subclassing the main Niakwa Windows in a DLL.

Section 8.11 discusses flow control of external libraries

Section 8.12 discusses callbacks to NPL under MS-Windows

Overview MIXED LANGUAGE PROGRAMMING

8-2 NPL MS-Windows Addendum

NOTE: The following chapter refers only to the MS-Windows BESDK package contained
on the MS-Windows Supplementary Files Diskette. For information on the standard
BESDK package, provided with the MS-DOS Development Package (on the BESDK
diskette), refer to the MS-DOS Supplement.

Release IV features for external calls are is only available for the C programming
language. Release III external call features in other languages (i.e. Pascal and As-
sembler) are upwardly compatible to Release IV, but no new Release IV features
are supported for these languages.

8.1.1 Differences from MS-DOS/SuperDOS Releases

The MS-DOS and SuperDOS releases of the RunTime use the quick library mechanism
of the Microsoft Linker, allowing the standard NPL program to load a specified set of rou-
tines after NPL starts. A similar approach is also used in the MS-Windows environment.
However, instead of using the .QLB format for the quick library, the MS-Windows ver-
sion uses the generally superior dynamic link library (DLL) format to contain the user-de-
fined routines. The DLL code format is designed to be dynamically linked at execution
time, and is used extensively elsewhere in the MS-Windows environment. One of the pri-
mary benefits of the DLL format is that MS-Windows automatically swaps unused por-
tions of the DLL to disk, loading in portions as required.

8.1.2 Choosing the Development Environment

When coding and linking external routines, the following implications must be consid-
ered:

• To execute a MS-Windows executable, a running MS-Windows environment,
version 3.1 or greater, must be present.

• Because the user subroutines must be linked into a dynamic link library, the Mi-
crosoft Linker (LINK), which is a part of the Microsoft development language of
choice (C or MASM) must be present. In addition, the Microsoft MS-Windows
Software Development Kit (SDK), which includes the resource compiler, include
files, and start-up and support libraries designed for the MS-Windows environ-
ment, must also be present.

• Working with many examples is more efficient if the Microsoft MAKE or
NMAKE utilities (or equivalent) are available. However, this is not a require-
ment to use BESDK.

MIXED LANGUAGE PROGRAMMING Overview

NPL MS-Windows Addendum 8-3

NOTE: All provided makefile scripts work with either NMAKE or MAKE; however, when
used with MAKE, several warning messages are displayed related to lines that are
NMAKE pseudo-target instructions. These warnings can be ignored.

• To execute the instructions in the makefile, type "make makefile" or "nmake".
For brevity, the rest of this chapter refers only to NMAKE.

8.1.3 Security

Any dynamic link libraries produced by using the BESDK procedures are not themselves
physically copy-protected. Routines whose entry points are exported in the DLL are avail-
able to any MS-Windows programmer who knows the Library name, Entry point name
and interface specification. If the routines contain proprietary or trade secret information,
ensure that these sensitive routines do not operate unless enabled by some kind of protec-
tion mechanism built into the library.

8.1.4 Upgrades

When new releases of NPL become available, no special procedure is required to update
the DLL’s to run with the new version. However, Niakwa reserves the right to extend the
functionality of the DLL specification on future releases, and older DLL’s may require
updating to take advantage of any such extended functionality.

8.2 Contents of the MS-Windows BESDK

The BESDK packages provided with the Niakwa Development Package is contained on a
single diskette. The BESDK files for MS-Windows are stored on the MS-Windows Sup-
plementary Files Diskette, and must be installed on a hard disk before they can be used.
The INSTALLN batch file copies the contents of the diskette to a specified target direc-
tory (and subdirectories). Within the BESDK package, files are separated into directories,
each of which illustrates an example of linking an external subroutine in a particular envi-
ronment using a particular language. The function performed by the subroutine is the
same in each case, and is analogous to the Microsoft C example followed in this text.

Contents of the MS-Windows BESDK MIXED LANGUAGE PROGRAMMING

8-4 NPL MS-Windows Addendum

NOTE: The examples are provided to test versions of compilers, assemblers, linkers, etc.; be-
ing used with pretested source files and to help clarify any points that may be un-
clear in the text. It is recommended that customized versions of the BESDK
examples be produced before starting a customized project, to ensure the various
utilities work together as they should.

The following describes the contents of the MS-Windows BESDK.

\(root directory) This directory contains all subdirectories pertaining to the
operation of BESDK. It also contains the following files:

\README.DOC This file may contain amendments to existing documenta-
tion or additional information not available at press time. It
is advisable to read this document before using BESDK.

\INSTALLN.BAT A batch program to install the BESDK files to a specified di-
rectory and subdirectories.

The remaining files are separated into the following subdirectories respectively:

\INCLUDE This directory contains files that are common to all imple-
mentations or to all implementations of a specific language.
It is recommended that the files in this directory not be
changed.

MYBOOT.SRC An NPL source file, which performs a simple test of the ex-
ample external subroutine.

MYBOOT.OBJ Compiled version of the MYBOOT.SRC boot program to
test the example external subroutines and FUNCTIONs.
MYBOOT contains only configuration commands, and
loads MYSTART from the MYMODULE.BS2 diskimage.

MYSTART.SRC Source version of the NPL program used to test the example
sub-routines and FUNCTIONs.

MYMODULE.SRC Source version of the NPL library module used to specify
the interface to the example sub-routines and FUNCTIONs,
and containing a sample CALLBACK function.

MIXED LANGUAGE PROGRAMMING Contents of the MS-Windows BESDK

NPL MS-Windows Addendum 8-5

MYMODULE.BS2 Compiled version of the MYMODULE.SRC and the MYS-
TART.SRC programs in a diskimage.

MAKEFILE An NMAKE script to compile MYBOOT.SRC into MY-
BOOT.OBJ. Assumes that MYBOOT.SRC and makefile are
in the current directory and b2c can be accessed (the envi-
ronment PATH is set to allow it to be found). To use, enter:
"nmake".

RTPALL.H Include file for Microsoft C programs, with structure and
type definitions.

RTPALL.INC For programmers that have BESDK libraries in Microsoft
Assembler. Release IV features are not supported under this
language.

RTPALL.PPI For programmers that have BESDK libraries in Metaware
Pascal. Release IV features are not supported under this lan-
guage.

RTPALL.PI For programmers that have BESDK libraries in Microsoft
Pascal. Release IV features are not supported under this lan-
guage.

\INCLUDE\WIN Contains files that are specific to the MS-Windows environ-
ment. It is recommended that the files in this directory not
be changed. The files provided in this directory are:

RTPDEFFN.H Operating system-dependent macros to define the Microsoft
C language attributes of external routines.

LIBMAIN.C Start-up code required for all MS-Windows DLL’s, written
in C.

LIBMAIN.ASM Start-up code required for all MS-Windows DLL’s, written
in MASM.

RTPPARM.OBJ Compile version of RTPPARM.C using Microsoft C.

Contents of the MS-Windows BESDK MIXED LANGUAGE PROGRAMMING

8-6 NPL MS-Windows Addendum

RTPPARM.C C subroutines to provide the rtpfn_getparminfo() function
used to check function declarations.

MAKEFILE A script for the NMAKE utility to produce both mainline
and customized DLLs. To run type: NMAKE

\WINCDIAL Contains the files for the example that shows the use of call-
back functions to implement Dialog boxes under the MS-
Windows version.

WINCDIAL.TXT Summary information about the example.

MYPROC.C External FUNCTIONs and PROCEDUREs

MYRTPEXT.C RTPEXT function directory code

MAKEFILE NMAKE project make script

TESTDIAL.SRC Symbols from TESTDIAL.DLG

TESTDIAL.DLG Dialog generated by Resource Workshop

MYSTART.SRC Sample program source

WINMISC.SRC assorted symbols from WINDOWS.H

MYMODULE.SRC Library interface module

MYPROC.H FUNCTION and PROCEDURE interface info

MYICON_1.ICO Binary icon used by test dialog

MYDIALOG.RC Resource script for MYDIALOG.DLL

WINMSG.SRC WM_xx symbols from windows.h

NPLDEFS.EXE Convert .H to .SRC utility program

NPLDEFS.C Convert .H to .SRC utility C source

MIXED LANGUAGE PROGRAMMING Contents of the MS-Windows BESDK

NPL MS-Windows Addendum 8-7

MYDIALOG.DEF Linker definition for MYLIB.DLL

MYLIB.DEF Linker definition for MYLIB.DLL

MYDIALOG.DLL Generated by the example - Contains dialog templates.

MYDIALOG.RWS Generated by the example - Resource workshop project file.

MYLIB.DLL External DLL needed to access Windows API subset.

MYBOOT.OBJ NPL BOOT Program for WINCDIAL example

MYMODULE.BS2 NPL Diskimage for WINCDIAL example

\WINMEXAM Contains example files for the MS-Windows implementa-
tions of external subroutines using Microsoft MASAM .

\WINCEXAM Contains example files for MS-Windows implementations
of external subroutines using Microsoft C.

In each of the example directories, the following files are provided:

MYMAIN.x Source file for example mainline

MYRTP.x Source file for example rtp test subroutine

MYRTPEXT.x Source file for example RTPEXT subroutine

MYSUB.x Source file for example DEFFN’ subroutine

 Where x =

C for Microsoft C programs
ASM for Microsoft MASM programs

MAKEMAIN.BAT Batch file to produce the mainline for the example.

MAKEDLL.BAT Batch file to produce the customized DLL for the example.

Contents of the MS-Windows BESDK MIXED LANGUAGE PROGRAMMING

8-8 NPL MS-Windows Addendum

MYMAIN.DEF A linker definition file that contains segment and operating
system environment information used to make the mainline
for the example.

MYLIB.DEF A linker definition file that contains segment and operating
system environment information used to make the DLL for
the example.

MAKEFILE Script for NMAKE utility to produce both mainline and cus-
tomized DLL (all programs that are out of date are remade).
To run it, type "nmake".

The \WINCEXAM directory also contains the following files, specifically for Release IV
call back features:

MYCALLBK.C Source code to illustrate the use of a C function (mykeyin)
that performs a callback to the NPL function ’CallBack-
Keyin.

MYCALLBK.H Interface file containing parameter block specifications re-
quired by mycallbk.c

MYPROC.C Source code to illustrate the implementation of the example
external PROCEDURE in C.

MYPROC.H Interface file containing parameter block specification re-
quired by myproc.c

NOTE: If the makefile is changed, delete all previously made .obj files in the directory be-
fore running NMAKE again.

