
2nd Edition - April 1997

COPYRIGHT © 1995-97 Niakwa, Inc.

23600 N. Milwaukee Avenue
Vernon Hills, IL 60061
U.S.A.

PHONE: (847) 634-8700
FAX: (847) 634-8718
E-MAIL: sales@niakwa.com or support@niakwa.com

VISUAL NPL DEVELOPER’S GUIDE

Version 2.0

DISCLAIMER OF WARRANTIES AND LIMITATION OF
LIABILITIES AND PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa) has taken due care in preparing this manual. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution License
Agreement and Warranty or any other Niakwa License Agreement (collectively, the
“License Agreements”) by which this software package was acquired.

This manual is to serve as a guide for use with the Niakwa-authored suite of NPL products
only, and not as a source of representations or additional undertakings by Niakwa. The
licensee must refer to the License Agreements for Niakwa product and service
representations.

No ownership of Niakwa software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa, is prohibited.

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without prior written permission from Niakwa,
Inc.

Niakwa, Niakwa Data Manager (NDM), Niakwa Programming Language (NPL), and
Visual NPL (VNPL, Vinny) are trademarks of Niakwa, Inc.

All other trademarks are the property of their respective holders.

i

Contents

DOCUMENTATION CONVENTIONS . viii

1. INTRODUCTION
1.1 What is Visual NPL?. 2
1.2 System Requirements. 3

1.2.1 Developer Knowledge. 3
1.2.2 Hardware. 3
1.2.3 Software. 3

1.3 Installation. 4
1.4 File List. 5
1.5 What’s New in Version 2.0?. 7
1.6 Moving from Version 1.0 to 2.0. 8

2. VISUAL BASIC FUNDAMENTALS
2.1 About Objects. 12

2.1.1 Windows Objects. 12
2.1.2 VB Objects. 13
2.1.3 Properties. 14
2.1.4 Methods. 15
2.1.5 Events. 15
2.1.6 Naming Objects. 15

2.2 Understanding and Working with Projects. 16
2.2.1 Files That Make Up a Project. 16
2.2.2 And There Were Many Windows. 18
2.2.3 Useful Configuration Options. 19
2.2.4 Creating Forms, Modules, and Classes. 24
2.2.5 Creating Procedures, Functions, and Properties. 25
2.2.6 Using Third-Party Controls. 26

ii Contents

2.2.7 Making an EXE File. 26
2.2.8 Running and Debugging Your Program. 27

2.3 Designing Forms. 28
2.3.1 Selecting Objects with the Mouse. 28
2.3.2 Setting Form and Control Properties. 29
2.3.3 Adding and Deleting Form Controls. 30
2.3.4 Form Control Arrays. 32
2.3.5 Setting the Tab Order. 33
2.3.6 Creating Menus. 33

2.4 Editing Code. 35

3. VISUAL NPL FUNDAMENTALS
3.1 How It All Works. 40

3.1.1 NPL Diskimage. 41
3.1.2 VB Modules and Linkage Form. 42
3.1.3 Building the Connection. 43
3.1.4 Multiple Connections. 44

3.2 Event-Driven Programming. 45
3.2.1 Mainline Program. 45
3.2.2 Handling a Form. 46

3.3 Using Objects. 47
3.3.1 Object Names. 47
3.3.2 Object References. 49
3.3.3 Registering Your Forms. 49
3.3.4 System Objects. 50

3.4 Accessing VB from NPL. 50
3.4.1 Setting and Getting Properties. 51
3.4.2 Calling Methods. 52
3.4.3 Getting Collections. 52
3.4.4 Special Commands. 53
3.4.5 Developer-Defined Commands. 54

3.5 Calling NPL Procedures from VB. 55
3.6 Responding to Events. 56
3.7 Error Conditions. 57
3.8 Other Routines. 58

3.8.1 Controlling the NPL Window. 58
3.8.2 Message Boxes. 59

Contents iii

3.8.3 Input Boxes. 60
3.8.4 Closing a Form. 61
3.8.5 Error Handling. 62
3.8.6 Manipulating Colors. 63
3.8.7 Font Translation. 64
3.8.8 Detecting the NPL External Library. 65
3.8.9 Miscellaneous Routines. 65

3.9 Recovery If NPL or VB Stop. 66
3.9.1 Recovery If NPL Stops. 66
3.9.2 Recovery If NPL Stops in a VB-Called Procedure. 67
3.9.3 Recovery If VB Stops. 67

4. CHANGE LIST PROGRAMMING
4.1 What Is Change-List Programming?. 70
4.2 Invoking Change-List Processing. 71
4.3 Accessing the Change-list from NPL. 72

4.3.1 Change-List Array. 73
4.3.2 Hot Control. 73
4.3.3 Manually Accessing the Change-list. 74

4.4 Adding to the Change-list from VB. 75
4.4.1 Recording Changes. 75
4.4.2 Creating Hot Controls. 77
4.4.3 Menu Commands. 77
4.4.4 Closing a Form. 78
4.4.5 Keyboard Handling. 79

4.5 Record-Based Forms. 80
4.5.1 Setting and Getting Records. 80
4.5.2 Mapping Fields to Controls. 82

4.6 Creating Controls On The Fly. 82
4.6.1 Row and Column Mapping. 82
4.6.2 Printing to a Form. 83
4.6.3 Base Controls. 84
4.6.4 Registering Control Names. 85
4.6.5 Creating Controls. 85
4.6.6 Destroying Controls. 86

iv Contents

5. DEMO PROGRAMS
5.1 Hello (Change-List). 88
5.2 Hello (Event-Driven). 88
5.3 Demos. 88

5.3.1 Change-List Programs. 90
5.3.2 Event-Driven Programs. 91
5.3.3 Common Dialogs. 92
5.3.4 Boxes. 93

6. DISTRIBUTING VISUAL NPL PROGRAMS
6.1 Installation Considerations. 96
6.2 Using the Setup Wizard. 96
6.3 Distributing Visual NPL Without a Setup Program. 97
6.4 Registering OCXs. 98
6.5 Required Support Files. 98

7. NPL REFERENCE
7.1 Constants. 102

7.1.1 VnSys (VNPL.NPL Device Number). 102
7.1.2 VnDelim$ (Parameter Delimiter). 102
7.1.3 VnStrRefSize (Min. /POINTER String Parameter Size). 102
7.1.4 Maximum Number of Controls and Properties. 103
7.1.5 Key Translation Strings. 103
7.1.6 Error Handling Flags and Error Codes. 103
7.1.7 Message Box and Input Box Flags. 105
7.1.8 Window Show Modes. 106
7.1.9 Color Constants. 106
7.1.10 Standard Property Values. 107
7.1.11 Common Dialog Flags. 108

7.2 Records. 110
7.3 Variables. 111
7.4 Subroutines. 113

7.4.1 'VnAddItems. 115
7.4.2 'VnAt$. 116
7.4.3 'VnCenter. 117
7.4.4 'VnClearChgList. 118
7.4.5 'VnClose. 119

Contents v

7.4.6 'VnCloseAll. 120
7.4.7 'VnCmd. 121
7.4.8 'VnConvNum$. 125
7.4.9 'VnCreateCtrls. 126
7.4.10 'VnDestroyCtrl. 128
7.4.11 'VnDetect. 129
7.4.12 'VnErrFunc. 130
7.4.13 'VnErrNum. 131
7.4.14 'VnFreeObj. 132
7.4.15 'VnGetAlf$. 133
7.4.16 'VnGetAppNum. 134
7.4.17 'VnGetChgList. 135
7.4.18 'VnGetCollectionList. 136
7.4.19 'VnGetColor. 137
7.4.20 'VnGetFormCtrlList. 139
7.4.21 'VnGetLoadedFormList. 141
7.4.22 'VnGetNplWndPos. 142
7.4.23 'VnGetNplWndSize. 143
7.4.24 'VnGetNplWndShow. 144
7.4.25 'VnGetNplWndTitle$. 145
7.4.26 'VnGetNum. 146
7.4.27 'VnGetObj$. 147
7.4.28 'VnGetPrinterList. 148
7.4.29 'VnGetPropInfoList. 149
7.4.30 'VnGetRec$. 151
7.4.31 'VnGetRecSubset. 152
7.4.32 'VnGetTran$. 153
7.4.33 'VnGetVbError. 154
7.4.34 'VnGetVer$. 155
7.4.35 'VnInpBox$. 156
7.4.36 'VnInputScreen. 157
7.4.37 'VnIsObj$. 159
7.4.38 'VnMethod. 161
7.4.39 'VnMsgBox. 162
7.4.40 'VnObj$. 164
7.4.41 'VnObj3$. 165
7.4.42 'VnOpen. 166

vi Contents

7.4.43 'VnPrintAt. 167
7.4.44 'VnPrintBox. 168
7.4.45 'VnPrintCtrl. 169
7.4.46 'VnPrintTo. 171
7.4.47 'VnSetAlf. 172
7.4.48 'VnSetAppNum. 173
7.4.49 'VnSetNplWndPos. 174
7.4.50 'VnSetNplWndShow. 175
7.4.51 'VnSetNplWndSize. 176
7.4.52 'VnSetNplWndTitle. 177
7.4.53 'VnSetNum. 178
7.4.54 'VnSetObj. 179
7.4.55 'VnSetRec. 180
7.4.56 'VnSetRGB. 181
7.4.57 'VnSetRowsCols. 182
7.4.58 'VnSetSysColor. 183
7.4.59 'VnSetTran. 184
7.4.60 'VnSleep. 185
7.4.61 'VnWakeup. 186

8. VB REFERENCE
8.1 Constants. 188

8.1.1 Version Number. 188
8.1.2 Error Codes. 188

8.2 Subroutines. 189
8.2.1 Main . 190
8.2.2 VnCallProc. 191
8.2.3 VnCenter. 193
8.2.4 VnChg. 194
8.2.5 VnChk. 195
8.2.6 VnClose. 196
8.2.7 VnCtrlType. 197
8.2.8 VnDevDef. 198
8.2.9 VnErrMsg. 200
8.2.10 VnHot. 201
8.2.11 VnKey. 202
8.2.12 VnKeyPress. 203

Contents vii

8.2.13 VnKill. 204
8.2.14 VnMenuClk. 205
8.2.15 VnSetCtrl. 206
8.2.16 VnSetObj. 207
8.2.17 VnWakeup. 208

INDEX . 209

viii

Documentation Conventions
This manual uses the following typographic conventions to describe NPL code and
constructs:

Example of NPL Conventions Description

“VnplDev” Names of NPL modules (programs) are
enclosed within quotations in this font.

'VnClose, 'VnCmd Names of NPL functions and procedures appear
in this font, preceded by an apostrophe.

_VnSys, VnPrint$ Names of NPL constants and variables appear
in this font.

PROCEDURE 'NextRecord/PUBLIC
 ;NPL
 ;
END PROCEDURE 'NextRecord

Code examples written in NPL appear in this
font. When in proximity to VB code, the NPL
code will contain an embedded ;NPL as an
explanatory REMark statement.

These typographic conventions describe Visual Basic code and constructs:

Example of VB Conventions Description

Main, VnDevDef, VnSetCtrl Names of VB methods, events, functions and
procedures appear in bold.

MyProject, Form1, VnplLink, VnplUtil Programmatic names (not filenames, titles, or
captions) of VB objects appear in bold and
italics.

BackColor, Tag, Visible, Clipboard, Printer,
Screen

Names of VB properties and system objects
appear with initial letter(s) capitalized.

File, Edit, Tools, Next, Previous,
OK, Cancel

Text titles and captions of VB menu choices,
tab choices, buttons, check boxes and other
objects appear in italics.

Private Sub NextBtn_Click() Code examples written in VB appear in this

Documentation Conventions ix

 Rem VB
 VnCallProc "NextRecord"
End Sub

font with Rem VB embedded within the code
as an explanatory Remark statement.

These other typographic conventions also appear in the manual:

Example of Other Conventions Description

BOOT.OBJ, DEMOS.NPL,
SETUP.EXE, .DLL

Filenames of native Windows or DOS files
(including NPL diskimage filenames), filename
extensions, paths and DOS command lines
appear in this bold font.

F5, TAB, DEL Names of keys and key sequences appear in
small capital letters.

Properties, methods, events In text, italic letters indicate defined terms,
usually the first time they occur in the book.
Italics also are used occasionally for emphasis.

RETURN Text you’re instructed to type in appears in this
font.

Other syntactical conventions for the NPL language appear as described in the Introduction
to NPL Technical Reference Guide, Statements Guide.

1

C H A P T E R 1

This chapter gives a general introduction to Visual NPL. It includes the following:

• A description of Visual NPL

• System requirements for Visual NPL

• Instructions for installing Visual NPL

• A listing of the directories and files created by the installation program

• A discussion of what’s new in version 2.0

• Instructions for upgrading from version 1.0 to version 2.0.

Introduction

2 Visual NPL Developers Guide

1.1 What is Visual NPL?
Visual NPL is a development tool that provides a flexible, interactive
link between Niakwa Programming Language (NPL) applications and
Microsoft Visual Basic (VB) applications. It has been designed so that
developers can use existing NPL code as a logic engine and use Visual
Basic forms as a user interface engine to create state-of-the-art Windows
programs.

Visual Basic is a graphical user interface design tool that works by
creating forms that are controlled by code written in the Visual Basic for
Applications (VBA) language. Visual NPL creates a link between NPL
and VB so that NPL code can be used to control the VB forms. This
allows the NPL developer to add a fully functional Windows user
interface to proven NPL code to perform the underlying logic functions
of a program.

As a benefit, Visual NPL developers can use any of the controls
available in the third-party OLE control (OCX) marketplace. These
controls do everything from drawing dice to providing full spreadsheet
or word-processing capabilities. There are even controls that provide
access to the many facets of the Internet.

Visual NPL applications consist of the following parts:

• A VB program consisting of several forms and a small amount of VBA code to
transfer control to the NPL program

• The VB form, VBA code, and OCX that facilitate communications with the NPL
program

• An NPL program that performs the underlying logic functions of the application
and controls the VB forms

• An NPL external, dynamic-link library (DLL) and disk image that facilitate
communications with the VB program.

The code required on the VB side is remarkably simple and requires very
little knowledge of the VBA language. However, in order to create
professional Windows programs, it is necessary to become fairly
knowledgeable about the Visual Basic form-design tools. Fortunately,
this feature of Visual Basic is easy to learn and understand.

 Visual NPL Developers Guide 3

1.2 System Requirements
This section discusses what you need in order to use Visual NPL.

1.2.1 Developer Knowledge
It is assumed throughout this manual that the developer has a good
understanding of Microsoft Windows. In order to develop polished user
interfaces in Windows, it is necessary to be familiar with many of the features
available in this environment. It is not, however, necessary to know anything
about Windows programming in the traditional sense. The Visual Basic
environment hides the many complexities of native Windows programming and
presents a greatly simplified forms-based approach.

It is also assumed that the developer has a good understanding of the NPL
Release IV features. Visual NPL makes heavy use of modules, long variable
names, functions and procedures, structured programming techniques, and
nearly every other Release IV feature.

1.2.2 Hardware
Although there are no specific hardware requirements for using Visual NPL
over and above those of NPL and VB, you may want to add or change your
existing hardware to achieve the best results in the Visual NPL environment.
For example, you may want to upgrade your video monitor for doing form
design. This is a screen-intensive activity; therefore, the bigger the monitor, the
better. In addition, although 15- inch monitors are adequate, 17- inch monitors
really make the Visual Basic environment shine. Furthermore, a fast video
adapter can make a significant difference, even surpassing performance gains
derived from a processor upgrade, for doing highly graphical work.