The batch files and "makefile" NMAKE scripts assume:

• The compiler executables (such as CL, MASM, LINK, B2C, etc.) that may be re-
quired can be accessed (the environment variable PATH is set to allow these to
be found),

• The example source files and makefile are in the current directory.

MIXED LANGUAGE PROGRAMMING Contents of the MS-Windows BESDK

NPL MS-Windows Addendum 8-9

• The example include directory can be accessed as "..\INCLUDE" (and ..\IN-
CLUDE\WIN).

• All required system libraries are in the default directory specified by the LIB en-
vironment variable. All required system include files are in the default directory
specified by the INCLUDE environment variable (required for both Microsoft C
and Microsoft MASM).

The NMAKE script files assume the current (4.00.00 or later) version of the NPL com-
piler "B2C" is on the execution PATH.

8.3 Installation of the MS-Windows BESDK

The MS-Windows Supplementary Files Diskette has been produced in MS-DOS format
on two different media: 5-1/4" 1.2MB diskettes and 3-1/2" 720K diskettes.

To install the MS-Windows BESDK, insert the MS-Windows Supplementary Files Disk-
ette in the floppy drive, select the drive and directory to install the BESDK on and enter
the following command for the appropriate drive being used:

To install from drive A:

A:INSTALLN A: .

To install from drive B:

B:INSTALLN B: .

The BESDK directories and files are extracted to the currently selected directory.

NOTE: The example DLL files are also installed with the MS-Windows BESDK files. Refer
to Appendix C of this addendum for documentation on these example files.

Installation of the MS-Windows BESDK MIXED LANGUAGE PROGRAMMING

8-10 NPL MS-Windows Addendum

8.4 MS-Windows Support

The external call features of NPL are supported in the MS-Windows environment as de-
scribed in the following sections.

8.4.1 Environments

NPL is designed to run only in the protected mode environments of MS-Windows 3.1
(i.e., standard and enhanced modes). Large model addressing is recommended for use
with BESDK, since a few code and data pointers are "far". Optimization of code in the
DLL’s may be possible by knowledgeable programmers using other models; however,
this topic is beyond the scope of this document.

Operating system functions are accessed from the MS-Windows API, which defines a va-
riety of application and operating system functionality for the MS-Windows environ-
ment. Most functionality available from MS-DOS interrupt 21H which does not affect
the display or keyboard is also available within the MS-Windows environment. However,
routines that interact with the user (from the display, keyboard or mouse) need to be re-
written to accommodate new restrictions imposed by the multi-tasking and graphical envi-
ronment capabilities of the MS-Windows environment. At the time of writing, the
MS-Windows environment is not well suited for development of actual MS-Windows ap-
plications--the DLL’s must be compiled and linked under MS-DOS or an MS-DOS ses-
sion under MS-Windows (memory permitting).

NOTE: Although several MS-Windows products do a reasonable job of making DLLs,
BESDK make files and batch files will only run under MS-DOS, and the current rec-
ommended compiler (Microsoft C 7.0) ONLY runs in a DOS box.

8.4.2 Differences in the Flow Control Due to DLL Use

The use of DLL’s for external functions has affected the flow control of operations (com-
pared to that of MS-DOS and other environments). Under MS-Windows, NPL functions
as the mainline task, and the external library is only called for specific localized func-
tions. This means that some types of operations, (for example, subroutines that expect
floating point exceptions, or inspect the environment list) which, in the MS-DOS environ-
ment, would normally rely on initialization performed by the C start-up routines, may re-
quire special handling to be usable in a DLL.

MIXED LANGUAGE PROGRAMMING MS-Windows Support

NPL MS-Windows Addendum 8-11

Because the externals no longer define the "mainline", initialization and cleanup func-
tions which, under MS-DOS, are performed in the mainline (before and after calling the
RTP() function), must instead be performed by the library start-up (LibMain) and shut-
down (WEP) functions. When first loaded, the LibMain routine of the DLL is called.
When the library is unloaded, the WEP routine of the DLL is called.

NOTE: If the libraries are configured for shared use, these procedures are only called once--
when the first user loads the library (start-up) and when the last user unloads the li-
brary (WEP). Otherwise, libraries are not notified when a new user connects to the
library (however, see notes on RTPEXT_SHAREABLE function, below).

8.4.3 Exported Symbols and Reserved Names

Use of DLL’s requires familiarity with the concept of the "exported" symbols of a li-
brary. These are entry points to functions in the library that are available to users of the li-
brary. They must be explicitly listed in the linker definition (.DEF) file used to make the
DLL.

For purposes of the MS-Windows BESDK, avoid the use of symbols that start with
"RTPEXT", especially exported symbols and named resources, except where the use of
such symbols is defined by the BESDK. The current implementation assumes that the ex-
istence of certain symbols of this type are for interface with NPL, and future revisions
may extend the number of symbols of this type.

8.4.4 Debugging MS-Windows Applications

Debugging MS-Windows applications is best performed by the MS-Windows SDK de-
bugger CVW (CodeView for MS-Windows). At the time of writing, CVW requires a sys-
tem equipped with 2 monitors, typically a monochrome text monitor for the debugger
display and a graphics display for the application.

8.4.5 Adapting MS-DOS Code for the MS-Windows Environment

Object code libraries targeted for the MS-DOS environment may sometimes be adapted
for use under MS-Windows. However, applications that attempt to interact with the user
from the keyboard, screen or mouse usually violate MS-Windows programming guide-
lines.

Code must also be capable of operating under the protected mode of a 286 processor (self-
modifying code and execution of "built" code is generally not permitted).

MS-Windows Support MIXED LANGUAGE PROGRAMMING

8-12 NPL MS-Windows Addendum

Exported functions must begin with the MS-Windows prolog (a MOV AX,0nnnnH in-
struction in assembly language) to load properly as a DLL under MS-Windows (this in-
struction is patched at the time the DLL is loaded).

8.5 Loading the External Libraries

Under MS-Windows NPL applications can load external subroutine libraries (.DLL li-
brary created using BESDK) in two ways. In addition more than one library can be
loaded for each application. The DLL’s can be loaded as follows:

1. Specified as /X options on the command line.

For example:

RTIWIN /XLIBRARY1 /XLIBRARY2 MYBOOT

 loads both LIBRARY1.DLL and LIBRARY2.DLL., using the standard Windows
 DLL search procedure. Refer to the LoadLibrary Windows API call for details of this
 search order.

2. Specified as an ExternalLibraryx= FILENAME option in the RTIWIN.INI file in
either the general or application’s private section. Here, the value of x is a integer in-
dex number (without any leading 0’s). Refer to Section 3.4 for more information.

 If more than one ExternalLibraryx= option is entered in a section, the index (x value)
must start at 1 and be consecutive.

NOTE: Where possible, the duplication of function names/numbers in external libraries
should be avoided. However, this is not treated as an error.

When an external function or DEFFN’ is declared in more than one external library, the
order of loading becomes important. The specified libraries are loaded in the following
order:

• Any libraries specified on the command line as an /X option

• Any libraries in the local RTIWIN.INI file’s application section

• Any libraries in the NetworkIniFile’s application section

MIXED LANGUAGE PROGRAMMING Loading the External Libraries

NPL MS-Windows Addendum 8-13

• Any libraries in the local RTIWIN.INI file’s [general] section

• Any libraries in the NetworkIniFile’s [general] section

The first loaded library which contains a referenced function effectively hides any simi-
larly named/numbered functions in subsequently loaded libraries. Named aliases for num-
bered DEFFN’s are still visible if the numbered DEFFN becomes hidden.

 When checking the DLL for resources or calling routines that permit modification of the
NPL environment, libraries are checked "last-loaded first", so that the most local versions
have the last chance at changes (and hence have priority). This applies to the following re-
sources and exported functions:

• Any icon named RTPEXT_ICON,

• Any cursor named RTPEXT_CURSOR,

• Any accelerators named RTPEXT_ACCELERATORS,

• Calls to RTPEXT_LOGFONT;

• Calls to RTPEXT_MAIN;

• Calls to RTPEXT_SET_INPUT_SCREEN_ADDRESS;

For example, if the local RTIWIN.INI file contains:

[GENERAL]
NetworkIniFile= K:\PUBLIC\RTI.INI
ExternalLibrary1= C:\BASIC2C\NPLWIN.DLL
[xxx\MYBOOT.OBJ]
ExternalLibrary1= C:\BASIC2C\NPLDDE.DLL
ExternalLibrary2= C:\BASIC2C\NPLDLG.DLL

and the network .INI file (K:\PUBLIC\RTI.INI) contains:

Loading the External Libraries MIXED LANGUAGE PROGRAMMING

8-14 NPL MS-Windows Addendum

[GENERAL]
External Library1= K:\NPLLIBS\NPLMSG.DLL
[xxx\MYBOOT.OBJ]
ExternalLibrary1= K:\NPLLIBS\NPLOLE.DLL

and the following command is run from the program manager:

RTIWIN /XLIBRARY1 /XLIBRARY2 MYBOOT

NPL loads the following libraries (in order of decreasing priority):

LIBRARY1.DLL
LIBRARY2.DLL
C:\BASIC2C\NPLDDE.DLL
C:\BASIC2C\NPLDLG.DLL
K:\NPLLIBS\NPLOLE.DLL
C:\BASIC2C\NPLWIN.DLL
K:\NPLLIBS\NPLMSG.DLL

8.6 Microsoft C under MS-WINDOWS

As shown in the example, writing external subroutines in Microsoft C for the MS-Win-
dows environment is straight-forward. Examples assume Microsoft C version 6.0 or later.
Earlier versions may also work, but are not tested.

The Microsoft C compiler adds an underscore ("_") to the start of all labels unless these
are designated as using the "pascal" naming convention. In the following discussion, la-
bels are presented the way they must appear in the source files of the C routines.

MIXED LANGUAGE PROGRAMMING Microsoft C under MS-WINDOWS

NPL MS-Windows Addendum 8-15

8.6.1 General

Use the large model "for MS-Windows" option (-ALw) on all "cl" compile commands.
This ensures that all pointers are "far" unless specifically designated otherwise, and en-
sures that assumptions about the near data area and stack are appropriate for MS-Win-
dows DLL’s. In addition, the -Gw option is required to make sure the correct prolog for
MS-Windows exported functions is used. Since the DLL is only used in protected mode,
the -G2 option can also be used to allow the compiler to generate code that requires a 286
processor or better.

Make sure the include files provided with the BESDK are available in a directory speci-
fied by a "/Idirectory" option to the "cl" command that is defined as the standard .c to .obj
inference rule.

8.6.2 Mainline

Unlike the MS-DOS quick-library implementation of external libraries, DLL files do not
have a mainline. Instead, the code in the library is separated into 3 parts:

1. An initialization function (LibMain) that is executed once, when the library is loaded.

2. Various "exported" subroutines, including RTPEXT, which can be called once the li-
brary has been loaded.

3. An exit function (WEP) that is executed once, when the library is unloaded.

For purposes of testing subroutines without a MS-Windows RunTime, a user mainline for
MS-Windows application must be written. The starting label of user code is called "Win-
Main".

NOTE: Substantial start up code from the Microsoft C library is executed before reaching
the "WinMain" routine).

The standalone mainline, after performing appropriate initialization, calls a user-written
RTP subroutine. The RTP subroutine should be referenced as an external with the stand-
ard BESDK calling conventions.

The RTP subroutine calls the external library functions (linked separately in the user’s
DLL) with appropriate test values.

Microsoft C under MS-WINDOWS MIXED LANGUAGE PROGRAMMING

8-16 NPL MS-Windows Addendum

8.6.3 Calling Conventions for BESDK Subroutines

Test RTP Subroutines
Declare all GOSUB’ routines using standard BESDK calling conventions (i.e., the sub-
routine preserves non-volatile registers, arguments are pushed in the order they appear, ar-
guments are popped by the called routine). The "rtpdeffn.h" include file for
MS-Windows defines "rtpdeffn_ext" as equivalent to this designation.

RTPEXT Subroutine
The RTPEXT subroutine should be defined as a procedure with the standard BESDK call-
ing conventions. When called, the address of the rtpdef structure (defined in the include
file rtpall.h) is the only parameter. The first field of this structure is a rtpreq structure (de-
fined in the include file rtpall.h). The name of this procedure must be exported, by includ-
ing the name as an entry in the EXPORT section of the .DEF file used for the DLL
linkage.

GOSUB’ Subroutines
Use the standard BESDK calling conventions on declarations of all subroutines that are
called from the GOSUB’ interface. The "rtpdeffn.h" include file for MS-Windows de-
fines "rtpdeffn_ext" as equivalent to this designation.

The name of all such procedures should be exported by including the name as an entry in
the EXPORT section of the .DEF file used for the DLL linkage.

Formats of strings in NPL do NOT have a zero-terminator and are not of variable length.
If strings are to be used by C library routines, make copies that have trailing spaces re-
moved and a zero terminator added.

8.6.4 Linkage of Test Program

The files required for production of the standalone should include:

• The Mainline

• The RTP test subroutine

• The Microsoft C MS-Windows support libraries libw.lib, llibcew.lib (names may
vary).

• An import library for the customized DLL.

MIXED LANGUAGE PROGRAMMING Microsoft C under MS-WINDOWS

NPL MS-Windows Addendum 8-17

To run, the standalone requires that the customized DLL containing the external func-
tions is linked and available to the MS-Windows loader, either in the same directory as
the standalone, or in a directory specified by the user’s PATH specification.

8.6.5 Linkage of Customized DLL

The files required for production of the customized DLL should include:

• The LIBENTRY.OBJ module (Windows DLL library entry support file)

• The LIBMAIN.OBJ module (library start up and exit procedures)

• The RTPEXT subroutine (optional, but recommended)

• The GOSUB’ subroutines

• Any function or procedure subroutines. If these are used the RTPPARM module
(located in \INCLUDE\WIN) must also be used.

• The Microsoft C MS-Windows DLL support libraries libw.lib, ldllcew.lib
(names may vary)

NOTE: Refer to Section 8.12 for an example of the use of callbacks to NPL functions.

8.7 Microsoft MASM Macro Assembler

External subroutines and the mainline can be written entirely in MASM Macro assem-
bler, if required. Macro assembler has the advantage that support code dragged in from li-
braries is usually small, and so the resulting library is often more compact than if written
in a high-level language. However, the code is generally much more difficult to write and
less portable when complete. In addition, the programming interface to the MS-Windows
API is written with the C programmer in mind, so familiarity with the requirements of
mixed language calling conventions is a prerequisite for programming in assembler under
MS-Windows.

Examples assume Microsoft MASM 5.10 or later. Earlier versions may also work but are
not tested.

Microsoft MASM Macro Assembler MIXED LANGUAGE PROGRAMMING

8-18 NPL MS-Windows Addendum

NOTE: External libraries written on Macro Assembler do not support the FUNCTION,
PROCEDURE interface or callbacks to NPL.

8.7.1 General

Make sure the include files provided with the BESDK are available in a directory speci-
fied by a "/Idirectory" option to the "MASM" command.

8.7.2 Mainline

It is possible to write an entire standalone module in macro assembler.

• The RTP() subroutine should be referenced as a far external with the name
"RTP".

• Use standard large-model conventions for segment names. Explicit segment
names or the simplified segment directives supported by MASM 5.1 may also be
used. Be sure that:

1. All code segments have combine class "CODE".

2. All near-data segments (and standard stack) have combine class "DATA",
and are part of the group named DGROUP.

The module must not depend on any specific segment ordering. Do not assume that DS
and SS are in the same segment (they are not, in a DLL). Code should be written to con-
form to protected-mode requirements (never modify code segments or attempt to execute
data segments, unless using segment aliases provided by the MS-Windows API for this
purpose). The OFFSET operator applied to near-data items should always be based using
DGROUP to ensure a correct address.

Where possible, use the MS-Windows API to perform functions of the operating system
rather than attempting to control hardware directly. Procedures such as hooking interrupts
are generally not permitted in the MS-Windows environment.

Exported functions must begin with the MS-Windows prolog (an MOV AX,0nnnnH in-
struction in assembly language) to load properly as a DLL under MS-Windows (this in-
struction is patched at the time the DLL is loaded).

MIXED LANGUAGE PROGRAMMING Microsoft MASM Macro Assembler

NPL MS-Windows Addendum 8-19

8.7.3 Calling Conventions for BESDK Subroutines

Test RTP Subroutines
Declare RTP() subroutine as public with name "RTP".

Call GOSUB’ subroutines using standard BESDK calling conventions (push arguments
in order used in GOSUB’ statements, assume arguments popped by subroutine, preserve
used non-volatile registers).

RTPEXT Subroutine
The RTPEXT subroutine should be defined as using the default BESDK calling conven-
tions with the name "RTPEXT". When called, the address of the RTPDEF structure (de-
fined in the include file rtpall.inc) is on the stack as a 32-bit far (large model) pointer.
The first field of this structure is an RTPREQ structure (defined in the include file
rtpall.inc).

GOSUB’ Subroutines
Each subroutine should be defined as a far procedure using the default BESDK calling
conventions. When called, the parameters are on the stack below the return address. The
first parameter of the GOSUB’ is pushed first; last parameter pushed last.

A string parameter is passed as:

PUSH SEG < string> ;16-bit segment
PUSH OFFSET < string> ;16-bit offset
PUSH SIZE < string> ;16-bit integer

NOTE: The string size is an unsigned 16-bit integer.

A numeric parameter is passed as:

PUSH SEG < rtpnum structure> ;16-bit segment
PUSH OFFSET < rtpnum structure> ;16-bit offset

The rtpnum structure is defined in the include file rtpall.inc.

Microsoft MASM Macro Assembler MIXED LANGUAGE PROGRAMMING

8-20 NPL MS-Windows Addendum

To conform to standard BESDK calling conventions, use the form of the "RET" instruc-
tion that automatically pops parameters from the stack (4 bytes per numeric parameter +
6 bytes per string parameter).

8.7.4 Linkage of Test Program

Programs written in Macro Assembler must be linked to produce an executable file. All
input files to "LINK" must be the result of previously run assemblies or libraries of files.

The files required for production of the standalone should include:

• The mainline (i.e., MYMAIN.OBJ)

• The RTP() test subroutine (i.e., MYRTP.OBJ)

• The Microsoft C MS-Windows support libraries LIBW.LIB, LLIBCEW.LIB
(names may vary).

• An import library for the customized DLL.

8.7.5 Linkage of Customized DLL

The files required for production of the customized DLL should include:

• The LIBENTRY.OBJ module (Windows DLL library entry support file)

• The LIBMAIN.OBJ module (library startup and exit procedures)

• The mainline (i.e., MYMAIN.OBJ)

• The RTPEXT subroutine (i.e., MYRTPEXT.OBJ)

• The GOSUB’ subroutines (i.e., MYSUB.OBJ)

• The Microsoft C MS-Windows DLL support libraries LIBW.LIB, LDLLCEW.LIB
(names may vary)

MIXED LANGUAGE PROGRAMMING Microsoft MASM Macro Assembler

NPL MS-Windows Addendum 8-21

8.8 Shared Data Segments in DLL’S

At the time of writing, the requirement for all MS-Windows DLL’s is that the data seg-
ment of the DLL be a single SHARED data segment. This means that a DLL designed to
be used by multiple tasks must be written carefully (even painstakingly) to ensure that no
data specific to a caller is stored in the local data segment (unless this data has been spe-
cifically allocated on a per-task basis, controlled by handles passed by the caller, and so
on). In particular, in C this means that care must be taken not to store information in
global or static variables whose value is subsequently retrieved if, in the interim, another
task could run (and overwrite the values stored).

To relax this requirement, NPL assumes by default that all DLL’s are non-shareable, and
makes physically distinct copies of the DLL under different names which then run with a
single unshared data segment.

While this procedure avoids potential problems with code that is not designed to run with
shared data, it does require more memory, since the code of DLL’s used in this way is not
shared. If the DLL contains a considerable amount of code, and can be written so that the
shareable nature of the data does not pose a problem, this can be indicated to NPL by in-
cluding an exported function RTPEXT_SHAREABLE in the DLL. The function has the
following interface:

BOOL FAR PASCAL RTPEXT_SHAREABLE(int change_in_users);

where:

change_in_users is either 1 if the library is being accessed by a new NPL task, or -1
if the library is being released by an NPL task.

The routine should keep track of the total number of users accessed by NPL and return
TRUE if the total number of users is within the sharing capability of the DLL.

For example:

#define MAX_USERS 4
static int total_users=0;

BOOL FAR PASCAL RTPEXT_SHAREABLE(int change_in_users)
{

total_users += change_in_users;
if(total_users <= MAX_USERS) return(TRUE);
return(FALSE);

};

Shared Data Segments in DLL’S MIXED LANGUAGE PROGRAMMING

8-22 NPL MS-Windows Addendum

NOTE: The total number of users should be maintained whether the routine returns TRUE
or FALSE. If the FALSE value is returned, NPL calls the routine again with a value
of -1 to "uncount" the user.