1.2.3 Software
To develop applications in Visual NPL, you need the following:

• MS Windows version 3.1 or later (Windows 95 recommended)

• NPL for MS-Windows Release 4.2 or later

• Microsoft Visual Basic version 4.0 (the 16-bit version of any edition)

4 Visual NPL Developers Guide

You must use the 16-bit version of Visual Basic. All editions of Visual Basic 4.0
(Standard, Professional, and Enterprise) come with both the 16-bit and 32-bit versions.
When installing Visual Basic, make sure to select the 16-bit version when you are prompted
to choose between the two.

1.3 Installation
To install Visual NPL from the distribution diskette on your hard disk
drive, run the SETUP.EXE program on the diskette. This program does
the following:

• Prompt you for the drive and directory into which to copy the Visual NPL files

• Decompress the files and copy them to the specified directory

• In Windows 3.1, create a new program group (or in Windows 95, a new folder) named
“Visual NPL 2.0”

• Register the OCX used by Visual NPL within Visual Basic

• Create icons for the README.TXT file and the demo programs

If you have the 32-bit and the 16-bit versions of Visual Basic installed, you
may have to modify the file name associated with the icon for the demo programs. This is
because SETUP.EXE associates a file name with the icon as follows:

DEMOS.VBP

This is appropriate for most installations because VB registers itself as the handler for files
with the .VBP extension (that is, VB project files). Therefore, when the user double-clicks
an icon, Windows looks in the registry to determine which program to use to open the
corresponding file. Unfortunately, if the 32-bit version of Visual Basic is installed, that
version may be registered as the handler for VBP files. In this case, the projects will fail to
open properly unless you change the command line for the icon so that it includes the full
path of the 16-bit VB executable, as follows:

C:\VB\VB.EXE DEMOS.VBP

Note

Important

 Visual NPL Developers Guide 5

1.4 File List
Visual NPL consists of this Guide and one disk with a compressed setup
program and files. Running SETUP decompresses the files into:
Destination Directory

File Name Description

README.TXT Last-minute information not available as of this printing

VNPL.NPL Main Visual NPL disk image

VNPLCHAR.FRM VB form used for creating controls-on-the-fly

VNPLCHAR.FRX Graphics file used in VNPLCHAR.FRM
VNPLDEV.BAS Developer-modifiable VB code

VNPLLINK.FRM VB form for communicating with NPL

VNPLUTIL.BAS Main VB routines and constants

Subdirectory HELLO_E

File Name Description

BOOT.OBJ NPL boot program

HELLO.EXE Compiled program

HELLO.FRM Main VB form

HELLO.FRX Graphics file used in HELLO.FRM
HELLO.NPL NPL demo program code

HELLO.VBP VB project file

VNPLDEV.BAS Developer-modifiable VB code

Subdirectory HELLO_C

File Name Description

BOOT.OBJ NPL boot program

HELLO.EXE Compiled program

HELLO.FRM Main VB form

HELLO.FRX Graphics file used in HELLO.FRM
HELLO.NPL NPL demo program code

HELLO.VBP VB project file

VNPLDEV.BAS Developer-modifiable VB code

6 Visual NPL Developers Guide

Subdirectory DEMOS

File Name Description

BOOT.OBJ NPL boot program

COLORS.FRM Form used in the “Colors” demo

COLORS.FRX Graphics used in COLORS.FRM
COMBOX.FRM Form used in the “Combo Box” demo

COMBOX.FRX Graphics used in COMBOX.FRM
CTRLVAL.FRM Form used in the “Validation - Control” demo

CTRLVAL.FRX Graphics used in CTRLVAL.FRM
CUSTDB.FRM Form used in the “Database Access” demo

CUSTDB.FRX Graphics used in CUSTDB.FRM
CUSTDB.LDB Database used in the “Database Access” demo

CUSTDB.MDB Database used in the “Database Access” demo

CUSTREC.FRM Form used in the “Customer Record I/O” demo

CUSTREC.FRX Graphics file used in CUSTREC.FRM
DEMOS.EXE Compiled program

DEMOS.NPL NPL code for all demos

DEMOS.VBP VB project file

GRID.FRM Form used in the “Unbound Data Grid” demo

GRID.FRX Graphics used in GRID.FRM
IMGVIEW.FRM Form used in the “Image Viewer” demo

IMGVIEW.FRX Graphics file used in IMGVIEW.FRM
INSPECT.FRM Form used in the “Objects - Inspect” demo

INSPECT.FRX Graphics file used in INSPECT.FRM
KEYVAL.FRM Form used in the “Validation - Keystroke” demo

KEYVAL.FRX Graphics file used in KEYVAL.FRM
MAINFORM.FRM Main VB form, Common Dialog, and Boxes demos

MAINFORM.FRX Graphics used in MAINFORM.FRM
POSTVAL.FRM Form used in the “Validation - Post” demo

POSTVAL.FRX Graphics used in POSTVAL.FRM
PROGRESS.FRM Form used in the “Progress” demo

PROGRESS.FRX Graphics used in PROGRESS.FRM
PRTSETUP.FRM Form used in the “Printer - Setup” demo

PRTSETUP.FRX Graphics used in PRTSETUP.FRM

 Visual NPL Developers Guide 7

REALVAL.FRM Form used in the “Validation - Real-Time” demo

REALVAL.FRX Graphics used in REALVAL.FRM
SETPROPS.FRM Form used in the “Objects - Set Properties” demo

SETPROPS.FRX Graphics used in SETPROPS.FRM
SWOOSH.BMP Niakwa logo as a bitmap

SWOOSH.ICO Niakwa logo as an icon

VNPLDEV.BAS Developer-modifiable VB code

\Windows\System Directory of the Destination Drive

File Name Description

VNPL16.DLL NPL external library
VNCON16.OCX VB connection control
VNPL.LIC License file for VNCON16.OCX
CTL3DV2.DLL 3–D look and feel support
MFC250.DLL Microsoft Foundation Classes
MFCO250.DLL Microsoft Foundation Classes for OLE
TDBGS16.OCX Updated VB data bound grid control
GRDKRN16.DLL Support DLL for TDBGS16.OCX
REGSVR.EXE Program for registering OCXs

1.5 What’s New in Version 2.0?
Visual NPL 2.0 contains many new features as well as several enhancements to
the features found in version 1.0. The following are the most significant new
features:

• Event-driven programming is completely supported.

• Any method of any object can now be called from NPL.

• NPL procedures can now be called from VB.

• VB object variables can now be accessed and treated as variables in NPL.

• Support is provided for Visual Basic 4.0 and OLE.

• Font translation for foreign languages is provided.

8 Visual NPL Developers Guide

The following are the most significant enhancements:

• Improved performance on the most commonly used operations

• Full property access, such that any type of property (not just numbers and strings) can
now be retrieved or set from NPL

• Increased ability to create user-defined VB commands

• Revised controls-on-the-fly code that is faster, more flexible, and more stable

• Expanded demo programs that provide better coverage of the new and existing features

• A simplified file structure that combines many files into one

1.6 Moving from Version 1.0 to 2.0
Upgrading from version 1.0 to version 2.0 involves several steps that must be
performed in a specific order. Start by making a back-up copy of all files. Then
you need to make changes to your VB and NPL programs as described in the
following procedures.

⇔⇔ To upgrade your VB program

1. Open the existing project with the 16-bit version of VB 4.0.

2. Select Yes if asked to update any custom controls.

3. Select Ok For All when prompted to save files in VB 4.0 format.

4. Select Don’t Add when prompted about the DAO library.

5. Remove the VnplLink form from your project.

6. Remove the VnplUtil module from your project.

7. Remove VNPLCTRL.VBX from your project.

8. Add Vnpl Connection Control to your project.

9. Add the new VnplLink form to your project.

10. Add the new VnplUtil module to your project.

11. Copy the new VNPLDEV.BAS file to your project directory and add it to your project
to create the VnplDev module.

12. Copy any changes you made to the Main procedure in the VNPLMAIN module to the
Main procedure in the VnplDev module.

13. Copy any changes you made to the VnSetForm function in the VNPLMAIN module to
the VnSetObj function in the VnplDev module (note the additional and changed
parameters).

 Visual NPL Developers Guide 9

14. Copy any changes you made to the VnSetCtrl function in the VNPLMAIN module to the
VnSetCtrl function in the VnplDev module (note the additional and changed
parameters).

15. Copy any changes you made to the VnDevDef function in the VNPLMAIN module to the
VnDevDef function in the VnplDev module (note the additional and changed
parameters).

16. Remove the VNPLMAIN module from your project.

17. Delete the VNPLMAIN.BAS file in your project directory.

18. Save your project.

⇔⇔ To upgrade your NPL program

1. Change the boot program so that the device table specifies the new VNPL.NPL
diskimage.

2. Copy the "VnplDev" module from the VNPL.NPL diskimage to your main
diskimage under the name "VnplDev2" .

3. Copy any changes you made to the "VnplDev" , "VnplErr" , and "VnplCtrl"
modules to the "VnplDev2" module.

4. Delete the "VnplDev" , "VnplErr" , and "VnplCtrl" modules.

5. Rename the "VnplDev2" module to "VnplDev" .

10 Visual NPL Developers Guide

(this page blank)

 Visual NPL Developers Guide 11

C H A P T E R 2

This chapter is an introduction to the Visual Basic programming environment.
It covers the following:

• An introduction to Visual Basic and to object-based development

• A discussion about creating and using Visual Basic projects

• A description of how to create and use forms and controls

• Information about various Visual Basic language issues

Visual Basic Fundamentals

12 Visual NPL Developers Guide

2.1 About Objects
In simplest terms, an object is a piece of data and the code that manipulates the
data. By combining these two programming elements into a single entity,
objects give developers a powerful toolset to use in building applications.
Visual NPL bridges the gap between the procedural world of traditional NPL
programming and that of Windows objects available through VB. These are
characteristics of objects:

• New objects can be created and destroyed dynamically.

• Implementation details of an object are hidden from programs using the object.

• Access to an object’s data is through functions provided by the object’s code.

• Permanent objects have functions to store and retrieve their data.

• Graphical objects have functions to draw the object and control its user interface.

An object is defined by the organization of its pieces—that is, of its code and
data. Obviously, for this approach to work, there must be a standard that
explains how to access and use objects in general. Without this standard, all
you have is a some code that manipulates a data structure using a proprietary
interface. The evolution of object standards is described in the next section.

2.1.1 Windows Objects
The mechanism used to create objects in Windows is the dynamic-link library
(DLL). A DLL is the same as an EXE except that there is no “main” function.
Instead, there is a group of functions (a library) that can be called from any
program. Programs load the library when they need to use it, and unload it
when done (called dynamic linking).

Unfortunately, there is no way to tell what’s in a DLL. This is where VBXs
(VB controls) come in. A VBX is a DLL that conforms to the standard set by
the original VB development environment, which specifies a set of data
structures used to describe an object and a set of functions used to get that data.
All VBXs must contain these functions. Furthermore, the standard organizes
objects so that they consist of a set of properties (the object’s data), methods
(the operations that can be performed on the data), and events (notifications
sent from the object to VB).

There were three problems with the VBX standard:

• It wasn’t an open standard because it depended on Visual Basic.

• It wasn’t portable to the 32-bit environment.

• It was limited and needed to have additional functionality.

 Visual NPL Developers Guide 13

In light of these limitations, Microsoft created the OCX (or OLE control)
standard. This is an open, 16-bit and 32-bit standard based on Microsoft OLE.
In fact, OLE was given new functionality in order to support the approach
based on properties, methods, and events used in the VBX standard. The OCX
standard has since been enhanced to accommodate the Internet and has been
renamed to ActiveX.

An advantage of this approach is that it provides programmatic access to any
OCXs resident on your computer, including those embedded in other
applications, such as Microsoft Word or Netscape Navigator.

2.1.2 VB Objects
Visual Basic version 3.0 and earlier versions supported the VBX standard. VB
4.0 supports both VBXs and 16-bit OCXs in its 16-bit version and only 32-bit
OCXs in its 32-bit version. In all cases, the programming interface is the same.

A VB program displays a set of forms as its windows. The items on these
forms are called controls. Both forms and controls are objects. VB provides the
following built-in objects (not in OCXs):

• Forms

• Standard Windows controls (buttons, text fields, labels, etc.)

• List controls (lists, drop-down lists, and grid controls)

• Graphics display (images and pictures)

• Disk-access controls (drive, directory, and file lists)

• 3-D effects (lines and panels)

• Database-access controls

• Windows common dialog-box controls (for file opening, font selection, printer setup, and
so on)

• Communications (serial port) control

14 Visual NPL Developers Guide

In addition, Visual Basic provides the following system objects:

There are also several third-party OCXs, some provided with VB and others
available from the companies that developed them..

2.1.3 Properties
Each object has a set of properties that are the data items of the object. VB
allows access to all of the properties provided by each object, although the
objects may restrict access to certain properties themselves. VB also provides a
set of standard properties associated with each object, including the name of the
object and its size and position if it is a graphical object. Examples of common
properties are:

BackColor MousePointer

Caption Name

DataField TabIndex

DataSource Tag

DragIcon Text

Enabled Top

Font Visible

ForeColor WhatsThisHelpID

Height Width

Left

App Application

Clipboard Clipboard

Err Last general error

Error Last data access error

Forms List of currently loaded forms

Printer Current printer

Printers List of available printers

Screen Screen

 Visual NPL Developers Guide 15

Most properties are set while designing the form and are used to indicate the
initial and running state of the object. For example, the Name property can
only be set while designing the form because it is read-only at run time. The
position and color properties are seldom changed at run time, while the Enabled
and Visible properties are commonly used to restrict user access to the control.

2.1.4 Methods
Each object has a set of methods; these are the functions that can be called to
perform the operations that are allowed with the object. For example, a control
that manages and presents a list of items would have an AddItem method to
insert or append a new item. It would also have a Clear method to empty the
list and render the display blank.

2.1.5 Events
Each object has a set of events; these are the notification messages that the
object sends to its container (in this case, VB) when something happens with the
object. VB provides these events as empty functions that you fill in if you want
to respond to the notification. For example, a button control would have a
Click event, which Visual Basic would present as an empty Click function that
is called whenever the user presses the button by means of the mouse or
keyboard. This function can even be called from VB code, just as a method
would be called.

2.1.6 Naming Objects
Object names consist of several parts separated by periods. For example, to
refer to a form, give the name of the form as follows:

MainForm

To refer to a control on the form, you would use the name of the form followed
by the name of the control as in the following example:

MainForm.CancelButton

To refer to a property of a form or control, you would use one of the preceding
statements, followed by the property name, such as:

MainForm.Name
MainForm.CancelButton.Name

16 Visual NPL Developers Guide

2.2 Understanding and Working with Projects
A VB project is the collection of files that make up your application. Visual
NPL applications tie NPL programs to VB projects. When working with
Visual Basic, you always have an open project, even when you first start up
VB. The default project is named Project1 and it has one blank form named
Form1.