To debug a .DLL, always define the RTPEXT_SHAREABLE function. Use a
MAX_USERS value of 1, if the library cannot be shared. If this function is not de-
fined, NPL uses a copy of the DLL with a different name, and any breakpoints you
attempt to be set in the .DLL will never be executed.

8.9 Custom Resources in a DLL

When NPL loads a DLL for use by an application, it looks for resources with reserved
names in the DLL, which is used to replace the standard resources normally used by
RTI/RTP. These reserved names are:

An Icon named "RTPEXT_ICON"

If found, this icon is used for the application when minimized. If an icon is specified
directly for the application in the user’s RTIWIN.INI file, it takes precedence over
this icon.

A Cursor named "RTPEXT_CURSOR"

If found, this cursor is used for the application.

An Accelerator table named "RTPEXT_ACCELERATORS"

If found, this accelerator table is used by the application.

NOTE: This capability would normally be used only if the main window menu is being re-
placed. This requires replacing or extending the main window’s menu and subclass-
ing the main application window.

For example, if the following MYLIB.RC script is defined:

RTPEXT_ICON ICON "MYICON.ICO"
RTPEXT_CURSOR CURSOR "MYCURSOR.CUR"

MIXED LANGUAGE PROGRAMMING Custom Resources in a DLL

NPL MS-Windows Addendum 8-23

Then the command:

rc mylib.rc mylib.dll

instructs the resource compiler to insert the named resource files (created using the MS-
Windows SDKPaint tool) into the DLL file.

8.10 Subclassing the Main NPL Window in a DLL

For heavily customized applications, it may be desirable to replace components of the
standard "main window" used to present the NPL application. For such applications, NPL
provides a hook function to inform the DLL of the handles used for the Instance and
main display MS-Windows. If the DLL needs this information for any reason, this can be
indicated to NPL by including an exported function RTPEXT_MAIN in the DLL. The
function has the following interface:

void FAR PASCAL RTPEXT_MAIN(
 HANDLE hLibraryInstance,
 HANDLE hInstance,
 HWND hMainWnd)

where:

hLibraryInstance is the module instance of the loaded DLL
hInstance is the Instance handle of the current task, and
hMainWnd is the window handle of the main NPL display window.

One use for the main window handle is as a parent window handle for pop-up windows
that the DLL may have a need to display (containing error or other information). By mak-
ing such windows "children" of the main display window, when the operator minimizes
the main window, the children also become hidden, keeping the desktop relatively unclut-
tered.

Subclassing the Main NPL Window in a DLL MIXED LANGUAGE PROGRAMMING

8-24 NPL MS-Windows Addendum

For example:

static HANDLE hMainWindow;

BOOL FAR PASCAL RTPEXT_MAIN(
HANDLE hLibraryInstance,
HANDLE hInstance,
HWND hMainWnd)

{
hMainWindow=hMainWnd; /* save for later */

/* note : this use of static variable means the library is NOT share-
able! */
};
...
/* elsewhere in external subroutines where a parent is required */

MessageBox(hMainWindow, /* child of main window */
"Divide by zero?",
"Error",
MB_OK);

Once these values are known, it is possible for the DLL to "subclass" the main window
procedure, i.e., to intercept all window messages sent to the main window and interpret
them in a different way. This technique might be used to replace the menu or add addi-
tional functions to the standard menu bar. Messages which are not intercepted should be
passed on to the original window procedure.

Attempts to make this kind of customization can become very complex, and are discour-
aged unless the programming requirements of the MS-Windows environment are very fa-
miliar. Due to the nature of this kind of customization, it is not possible to guarantee
upward compatibility of changes with future versions of NPL.

8.11 Flow Control for External Subroutines

The flow control (in chronological order) for the MS-Windows RunTime using external
subroutines under MS-Windows is as follows:

1. NPL (from a LoadLibrary API call) informs MS-Windows that functions from the
user’s DLL is required. If the DLL is not already in use, it is located and loaded by
MS-Windows and the LibMain function of the DLL is called. The LibMain routine
may perform some initialization, and eventually returns (to MS-Windows).

2. NPL asks the DLL to determine if it is shareable. If an RTPEXT_SHAREABLE rou-
tine is exported from the library, it is called with a + 1 parameter to indicate a new
task is using the library. If the routine does not exist, or returns a FALSE indication,
indicating that it cannot be shared by another task, a copy is made, and the copy is
loaded.

MIXED LANGUAGE PROGRAMMING Flow Control for External Subroutines

NPL MS-Windows Addendum 8-25

3. NPL runs and does some initial configuration work, including processing command-
line options and loading the bootstrap program. Several MS-Windows customization
entry points (RTPEXT_MAIN etc) are called if these are defined by the DLL. Cus-
tom resources (RTPEXT_ICON, RTPEXT_CURSOR) are selected if defined by the
DLL.

4. NPL scans the external library for numbered DEFFN’S with named aliases, using the
LIST’ calls starting at function number 0. An internal table of identifiers and equiva-
lent numbered externals is built.

5. The NPL execution proceeds. At some point, a GOSUB’, (e.g., GOSUB’100) is exe-
cuted, and no local GOSUB’ subroutine is found. If the GOSUB’ to a named
DEFFN’ and the identifier is found in the table in Step 4, the equivalent number is
used to query RTPEXT.

6. NPL calls RTPEXT to find out whether an external ’100 subroutine exists, and if so,
where it is and what parameter types it needs.

7. RTPEXT supplies the requested information (e.g., GOSUB’100 exists, has 3 parame-
ters with types string, string, and numeric, which is located at mysub()) and returns
(to NPL).

8. If the RTPEXT indicated that the subroutine does not exist, or if the number and type
of parameters do not match, an NPL error is generated on the GOSUB’ statement.
Otherwise, NPL evaluates parameters and calls the external subroutine (mysub)
whose address was provided by RTPEXT.

9. The external subroutine (mysub) does its thing and returns to NPL. NPL execution
proceeds until we are back at step 5 (another GOSUB’) or the rtp is ending ($END,
Killed from Help, etc.). In the second case, go to the next step.

10. NPL does its cleanup. It calls RTPEXT_SHAREABLE (if defined) with a -1 pa-
rameter, to indicate a task is giving up use of the library, and notifies MS-Windows
(from the FreeLibrary API call), that the DLL is no longer required. If no other MS-
Windows tasks have registered an interest in the DLL, MS-Windows calls the
DLL’s WEP (Windows Exit Procedure) routine before removing the DLL code from
the environment.

11. NPL does MS-Windows C library shutdown, and eventually exits back to MS-Win-
dows.

Flow Control for External Subroutines MIXED LANGUAGE PROGRAMMING

8-26 NPL MS-Windows Addendum

NOTE: RTPEXT can be called by LIST’ to find out information about DEFFN’ subroutines
without calling the subroutines.

Subroutines should not DEPEND on the above flow control order to work (e.g., a subrou-
tine should not expect RTPEXT to always be called immediately before it). The above
outline is provided merely as a guide to the understanding of how the external mainline,
rtp, RTPEXT and external subroutines interact.

The following diagram shows how execution proceeds using the various software compo-
nents with the above steps labeled.

MIXED LANGUAGE PROGRAMMING Flow Control for External Subroutines

NPL MS-Windows Addendum 8-27

1. Library startup
Call to LoadLibrary()

(Windows)

2. Initialization

3. NPL startup
Process options

Run BOOT.OBJ

4. Run application
GOSUB’ 100 met

5. Call to RTPEXT ()
.
.
.
.

7. Evaluate Parameters
Call to mysub()

.

.

.
Continue Application

$END met

9. NPL cleanup
Free Library()

(Windows)

10. Windows Library cleanup
Exit to Windows

NPL (RTP or RTI) components External DLLComponents

RTPEXT
6. RTPEXT provides

address of ’100
(mysub)

RTPEXT returns

LibMain()
DLL Initialization

LibMain returns

Optional customization
routines.

WEP()
DLL exit procedures

WEP returns

mysub
8. mysub executes

mysub returns

Flow Control for External Subroutines MIXED LANGUAGE PROGRAMMING

8-28 NPL MS-Windows Addendum

The following diagram shows the execution flow for the FUNCTION/PROCEDURE (in-
terface):

RTP

resolve
FUNCTION or
PROCEDURE with
/EXTERNAL

call
FUNCTION or
PROCEDURE
declared with
/EXTERNAL

rtpfn_getparminfo()
provide parameter
info and pseudo
address

rtpfn_callfunction()
PROCEDURE CallbackKeyin

END PROCEDURE
or RETURN ERROR (x)

RTPEXT
validate parameters and
provide address
(myproc)

myproc

mycallbk
check exists
("CallBackKeyin")

call callback
with pseudo address

myproc returns

[while executing in external library, callbacks to NPL are permitted]

[While executing in NPL, callbacks to NPL are not permitted, except during KEYIN statements,
or when NPL polls for the HALT key, if this is enabled.]

MIXED LANGUAGE PROGRAMMING Flow Control for External Subroutines

NPL MS-Windows Addendum 8-29

8.12 Callbacks to NPL under MS-Windows

The MS-Windows RunTime permits callbacks to NPL from externals in two additional
key locations:

1. When executing a KEYIN statement (either polling or wait version).

2. When the RunTime internally polls for a HALT (CTRL-BREAK) key.

No programming changes are required for this. This change allows callbacks to the Run-
Time to occur on an "interrupt" like basis, as a result of messages dispatched to windows
which may be created by the external routine.

NOTE: When NPL is in immediate mode, in HELP, or processing a LINPUT command, call-
backs are disabled.

The MS-Windows RunTime does not poll the message queue to check for a HALT
(CTRL-BREAK) key when the main window has been disabled (which occurs if a modal
dialog box is created as a child of the main window). Also, when a task-modal or system-
modal dialog box is displayed, the RunTime only polls the message queue to check for a
HALT (CTRL-BREAK) key messages directed to the main window or its children.

This allows modal dialog box functions to call back to NPL, without being concerned
that the polling mechanism will incorrectly get messages from the queue that would nor-
mally be picked up by the MS-Windows internal modal dialog box mechanism.

If a modal dialog box function calls back to NPL, the HALT key is not operational for
the duration of execution of the called function, and as such cannot be used to terminate
software bugs such as infinite loops.

Some operations (such as KEYIN, INPUT, LINPUT, STOP, END statements, and screen
output with pauses due to SELECT P) require NPL to get messages from the queue.

Callbacks to NPL under MS-Windows MIXED LANG UAGE PROGRAMMING

8-30 NPL MS-Windows Addendum

WARNING--These can hang the RunTime if issued during execution of NPL code during
a callback from a child dialog box.

Executing these operations while in a callback from a non-child dialog box function, may
cause loss of messages (and incorrect operation) of controls in the dialog, and so should
be avoided.

MIXED LANGUAGE PROGRAMMING Callbacks to NPL under MS-Windows

NPL MS-Windows Addendum 8-31

APPENDIX A

COMMON PROBLEMS

A.1 Overview

This Appendix details general problems that may be encountered when attempting to exe-
cute the NPL MS-Windows RunTime Program. Refer to Appendix A of the MS-DOS
Supplement for further details on common problems encountered with the standard
Niakwa RunTime.

A.2 Problems

Problem 1:
RTIWIN or RTPWIN fails the security check.

Possible causes: NIAKSECx not properly loaded.

COMMON PROBLEMS Overview

NPL MS-Windows Addendum A-1

Solution: Load the appropriate NIAKSECx file. If this is any file other than
NIAKSECA.COM, an entry must be made in the RTIWIN.INI to en-
sure proper loading of this file. The NIAKSECx file must be loaded
prior to starting MS-Windows--it cannot be loaded using the MS-
DOS shell from within MS-Windows.

Problem 2:
The font size is not changing when window sizes are changed.

Possible causes: The Autosize option is not turned on or a font that does not support
re-sizing is in use.

Solution: Check the option selection to verify that Autosize is selected. If it is,
make sure the BASFONTS.FON file, IBMFONT.FON file, or an-
other resizable fixed pitch font file is available and selected from the
MS-Windows Control Panel font selection options.

Problem 3:
The message "BASFONTS.FON not found" is displayed.

Possible causes: The Niakwa font file, BASFONTS.FON, was not found by MS-Win-
dows.

Solution: Make sure the BASFONTS.FON file is available and selected from
the MS-Windows Control Panel font selection options.

Problem 4:
$OPEN does not work.

Possible causes: The MS-DOS SHARE command is not loaded and the Share Warn-
ing message has been ignored or suppressed by the use of Share-
Warning= 1 parameter in the RTIWIN.INI file.

Solution: Load the MS-DOS SHARE program as documented in Section 3.2

Problems COMMON PROBLEMS

A-2 NPL MS-Windows Addendum

Problem 5:
The MS-Windows RunTime task does not execute correctly after initially loading the
MS-Windows RunTime.

Possible causes: The security TSR is other than NIAKSECA, which the RunTime as-
sumes is the default when the MS-Windows RunTime is loaded.

Solution: The RTIWIN.INI file must be created manually in the directory
where MS-Windows is located by using a standard text editor (i.e.,
MS-Windows Notepad, EDIT, EDLIN, etc.). Create the general sec-
tion of this file as documented in the example in Section 3.4 of this
Addendum with the NIAKSECx set to the correct value, B-F for the
interrupt on the host system.

Problem 6:
The error message, "Partition X mapped to Network partition y already used, cannot start
this application" occurs when starting a RunTime task.

Possible causes: An attempt was made to execute a task that did not have a reserved
Partition value assigned to it.

Solution: Any RunTime task that will be executed on a particular workstation,
must be set up in the users local RTIWIN.INI file with a Partition op-
tion value. Refer to Section 6.2.2 for more information.

COMMON PROBLEMS Problems

NPL MS-Windows Addendum A-3

APPENDIX B

MODIFYING NPL FONTS

B.1 Overview

This appendix describes the processes used to modify or create new fonts for use with the
MS-Windows RunTime.

The font modification procedure requires the tools provided with the MS-Windows SDK.
The make script "makefile" requires that the utilities RC.EXE and LINK (not version
5.10) be accessible in the standard PATH.

MODIFYING NPL FONTS Overview

NPL MS-Windows Addendum B-1

NOTE: Version 5.10 of Microsoft LINK has a bug that prevents it from properly building
the font file. Either newer or older versions of LINK may be used.

B.2 Installation

The files necessary for modifying or creating new fonts for use by the MS-Windows Run-
Time are found on the MS-Windows Supplementary Files Diskette in the \BFONTS and
\IFONTS directories. The contents of the appropriate directory should be copied to the di-
rectory where the font files are to be modified.

NOTE: Two sets of fonts files are included with the MS-Windows RunTime. They are the
BASFONTS.FON font file and the IBMFONTS.FON font file. Refer to Chapter 1
for more details on these files.

B.3 Files

The following files are provided with the MS-Windows Supplementary Files Diskette in
the \BFONTS directory for the BASFONTS.FON font file and \IFONTS for the
IBMFONTS.FONT font file:

xxxFONTS.DEF Linker definition file, required to produce a resource executable.

xxxFONTS.RC The resource script specifying the names of fonts included in the font
resource file.

FONTS.OBJ A null object, required by LINK to produce a resource executable.

MAKEFILE Instructions for nmake utility on how to produce the BAS-
FONTS.FON and IBMFONTS.FON files.

B2fwXh.FNT The individual font files that make up the BASFONTS.FON or
IBMFONTS.FON file. These files are described by "w" wide and "h"
high (in pixels)

Installation MODIFYING NPL FONTS

B-2 NPL MS-Windows Addendum

where:

xxx = BAS for NPL (BASIC-2C) Fonts and IBM for the IBM fonts.

f = C for the BASFONTS.FON fonts and I for the IBMFONTS.FON fonts

B.4 Modifying Existing Fonts

The MS-Windows SDK FONTEDIT.EXE utility may be used to modify any of the in-
cluded B2fwXh.FNT files.

To make the fonts usable with MS-Windows, run "nmake" in the current directory. The
result is a new BASFONTS.FON or IBMFONTS.FON file. This file replaces the version
shipped with the MS-Windows RunTime.

WARNING--Always keep the original BASFONTS.FON and IBMFONTS.FON file in a
safe place as a backup.

B.5 Creating New Fonts

The MS-Windows SDK FONTEDIT.EXE utility may be used to create new fonts. The
easiest way to do this is by modifying one of the existing B2CwXh.FNT or B2IwXh.FNT
files.

For example, to add the font file to BASFONTS.FON, follow the steps shown below:

1. Make sure the individual font files are saved using the "Save As" option specifying
that the font file is to be saved as Windows 2.0 compatible file.

2. Include the new file name in the list of .FNT files specified in the makefile depend-
ency list.

3. Add the new .FNT file name to the BASFONTS.RC or IBMFONTS.RC file on a new
line. The number at the start of the line should be the next in sequence (i.e., 17).

MODIFYING NPL FONTS Modifying Existing Fonts

NPL MS-Windows Addendum B-3

APPENDIX C

EXAMPLE DYNAMIC LINK
LIBRARIES

C.1 Overview

To help NPL developers access the MS-Windows resources, a series of examples have
been provided. These examples include an MS-Windows Clipboard example, text display
routine, a message box routine, and a dialog box routine.

NOTE: These examples are included for purposes of example only and are not intended to
be suitable for use by end users without additional work. End-user use of these rou-
tines is not supported by Niakwa.

Section C.2 discusses installation of the examples.

Section C.3 discusses the WINCDEMO examples.

EXAMPLE DYNAMIC LINK LIBRARIES Overview

NPL MS-Windows Addendum C-1

Section C.4 discusses the WINCDIAL examples.

Development of external routines to access MS-Windows resources requires consider-
able expertise in use of C, ASM, and the MS-Windows SDK.

C.2 Installation

The example DLL files are found in the \WINCDEMO and \WINCDIAL directory of the
MS-Windows Supplementary Files Diskette. These files are automatically installed when
the MS-Windows BESDK is installed. Refer to Chapter 8 of this Addendum for informa-
tion on installing the MS-Windows BESDK.

C.3 The WINCDEMO Example

The following example discusses the example DLL files and their implementation in-
cluded on the MS-Windows Supplementary Files diskette.

C.3.1 Implementation Notes

The examples provided with the MS-Windows RunTime were implemented from exter-
nal calls to "C" or ASM. Executable versions of all example external subroutines are in-
cluded in the library MYLIB.DLL. Also included are example NPL programs that
demonstrate the use of the example routines and the necessary parameters that must be
passed to them for proper execution.

The following example Niakwa object programs are provided:

CLIP.OBJ Demonstrates text interchange with the MS-Windows Clipboard.
Text can be moved both ways from NPL to MS-Windows and the re-
verse, using MS-Windows functions like Copy and Paste.

TEXT.OBJ Example of Text Box feature of NPL for MS-Windows. This pro-
gram displays text in very large fonts (non-Niakwa) inside Window
type of boxes.

Installation EXAMPLE DYNAMIC LINK LIBRARIES

C-2 NPL MS-Windows Addendum

MESSAGE.OBJ This demonstrates the use of text boxes and buttons with NPL.

DIAGBOX.OBJ Illustrates the use of MS-Windows dialog boxes within NPL, allow-
ing the user to make a choice and bring the result directly into the
NPL environment.

C.3.2 Example DLL Files

The following is a complete list of the example DLL files provided:

\WINCDEMO

MAKEFILE Instruction for the nmake utility on how to produce the .DLL and
stand alone MS-Windows executable.

DLGOPEN.ASM Assembly language helper routines for DLGOPEN.C.

DLGOPEN.C The routines to display a standard file/open and file/save dialog box.

LIBMAIN.C Source code for entry and exit procedures required by all MS-Win-
dows DLLs.

MYCUSTOM.C Source code for MS-Windows customization routines, described in
Chapter 8 of this Addendum.

MYMAIN.C Source code for mainline of standalone MS-Windows executable
used to test the .DLL without RTI. Calls RTP() function after normal
MS-Windows start up.

MYRTP.C Source code for a RTP() routine that calls .DLL with values to test
the performance of the .DLL, for use with the standalone test pro-
gram.

MYRTPEXT.C Source code defining the available routines in the .DLL and the pa-
rameters required by each.

MYSUB.C Source code for the majority of functions provided by the .DLL.

MYCURS.CUR A custom cursor resource file, created and modifiable using
SDKPaint.

EXAMPLE DYNAMIC LINK LIBRARIES The WINCDEMO Example

NPL MS-Windows Addendum C-3

MYMAIN.DEF Linker definition file, required to produce the standalone MS-Win-
dows executable MYMAIN.EXE.

MYLIB.DEF Linker definition file, required to produce the dynamic link library
MYLIB.DLL.

MYRES.DLG Resource script for the File Open dialog box.