2.2.1 Files That Make Up a Project
The main project file is a standard text file with an extension of .VBP. This
file contains the basic project configuration information for your application,
such as:

• The name of the project

• A list of the form and code files in the project

• A list of OCXs used by the project

• The name of the executable file produced when the project is compiled

• The size and position of the main VB window

• Miscellaneous configuration settings

Forms
There are two files used to represent a form. The main one has an extension of
.FRM and the second, which is optional, has an extension of .FRX. The .FRM
file is a text file containing:

• The values of any form properties that have been changed from the default values

• A list of the controls on the form

• For each control, the values of any properties that have been changed from the default
values

• The source code for the events to which the form responds

• The source code for the subroutines contained within the form

The .FRX file stores graphics associated with the form, such as:

• The form’s icon when minimized

• Any images appearing on the form

• Any other graphics used by the form

 Visual NPL Developers Guide 17

Both files are produced automatically whenever you create and change forms.
There should be no need to edit these files manually.
Modules
Modules are source code files with an extension of .BAS. These are text files
that contain the following:

• Variable declarations

• Constant declarations

• Type declarations

• Functions and procedures

Modules are very similar to the individual modules within an NPL diskimage.
As with NPL modules, you can declare things to be public (visible to the rest of
your program) or private (can only be used within the module). However,
unlike NPL, in Visual Basic you don’t INCLUDE modules in other modules.
Anything declared as public in one module is automatically usable in any other
module. Furthermore, all VB modules are loaded into memory when your
program starts running; there is no concept of overlays or dynamic loading of
individual modules.
Classes
Classes are source code files with an extension of .CLS. These are text files
that contain the definitions of any custom objects that you create within your
application. The code for a class defines the properties and methods of the
class. When a class has been defined, you can create and use objects of this
type anywhere else in your program, just as you would use any of the standard
objects available in VB. Your Visual NPL projects probably won’t contain any
classes, since there is no need for them.

18 Visual NPL Developers Guide

2.2.2 And There Were Many Windows
When you open Visual Basic for the first time, you will probably be amazed by
the sheer number of windows that appear. Although it looks confusing, it is
really quite simple. The following figure shows some samples of the windows
that may be displayed.

Figure 2.1 Visual Basic Windows

There are seven different types of windows that can appear:

• The main VB window appears across the top of the screen. It contains the main menu
and optionally a toolbar of shortcut icons.

• The project window contains the list of files in the project. This is where you access the
forms and code of your project.

• The toolbox window contains icons for each control that can be added to a form.

• The properties window allows you to edit the properties of whatever form or control is
currently selected (highlighted using the mouse).

• Multiple form windows are the graphical representations of the windows that appear in
your application.

 Visual NPL Developers Guide 19

• Multiple code windows contain the code for your modules and classes.

• The debug window lets you look at data values while your program is running.

Because Visual Basic doesn’t use a main window that contains all of the other
windows, these windows can appear anywhere on your screen. All windows
can be closed at any time and can be shown again using the View menu.

2.2.3 Useful Configuration Options
To change the configuration options of your VB environment and the current
project, use the Options selection under the Tools menu. This presents you
with the following option groups:

Environment General options applicable to the VB environment

Project Options specific to the current project

Editor Options specific to the editing of code

Advanced Miscellaneous advanced options specific to the current project

20 Visual NPL Developers Guide

The following figure shows the Environment properties of the Options dialog
box.

Figure 2.2 Environment Options

The most frequently-used environment options allow you to do the following:

• Specify the grid used to align controls on a form. The default is to have both the Show
Grid and Align Controls to Grid check boxes selected and the Width and Height both set
to 120.

• Specify whether or not VB should save the project before running it. The safest option is
to select Save Before Run, Prompt, which prompts you before running the project if any
of the project files have been changed but have not been saved.

• Make sure that the Require Variable Declaration check box is selected so that no
unforeseen assumptions are made about variable types within your code.

 Visual NPL Developers Guide 21

The following figure shows the Project properties of the Options dialog box.

Figure 2.3 Project Options

The most important project options are the following:

• Project Name; this box should be changed to a unique project name,

• Startup Form; this box specifies the form at which your project will start executing. For
Visual NPL programs, this should be set to Sub Main.

22 Visual NPL Developers Guide

The following figure shows Editor properties of the Options dialog box.

Figure 2.4 Editor Options

Set the Editor options according to your personal preferences when editing
code; you can change the following settings:

• The font used to show the code

• The color of specific syntax items so that you can highlight various language elements

• The width of a tab stop (the default is 4)

• The manner in which you view the code in a module, either as one long file or as a group
of individual procedures and functions

The advanced options are set to default values; these should not be changed.
For more information on these options, refer to the Visual Basic documentation.

2.2.4 Creating Forms, Modules, and Classes
To create a new form, module or class, use the appropriate menu command
under the Insert menu. Notice that there are two types of forms listed on this
menu, Form and MDI Form. An MDI (multiple document interface) form is
the main window for an application with many subwindows, all of which are

 Visual NPL Developers Guide 23

contained within the main window. For example, most word processors are
MDI applications, where the main window has all the menus and toolbars and
each open file is a simple subwindow within this main window.

The following figure shows a sample project window.

Figure 2.5 Project Window

Regardless of which menu command you choose, a new file will be added to the
project window and given a default name. Every file has two names: the disk-
based file name (on the left) and the name used to refer to the file within your
VB program (on the right). The first thing you should do is change both names
to something meaningful. To change the file name, right-click the new entry
and select the Save File As command. Fill in the new file name (without an
extension) and click the OK button. To change the internal name, double-click
the new entry in the Project window. In the Properties window, scroll down to
the Name property and set it to what you want. That’s it—you’ve got a new
file and now you can do some real work with it!

24 Visual NPL Developers Guide

2.2.5 Creating Procedures, Functions, and Properties
To create a new procedure, you must have a code editing window open and it
must be selected. When this is done, you can select the Procedure command
from the Insert menu. This presents you with a window where you can specify:

• The name of the new item

• Whether the item is a procedure, a function, or a property

• Whether the item is private to the file it is in or is publicly available to all files

The following figure shows an example of the Insert Procedure window.

Figure 2.6 Insert Procedure Window

When you click the OK button, the appropriate code is created in the current
file and the cursor is positioned within the new subroutine. You can then add
any parameters you want and fill in the code.

 Visual NPL Developers Guide 25

2.2.6 Using Third-Party Controls
To use a third-party control (OCX) you must first add the control to your
project. You do this using the Custom Controls command under the Tools
menu. Visual Basic presents you with a list of all of the controls available on
your system. Each control has a check box beside it, indicating whether or not
the control is included in the current project.

The following figure is an example of the Custom Controls dialog box.

Figure 2.7 Custom Controls Window

To indicate the functionality you want, select the check boxes you want to add
and clear the check boxes that you don’t want. When you click the OK button,
the toolbox window is redrawn to include an icon for each control now in the
project. As a safeguard, VB doesn't let you clear any control that is currently
being used on one of your forms.

26 Visual NPL Developers Guide

2.2.7 Making an EXE File
To compile your project into an .EXE file, use the Make EXE command on the
File menu.

Figure 2.8 Make EXE Window

With this window you can set the name of the executable file. By pressing the
Options button, you set the icon used by the application when minimized and
the version information stored in the .EXE.

 Visual NPL Developers Guide 27

The following figure is an example of the EXE Options dialog box.

Figure 2.9 EXE Options Window

When you click the OK button in the first window, VB compiles your program
and produces the .EXE file. If you try to overwrite an existing .EXE file, you
will be warned and given the chance to stop the process before any damage is
done. It is not necessary to create an .EXE file in order to test your VB
application. You can then run the program from within the development
environment at any time.

2.2.8 Running and Debugging Your Program
To run a program, use the Start command under the Run menu. This compiles
the program, saves it to the disk (depending on your Options settings), and runs
the program. To pause the program while it is running, use the Break command
under the Run menu. To continue a paused program, use the Continue
command under the Run menu. To stop a program completely, use the End
command under the Run menu.

You can also run, pause, and continue a program by pressing the F5 key. If the
program is not running, then pressing F5 starts or continues it. If the program
is running, then pressing F5 pauses it. While a program is paused, you can use
the Debug window to examine or change your program’s variables.

To set a breakpoint in your program, at the line where you want the program to
break, press F9. To remove the breakpoint, press F9 again. You can only do
this before running a program or when the program is paused. When a

28 Visual NPL Developers Guide

breakpoint is in place, a running program will pause whenever it is about to
execute that line.

2.3 Designing Forms
Designing a form is the process of graphically creating and modifying
everything to do with the appearance of the form. This process involves the
following:
• Modifying the form’s appearance

• Creating controls and modifying their appearance

• Creating a menu for the form

2.3.1 Selecting Objects with the Mouse
To modify the properties for an object, you must first select the object with the
mouse. To select a particular control, click the mouse anywhere on the control.
Notice that the control is marked with small black squares at its corners and
halfway along each side.

The following two-part figure shows examples of what is displayed when a
control is selected.

Figure 2.10 Control Selection

 Visual NPL Developers Guide 29

To select more than one control, press and hold down the CTRL key and click
the mouse on each control that you want to select. Each control becomes
marked with small gray squares at its corners and halfway along each side.

You can also click the form background and drag the mouse around the controls
you want to select. To select the form itself, click the mouse anywhere on the
background of the form. Any controls that were selected will become cease to
be selected and all of the small black or gray marks will disappear.

The following figure shows an example of what is displayed when a form is
selected.

Figure 2.11 Form Selection

30 Visual NPL Developers Guide

Each time a new object is selected, the Properties window is redrawn with the
properties of the new object. If there is more than one object selected, the
Properties window is redrawn with the properties that are common to all of the
selected objects.

2.3.2 Setting Form and Control Properties
The property window contains a drop-down list of the form and control names
at the top of the window. This list shows the name of the currently selected
object; it shows no name if there is more than one object selected. You can use
this list to select the form or a single control. The properties list is redrawn
with the properties of the selected object.

Figure 2.12 Properties Window

Below the list of form and control names is the list of properties for the
currently selected object. The left side of the list gives the property name and
the right side gives the property’s value. To set a particular property, scroll
down the list and click the value that you want to change. If it’s an editable
field, depending on the type of property, you may be able to update the value in
place using one of the following methods:

• Enter a text value.

• Select an item from a drop-down list.

• Present a window to select or edit the item.

 Visual NPL Developers Guide 31

Although there are hundreds of form and control properties that can be changed,
almost all of them default to reasonable values. Most of the time, you will only
need to change two or three properties for each object.

2.3.3 Adding and Deleting Form Controls
To add a new control, double-click the control’s icon in the Toolbox window.
This creates the new control with a default size in the middle of the form. To
manually define the initial size and position of the control, click the icon in the
Toolbox window and then draw the control on the form. Do this by clicking the
form’s background and dragging the mouse to draw a rectangle where you want
the control to appear. Release the mouse button to cause the control to be
created. When a new control is created, it is given default values for all of its
properties and it is selected as the current control. The Properties window is
updated accordingly.

The following figure shows an example of how to add controls to a form.

Figure 2.13 Adding and Deleting Controls

To delete a control, do one of the following:

• Select the control and press the DEL key.

• With the control selected, select the Delete command in the Edit menu.

• Right-click the control and select the Delete item from the menu that appears.

32 Visual NPL Developers Guide

When you delete a control, Visual Basic does not delete the code that you have
created for the events of the control. You must delete this code manually using
the code-editing window.

 Visual NPL Developers Guide 33

2.3.4 Form Control Arrays
Typically, every control on a form has a unique name. However, sometimes it
is desirable to group several controls together for ease of programming. For
example, when using a series of check boxes or option buttons that all apply to
the same thing, it is easier to use a loop to go through an array than to test for
some condition on a whole group of unique names.

The following two-part figure shows examples of how to define control arrays.

Figure 2.14 Control Arrays

To create a control array, choose the first of the controls that you want to be
grouped. Set its Name property to the name of the array and set its Index
property to 0. If the control is not already a member of an array, then its Index
property is blank. Now change the other control’s Name properties to the name
of the array. Visual Basic automatically chooses the next Index value in the
array for each control, so make sure to define the values in the order that you
want them to appear in the array. Whenever you refer to one of these controls,
you have to specify the index number as an array index following the control
name, as in the following:

Toppings(2).Value

34 Visual NPL Developers Guide

Consider the following information when working with control arrays:

• All of the controls in the array must be of the same type.

• The index numbers can start at any number you want.

• The index numbers don’t have to be consecutive.

• All events for the array are passed an Index as the first parameter to identify which
control is triggering the event (that is, the controls in the array share the same event
code).

 Visual NPL Developers Guide 35

2.3.5 Setting the Tab Order
One of the most important things to do when creating a form is to set the tab
order for the controls. This is the order in which the controls will be traversed
when the user presses the TAB key. To set the tab order for your controls, set
the TabIndex property for each control. When the TAB key is pressed, the
cursor moves among the controls in ascending order by the TabIndex property.
This should be one of the last things that you do with a form, because controls
often get moved around quite a bit before the final form design is determined
and you may waste time and effort if you try to set the tab order before the
design is complete.

2.3.6 Creating Menus
To create a menu for a form, select the Menu Editor command on the Tools
menu. This will bring up the menu editor window.

Figure 2.15 Menu Editor Window

36 Visual NPL Developers Guide

When you are creating a menu, you are creating several control arrays, one for
each group of items at the same level on the same menu. The Name and Index
fields in the Menu Editor window are the same as the Name and Index
properties in the Properties window. To edit the menu, do the following:

• Use the Insert button to add a new menu command above the
currently selected item.

• Use the Delete button to remove the currently selected item.

• Use the arrow buttons to move the items around within the menu
and to change the nesting level of menu commands.

• Use the Enabled and Visible check boxes to control access to the
menu commands.

• Use the Checked check box to put check marks beside menu
commands.

• Use the WindowList check box with an MDI form for the top-level
menu that holds the list of open windows.

• Use the Shortcut drop-down list to select shortcut keystrokes for
menu commands.

• Set the caption to a hyphen (-) when you want to create a separator
bar on a menu.

• Select the underlined letter in each menu command by putting an
ampersand (&) in front of it.

2.4 Editing Code
To open the code-editing window for a module or a class, double-click the
appropriate line in the Project window. To open the code-editing window for a
form, do one of the following:

• Double-click the appropriate line in the Project window, and then double-click the form
background or one of the controls.

• Click the appropriate line in the Project window, and then click the View Code button in
the Project window.

The Code Editor window contains two drop-down lists at the top of the
window, one for selecting the object being edited (the Object list) and one for
selecting the procedure within the object (the Proc list). The rest of the window
is devoted to the actual code editor.

 Visual NPL Developers Guide 37

The following figure shows an example of the Code Editor dialog box.

Figure 2.16 Code Editor Window

When editing modules:

• The Object list only contains an entry named (General).

• The Proc list for the (General) object contains (declarations) and the names of all of the
procedures in the module.

When editing classes:

• The Object list contains one entry named (General) and one entry named Class.

• The Proc list for the (General) object contains (declarations) and the names of all of the
local procedures in the class.

• The Proc list for the Class object contains the Initialize and Terminate methods, the
names of any methods created by the developer, and the names of any property
procedures created by the developer.

When editing forms:

• The Object list contains one entry named (General), one named Form, and the names of
each control (including menus) on the form.

38 Visual NPL Developers Guide

• The Proc list for the (General) object contains (declarations) and the names of all of the
local procedures in the form.

• The Proc list for forms and controls contains the names of all of the events for the object.

When you first create a new form or control, there is no code for any of the
events. To add code for a particular event:

• Select the appropriate item from the Object list and then click the event name in the Proc
list.

• If the event doesn’t exist, it will be created and the cursor will be positioned within it.

• If the event already exists, the cursor will be moved to the start of the event procedure.

The view in the editor portion of the window will depend on the settings of the
Full Module View and Procedure Separator check boxes in the Editor tab of
the Options window. If Full Module View is not checked, then you will only
see the code for procedure that is currently selected in the Proc list. If it is
checked, then all of the procedures in all of the objects will appear as one long
file. In this case, if Procedure Separator is checked, then there will be a
separator line between each procedure.

 Visual NPL Developers Guide 39

C H A P T E R 3

This chapter is an introduction to Visual NPL programming. It discusses:

• The overall structure of Visual NPL and how it works

• Event-driven programming

• Accessing VB objects, properties, and methods from NPL

• Handling events by calling NPL functions from VB

• Managing the NPL run-time’s main window

• Miscellaneous programming details

Visual NPL Fundamentals

40 Visual NPL Developers Guide

3.1 How It All Works
The following figure shows the interactions of various programming elements in
Visual NPL.

Your VB Program

VnplLink Form

VNCON16.OCX

Figure 3-1 Visual NPL Structure

Visual NPL works by creating a link between an NPL program and a VB
program. This communications link is created by using an NPL external
library (VNPL16.DLL) and a VB control (VNCON16.OCX) to send messages
back and forth between the two environments.