MYLIB.DLL Pre-made copy of the .DLL to allow use by users who do not have
the MS-Windows SDK.

DLGBOX.H Identifying constants for the File Open dialog box control.

DLGOPEN.H Constants and interface specification for the File Open dialog box
routines.

MYICON.ICO A custom icon resource file, created and modifiable using SDKPaint.

MYRES.RC The resource script specifying the names of icons, cursors, etc., in-
cluded in the .DLL resource file.

NOTE: The C programs are based on the MS-Windows SDK example programs.

C.3.3 Starting the Example Programs

To start the example programs, follow the steps shown below.

1. After installing the MS-Windows BESDK files (refer to Chapter 8 of this Adden-
dum), start MS-Windows.

2. Add a new program item to the MS-Windows Program Manager (as described in Sec-
tion 3.3 of this Addendum) and specify the Command Line entry as:

RTIWIN.EXE /XC:\NPL4\MYLIB.DLL BOOT

Substitute NPL4 with the proper directory location, if necessary. Specify the work-
ing directory as the WINCDEMO directory. BOOT is the name of the boot program
to be used (i.e., CLIP, TEXT, MESSAGE, DIAGBOX), including the path if differ-
ent from the directory WINCDEMO directory.

The WINCDEMO Example EXAMPLE DYNAMIC LINK LIBRARIES

C-4 NPL MS-Windows Addendum

3. Start the task.

4. To run the example enter: Return. To view the Niakwa source code, invoke the
Niakwa HELP processor and select the Reset option (or HALT the program by press-
ing CTRL-BREAK).

C.3.4 The DLL Examples

Before beginning work with any of the example DLL’s, it is strongly recommended that
the standard BESDK example be completed (refer to Chapter 8 of the Addendum for this
example). This confirms that all components are working correctly before attempting to
use the MS-Windows resources.

NOTE: All strings passed to the .DLL should have at least one trailing space--quotes in-
cluded.

Clipboard Example
The use of the Clipboard feature is contained in the boot program CLIP.OBJ. This pro-
gram contains two calls to the external subroutines: SetClipboardText and GetClip-
boardText. These are defined as follows:

NOTE: The literal subroutine names included in the example, are for documentation pur-
poses only. The subroutine number (i.e, 10002) is all that is necessary to access the
example routines.

GOSUB’10001 SetClipboardText (Text$, Result)

Where the parameters are defined as follows:

Text$ The text to be passed to the MS-Windows Clipboard.

Result Success/failure codes. There are many potential failures, but only a 0 means suc-
cess.

Dialog Box Example
The dialog box example program is called DIAGBOX.OBJ and the parameters necessary
for the external call used to create the dialog box are described below.

GOSUB’10004 DialogBoxFile(Title$, FileIn$, Ext$, FileOut$, Result)

Where the parameters are defined as follows:

Title$ The caption (name of the dialog box) displayed at the top of the dialog box.

EXAMPLE DYNAMIC LINK LIBRARIES The WINCDEMO Example

NPL MS-Windows Addendum C-5

FileIn$ The default file name to highlight (not implemented).

Ext$ The default file extension used as the search parameter for the filename.

FileOut$ The file selected.

Result Success/failure codes. There are many potential failures, but only a 0 means
the box actually is displayed.

This example demonstrates how a file could be selected from a list provided inside a MS-
Windows dialog box.

Message Example
This program demonstrates the use of the MS-Windows message box. The external sub-
routines calls from MESSAGE.OBJ are described below.

GOSUB’10000 MessageBox (Caption$, Text$, Buttons, Icon, Default, Re-
sult)

Where the parameters are defined as follows:

Caption$ The caption name to appear in the message box.

Text$ The text to be displayed--it is not necessary to specify where line breaks
should go, the text appears without splitting words across lines, although multi-
ple lines may be explicitly indicated by inserting CR/LF’s.

Buttons The button or buttons to be displayed in the message box.

Possible values for the Buttons parameter are:

Button Displayed Value
OK 0
OK/Cancel 1
Abort/Retry/Ignore 2
Yes/No/Cancel 3
Yes/No 4
Retry/Cancel 5

Icon The icon(s) to appear in the message box.

The WINCDEMO Example EXAMPLE DYNAMIC LINK LIBRARIES

C-6 NPL MS-Windows Addendum

Possible values for the Icon parameter are:

Icon Displayed Value
No icon 0
Hand 1
Question Mark 2
Exclamation Point 3
Asterisk 4

Default The default button.

Possible values for the Default parameter are:

Default Value
Button 1 0
Button 2 1
Button 3 2

Result Return code - indicates which button was selected.

For example, to get a box that has yes/no buttons, a hand (STOP sign icon and default to
the NO button, set the parameters as follows:

Buttons 4
Icon 1
Default 1

GOSUB’10000 ("Example message box ", "This is a message box with
Yes/No buttons, a stop sign, with the No button defaulted ", 4,1,1,4)

for the type field in the GOSUB’ call.

EXAMPLE DYNAMIC LINK LIBRARIES The WINCDEMO Example

NPL MS-Windows Addendum C-7

The return value specifies which button was selected as shown below:

Button Selected Return Code Value
OK 1
Cancel 2
Abort 3
Retry 4
Ignore 5
Yes 6
No 7

NOTE: Additional parameters may be used to allow access to other Message Box features
such as the ability to switch to other windows while the message box is displayed.

Text Box Example
The text box example is contained in the program TEXT.OBJ. This contains one call to
the external subroutine which displays the text using fonts other than the normal MS-Win-
dows RunTime screen display font. This call, shown below, calls the external routine that
produces a box with text inside.

GOSUB’10005 MakeTextBox(Title$, Text$, LogFont$, X++, Y++, Child, Bg,
Fg, HandleOut$, Result)

Where the parameters are defined as follows:

Title$ If not blank, this text appears in a box with a border and the standard windows
caption line (and the box is moveable). If blank, no border, or caption is used
and the box is not movable.

Text$ The text to be displayed - it is not necessary to specify where line breaks
should go, the text appears without splitting words across lines, although multi-
ple lines may be explicitly indicated by inserting CR/LF’s.

The WINCDEMO Example EXAMPLE DYNAMIC LINK LIBRARIES

C-8 NPL MS-Windows Addendum

LogFont$ This is a 50-byte string modeled on the Windows structure used to select a
logical text font, as specified below (there is more detail provided in the MS-
Windows SDK documentation). Each "int" field occupies 2 bytes, ordered
high/low (same as BIN(,2)).

The FaceName must have a null byte terminating it.

LF_FACESIZE 32
struct {
STR(,01,2) int lfHeight;
STR(,03,2) int lfWidth;
STR(,05,2) int lfEscapement;
STR(,07,2) int lfOrientation;
STR(,09,2) int lfWeight;

/* Font Weights */
 FW_DONTCARE 0
 FW_THIN 100
 FW_EXTRALIGHT 200

 FW_LIGHT 300
 FW_NORMAL 400

 FW_MEDIUM 500
 FW_SEMIBOLD 600

 FW_BOLD 700
 FW_EXTRABOLD 800

 FW_HEAVY 900
STR(,11,1) BYTE lfItalic;
STR(,12,1) BYTE lfUnderline;

STR(,13,1) BYTE lfStrikeOut;
STR(,14,1) BYTE lfCharSet;

 ANSI_CHARSET 0
 SYMBOL_CHARSET 2
 SHIFTJIS_CHARSET 128
 OEM_CHARSET 255

STR(,15,1) BYTE lfOutPrecision;
 OUT_DEFAULT_PRECIS 0
 OUT_STRING_PRECIS 1
 OUT_CHARACTER_PRECIS 2
 OUT_STROKE_PRECIS 3

STR(,16,1) BYTE lfClipPrecision;
 CLIP_DEFAULT_PRECIS 0
 CLIP_CHARACTER_PRECIS 1
 CLIP_STROKE_PRECIS 2

STR(,17,1) BYTE lfQuality;
 DEFAULT_QUALITY 0
 DRAFT_QUALITY 1

 PROOF_QUALITY 2

STR(,18,1) BYTE lfPitchAndFamily;
/* Pitch defined in low 4 bits of this field */

 DEFAULT_PITCH 0
 FIXED_PITCH 1
 VARIABLE_PITCH 2

EXAMPLE DYNAMIC LINK LIBRARIES The WINCDEMO Example

NPL MS-Windows Addendum C-9

/* Font Families */
 FF_DONTCARE (0<<4)/* Don’t care or don’t know. */
 FF_ROMAN (1<<4) /* Variable stroke width, serifed. */

 /* Times Roman, Century Schoolbook, etc. */
 FF_SWISS (2<<4) /* Variable stroke width, sans-serifed. */

 /* Helvetica, Swiss, etc. */
 FF_MODERN (3<<4) /* Constant stroke width, serifed or sans-serifed. */

 /* Pica, Elite, Courier, etc. */
 FF_SCRIPT (4<4) /* Cursive, etc. */
 FF_DECORATIVE (5<4) /* Old English, etc. */

STR(,19,32) BYTE lfFaceName[LF_FACESIZE];

X The horizontal coordinate of the left edge of the box. After the call,
this variable receives the coordinate of the right edge of the box.

Y The vertical coordinate of the top edge of the box. After the call this
variable receives the coordinate of the bottom edge of the box.

Child If this flag is 0, the box is a "pop-up" (may exceed the boundaries of
the MS-Windows RunTime main window) and the X and Y coordi-
nates are relative to the top left of the whole screen.

If this flag is non-0 the box is a "child" (stays inside the MS-Win-
dows RunTime main window) and the X and Y coordinates are rela-
tive to the top left of the main window. Child boxes move when the
MS-Windows RunTime main window is moved. This includes any
scrolling operations so, in immediate mode, the boxes can "roll off"
the screen.

Bg Background color (MS-Windows RunTime color conventions).

Fg Foreground color (MS-Windows RunTime color conventions) for
text.

HandleOut$ The magic window handle (2 bytes) returned by the function. This
value must be known to remove the window.

Result Success/failure codes. There are many potential failures, but only a 0
means the box actually is displayed.

The following routine removes the previously generated text box.

The WINCDEMO Example EXAMPLE DYNAMIC LINK LIBRARIES

C-10 NPL MS-Windows Addendum

WARNING--No other NPL operation (CLEAR, etc.) will remove the Text Box. Do not
lose the value of the magic handle. Even if the Text Box scrolls off the screen, it must be
killed or MS-Windows can run out of memory (eventually).