In NPL, access to the link is provided by a set of subroutines in modules
"Vnpl" and "VnplDev" in diskimage VNPL.NPL. In VB, access to the
link is provided by subroutines in modules VnplUtil and VnplDev in files
named VNPLUTIL.BAS and VNPLDEV.BAS, respectively. Also, there is a
VB form named VnplLink in the file named VNPLLINK.FRM, which is where
the connection control actually exists.

 Visual NPL Developers Guide 41

3.1.1 NPL Diskimage
The "Vnpl" and "VnplDev" modules are in the VNPL.NPL diskimage.
The "Vnpl" module is a protected module that contains most of the interface
provided by Visual NPL. The "VnplDev" module contains only the
constants, variables and routines that you are allowed to change, which include:

• Device number of the diskimage containing "Vnpl"
• Delimiter used to separate a list of parameters

• Minimum size of a /POINTER string parameter passed from VB to NPL

• Maximum number of forms or controls that can be returned in a list

• Constants to convert NPL screen positions to VB window positions

• Error-handling routines and textual error messages

• Textual color names

• Keyboard translation strings

⇔⇔ To use Visual NPL from an NPL program

Set the device number (_VnSys)of the diskimage containing "Vnpl" . Then,
every NPL module that uses Visual NPL should begin with the following two
INCLUDE statements:

INCLUDE T "VnplDev"
INCLUDE T#_VnSys,"Vnpl"

For purposes of these statements, "VnplDev" must be in Device #0 and
"Vnpl" can be in any device. Typically, you will copy the "VnplDev"
module from VNPL.NPL into your main diskimage, which should be Device
#0. Then you will set the _VnSys constant to the device number of the entry
that contains the path for VNPL.NPL. The advantages of this approach are:

• You only need one copy of VNPL.NPL on your computer, making it easier to update to
future versions of Visual NPL.

• You can make project-specific changes to "VnplDev" without affecting the original
"VnplDev" .

• The VNPL.NPL diskimage can be moved to a different device number by changing the
value of _VnSys in "VnplDev" .

3.1.2 VB Modules and Linkage Form
The VB VnplUtil and VnplDev modules are in files named VNPLUTIL.BAS
and VNPLDEV.BAS, respectively and the VnplLink form is in the file named

42 Visual NPL Developers Guide

VNPLLINK.FRM. The VnplLink form contains a connection control that is
used by the routines in VnplUtil and VnplDev. The VnplUtil module contains
most of the interface provided by Visual NPL.

The VnplUtil module should not be changed, although Visual Basic will allow you
to do so.

The VnplDev module contains only the constants and routines that you are
allowed to change. This includes the following:

• Delimiter used to separate a list of parameters

• Constants to convert NPL screen positions to VB window positions

• Function used to register your forms

• Function used to register your controls created “on the fly”

• Function used to add commands to the NPL 'VnCmd function

• Visual Basic Main procedure

⇔⇔ To use Visual NPL from a VB project

1. Enable the Visual NPL control by selecting the Custom Controls command under the
Tools menu and selecting the Vnpl Connection Control check box.

2. Add the VnplLink form to your project.

3. Add the VnplUtil and VnplDev modules to your project.

4. Set up the VB project so that it starts at the Main procedure in VnplDev.

If you are adding Visual NPL to an existing VB project that already has a Main
procedure, merge the two into one. Make sure to put the code in VnplDev at
the very start of the new Main procedure.

Note

 Visual NPL Developers Guide 43

3.1.3 Building the Connection
To build the connection between NPL and VB, each program must call a
routine to initialize communications. In the VB program this code is in the
Main procedure in VnplDev. As shown in the following sample, the code calls
the Init method of the VnCon control on the VnplLink form. The method is
passed the name of the VB executable file, which is used as a key when trying
to establish communications with NPL:

VnplLink.VnCon.Init(App.EXEName)

After this has been passed, the connection control is waiting for connection by
an NPL program that can detect the base name of the executable file (the file
name without the full path and without the .EXE file-name extension). To
complete the link from the NPL program, you must call the NPL 'VnOpen
procedure with the base name as follows:

'VnOpen(" BASENAME")

This procedure looks for a connection control with the specified base name that
is waiting for a connection. If it can’t find one, it looks for the executable file
on the standard Windows search path and runs it. It then looks again for the
connection control. If it still can’t find it, or if it couldn’t find or run the
executable, the procedure generates a Visual NPL error. Otherwise, the
connection is made and your program continues.

This approach allows you to run your Visual NPL program using either the VB
development environment or the executable file produced by VB. To run the
program with the development environment, you must run the VB program
first, and then run the NPL program. To run the program with the VB
executable, you only need to run the NPL program.

When your program is finished, it must close the connection that it built. This
is done by calling the 'VnClose procedure from your NPL program as
follows:

'VnClose

This tells the VB program to end and close the connection. You don’t have to
do anything in VB.

3.1.4 Multiple Connections
Although there generally isn’t much need to do so, it is possible for a single
NPL program to connect to up to 32 VB programs. Each time you successfully
call 'VnOpen , it creates a unique VB application number identifying the new
connection. The 'VnOpen routine also sets an internal variable to this
number, which is then used by all subsequent calls to the Visual NPL routines
rather than having to pass it as a parameter every time. This number is referred
to as the current application number. This makes it easy to connect to a single

44 Visual NPL Developers Guide

VB application because you don’t have to do anything with application
numbers at all.

On the other hand, connecting to more than one VB program requires some
additional steps:

• Retrieve the current application number after each call to 'VnOpen and record it
somewhere for later use.

• Make sure that the current application number is set correctly for every call to a Visual
NPL routine.

• Close all connections when done.

⇔⇔ To obtain the current application number

• Call the 'VnGetAppNum function immediately after calling 'VnOpen as follows:

'VnOpen(" BASENAME")
AppNum='VnGetAppNum

⇔⇔ To set the current application number

• Call the 'VnSetAppNum procedure before each group of calls to the same VB
program as follows:

'VnSetAppNum(AppNum)

⇔⇔ To close all open connections

• Call the 'VnCloseAll procedure when your program is shutting down as follows:

'VnCloseAll

 Visual NPL Developers Guide 45

3.2 Event-Driven Programming
VB is an event-driven progamming environment. This means that all
processing is done in response to a user action, such as selecting a menu
command, typing a character, or clicking a button (called events). Every time
an event occurs, Visual Basic calls a predefined procedure (for which you fill in
the code). For most events you will handle, just call an NPL PROCEDURE
using VB procedure VnCallProc as follows:

Private Sub NextButton_ Click()
 Rem VB
 VnCallProc "GotoNextRecord"
End Sub

PROCEDURE 'GotoNextRecord/PUBLIC
 ;NPL
END PROCEDURE 'GotoNextRecord

3.2.1 Mainline Program
The mainline of a Visual NPL program is usually very simple and includes:

• Initialize your application.

• Open the connection with VB.

• Start up the main form and wait for it to close.

• Close the connection with VB.

• Terminate your application.

In its simplest form, an NPL example would contain the following:

;open the link to the VB app
'VnOpen ("BASENAME")
;
;hide the run-time window
'VnSetNplWndShow(_VnHide)
;
;load, process and unload the main form
'DoMainForm
;
;Close the link to the VB app
'VnClose
;
;Optionally show the run-time window again

46 Visual NPL Developers Guide

'VnSetNplWndShow(_VnShow)
;
$END

where 'DoMainForm is a procedure that handles the creation, processing, and
shutdown of the main form in your application. There is nothing special about
this procedure; it’s just the mainline of a form.

3.2.2 Handling a Form
Each form in your program should have a form handler, a procedure that
serves as the form’s mainline. It displays the form and puts NPL into a
suspended state. Eventually some event, such as clicking a Close button,
causes the mainline to wake up. It then closes the form:

PROCEDURE 'DoMainForm
;NPL
;
;Show the form modelessly
'VnMethod("MainForm.Show"," ")
;
;Wait for 'VnWakeup to be called
'VnSleep
;
;Unload the form
'VnCmd("MainForm","Unload"," ")
;
END PROCEDURE 'DoMainForm

The only VB event procedure that has to be filled in is for the Click event of the
Close button:

Private Sub CloseButton_ Click()
 Rem VB
 VnCallProc "VnWakeup "
End Sub

The 'VnWakeup procedure causes the 'VnSleep call in the mainline to
return. In other words, it wakes up the mainline, which then continues
executing normally.

When calling 'VnSleep , there must always be a call to 'VnWakeup to
cause it to return.
Warning

 Visual NPL Developers Guide 47

3.3 Using Objects
Most Visual NPL programming is centered around manipulating VB objects,
such as forms and controls. There are two different ways in which objects can
be accessed:

• By specifying the full name of the object in all calls that use the object

• By getting a reference to the object, using the reference in all calls that use the object,
and then releasing the reference when done.

Internally, each time you refer to an object by name, the name is resolved into
an object reference. This means that using object references is going to be
faster than using object names. However, in many cases, you only need to use a
particular object in one or two statements in a procedure. In this case, the
overhead of getting and freeing the object reference will negate the speed
advantage. In general, only use object references for objects that you will be
working with extensively.

3.3.1 Object Names
Object names consist of several parts separated by periods. For example, to
refer to a form you would simply give the name of the form:

MainForm

To refer to a control on the form, you would use the name of the form followed
by the name of the control:

MainForm.CancelButton

To refer to a property of a form or control, you would use one of the preceding
followed by the property name:

MainForm.Name
MainForm.CancelButton.Name

48 Visual NPL Developers Guide

These names are just strings in the NPL program. For example, the following
code will print the names of the main form and the Cancel button:

DIM Name$100
;NPL
;
PRINT 'VnGetAlf$("MainForm.Name")
;
Name$="MainForm.CancelButton.Name"
PRINT 'VnGetAlf$(Name$)

It will sometimes be necessary to build an object name from individual parts
that are stored in separate variables. For example, you could pass the name of
an object to a procedure that prints the name of the object. In this case you
would have to append .Name to the form name. The 'VnObj$ function can
be used for exactly this purpose. It accepts two parameters and returns the
combined values separated by a period.

PROCEDURE 'PrintObjName(/POINTER ObjName$)
;NPL
;
PRINT 'VnGetAlf$('VnObj$(ObjName$,"Name"))
;
END PROCEDURE 'PrintObjName

 Visual NPL Developers Guide 49

3.3.2 Object References
Object references are created by calling the 'VnGetObj$ function with the
name of an object. The function returns a string containing the reference to the
object. This reference is a value (a pointer in C programming) with a prefix
and suffix that are used to differentiate the reference from an actual object
name. The reference will be _VnObjLen characters long.

DIM Obj$_VnObjLen
;NPL
;
Obj$='VnGetObj$("MainForm")
;
PRINT 'VnGetAlf$('VnObj$(Obj$,"Name"))
;
'VnFreeObj(Obj$)

It is imperative that for each call to 'VnGetObj$, there is a corresponding
call to 'VnFreeObj . This releases the internal Windows resources used to
create references. Without this call, your program will be creating a Windows
memory leak, which will eventually cause the system to stop.

With object references, it almost always necessary to call 'VnObj$ as in the
preceding section, because most functions expect an object followed by a
property or method name.

3.3.3 Registering Your Forms
Internally, Visual NPL resolves all object names into object references. In
order to do this it needs to know about the forms that you have created in your
VB program. Unfortunately, VB doesn’t provide this information, so you must
specify it. For each form that you create, you must add a Case to the
Select statement in the VnSetObj function in the VnplDev module in your
VB program. The text of the Case should be the name of the form and the
single line of code for the Case should set the Obj parameter to the form
itself:

Case "MainForm"
Set Obj = MainForm

This allows the form to be used in the NPL program, for example:

PRINT 'VnGetAlf$("MainForm.Caption")

50 Visual NPL Developers Guide

3.3.4 System Objects
Along with the forms that you create, there are several system objects that are
available to your NPL program.

Table 3-1 System Objects

These objects can be used anywhere that any other object can be used, for
example:

PRINT 'VnGetAlf$("App.EXEName")
PRINT 'VnGetNum("Printer.Copies")

3.4 Accessing VB from NPL
Visual NPL gives you complete control over the objects in your Visual Basic
program. You can access properties, call methods, retrieve collections, perform
specialized commands, and even create your own commands.

System Object Description

App Application

Clipboard Clipboard

Err Last general error

Error Last data access error

Forms Currently loaded forms

Printer Current printer

Printers List of available printers

Screen Screen

 Visual NPL Developers Guide 51

3.4.1 Setting and Getting Properties
The most fundamental thing you’ll want to do from NPL is to set and get the
various properties of an object. There are several types of properties, all of
which can be set with one of these procedures:

These procedures all take two parameters: the first is the property to be set and
the second is the value to which the property should be set. For example:

'VnSetAlf("MainForm.Caption","Title")
'VnSetNum("MainForm.Visible",_True)
'VnSetObj("MainForm.CheckBox.Container","MainForm")

Corresponding to the Set procedures are the three Get functions:

These functions all take one parameter, the property to get. For example:

PRINT 'VnGetAlf$("MainForm.Caption")
PRINT 'VnGetNum("MainForm.Visible")
HEXPRINT 'VnGetObj$("MainForm")

In order to use these functions you must know the type of the property that you
want to access. Even so, the Set procedures will try to convert their parameter
into the appropriate type for the property. Similarly, the Get functions will try
to convert the property value into the type that they return. For example,
'VnGetAlf$ will convert a numeric property into a string and return the
string version of the number.

'VnSetAlf Sets a property value from a string

'VnSetNum Sets a property value from a number

'VnSetObj Sets a property value to an object

'VnGetAlf$ Gets a property value as a string

'VnGetNum Gets a property value as a number

'VnGetObj$ Gets a property value as an object reference

52 Visual NPL Developers Guide

3.4.2 Calling Methods
In addition to accessing properties, you will often need to call an object’s
methods in order to perform object-specific operations. The 'VnMethod
procedure takes two parameters, the method to be called and a string containing
the parameters to be passed to the method. The individual parameters are
separated by the global delimiter character _VnDelim$, the default for which
is the “pipe” symbol (|).

'VnMethod("MainForm.ListBox.AddItem","Item")
'VnMethod("MainFormListBox.Clear"," ")
'VnMethod("MainForm.Move","100|100")

Each parameter will be converted to the appropriate type before being passed to
the method.

3.4.3 Getting Collections
A collection is a VB object that contains an array of other VB objects. There
are several collections that you may want to use while working with VB
programs and Visual NPL provides procedures for accessing the most common
information in these collections:

Table 3-2 Available Collections

In all cases, the procedures return the collection information in two global
variables:

• A numeric indicating the number of elements in the collection

• A string array with the information for each object in the collection

Procedure Collection

'VnGetFormCtrlList Controls on a form

'VnGetLoadedFormList Currently loaded forms

'VnGetPrinterList Available printers

'VnGetPropInfoList Properties of an object

 Visual NPL Developers Guide 53

For example:
DIM I
;
'VnGetLoadedFormList
;
PRINT "Loaded forms:"
FOR I=1 TO VnNumLoadedForms
 PRINT VnLoadedForm$(I) .LoadedFormName$;" ";
 PRINT VnLoadedForm$(I) .LoadedFormCaption$;" ";
 PRINT VnLoadedForm$(I) .LoadedFormVisible$
NEXT I

In addition to these collection specific procedures, the
'VnGetCollectionList procedure will get the value of a specific
property for all elements of any collection. For example:

DIM I
;
'VnGetCollectionList("Forms","Name")
;
PRINT "Names of loaded forms:"
FOR I=1 TO VnNumMembers
 PRINT VnMember$(I) .CollectionProp$
NEXT I

For more information on the collection procedures and the names of
corresponding global variables, see each procedure’s reference section.