GOSUB’10006 KillTextBox(Handle$,Result)

Handle$ The handle value returned from MakeTextBox must be supplied here.

Result Result 0 means success.

C.3.5 Programmer’s Notes

Windows maps the logical font to the closest available installed font, consequently, the
font is not always exactly what is expected. Windows may "blow up" a smaller font to
the requested size, so asking for huge fonts may look nice, but may be totally inappropri-
ate, depending on what fonts are available.

The treatment of X and Y parameters is intended to at least partly simplify the arrange-
ment of text boxes when there are a number of them displayed at once.

There are some items missing from the example program codes like declaring the size of
the box, but as noted before, these programs are not intended as working programs, just
examples. Currently, the size of the box is the largest (horizontally and vertically) that
fits on the screen given the initial X and Y coordinates and the framing environment (full
screen or MS-Windows RunTime window), trimmed to the amount actually used by the
text. The actual windows function used to display the text is the DrawText() function.
This function also has a number of options (like centering lines) that might be of use but
aren’t accessible at this time.

In addition, options to move or modify the size of a window (but not delete it) once it is
created (i.e., move it, change size, change text display options/ fonts, hide/ show it) could
be added to these examples.

EXAMPLE DYNAMIC LINK LIBRARIES The WINCDEMO Example

NPL MS-Windows Addendum C-11

C.4 WINCDIAL Example

This example BESDK library shows non-trivial use of callback functions to implement
Dialog boxes under the windows version.

The WINCDIAL example is automatically installed by the MS-Windows BESDK instal-
lation program INSTALLN. Refer to Section 8.3 for details. The files are placed in the
WINCDIAL directory which is established at the same level as the WINCEXAM direc-
tory.

All code necessary to execute this example is included. This allows the execution of the
example without "making" it. In addition, all source files used by the example are in-
cluded.

To execute the example, start RTIWIN with the /X option specifying:

RTIWIN /X\NPL4\WINCDIAL MYBOOT

Substitute NPL4 with the proper directory location if necessary. Specify the working di-
rectory as the WINCDIAL directory.

WARNING--Do not attempt to STEP through the call to ’DialogBoxParam at line 1800.
This will cause the task to hang. If this occurs, it is necessary to exit Windows and begin
again.

With this example, a sample dialog box (designed using Borland’s Resource Workshop)
is processed which contains a number of types of controls, whose values can be set and
read using the support API. The dialog box is repeatedly shown until the CANCEL but-
ton is pressed/clicked.

The main function provided by the DLL is the function DialogBoxParam(), which allows
access to any predefined dialog box which is currently loaded in a .DLL.

A number of other helper functions are implemented to allow access to relevant API en-
tries under windows needed to load the dialog template, and access the dialog controls.
NPL versions of some of the relevant constants defined in "windows.h" for C programs
are defined in libraries also.

WINCDIAL Example EXAMPLE DYNAMIC LINK LIBRARIES

C-12 NPL MS-Windows Addendum

The normal procedure to access the dialog is illustrated in the mainline routine of MYS-
TART:

1. Define an NPL callback function to handle dialog box messages. The parame-
ters must be the same as defined in the ’DialogFunc() function defined in the
MYMODULE library. It must be a /PUBLIC function.

2. Load the .DLL with the ’LoadLibrary function. The .DLL must be in the cur-
rent directory, or in one of the various places windows looks for .DLL’s.

3. Execute the dialog box with the ’DialogBoxParam function, specifying the
name of the NPL function defined in (1) to handle dialog messages.

4. The return code indicates how the dialog box was completed, in this case the
value should be IDOK or IDCANCEL depending on which button (OK or
CANCEL) caused the dialog to complete.

While the dialog box is popped up, many messages will be sent to the callback routine.
The flow of messages here will be familiar to windows programmers.

All messages normally passed to a C dialog box function are passed back to NPL, except
WM_SETCURSOR. This is screened out only because it is rarely handled differently
from the default, and constitutes a large part of the volume of message traffic.

For example:

A WM_INITDIALOG message allows the dialog to set the initial values of controls.

A WM_COMMAND message is sent when buttons are clicked or various other edit con-
trols are changed. The OK and CANCEL buttons cause the dialog to terminate by issuing
’EndDialog calls. Before terminating due to the OK button, the values of various controls
are obtained and stored in module-visible variables.

A WM_HSCROLL message is sent when a change occurs to a horizontal scroll bar.

A WM_VSCROLL message is sent when a change occurs to a vertical scroll bar.

EXAMPLE DYNAMIC LINK LIBRARIES WINCDIAL Example

NPL MS-Windows Addendum C-13

C.4.1 Notes:

As the need to customize the DLL’s increases, access to more of the MS-Windows APIs
will be required. For example, although you could define a dialog box with ListBox,
ComboBox or UserDraw controls, properly supporting these controls in the dialog proce-
dure would undoubtedly required using Window APIs which are not available with this
example.

As indicated in the comment on line 1800 of the MYSTART program, if you intend to de-
bug the dialog box procedure you MUST change the example so that the dialog box is
NOT a child of the main window. This is accomplished by uncommenting (removing the
semicolon from) the following line:

;hWndParent=NULL

This would normally be done only as a last resort in order to look at a specific message, if
something is going wrong. In particular, STOP or other break-points should be placed so
that only the specific messages of interest are intercepted.

Since making the dialog box not a child of the main window can introduce other prob-
lems related to message interception, the code should be changed back when the problem
has been located and corrected.

The Borland workshop (and others) normally maintains an include file containing identifi-
ers for the various controls. Included in the example is the source and executable of a
small C program (npldefs) which converts this to an NPL source file, which is compiled
into the test diskimage by the make script.

The MYDIALOG.DLL could in principle contain any number of application dialog box
templates, and other applications could use other DLL’s. Each dialog box template re-
quires that an NPL dialog box function be written for it.

The same MYLIB.DLL could be used by all applications, and the same MYMODULE li-
brary module would be used by all applications that use the external.

Conventions for splitting the various NPL programs into application, library and system
library diskimages have not been established - currently everything is just compiled into
the MYMODULE.BS2 diskimage.

WINCDIAL Example EXAMPLE DYNAMIC LINK LIBRARIES

C-14 NPL MS-Windows Addendum

NOTE The current example dialog box is defined as a child of the RTI window. This means
that you may not switch focus using the mouse to "get at" the NPL main window
while the dialog is active. See the above instructions for debugging the dialog box
procedure.

The ’lpParam$’ parameter of DialogBoxParam would normally be used to pass initial val-
ues to the dialog box, and possibly to pass results back, but this is not implemented on the
current cut.

If you are debugging the dialog box procedure, and if NPL is halted inside the NPL Dia-
log function, button clicks and keystrokes on the dialog box are handled using the default
dialog box function - they are not saved in any queue for later processing by the NPL dia-
log function.

C.4.2 Description of Files in the Project

The following files are included with this example:

Source Files
WINCDIAL.TXT Project summary information

MYPROC.C External FUNCTIONS and PROCEDUREs

MYRTPEXT.C RTPEXT function directory code

MAKEFILE NMAKE project make script

TESTDIAL.SRC Symbols from TESTDIAL.DLG

TESTDIAL.DLG Dialog generated by Resource Workshop

MYSTART.SRC Sample program source

WINMISC.SRC Assorted symbols from WINDOWS.H

MYMODULE.SRC Library interface module

MYPROC.H FUNCTION and PROCEDURE interface info

MYICON_1.ICO Binary icon used by test dialog

EXAMPLE DYNAMIC LINK LIBRARIES WINCDIAL Example

NPL MS-Windows Addendum C-15

MYDIALOG.RC Resource script for MYDIALOG.DLL

WINMSG.SRC WM_xx symbols from windows.h

NPLDEFS.EXE Convert .H to .SRC utility program

NPLDEFS.C Convert .H to .SRC utility C source

MYDIALOG.DEF Linker definition for MYDIALOG.DLL

MYLIB.DEF Linker definition for MYLIB.DLL

MYBOOT.OBJ NPL boot program

MYMODULE.BS2 NPL project diskimage, includes:

MYSTART Sample application module
TESTDIAL Control id numbers for TESTDIAL dialog
MYMODULE INCLUDE module required to use MYLIB.DLL
WINMSG INCLUDE module with windows message symbols
WINMISC INCLUDE module with windows miscellaneous symbols

Externally Generated Files
MYDIALOG.RWS Resource workshop project file

Intermediate Files Generated by Project Make
LIBMAIN.C Same as \INCLUDE\WIN\LIBMAIN.C

RTPDEFFN.H Same as \INCLUDE\WIN\RTPDEFFN.H

MYDIALOG.MAP This is the load map generated by LINK when creating the
MYDIALOG.DLL library.

MYLIB.MAP This is the load map generated by LINK when creating the
MYLIB.DLL library.

LIBMAIN.OBJ This is the Microsoft compatible object code generated from
compiling the MYLIB.C module.

WINCDIAL Example EXAMPLE DYNAMIC LINK LIBRARIES

C-16 NPL MS-Windows Addendum

MYPROC.OBJ This is the Microsoft compatible object code generated from
compiling the MYPROC.C module

MYRTPEXT.OBJ This is the Microsoft compatible object code generated from
compiling the MYRTPEXT.C module

RTPPARM.OBJ This is the Microsoft compatible object code generated from
compiling the RTPPARM.C module

MYDIALOG.RES This is an intermediate compiled resource file generated by
RC (the resource compiler)

Product Files Generated by Project Make:
MYLIB.DLL External (/X) DLL needed to access Windows API subset.

Application Files Generated by Project Make
MYDIALOG.DLL Contains dialog templates

EXAMPLE DYNAMIC LINK LIBRARIES WINCDIAL Example

NPL MS-Windows Addendum C-17

APPENDIX D

PERFORMANCE ISSUES

D.1 Overview

The purpose of this Appendix is to provide suggestions on ways to manage performance
when using MS-Windows.

D.2 RTIWIN.INI Options

Several of the options that can be included in the RTIWIN.INI file can be used to manage
performance. Refer to Section 3.4 of this Addendum for details on the use of these op-
tions.

PERFORMANCE ISSUES Overview

NPL MS-Windows Addendum D-1

D.2.1 HaltRequestPeriod

Decreasing the value of this option increases the responsiveness of the NPL RunTime to
the MS-Windows messages.

Increasing the value improves the performance by reducing the amount of time the NPL
RunTime spends checking for MS-Windows messages, but may reduce responsiveness to
operator actions.

This option is also used by the RunTime to determine how often to synchronize the
screen display.