3.4.4 Special Commands
There are several special commands that can be called by means of the
'VnCmd procedure:

Table 3-3 Special Commands

The 'VnCmd procedure is a general purpose command execution engine. The
first parameter is an object, the second is a command to be performed on the
object, and the third is an optional list of parameters to be passed to the
command. The individual parameters are separated by the global delimiter

Command Description

Clear Form Deletes controls created at run time

Load Loads a form into memory

Load Picture Loads a graphics file

Set Props Sets multiple properties at once

Unload Unloads a loaded form

54 Visual NPL Developers Guide

character _VnDelim$, the default for which is the “pipe” symbol (|). For
example:

'VnCmd("MyForm","Load"," ")
'VnCmd("MyForm","Unload"," ")
'VnCmd("MyForm","Clear Form"," ")
'VnCmd("MyForm","Set Props","Top=100|Left=100")
'VnCmd("MyForm.Icon","Load Picture","SWOOSH.ICO")

The Load command loads a form into memory without showing it and the
Unload command closes a form and removes it from memory. These
commands are equivalent to the VB Load and Unload statements. The Clear
Form command is used when generating screens “on the fly.” It unloads all the
control array members, except the base control (index number 0), from a
particular form.

The Set Props command sets the values of one or more of an object’s
properties. The parameter list consists of property “name=value” pairs. Each
property is set to the corresponding value.

The Load Picture command loads a graphics file into a Picture, Icon, or
DragIcon property. The third parameter is the name of the graphics file, which
is loaded using the VB LoadPicture function.

3.4.5 Developer-Defined Commands
If 'VnCmd doesn’t recognize the command passed in the second parameter, it
passes control on to the VnDevDef function in the VB VnplDev module. This
function is your gateway to implementing your own special-purpose commands.

To add a command, add a Case to the Select statement in the VnDevDef
function.

Rem VB
' my "ErrBox" command
Case "ErrBox"
 ObjValue = MsgBox(ObjValue, vbCritical, "Error")

This command could be called from an NPL program as follows:

'VnCmd(" ","ErrBox","Hello Vinny!")

 Visual NPL Developers Guide 55

3.5 Calling NPL Procedures from VB
It is possible to call almost any PUBLIC NPL procedure from VB. The only
limitation is that you can’t use arrays as parameters to the NPL procedure. The
VB VnCallProc function takes one or more parameters, the first of which is the
name of the NPL procedure to be called. Any other parameters are passed on
to the NPL procedure as its parameters. You must pass the correct number of
parameters or the call will fail.

The following example shows how you would call a very poor random number
generator from VB, it also shows a very poor use of this number:

Rem VB
VnCallProc "Random", Num
VnCallProc "Purge", Num, "START"

PROCEDURE 'Random(/POINTER Num)/PUBLIC
;NPL
;
Num=MOD(Num*1234567,20)
;
END PROCEDURE 'Random
;
PROCEDURE 'Purge(DeviceNum,FileName$8)/PUBLIC
;
SCRATCH T#DeviceNum ,FileName$
DELETE T#DeviceNum ,FileName$
;
END PROCEDURE 'Purge

56 Visual NPL Developers Guide

3.6 Responding to Events
The most common place from which to call an NPL procedure is an event
procedure. In fact, this is how you handle events in Visual NPL. For each
event that you want to handle you do two things:

• Create a PUBLIC procedure in NPL

• Call the NPL procedure from the VB event procedure

For example, to handle a Delete button you might call an NPL procedure
named DoDelete from VB in the following manner:

Private Sub Delete_ Click()
 Rem VB
 VnCallProc "DoDelete"
End Sub

PROCEDURE 'DoDelete/PUBLIC
 ;NPL
 ;
 DIM Answer
 ;
 Answer= 'VnMsgBox("Delete The Thing",
 "Are you sure? ",
 _VnMbYesNo+_VnMbIconQuestion)
 IF Answer=_VnIdYes
 ; delete the thing here
 END IF
 ;
END PROCEDURE 'DoDelete

 Visual NPL Developers Guide 57

3.7 Error Conditions
There are several special concerns regarding calling NPL procedures from VB
as follows:

1. You can only call procedures.

2. The NPL procedure must exist and be declared as PUBLIC .

3. The number of parameters passed must match the number of parameters expected by the
NPL procedure.

4. It must be possible to convert the parameters passed into the data types expected by the
procedure.

5. NPL must be executing a call to the 'VnSleep procedure or to the 'VnCmd
procedure with the Show, Show Modeless, Set Focus , or Resume
command.

For items 2 and 5 above, VnCallProc returns an error code. This makes it
possible to handle the rare situations in which it’s acceptable that an NPL
procedure doesn’t exist or isn’t callable. All other conditions are viewed as
developer errors and a message box will be displayed with the appropriate error
message.

As with any program, an NPL procedure called from VB may cause an error
and then stop running. This leaves you in immediate mode in NPL with no way
to finish executing the NPL procedure, which means that the call to
VnCallProc cannot complete and return to VB. However, because you are in
immediate mode, this is easy to fix: type RETURN. This causes the procedure to
return immediately to VB.

58 Visual NPL Developers Guide

3.8 Other Routines
This section describes miscellaneous Visual NPL routines.

3.8.1 Controlling the NPL Window
There are four aspects of the NPL run-time window (that is, the main window
created when you execute the NPL run time) that you can control.

Table 3-4 summarizes these and the NPL procedures that allow you to set and
get their values.

Table 3-4 NPL Window Operations

In many cases, you will hide the NPL run-time window at the start of your
program and never show it again:

'VnSetNplWndShow (_VnHide)

This will make the window invisible, although it is still accessible. In other
words, even though the window can’t be seen you can still change its position,
size, and title. When you want the window to become visible again, call
'VnSetNplWndShow again:

'VnSetNplWndShow(_VnShow)

Any changes that you made to the window while it was hidden would now be
visible. When making changes to the window’s position and size, remember
that the coordinates and sizes are in twips. There are 1440 twips per inch.
Also remember that the Screen object can be used to get the screen coordinates
and size, which are also in twips.

Attribute Set Get

Whether or not it’s visible 'VnSetNplWndShow 'VnGetNplWndShow
Position on the screen 'VnSetNplWndPos 'VnGetNplWndPos
Size of the window 'VnSetNplWndSize 'VnGetNplWndSize
Title of the window 'VnSetNplWndTitle 'VnGetNplWndTitle

 Visual NPL Developers Guide 59

For example, to change the NPL window’s title, make the window half the size
of the screen and then put it two inches from the top and left sides of the screen
you would do the following:

DIM Width ,Height
;
Width='VnGetNum("Screen.Width")
Height= 'VnGetNum("Screen.Height")
;
'VnSetNplWndTitle$ ("Hello Vinny")
'VnSetNplWndSize(Width/2,Height/2)
'VnSetNplWndPos(2880,2880)

3.8.2 Message Boxes
Windows provides a built-in facility called the message box. This a small
window that can be used to show important messages, warnings and errors, and
to ask simple questions. Windows provides a standard set of icons that can be
displayed to the left of your message, as well as a standard set of buttons that
can appear at the bottom of the window.

The 'VnMsgBox function is passed the title for the window, the message to be
displayed and a set of numeric flags. The flags specify which icons and buttons
will appear in the window. The function returns a value that indicates which
button was pressed to close the window. For example, to show a simple error
message you might do the following:

Button= 'VnMsgBox("Error Message","Oops! Bang! ",
 _VnMbOk+_VnMbIconStop)

You would probably ignore the result in this call.

60 Visual NPL Developers Guide

To do a typical deletion confirmation, you might do the following:

Button= 'VnMsgBox("Confirm Record Deletion",
 "Are you sure? ",
 _VnMbYesNo+_VnMbIconQuestion)

Here you would most certainly want to know what the result is, because it
indicates whether or not to do the deletion:

IF Button=_VnIdYes
 ; delete the record
END IF

3.8.3 Input Boxes
Visual NPL provides a simple window that can be used to prompt for a single
input value. The 'VnInpBox$ function is passed the title for the window, the
message that prompts the user, a numeric flag, and the initial value to be
displayed in the input field. Set the numeric flag to 0 to use a single line input
field and set it to _VnMultiline to use a multiple line input field. If the user
clicks the OK button, the function returns the contents of input field; otherwise,
it returns a blank string.

To prompt for a name, you might do the following:

Name$='VnInpBox("Add New Record","Record name:”,
 0,"New Record")

 Visual NPL Developers Guide 61

To prompt for a users comments, you might do the following:

Description$= 'VnInpBox("What’s In This Record",
 "Description:” ,_VnMultiline," ")

3.8.4 Closing a Form
It is extremely important that you handle form closing correctly. Although you
may provide buttons that explicitly close (unload) a form, it is also possible to
close the form using standard Windows features:

• The Close item on the System (or Control) menu, which is accessed with the button or
icon in the upper left hand corner of the form

• The Windows 95 Close button (appears similar to an “X” in the upper right hand corner
of the form).

If these events are not handled, it is possible for the user to close the form
without your program detecting it. One way to handle this problem is by
calling the provided VB VnWakeup procedure from the QueryUnload event
for the form:

Private Sub Form_ QueryUnload(Cancel%, UnloadMode%)
 Rem VB
 VnWakeup UnloadMode
End Sub

62 Visual NPL Developers Guide

The VnWakeup procedure checks the UnloadMode parameter, which
indicates how the form is being closed. If it’s because of a call to 'VnCmd ,
then nothing is done. Otherwise, it calls the NPL 'VnWakeup procedure.
which would cause the 'VnSleep in the form’s mainline procedure to return.

3.8.5 Error Handling
Most of the NPL routines set a global variable named VnError to indicate
whether or not they succeeded. A zero means the operation was successful, a
negative value means that an error occurred. Whenever an error occurs, the
'VnErrFunc procedure in the "VnplDev" module is called. This
procedure sets the global variable VnErrMsg$ to an error message that
describes the problem. You can modify messages to suit your needs.

When the error message is set, the 'VnErrFunc procedure checks another
global variable named VnErrMethod . If this variable is set to
_VnErrCallFunc , then a message box containing the error message is
displayed. You can change this code to call your own error-handling procedure.
When 'VnErrFunc returns, the Visual NPL routine that generated the error
checks the VnErrMethod variable itself. If the variable is set to
_VnErrSignalError , then the routine generates an NPL run-time error
code with the following statement:

RETURN ERROR ('VnErrNum)

The 'VnErrNum function translates the value of VnError into an NPL error
code and returns it. By default, these values start at 601 and are incremented.
You can change 'VnErrNum (in "VnplDev") if this conflicts with error
codes that you are already using.

A third option exists for error handling. If VnErrMethod is set to
VnErrSuppress , then nothing is done with the error code; no message box
is displayed and no NPL error code is returned. In this case, your program
would have to manually check VnError after every call to an NPL routine.

To summarize, the global variable VnErrMethod (in "VnplDev") can be
set to one of the following, according to how you want Visual NPL to handle
errors:
_VnErrCallFunc Perform a developer-defined action

_VnErrSignalError Return an NPL error code (default)

_VnErrSuppress Do nothing but set VnErrMsg$

 Visual NPL Developers Guide 63

3.8.6 Manipulating Colors
Almost all Visual Basic objects have at least one color property. Values of
color properties are of two types, expressed in different formats:

Visual NPL provides functions for creating both types of color values. It also
provides a function to determine the type of a color value and separate it into its
component parts. The 'VnSetRGB function takes the three primary color
intensities and returns the combined RGB color value. The
'VnSetSysColor function takes an index and returns the system color
value:

PRINT 'VnSetRGB(0,255,0)
PRINT 'VnSetSysColor(1)

65280
-2147483648

Although there are constants for the 16, standard RGB colors, you may find it
useful to call 'VnSetRGB to create other colors. On the other hand, there are
only 19 system colors; constants have been created for each of these. You
should use these constants directly; you should not need to call
'VnSetSysColor . All of the color constants are documented in Chapter 7,
NPL Reference.

RGB Color The number contains three 8-bit numbers indicating the intensity of the three
primary colors: red, green, and blue

System Color The number contains an index into the system table of colors

64 Visual NPL Developers Guide

Visual NPL also provides procedure 'VnGetColor to determine the type of a
color value and separate it into its component parts. The color is passed as the
only parameter and sets these global variables as a result:

3.8.7 Font Translation
It is sometimes necessary to translate the NPL font into another Windows font
in order for it to appear correctly with Visual Basic. This is especially true for
programs in languages other than English. Visual NPL maintains an internal
font translation table, which is used to translate string values that are passed
between NPL and VB. By default, the translation table is empty, so no
translation is done.

You can set the font translation table by calling the 'VnSetTran procedure
with a new translation table. This table consists of pairs of characters to be
translated. Within each pair, the NPL character is first, followed by the VB
character.

'VnSetTran("AaBbCc")

If you pass a blank string, the font translation table is cleared and no translation
is done. You can get the current translation table by calling the
'VnGetTran$ function:

HEXPRINT 'VnGetTran$

VnBlueVal Blue value if it’s an RGB color

VnColor$ Name of the color if it’s one of the built-in color values

VnColorSrc Type of color (_VnRGBColor or _VnSysColor)

VnGreenVal Green value if it’s an RGB color

VnRedVal Red value if it’s an RGB color

VnRGBColorIndex Index into VnRGBColor() and VnRGBColor$() if it’s one
of the built-in RGB color values

VnSysColorIndex Index into VnSysColor() and VnSysColor$() if it’s one
of the built-in system color values

 Visual NPL Developers Guide 65

3.8.8 Detecting the NPL External Library
In some cases you may wish to detect whether or not the NPL library
(VNPL16.DLL) is loaded before trying to use it (loading one of the modules
that uses the library causes a resolve-time error if the library isn’t there.) To
avoid this problem, the library contains a DEFFN named 'VnDetect . When
you call 'VnDetect and handle the error condition, 'VnDetect determines
if the library is present or not. If it doesn’t exist, then the module that uses the

For example:

GOSUB 'VnDetect
ERROR GOSUB 'NoLibrary

'VnDetect can also be called by its DEFFN number, which is 32116.

3.8.9 Miscellaneous Routines
This section discusses miscellaneous routines such as translating numeric
values into strings, centering a form on the screen, and getting the version
number of Visual NPL.

It is often necessary in Visual NPL to translate numeric values into strings.
You can call the 'VnConvNum$ function with a numeric value to get a string
with no leading or trailing blanks:

DIM Value$10
Value$="#" & 'VnConvNum$(123) & "#"
PRINT Value$

#123#

Another thing you may want to do is center a form on the screen. This be done
by calling the 'VnCenter procedure with the form name or object as its
parameter, usually in the form’s Load event:

Private Sub Form_ Load()
 Rem VB
 VnCallProc "LoadMainForm"
End Sub

PROCEDURE 'LoadMainForm
 ;NPL
 'VnCenter("MainForm")

Note

66 Visual NPL Developers Guide

END PROCEDURE 'LoadMainForm

The VnCenter procedure also exists on the VB side. So if the only thing you
want to do in your Load event (or any event) is center the form, you can call
VnCenter directly from the VB event procedure:

Private Sub Form_ Load()
 Rem VB
 VnCenter MainForm
End Sub

In addition, you can get the version number of Visual NPL by calling the
'VnGetVer$ function:

PRINT "Visual NPL Version ";'VnGetVer$

3.9 Recovery If NPL or VB Stop
As with any development project, as you are testing and modifying your
program, you may find that every so often your program stops and can’t be
restarted from where it stopped. Ordinarily you would fix the problem and run
the program again “from scratch.” However, notice that, with Visual NPL,
there are now two programs running: the NPL program and the VB program.
As a result, when one program stops, you need to cancel the other program
before you can restart everything.

3.9.1 Recovery If NPL Stops
If your NPL program stops and it is not executing a procedure that was called
from VB, you can type the following in immediate mode:

'VnClose

This will terminate the connection with VB and the VB program itself, leaving
you in a normal editing state in both NPL and VB. From there you can fix your
program and then try it again. If your NPL program has multiple connections
to VB applications, use 'VnCloseAll instead of 'VnClose .

3.9.2 Recovery If NPL Stops in a VB-Called Procedure
If your NPL program stops and it is executing a procedure that was called from
VB, you must first cause the procedure call to return to VB before closing the
connection between NPL and VB. You can do this by typing the following in
immediate mode:

RETURN

 Visual NPL Developers Guide 67

This will cause the procedure to return to VB and the VB program to continue
executing as if the NPL procedure had been successful. In some cases,
continuing the program may not be acceptable. In such cases, before typing
RETURN, put a break point into your VB program immediately following the
call to the NPL procedure. Then, when you type RETURN in NPL, the
procedure will return to VB and your VB program will stop before executing
the next statement. From there you can terminate the NPL and VB programs as
described in the next section.

3.9.3 Recovery If VB Stops
If your VB program stops, you can terminate the connection with NPL by
typing the following in the VB Debug window:

VnKill

If the Debug window is not visible, click the Debug Window command under
the View menu. The type in VnKill, making visible the NPL window, closing
the connection between NPL and VB, and terminating the VB program. This
leaves the system in a normal editing state in both NPL and VB.

68 Visual NPL Developers Guide

(this page blank)

 Visual NPL Developers Guide 69

C H A P T E R 4

This chapter discusses the change-list method of programming with Visual
NPL. It covers:

• What the change-list is and how it works

• Accessing the information in the change-list from NPL

• Adding information to the change-list from VB

• Hot controls and when they should be triggered

• Record-based forms

• Creating controls “on the fly”

• Miscellaneous programming details

Change-List Programming

70 Visual NPL Developers Guide

4.1 What Is Change-List Programming?
Change-list programming is an attempt to bridge the gap between the NPL
procedural approach and the Visual Basic event-driven approach. It is intended
to be used when a large amount of NPL code can't be easily or quickly
converted to the event-driven style of programming.

In effect, the change-list is a procedural wrapper put around an event-driven
form. It allows the programmer to make a single call to a high-level NPL
procedure, which then displays and activates a VB form. The procedure returns
only when the user has pressed a button (or triggered some other control) that
causes control to return to the NPL program. Any changes made to the contents
of the form are returned in a global array called the change-list. This is
especially useful when a form is being used to display the fields of a record.

The downside to change-list programming is that the NPL program is severely
restricted with regard to the degree of control it has over the VB form that it is
displaying. Furthermore, the programmer must still add VB code to respond to
certain important events in order to record information in the change-list.
Change-list programming views the controls on a form as the fields of a record
that is being edited. Before the form is displayed, the controls are initialized to
the values of the record fields. The form is then displayed and the user is
allowed to edit the control values. Every time a change is made to a control, its
new value is recorded in an internal array called the change-list.

A hot control is one that causes editing to stop and causes processing control to
return to NPL. Typically, hot controls will be menu commands or buttons on
your form. The most common cases are the OK and Cancel buttons.
Eventually, the user will trigger a hot control, at which time the change-list will
be returned to NPL. Depending on which control triggered the return to NPL
(as recorded in the change-list), the change-list may be processed to update the
fields of the original record.

 Visual NPL Developers Guide 71

4.2 Invoking Change-List Processing
In order to use change-list programming you must use the 'VnCmd procedure
to show the form and then put NPL to sleep until a hot control is triggered.
When this happens, the call to 'VnCmd returns and the change-list is in global
variables VnChgNo and VnChgList$ ().

The following 'VnCmd commands invoke change-list processing:

'VnCmd("FormName","Show"," ")
'VnCmd("FormName","Show Modeless"," ")
'VnCmd("FormName","Set Focus"," ")
'VnCmd(" ","Resume"," ")

The primary differences between the four calls are listed in this table:

Table 4.5 'VnCmd Change-List Commands

Notice that the Show and Show Modeless commands show the form and
the Set Focus and Resume commands do not. This means that when
processing a form you must initialize everything with a call to one of Show or
Show Modeless . All subsequent processing should be done with calls to
Set Focus and Resume :

;show the form and process user changes
'VnCmd("MainForm","Show Modeless"," ")
;
;perform user commands until the Cancel
;button is pressed or the form is closed
WHILE VnChgList$(VnChgNo) .Control$<>"Cancel"
 AND VnChgList$(VnChgNo) .Control$<>"Form Close"
 ;
 ;return to the form and process user changes
 'VnCmd("MainForm","Set Focus"," ")
WEND

The only difference between the Show and Show Modeless commands is in
how VB creates the form. The Show command creates a modal form and the

Command Shows Form? Sets Focus To? Clears Change-
list?

Resume No Not affected No

Set Focus No Form or control Yes

Show Yes Default control Yes

Show Modeless Yes Default control Yes

72 Visual NPL Developers Guide

Show Modeless command creates a modeless form. When a modal form is
displayed, the user can’t access the rest of your program. This is useful for
windows that appear and prompt the user for input before some operation can
be performed. A modeless form allows the user to access any other form
currently displayed by your application. This should be used for windows that
are permanently displayed.

The Set Focus and Resume commands are intended for use with a form
that has already been displayed and is now processing user actions. There are
two important differences between the two commands. The Set Focus
command sets the focus to a particular form or control and clears the change-
list. The Resume command uses the currently active form and control and
doesn’t affect the change-list in any way.

4.3 Accessing the Change-list from NPL
When the call to 'VnCmd returns, the current change-list is in global variables
VnChgNo and VnChgList$() . VnChgNo contains the number of change-
list items and VnChgList$ () contains one entry for each control that changed
while the user was editing. The hot control that caused 'VnCmd to return is
the last entry in the array. The whole array is listed in order, with the most
recent changes at the end.

 Visual NPL Developers Guide 73

4.3.1 Change-List Array
Each element of the change-list array is a VnChangedList record with the
following fields:

4.3.2 Hot Control
The hot control that caused 'VnCmd to return is the last entry in the change-
list. Therefore, the array will always contain at least one element and
VnChgNo will always be at least 1. You can examine the last entry in the
change-list to determine what to do next in your program:

'VnCmd("MainForm","Show Modeless"," ")
SWITCH VnChgList$(VnChgNo) .Control$
 CASE "OK"
 ;
 CASE "Cancel","Form Close"
 ;
END SWITCH

In the case of a Cancel button (or the form being closed), your program will
probably ignore the change-list. For the OK button (and possibly other
controls), you will want to determine if any changes were made and then
process them if they exist:

;determine if there are any changes

Flag$1 A flag indicating what type of change-list item this is. The Flag$ field
will be one of the following characters:
C Normal control
H Hot control
R Control that is mapped to an NPL record field
A ASCII keystroke generated by a call to VnKeyPress
K Keyboard code generated by a call to VnKey
X Form close event generated by a call to VnClose

App$8 The name of the VB application from which the change is coming

Form$40 The name of the form from which the change is coming

Control$40 A name identifying the item that has changed

ChgValue$40 The changed value

ChgValWhole$1 A flag indicating whether or not the entire control value fits into the
ChgValue$ field. The ChgValWhole$ field will be “Y” if the
entire control value is in the ChgValue$ field and “N” if it didn’t fit. If
the value is “N,” then you will have to use 'VnGetAlf$ to get the full
value rather than getting it from the ChgValue$ field.

74 Visual NPL Developers Guide

IF VnChgNo>1
 ;
 ;process the changes one at a time
 FOR I=1 TO VnChgNo-1 BEGIN
 ;
 NEXT I
 ;
END IF

Notice that the FOR loop doesn’t process the last entry in the change-list,
because this is just the hot control and not actually one of the changed values.

4.3.3 Manually Accessing the Change-list
At times, it may be necessary to access the change-list in response to some
event that doesn’t actually return the change-list by means of 'VnCmd . The
'VnGetChgList procedure retrieves the current change-list into the global
variables VnChgNo and VnChgList$() . However, there is one important
difference between this change-list and the one returned by 'VnCmd . This
change-list doesn’t contain a hot control, which means that VnChgNo may be
0. Use the following code to determine if there are any changes and then
process them if they exist:

;get the change-list
'VnGetChgList
;
;determine if there are any changes
IF VnChgNo>0
 ;
 ;process the changes one at a time
 FOR I=1 TO VnChgNo BEGIN
 ;
 NEXT I
 ;
END IF

After this is processed, you may want to clear the list so that the changes aren’t
applied twice. The 'VnClearChgList can be used for this purpose:

'VnClearChgList

 Visual NPL Developers Guide 75

4.4 Adding to the Change-list from VB
In order for information to be put into the change-list, you must add calls to one
or more of the VB change-list routines in response to specific events. This
section describes the VB routines that you must call and the circumstances for
calling them.

4.4.1 Recording Changes
In order to make use of the change-list, a control must notify Visual NPL
whenever its value changes. This is done by calling the VnChg procedure from
a VB event that indicates that something has changed, usually Change, Click,
or DblClick. Which event(s) to use depend on the type of control and how you
are trying to use it.

The VnChg procedure simply sets an internal flag that indicates that the
control’s value has been changed. In order to actually add the new value to the
change-list, you must call the VnChk procedure from a VB event that indicates
that editing of the control is complete, typically, the LostFocus event. The
VnChk procedure checks the internal flag, if it’s not set, then nothing is done.
When the flag has been set by an earlier call to VnChg, the value of the control
is copied into the change-list array and the element’s Flag$ field is set to
“C.”

With some controls, particularly buttons, you will want to call VnChk right
after calling VnChg. This is useful when the control is initiating some sort of
action that should be performed immediately. This is the case with clicking a
command button or spin button and double-clicking some other controls,
particularly lists.

76 Visual NPL Developers Guide

This table shows the VB events that can be used for VnChg and VnChk for the
standard VB controls.

Table 4-6 VnChg and VnChk Events

For example, for a text box control, you would fill in the VB Change and
LostFocus events in this way:

Private Sub Address_ Change()
 Rem VB
 VnChg
End Sub

Private Sub Address_ LostFocus()
 VnChk
End Sub

For a button control, you would fill in the Click event in this way:

Private Sub Cancel_ Click()
 Rem VB
 VnChg
 VnChk
End Sub

Control VnChg VnChk

Check box Click LostFocus

Combo box Change, Click or DblClick LostFocus or DblClick

Command button Click Click

Directory list box Change or Click LostFocus or DblClick

Drive list box Change LostFocus

File list box Click or DblClick LostFocus or DblClick

Grid Click LostFocus

Horizontal scroll bar Change LostFocus

List box Click or DblClick LostFocus or DblClick

Option button Click LostFocus

Spin button SpinDown and SpinUp SpinDown and SpinUp

Text box Change LostFocus

Vertical scroll bar Change LostFocus

 Visual NPL Developers Guide 77

4.4.2 Creating Hot Controls
There are two ways to make a normal control into a hot control:

• Call VB procedure VnHot instead of calling VnChk.

• Put “Hot” into the Tag property of the control.

Use one method or the other; do not use both. Using VnHot has the advantage
of simplicity; you type in VnHot instead of VnChk. The VnHot procedure
works exactly like the VnChk procedure with one exception. If the control’s
value is copied to the change-list, the change-list is then returned to NPL. For
example, the Click event for an OK button would look similar to this:

Private Sub OKButton_ Click()
 Rem VB
 VnChg
 VnHot
End Sub

Using the Tag property has the advantage of flexibility. You can change a
control into a hot control (or vice versa) at run time just by setting the Tag
property from NPL:

'VnSetAlf("MainForm.SomeControl.Tag","Hot")

When setting the Tag property, you must still call VnChk. When the VnChk
procedure copies a control’s value to the change-list, it also checks the control’s
Tag property. If it contains the word “Hot”, then the change-list is returned to
NPL.

Regardless of which method is used, the last entry in the change-list (the hot
control) has its Flag$ field is set to "H".

4.4.3 Menu Commands
The VnMenuClk procedure is used to add an entry for a menu command to the
change-list and then return the change-list to NPL. This procedure acts in a
similar manner to a hot control in that it forces program control to return to
NPL. It takes one parameter—the name you want returned in the Control$
field of the change-list entry. This name can be anything you want as the
following example shows.

78 Visual NPL Developers Guide

Private Sub FileMenu_ Click(Index%)
 Rem VB
 Select Case Index
 Case 1
 VnMenuClk "FileNew"
 Case 2
 VnMenuClk "FileOpen"
 Case 3
 VnMenuClk "FileSave"
 Case 4
 VnMenuClk "FileSaveAs"
 Case 5
 VnMenuClk "FilePrint"
 Case 6
 VnMenuClk "FileExit"
 End Select
End Sub

4.4.4 Closing a Form
It is extremely important that you handle form-closing correctly. Although you
may provide buttons that explicitly close (unload) a form, it is also possible to
close the form using standard Windows features:

• The Close command on the System (or Control) menu, which is accessed with the button
or icon in the upper left corner of the form

• The Windows 95 Close button (this appears similar to an “X” in the upper right corner of
the form

If these events are not handled, it will be possible for the user to close the form
without your program detecting it. One solution is to call the VB VnClose
procedure from the QueryUnload event for the form:

Private Sub Form_ QueryUnload(Cancel%, UnloadMode%)
 Rem VB
 VnClose UnloadMode
End Sub

 Visual NPL Developers Guide 79

The VnClose procedure checks the UnloadMode parameter, which tells how
the form is being closed. If it’s because of a call to 'VnCmd in NPL, nothing
is done. If it’s being closed in some other way, then a special change-list entry
is added and the change-list is returned to NPL. The special entry will have the
Flag$ field set to "X" and the Control$ field set to "Form Close".
This procedure acts similarly to a hot control in that it forces program control
to return to NPL.

4.4.5 Keyboard Handling
It is sometimes necessary to process each keystroke that a user types. There are
two different types of keyboard events in Visual Basic. The KeyDown and
KeyUp events are triggered when any key is pressed or released, including
function keys and special keys. These procedures are passed a numeric code
that identifies the key. The KeyPress event is triggered whenever an ASCII key
is released. The parameter passed to this procedure is the numeric code for an
ASCII character.

If you want to respond to any or all of these keyboard events, call the VnKey
procedure from the KeyDown and KeyUp events, passing it the parameters
that are passed to the event:

Private Sub Address_ KeyDown(KeyCode%, Shift%)
 Rem VB
 VnKey KeyCode, Shift
End Sub

Private Sub Address_ KeyUp(KeyCode%, Shift%)
 Rem VB
 VnKey KeyCode, Shift
End Sub

Call the VnKeyPress procedure from the KeyPress event, passing it the
parameter that is passed to the event:

Private Sub Address_ KeyPress(KeyAscii%)
 Rem VB
 VnKeyPress KeyAscii
End Sub

In the preceding examples, the keyboard events are all for a control named
Address. It is also possible for a form to get keyboard events by setting its
KeyPreview property to True. In this case the form’s keyboard events will be
triggered before the control’s events. This allows you to do keyboard
processing that is common to all controls.

Whether you call the VnKey and VnKeyPress procedures from a form or an
event, each procedure passes its parameters back to NPL as a separate, single-
entry change-list, without affecting the current change-list. The change-list

80 Visual NPL Developers Guide

entry will have the Flag$ field set to "K" if VnKey was called and "A" if
VnKeyPress was called.