D.2.2 LockWaitTimeout and LockRetryDelay

These options can be used to improve the application’s performance when a $OPEN is
performed on a diskimage that has been opened by another workstation on a Novell Net-
Ware network. Refer to Section 5.2.1 for more information.

D.2.3 ParallelFullDelay and ParallelRetryCount

These options can improve performance (speed up the printer) when using $OPEN to a
local printer port.

D.2.4 ExclusiveWhenNetworkLocksHeld and Byte 43 of $OPTIONS.

These options can be used to control the amount of time tasks wait for files when switch-
ing to another window. Refer to Section 3.4 and Chapter 5 for details.

D.3 386 Enhanced Mode

386 Enhanced Mode is the recommended mode for executing MS-Windows. Use of
standard mode may produce slower performance. 386 Enhanced Mode also allows the
use of Virtual memory (Swap files) when using MS-Windows. Swap Files allows MS-
Windows to use portions of the hard disk to swap out unused memory area when running
an application. Refer to Section 3.2.5 for more information.

386 Enhanced Mode PERFORMANCE ISSUES

D-2 NPL MS-Windows Addendum

D.4 Memory

As a general rule, the more memory in the PC the better the performance of MS-Win-
dows. If several MS-Windows applications are running simultaneously, the increased
memory, if available, provides better performance.

The use of additional RAM provides substantially better performance than the use of Vir-
tual Memory (Swap Files).

PERFORMANCE ISSUES Memory

NPL MS-Windows Addendum D-3

	TABLE OF CONTENTS
	PREFACE
	Prerequisite Knowledge 1-1
	How to Use this Addendum 1-1

	INTRODUCTION
	Overview 1-1
	Contents of MS-Windows Development Package 1-2
	Contents of MS-Windows RunTime Package 1-3
	MS-Windows RunTime Package Files 1-3

	MS-Windows Specific Features 1-4

	INSTALLATION
	Overview 2-1
	MS-Windows and Hardware Requirements 2-2
	NPL Configuration Requirements 2-2
	Files 2-2

	Installing the NPL Development Software 2-3
	Installing the MS-Windows Supplementary Files Diskette 2-3
	Installing the BESDK 2-3
	Installing the Example .DLL Files 2-3
	Installing the Font Source Files 2-4

	Niakwa RunTime Security for MS-Windows 2-4
	NPL MS-Windows Gold Key Security 2-4
	The Gold Key Security TSR 2-4
	User Limit 2-5

	Installing the NPL RunTime Package 2-5
	Installing the Upgrade RunTime Package 2-6

	CONFIGURATION
	Overview 3-1
	Configuring MS-Windows for NPL 3-2
	WIN.INI Parameters 3-2
	DOS SHARE 3-2
	SMARTDrive 3-3
	Installing Niakwa's Fonts 3-3
	Virtual Memory and Swap Files 3-4
	Memory Management 3-4
	MS-Windows Mode of Operation 3-4

	Adding NPL Tasks to the Program Manager 3-4
	Command Line 3-5
	Associated Boot Programs 3-6

	Choosing Icons 3-7

	RTIWIN.INI 3-8
	Setup 3-8
	Organization 3-8
	Editing 3-9
	Parameters 3-9
	AutoSize 3-10
	 BrightBackground 3-10
	Browse 3-11
	BrowseCapNamesFile 3-11
	Caption 3-12
	CommFlushDelay 3-12
	CommInputBufferSize 3-12
	CommOutputBufferSize 3-13
	DllDupDirectory 3-13
	 ExclusiveWhenNetworkLocksHeld 3-14
	ExternalLibrary 3-14
	Follow 3-15
	FontCharSet 3-15
	FontFaceName 3-16
	HaltRequestPeriod 3-16
	IconNumber 3-17
	IconResourceFile 3-18
	LockRetryDelay 3-18
	LockWaitTimeout 3-18
	MouseClickKeys 3-19
	MouseDragNSEWKeys 3-20
	NetworkIniFile 3-20
	NetworkPartitionsFile 3-21
	NiaksecVersion 3-23
	ParallelFullDelay 3-23
	ParallelRetryCount 3-23
	Partition 3-24
	PerimiterIsBackground 3-24
	PrinterConfig 3-25
	ReservedPartitions 3-25
	SFKeys 3-26
	SFKeysCapNamesFile 3-26
	SFKeysStyle 3-27
	ShareWarning 3-27
	StandardColorRGB0 to StandardColorRGB15 3-27
	TerminalIsPartition 3-29
	WarnUnreferencedIni 3-30
	Window 3-30

	Customizing Special Function/Browse Key Names 3-31

	RUNTIME OPERATION
	Overview 4-1
	MS-Windows Modes 4-2
	Starting the RunTime 4-2
	Starting the RunTime from the Program Manager 4-2
	Starting the RunTime from a Command Line 4-3

	Menu Bar Options 4-4
	Interactive Options 4-4
	Browse Keys 4-5
	Special Function Keys 4-6
	Follow 4-7
	Autosize 4-7

	Help Option 4-8

	Minimizing a Runtime Task 4-8
	Resizing or Moving Task Windows 4-9
	RunTime Startup Options 4-9
	/G Option 4-9
	/H Option 4-9
	/K Option 4-9
	/M Option 4-10
	/R Option 4-10
	/U Option 4-10
	/X Option 4-10

	Closing the RunTime Task 4-10
	Using the Standard NPL Runtime 4-11
	Serial Number 4-11
	User Limit 4-11
	Device Sharing 4-12

	DEVICE SUPPORT
	Overview 5-1
	Storage Devices 5-2
	Diskimages 5-2
	$OPEN Under Novell NetWare 5-2
	Exclusive Use of The Windows Resources While a Diskimage is Locked 5-3
	Locked 5-3

	Diskettes 5-4

	On-line Printing 5-5
	Printing to Local Devices 5-5
	Use of $OPEN 5-5

	Printing under Novell NetWare using LPTx Devices 5-5

	Using the MS-Windows Print Manager 5-6
	Printer File Specification 5-6
	DocName 5-8
	Other Options 5-9
	Using the MS-Windows Printer Driver Configuration Box 5-9
	Locking in a Printer Specification 5-9

	Using Control Codes with the MS-Windows Print Spooler 5-9
	Using the MS-Windows Print Manager Under Novell NetWare 5-10

	Serial Ports 5-11
	Sharing Serial Ports 5-11

	Monitor Support 5-11
	Fonts 5-11
	Available Font Files 5-12
	Adding a Font File to MS-Windows 5-12
	True Type Fonts 5-13
	Dynamic Resizing 5-13
	Modifying the Niakwa Fonts 5-14

	132-Column Support 5-14

	Keyboard Characteristics 5-14
	Mouse Support 5-17

	MULTI-USER CAPABILITIES
	Overview 6-1
	Unique Terminal Identification 6-2
	General Principles 6-2
	Creating Unique Network Partition Values 6-3
	Step-By-Step Example 6-7

	Device Sharing 6-11
	Intertask Communications 6-11
	$PSTAT 6-11
	$MSG 6-11

	PLATFORM-SPECIFIC LANGUAGE FEATURES
	Overview 7-1
	Environment-Specific Statements 7-2
	$MACHINE 7-2
	$OPTIONS 7-2
	$PSTAT 7-3
	$MSG 7-3
	$SHELL 7-4
	Release IV Modifications to $SHELL 7-4
	LAUNCH.EXE program 7-4
	Starting Additional RunTime Tasks with $SHELL 7-5

	Background Partition Support 7-5
	Memory Management 7-5

	MIXED LANGUAGE PROGRAMMING
	Overview 8-1
	Differences from MS-DOS/SuperDOS Releases 8-3
	Choosing the Development Environment 8-3
	Security 8-4
	Upgrades 8-4

	Contents of the MS-Windows BESDK 8-4
	Installation of the MS-Windows BESDK 8-10
	MS-Windows Support 8-11
	Environments 8-11
	Differences in the Flow Control Due to DLL Use 8-11
	Exported Symbols and Reserved Names 8-12
	Debugging MS-Windows Applications 8-12
	Adapting MS-DOS Code for the MS-Windows Environment 8-12

	Loading the External Libraries 8-13
	Microsoft C under MS-WINDOWS 8-15
	General 8-16
	Mainline 8-16
	Calling Conventions for BESDK Subroutines 8-17
	Test RTP Subroutines 8-17
	RTPEXT Subroutine 8-17
	GOSUB' Subroutines 8-17

	Linkage of Test Program 8-17
	Linkage of Customized DLL 8-18

	Microsoft MASM Macro Assembler 8-18
	General 8-19
	Mainline 8-19
	Calling Conventions for BESDK Subroutines 8-20
	Test RTP Subroutines 8-20
	RTPEXT Subroutine 8-20
	GOSUB' Subroutines 8-20

	Linkage of Test Program 8-21
	Linkage of Customized DLL 8-21

	Shared Data Segments in DLL'S 8-22
	Custom Resources in a DLL 8-23
	Subclassing the Main NPL Window in a DLL 8-24
	Flow Control for External Subroutines 8-25
	Callbacks to NPL under MS-Windows 8-30

	COMMON PROBLEMS
	Overview A-1
	Problems A-1
	Problem 1: A-1
	Problem 2: A-2
	Problem 3: A-2
	Problem 4: A-2
	Problem 5: A-3
	Problem 6: A-3

	MODIFYING NPL FONTS
	Overview B-1
	Installation B-2
	Files B-2
	Modifying Existing Fonts B-3
	Creating New Fonts B-3

	EXAMPLE DYNAMIC LINK LIBRARIES
	Overview C-1
	Installation C-2
	The WINCDEMO Example C-2
	Implementation Notes C-2
	Example DLL Files C-3
	Starting the Example Programs C-4
	The DLL Examples C-5
	Clipboard Example C-5
	Dialog Box Example C-5
	Message Example C-6
	Text Box Example C-8

	Programmer's Notes C-11

	WINCDIAL Example C-12
	Notes: C-14
	Description of Files in the Project C-15
	Source Files C-15
	Externally Generated Files C-16
	Intermediate Files Generated by Project Make C-16
	Product Files Generated by Project Make: C-17
	Application Files Generated by Project Make C-17

	PERFORMANCE ISSUES
	Overview D-1
	RTIWIN.INI Options D-1
	HaltRequestPeriod D-2
	LockWaitTimeout and LockRetryDelay D-2
	ParallelFullDelay and ParallelRetryCount D-2
	ExclusiveWhenNetworkLocksHeld and Byte 43 of $OPTIONS. D-2

	386 Enhanced Mode D-2
	Memory D-3