 Visual NPL Developers Guide 81

When the change-list is processed on the NPL side, some special global
variables are set before it is returned to your program:

For the VnKey procedure, the following global variables are set:

For the VnKeyPress procedure, the following global variables are set:

Because the VnKey and VnKeyPress calls don’t modify the real change-list,
the next call to 'VnCmd should use the Resume command in order to leave it
intact.

4.5 Record-Based Forms
With standard change-list programming you must make several calls to
initialize the values of the controls on a form. This is done with the
'VnSetAlf and 'VnSetNum procedures. Then, when editing is complete,
you must retrieve the new values one at a time from the change-list. Although
this method is effective, for the sake of performance and simplicity, you may
want to be able to set and get the values of the controls on a form with one call.
Record-based forms provide this capability.

4.5.1 Setting and Getting Records
The 'VnSetRec procedure is passed a form, the name of a PUBLIC NPL
record, and the record itself. The procedure goes through the fields of the
record and sets the controls on the form to the values stored in the record.
When your program has initialized the controls, it calls 'VnCmd in the normal
manner.

VnKeyin$ Set to "True" (normally "False") to indicate that a keyboard change-list is
being returned to NPL

VnKeyinMode$ Set to "K" if VnKey was called and "A" if VnKeyPress was called

VnKey$ The KeyCode parameter from VB

VnShift The Shift parameter from VB

VnKeyType$ HEX(00) for an ASCII key and HEX(01) for a special key

VnKey$ The KeyAscii parameter from VB

82 Visual NPL Developers Guide

When 'VnCmd returns, the change-list is still used to determine if any changes
were made. However, rather than retrieving the changes from the change-list,
they are retrieved by calling 'VnGetRec . This procedure is passed a form and
the name of a PUBLIC NPL record. It retrieves the fields in the record from
the controls on the form and then returns the new record.

;set the controls from the record
'VnSetRec("MainForm","MainRecord",Main$)
;
;show the form modelessly,
;allow the user to edit the controls,
;return when a Hot control is triggered
'VnCmd("MainForm","Show Modeless"," ")
;
;if the OK button was pressed AND something
;has changed then process the change-list
IF VnChgList$(VnChgNo) .Control$="OK"
 AND VnChgNo>1
 ;
 ;get the record from the controls
 Main$='VnGetRec$("MainForm","MainRecord")
END IF

Notice that, when the return value from 'VnGetRec is assigned to Main$, it
overwrites the original record. This can cause a problem when the record
contains fields that are not on the form. These fields will be set to blanks by the
assignment statement. To avoid this problem, use the 'VnGetRecSubset
procedure instead of 'VnGetRec . Whereas 'VnGetRec is a function that
returns a new record, 'VnGetRecSubset is a procedure that is passed a
record to be updated. Any fields in the record that are not on the form are left
intact.

'VnGetRecSubset("MainForm","MainRecord",Main$)

instead of

Main$='VnGetRec$("MainForm","MainRecord")

 Visual NPL Developers Guide 83

4.5.2 Mapping Fields to Controls
In order for the 'VnSetRec and 'VnGetRec calls to work, you must map
each field in the NPL record to a control on the VB form. This is done by
setting the Tag properties of the controls to the corresponding record and field
names.

For example, given the following NPL record:

RECORD Person
 FIELD Name$40
 FIELD Address$40
 FIELD Salary
END RECORD

you would set the Tag properties of the appropriate controls to:

Person.Name
Person.Address
Person.Salary

Note that the dollar sign ($) on the end of string field names is omitted.

4.6 Creating Controls On The Fly
Most Visual NPL programming is done by creating forms at design time and
then working with these preconstructed forms at run time. However, it is also
possible to create forms and controls at run time. The controls “on the fly”
routines treat a VB form as a text based screen with a certain number of rows
and columns. Most of the routines are passed a row and column number
(among other things), where they will “print” their information (or controls).

When “printing” to a form, the form’s AutoRedraw property must be set to
True, otherwise the form’s contents will disappear whenever the form is
minimized or overlaid by another form.

4.6.1 Row and Column Mapping
Obviously, the row and column numbers must be converted into the twips
coordinates used by Visual Basic. The number of rows and columns is defined
by calling the 'VnSetRowsCols procedure.

'VnSetRowsCols("VnplChar",20,60)

84 Visual NPL Developers Guide

It is important to remember that you must call this routine each time you want
to print to a different form, because the mapping information is not saved
anywhere internally. So, if you have multiple forms being displayed, you must
call 'VnSetRowsCols each time the user moves to a new form (if you
intend on printing to that form).

Furthermore, you must call this routine and redraw everything on a form
whenever it is resized. Otherwise, the row and column sizes will be different
and any new printing won’t align properly with what’s already on the form.

4.6.2 Printing to a Form
The 'VnPrintAt procedure can be used to print text directly on a form. It is
passed the form to be printed on, the row and column to print at and the text to
be printed:

'VnPrintAt("MainForm",12,25,"Hello there!")

The 'VnPrintBox procedure can be used to print a rectangle of a specific
color on a form. Pass it the form on which to print, the row and column at
which to print, and the height, width and color of the box:

'VnPrintBox("MainForm",2,20,5,40,_VnLightGray)

You can also print several things to the internal print buffer (VnPrint$) and
then send the buffer to VB for printing. The VnPrint$ global variable
declared in "VnplDev" is large enough to handle the text for a 24– row by
80– column screen. If you plan on using more rows and columns you may have
to enlarge this buffer.

To print to the buffer, use the NPL PRINT TO and PRINTUSING TO
statements. However, the NPL AT statement won’t work when sending the
buffer to VB. Instead, use the 'VnAt$ function, which is passed a row and a
column number and returns the characters necessary to do row/column
positioning in VB. When finished printing to the buffer you can call the
'VnPrintTo procedure to send the buffer to VB. This procedure is passed
one parameter—the form to print on.

PRINT TO VnPrint$;'VnAt$(2,4);"Name:"
PRINT TO VnPrint$;'VnAt$(4,4);"Address:"
PRINT TO VnPrint$;'VnAt$(10,4);"Phone:"
'VnPrintTo("MainForm")

A third procedure, 'VnInputScreen , can be used to copy all or part of the
NPL screen to a VB form. Pass this procedure the form on which to print, the
row and column at which to print, and the height and width of the rectangular
area to copy to VB. This procedure does the equivalent of an INPUT
SCREEN from the NPL screen and a PRINT SCREEN to a VB form.

PRINT AT(2,4);"Name:"

 Visual NPL Developers Guide 85

PRINT AT(4,4);"Address:"
PRINT AT(6,4);"Phone:"
'VnInputScreen("MainForm",0,0,10,40)

The printing routines are not limited to printing on a form. They can also be
used with a picture box object and the printer. Everything except the
'VnPrintBox routine can also be used on the VB Debug window.

4.6.3 Base Controls
Creating new controls at run time (controls “on the fly”) works by making
duplicates of a set of base controls. You must create a form in VB with one
base control for every type of control you need on the form. For example, if
the form only uses labels, text boxes, and buttons, then you would need a base
label, a base text box, and a base button. Each base control should have its
Index property set to 0 and its Visible property set to False. You can name
them whatever you want, but usually the type name is used (Label, TextBox,
CommandButton).

Setting the Index property to 0 causes VB to create a single-element array
where element 0 is the control you create. When you create a new control at
run time, Visual NPL makes a copy of the base control by enlarging (using
REDIM) the control array. The new element is an exact duplicate of the base
control except for the Index property. It will be set to the new control’s
position in the control array.

The VnplChar form contains base controls for all of the standard Visual Basic
controls. You can use this form in your programs.
Note

86 Visual NPL Developers Guide

4.6.4 Registering Control Names
For every unique base control name, you must register the control array in the
VnSetCtrl function in the VnplDev module in VB. This means adding a new
Case to the Select statement in VnSetCtrl . The text of the Case should be
the name of the control array and the single line of code for the Case should
set the Ctrl parameter to element Index of the control array. For example, for
a control array named NewControl, the VB Case statement would look similar
to this:

Case "NewControl"
 Set Ctrl = Obj.NewControl(Index)

The default Select statement contains Case statements for each of the
standard Visual Basic controls (that is, the ones on the VnplChar form).

4.6.5 Creating Controls
The NPL 'VnCreateCtrls procedure creates new controls at run time. It
is passed the form on which to create controls, the name of the base control, and
the number of new controls to create. For example, to create three input fields,
their captions, and an OK and a Cancel button, you would do the following:

'VnCreateCtrls("VnplChar","TextBox",3)
'VnCreateCtrls("VnplChar","Label",3)
'VnCreateCtrls("VnplChar","CommandButton",2)

This just creates the controls; it doesn’t show them. To do that, you must
“print” them to the form. Pass the 'VnPrintCtrl procedure:

• The control to be printed

• The row and column to print at

• The height and width of the control

• The value to be assigned to control’s default property

• A list of properties and their values

The 'VnPrintCtrl procedure initializes a control and then shows it:
'VnPrintCtrl("VnplChar.Label(1)",2,2,1,1,"Name:"," ")
'VnPrintCtrl("VnplChar.Label(2)",4,2,1,1,"Address:",
 " ")
'VnPrintCtrl("VnplChar.Label(3)",6,2,1,1,"Phone:",
 " ")
;
'VnPrintCtrl("VnplChar.TextBox(1)",2,11,1,40,
 " ","MaxLength=40,TabIndex=1")
'VnPrintCtrl("VnplChar.TextBox(2)",4,11,1,40,

 Visual NPL Developers Guide 87

 " ","MaxLength=40,TabIndex=2")
'VnPrintCtrl("VnplChar.TextBox(3)",6,11,1,10,
 " ","MaxLength=10,TabIndex=3")
;
'VnPrintCtrl("VnplChar.CommandButton(1)",9,13,2,10,
 " ","Caption=OK ,TabIndex=4,Tag=Hot")
'VnPrintCtrl("VnplChar.CommandButton(2)",9,28,2,10,
 " ","Caption=Cancel ,TabIndex=5,Tag=Hot")

4.6.6 Destroying Controls
When you unload a form, all the controls on the form are destroyed. However,
with controls “on the fly,” you may want to create one base form (such as
VnplChar) and use it to show many other forms. In this case, you would need
to clear the form and recreate the controls on it. The Clear Form command
of the 'VnCmd procedure does that, destroying all the controls on the form
except for the base controls.

'VnCmd("VnplChar","Clear Form"," ")

To destroy individual controls, pass the control to the 'VnDestroyCtrl
procedure. For example:

'VnDestroyCtrl("VnplChar.Label(1)")

88

C H A P T E R 5

This chapter discusses the demonstration programs that come with Visual NPL.
These programs are meant to be used as a guide to various Visual NPL
features. They include:

• A simple change-list program

• A simple event-driven program

• A large demo program that contains several smaller demo programs, each of which
demonstrates a specific Visual NPL
feature

Demo Programs

 Visual NPL Developers Guide 89

5.1 Hello (Change-List)
The Change-list Hello program is a simple example that demonstrates the
basics of change-list programming.

It calls the VnChg and VnChk procedures from the Click event of the OK
button. Because the Tag property for this button is set to "Hot", the VnChk
procedure causes the change-list to be passed back to the NPL program, which
in turn causes the program to end. The program also calls the VnClose
procedure from the form’s QueryUnload event. This handles the case where
the user closes the form from the system menu or by clicking the Close button
in the upper right corner of the window (represented by an “X”) in Windows
95.

5.2 Hello (Event-Driven)
The Event Driven Hello program is a simple example that demonstrates the
basics of event-driven programming.

It uses the VnCallProc procedure in the Click event of the OK button to call
the NPL 'VnWakeup procedure. This causes the mainline of the NPL
program to return from the 'VnSleep call and then end the program. The
program also calls the VnWakeup procedure from the form’s QueryUnload
event. This handles the case where the user closes the form from the system
menu by clicking the Close button in the upper right corner of the window
(represented by an “X”) in Windows 95.

5.3 Demos
The Demos program consists of several subprograms, each of which
demonstrates one or more Visual NPL concepts. The subprograms are
organized into four groups, each of which can be accessed from a top-level
menu on the main window:
Change-list Change-list programs

Event Driven Event-driven programs

Common Dialogs Common dialog examples

Boxes Message and input boxes

90 Visual NPL Developers Guide

The menu commands under each top-level menu correspond to the individual
subprograms for each group. The code that controls the main window and
launches all of the other subprograms is also a subprogram itself. It’s a good
example of how to use menus and can be found in the NPL "MainForm"
module in DEMOS.NPL and the VB MainForm form in files
MAINFORM.FRM and MAINFORM.FRX. The "MainForm" module also
contains the code for the Common Dialog examples and Boxes examples.

Figure 5.2 Demos Program Main Window

The change-list and event-driven subprograms are all stand-alone Visual NPL
programs when combined with the NPL "START" and "END" modules. Each
of these subprograms consists of a main NPL module and a VB form. In some
cases there may also be additional NPL code and/or data modules involved.
This modularization should make it easier to insert pieces of the Demos
program into your own programs.

5.3.1 Change-List Programs
The change-list demos show how to use the change-list programming features
including:

• Processing menu commands

• Creating forms and controls at run time

• Printing to a VB form

 Visual NPL Developers Guide 91

• Processing input/output (I/O) one field at a time

• Processing I/O with all fields at once

• Terminating the program

The demos are accessed with the following menu commands:
Old Fashioned NPL Record I/O Uses the NPL window to do record I/O.

Generate VB Screens at Run Time Generates a VB window from code at run-time.

Transfer NPL Screen Text to VB Prints to the NPL window and then copies it to a
VB form.

Print Text on VB Form Prints text directly to a VB form.

Field I/O Using a VB Form Does record I/O, accessing the controls on a VB
form one at a time.

Record I/O Using a VB Form Does record I/O, accessing the controls on a VB
form as a group that makes up a record.

Combo Boxes and Record I/O Does record I/O, accessing the controls on a VB
form as a group that makes up a record, while
using combo boxes for some of the fixed-choice
fields.

Exit Terminates the program.

92 Visual NPL Developers Guide

5.3.2 Event-Driven Programs
The event-driven demos show how to use event-driven programming features
including:

• Processing menu commands

• Showing a progress meter

• Dealing with color

• Viewing images

• Dealing with objects (forms, controls, and properties)

• validating input data,

• Setting up and using the printer

• Terminating the program

The demos are accessed with the following menu commands:

The standard grid that comes with VB is a limited version that may exhibit
instability. As a result, the Unbound Data Grid demo may behave unpredictably. If you
need to use a grid it is highly recommended that you buy a full-featured grid control from a
third party. However, you may still view the grid demo for an illustration of how to use a
grid.

Colors Selecting and setting colors.

Progress Bar Showing and cancelling a progress indicator.

Image Viewer Selecting drives, directories, and files, and showing images.

Database Access Using the data control and data bound controls.

Unbound Data Grid Using a grid to show data records (see the note that
follows).

Objects - Set Properties Accessing objects and setting their properties.

Objects - Inspect Accessing objects and viewing their properties in a grid.

Validation - Post Validating input when the OK button is clicked.

Validation - Keystroke Validating input whenever a key is pressed.

Validation - Control Validating input using a self-validating control.

Validation - Real-Time Validating input on a field by field basis.

Printer - Setup Setting up the printer.

Printer - Test Printing text.

Exit Terminate the program.

Note

 Visual NPL Developers Guide 93

5.3.3 Common Dialogs
The common dialog demos show how to use the VB support for Windows’
built-in common dialogs (sometimes called pop-up windows), which provide
access to several common Windows operations:
• Selecting file names

• Selecting colors

• Selecting printers

• Selecting fonts

• Invoking the Help system

The CommonDialog control is used by setting various properties (depending on
the action to be performed) and then calling one of its Show methods:

The CommonDialog control is a control that has no visual interface and that
exists on the MainForm. It will appear at design time but not at run time. The
code that uses the control is in procedure 'CommonDialog in the NPL
"MainForm" module.

ShowOpen Select a file to be opened

ShowSave Select a file to which to save

ShowColor Select a color

ShowPrinter Select and configure a printer

ShowFont Select and configure a font

ShowHelp Invoke the Help system

94 Visual NPL Developers Guide

5.3.4 Boxes
The box demos show how to use the 'VnMsgBox and 'VnInpBox$
functions. The 'VnMsgBox function can be used to show simple error or
information messages as well as to prompt for the following types of user
responses:

• OK or Cancel

• Abort, Retry, or Ignore

• Yes or No

• Yes, No, or Cancel

• Retry or Cancel

The 'VnInpBox$ function is used to prompt for a single-line or a multiline
text value. The user is prompted with a message, an input field, and the OK
and Cancel buttons. If OK is pressed, then the input field is returned; if Cancel
is pressed, then a blank string is returned. The code for the box demos is in
procedure 'Boxes in the "MainForm" module.

 Visual NPL Developers Guide 95

(this page blank)

96 Visual NPL Developers Guide

C H A P T E R 6

This chapter contains a discussion of what needs to be done when installing a
Visual NPL application on a user’s system. It covers the following:

• An introduction to what needs to be done to set up the user’s system

• How to use the Visual Basic Setup Wizard to create a setup program

• A description of the problems associated with deciding not to use a setup program

• How to register OCX controls

• A list of required support files

Distributing Visual NPL
Programs

 Visual NPL Developers Guide 97

6.1 Installation Considerations
There are many things to consider when installing a Windows program on a
user’s computer, including the following:

• Determining the destination directory and creating it, if necessary

• Insuring that there is enough disk space on the destination drive

• Copying and possibly decompressing files, making sure not to overwrite a newer file that
already exists on the user’s computer

• Managing diskette switches and prompting the user as appropriate

• Registering DLLs and OCXs

• Creating folders, icons, and Start menu commands

Usually all of this is managed by an installation (or setup) program that the user
runs from the first diskette. You can create this type of program with the Visual
Basic Setup Wizard.

6.2 Using the Setup Wizard
The Setup Wizard is a Windows program that performs seven simple steps in
order to produce an installation/setup program and the compressed files to be
installed. Here’s what happens in each of the seven steps:

1. The wizard prompts you to enter the name of the Visual Basic project file (that is,
DEMOS.VBP).

2. The project file is analyzed to determine the files that need to be installed.

3. The wizard prompts you to choose the installation medium— diskettes or hard-disk drive.

4. You can add any OLE servers that your program requires but that weren’t listed in the
project file.

5. You can remove any unnecessary OCXs or DLLs.

6. You must select the type of installation to perform: normal application (.EXE) or OLE
server.

7. You can add any other files to the list of files to be installed.

98 Visual NPL Developers Guide

In general, you usually don’t need to specify any entries for steps 2, 4, 5, and 6.
You can leave them set to their defaults. This is because step 2 is completely
automated; it determines which OLE servers (step 4) and OCX controls (step 5)
are used by your program as well as what type of program it is (step 6). In
other words, steps 4, 5, and 6 are only provided as safeguards in case
something is missed in step 2.

Furthermore, steps 1 and 3 are easy choices that should only take a few
moments. This leaves only step 7 in which you have to do any real work. This
is where you do the following:

• Add the names of your NPL disk images, including VNPL.NPL
• Add the names of your data files

• Add VNPL16.DLL
• Add VNPL16.DLL’s dependent files (listed as follows)

After completing this step, clicking the Finish button will create the installation
files and copy them to the chosen installation medium.

When this is done, you can save the setup configuration as a template. Then,
the next time you need to produce the installation files, all you need to do is
open the template in step 1 (instead of entering the name of the project file) and
click the Finish button.

6.3 Distributing Visual NPL Without a Setup
Program

Although it is possible to distribute a Visual NPL application without using a
setup program, it is not recommended. Along with the basic operation of
copying files, you must consider several factors when installing a Windows
program:

• All OCXs and DLLs should be installed into the Windows\System directory.

• An older DLL (based on the file date or an internal version number) should not be
installed over a newer one.

• All OCXs must be “registered” before they can be used by any program, including yours.

 Visual NPL Developers Guide 99

Although copying the files into the specified directory is easy, it can be difficult
to determine the internal version numbers of files being installed in order to
avoid copying older versions over newer ones. Using a setup program can
reduce the complexity of the installation process and eliminate the potential for
problems by detecting and installing the appropriate file versions.

In addition to the version number problem, you must register all of your
controls so that they are usable. As described in the next section, this involves
installing a registration program and calling it for each OCX.

Even if you don’t use a setup program of any kind, the Setup Wizard that
comes with Visual Basic is an excellent tool for determining which files need to
be installed.

6.4 Registering OCXs
One of the most important things that an installation/setup program must do is
to register the OCXs that it installs. Registration is the act of telling Windows
about an OCX (or program) by adding some special entries to the Windows
registry, and an OCX can’t be used until it is registered.

Almost all OCX controls contain code to register themselves. The setup
program loads each OCX and invokes its registration code. If you aren’t using
a setup program, then you can use the REGSVR.EXE program in the
Windows directory. For each OCX that you need to register, call the program
as follows:

REGSVR /s DllName

for example:

REGSVR /s VNCON16.OCX

100 Visual NPL Developers Guide

The /s parameter tells REGSVR to run in silent mode; otherwise, it shows a
message box when it is done.

6.5 Required Support Files
The following support files are required by Visual NPL:

VNCON16.OCX VNPL16.DLL
VNPL.NPL

The following support files are required by VNPL16.DLL:

MFCO250.DLL MFC250.DLL

The following support files are required by Visual Basic:

CTL3DV2.DLL VAEN21.OLB
OC25.DLL VB40016.DLL
OLE2.DLL

The following support files are required by OLE2.DLL:

COMPOBJ.DLL OLE2.REG
OLE2CONV.DLL SCP.DLL
OLE2DISP.DLL STDOLE.TLB
OLE2PROX.DLL STORAGE.DLL
OLE2NLS.DLL TYPELIB.DLL

 Visual NPL Developers Guide 101

(this page blank)

102 Visual NPL Developers Guide

C H A P T E R 7

This chapter contains:

• Detailed descriptions of each of the NPL constants

• Definitions for each of the NPL records used to retrieve various lists

• Descriptions of each of the NPL variables used to return information from some of the
NPL subroutines

• A list of the NPL subroutines categorized by the type of operation they perform

• Definitions and detailed descriptions of each of the NPL subroutines in alphabetical
order

NPL Reference

 Visual NPL Developers Guide 103

7.1 Constants
This section discusses the most important constants defined in the "Vnpl" and
"VnplDev" modules. It also gives an overview of the other constants that are
available.

7.1.1 VnSys (VNPL.NPL Device Number)
The _VnSys constant is defined in "VnplDev" and is used to determine
which device refers to the VNPL.NPL disk image.

It should be used in modules that use Visual NPL as follows:

INCLUDE T "VnplDev"
INCLUDE T#_VnSys,"Vnpl"

The default value is 1.

7.1.2 VnDelim$ (Parameter Delimiter)
The _VnDelim$1 constant is defined in "VnplDev" and is used as the
delimiter whenever a list of items is passed between NPL and VB.

This value’s main use is to separate parameters passed to 'VnMethod .
Ideally, the delimiter character should adhere to the following criteria:

• Is not found in normal data items

• Is directly enterable from a computer keyboard

• Has the appearance of a separator, rather than of data

The default value is a vertical bar or “pipe” character (|).

7.1.3 VnStrRefSize (Minimum /POINTER String
Parameter Size)

The _VnStrRefSize constant specifies the minimum size of a string
parameter passed from VnCallProc in VB into a /POINTER string parameter
in NPL.

If the string being passed is smaller than the specified minimum, the DLL will
allocate a buffer of this size, fill it with the passed value, and then pass it to the
NPL procedure.

The default value is 100.

104 Visual NPL Developers Guide

7.1.4 Maximum Number of Controls and Properties
The _VnMaxCtrlsPerForm and _VnMaxPropFields constants
specify the maximum number of controls returned by
'VnGetFormCtrlList and the maximum number of control properties
returned by 'VnGetPropInfoList , respectively.

These values are used when doing a MAT SORT on the results produced by the
corresponding routines.

The default value for _VnMaxPropFields is 80 and the default value for
_VnMaxCtrlsPerForm is 150.

7.1.5 Key Translation Strings
The following constants are used to translate Windows keystrokes from the
KeyDown and KeyUp events into NPL keyboard codes:

7.1.6 Error Handling Flags and Error Codes
The following are error-handling methods:

The following are error codes:
_VnErrBadAppNum Invalid application number or application not open

_VnErrBadCommand Invalid command name

_VnErrBadControlName Invalid control name (or control name not registered in
VNPLDEV.BAS)

_VnErrBadFormName Invalid form name (or form name not registered in
VNPLDEV.BAS)

_VnErrBadIflags Invalid input box flags

_VnErrBadMflags Invalid message box flags

_VnErrBadMode Invalid show window mode

_VnErrBadObjectName Invalid object name

_VnErrBadParam Invalid parameter

_VnErrBadParamCount Wrong number of parameters

_VnErrBadPrintRowOrCol Invalid row or column number

_VnNplShiftKbrd$21 _VnUnshiftAlphaKbrdTran$52

_VnNplUnshiftKbrd$21 _VnWndUnshiftKbrd$21

_VnShiftAlphaKbrd$26

_VnErrCallFunc _VnErrSignalError

_VnErrSuppress

 Visual NPL Developers Guide 105

_VnErrBadPropertyName Invalid property name

_VnErrBadRecFieldName Field name from VB tag matches no PUBLIC
FIELD name

_VnErrBadValueLen Invalid value length

_VnErrBadVersion Version-number mismatch between VNPL16.OCX
and VNPL16.DLL

_VnErrCouldNotAccess Couldn't access object, property, or method

_VnErrExeFailed The .EXE file couldn’t be run or VB isn’t running

_VnErrMissingSeparator Missing parameter separator (delimiter)

_VnErrNoConnect Communications couldn’t be established with the VB
application

_VnErrNoMemory Memory for the communications buffer couldn’t be
allocated

_VnErrPastDropDeadDate This product's limited license has expired

_VnErrPosFailed Invalid NPL Window position

_VnErrSizeFailed Invalid NPL Window size

_VnErrStrTooLong A string parameter is too long

_VnErrTooManyApps The maximum number of open applications are already
open

_VnErrValueNotNumeric The retrieved string couldn’t be converted to a number

_VnErrVbError Visual Basic error message

The following are system variables for capacity:

7.1.7 Message Box and Input Box Flags
The following flags describe the buttons that will appear in a message box and
a mask for extracting this flag from the combined flags:

_VnMaxApps _VnObjLen

_VnMaxValueLen _VnObjNameLen

_VnMbAbortRetryIgnore _VnMbYesNoCancel

_VnMbOk _VnMbRetryCancel

_VnMbOkCancel _VnMbTypeMask

_VnMbYesNo

106 Visual NPL Developers Guide

The following flags describe the icon that will appear in a message box and a
mask for extracting this flag from the combined flags:

The following flags describe the button that will be the default button in a
message box and a mask for extracting this flag from the combined flags:

The following flags describe the modality of a message box:

The following flag causes a message box not to have the focus when it first
appears:

_VnMbIconExclamation _VnMbIconQuestion

_VnMbIconInformation _VnMbIconStop

_VnMbIconMask

_VnMbDefButton1 _VnMbDefButton3

_VnMbDefButton2 _VnMbDefMask

_VnMbApplModal _VnMbTaskModal

_VnMbSystemModal

_VnMbNoFocus

 Visual NPL Developers Guide 107

The following return values indicate which button was pressed in a message
box:

This flag indicates whether or not an input box is multiline:

7.1.8 Window Show Modes
These constants are used by 'VnSetNplWndShow and
'VnSetNplWndShow :

7.1.9 Color Constants
These constants tell the type of color returned from 'VnGetColor :

The RGB color constants are:

_VnIdIgnore _VnMbIdCancel

_VnIdNo _VnMbIdOk

_VnIdYes _VnMbIdRetry

_VnMbIdAbort

_VnMultiline

_VnHide _VnShow

_VnRGBColor _VnSysColor

_VnBlack _VnLightGreen

_VnBlue _VnLightMagenta

_VnCyan _VnLightRed

_VnGray _VnLightYellow

_VnGreen _VnMagenta

_VnLightBlue _VnRed

_VnLightCyan _VnYellow

_VnLightGray _VnWhite

108 Visual NPL Developers Guide

The system color constants are:
_VnActiveBorder _VnInactiveBorder

_VnActiveTitleBar _VnInactiveTitleBar

_VnAppWorkspace _VnMenuBar

_VnButtonFace _VnMenuText

_VnButtonShadow _VnScrollBars

_VnButtonText _VnTitleBarText

_VnDesktop _VnWindowBackground

_VnGrayText _VnWindowFrame

_VnHighlight _VnWindowText

_VnHighlightText

7.1.10 Standard Property Values
Empty object and null string values as as follows:

Boolean values are as follows ("True" and "False" also work in VB 4.0):

Alignment options are as follows:

Border styles are as follows:

_VnNothing$ _VnNull$

_VnTrue _VnFalse

_VnCenter _VnLeftJustify

_VnRightJustify

_VnFixedDouble _VnNone

_VnFixedSingle _VnSizable

 Visual NPL Developers Guide 109

Mouse pointer types are as follows:

Window states are as follows:

Check box states are as follows:

7.1.11 Common Dialog Flags
Constants for the Flags property for the ShowOpen and ShowSave common
dialogs are:

_VnArrow _VnSizeNeSw

_VnCrosshair _VnSizeNS

_VnDefault _VnSizeNwSe

_VnHourglass _VnSizePointer

_VnIBeam _VnSizeWE

_VnIconPointer _VnUpArrow

_VnNoDrop

_VnMaximized _VnMinimized

_VnNormal

_VnChecked _VnGrayed

_VnUnchecked

_cdlOFNAllowMultiselect _cdlOFNNoDereferenceLinks

_cdlOFNCreatePrompt _cdlOFNNoReadOnlyReturn

_cdlOFNExplorer _cdlOFNNoValidate

_cdlOFNExtensionDifferent _cdlOFNOverwritePrompt

_cdlOFNFileMustExist _cdlOFNPathMustExist

_cdlOFNHelpButton _cdlOFNReadOnly

_cdlOFNHideReadOnly _cdlOFNShareAware

_cdlOFNNoChangeDir _cdOFNLongNames

110 Visual NPL Developers Guide

Flags property constants for the ShowFont common dialog are:

Flags property constants for the ShowColor common dialog are:

Flags property constants for the ShowPrinter common dialog are:

Constants for the HelpCommand property for the ShowHelp common dialog
are:

7.2 Records
The record to hold change-list entries is:

_cdlCFANSIOnly _cdlCFNoVectorFonts

_cdlCFBoth _cdlCFPrinterFonts

_cdlCFEffects _cdlCFScalableOnly

_cdlCFFixedPitchOnly _cdlCFScreenFonts

_cdlCFForceFontExist _cdlCFHelpButton

_cdlCFLimitSize _cdlCFTTOnly

_cdlCFNoSimulations _cdlCFWYSIWYG

_cdCClFullOpen _cdlCCRGBInit

_cdlCCPreventFullOpen _cdlCCShowHelp

_cdlPDAllPages _cdlPDPageNums

_cdlPDCollate _cdlPDPrintSetup

_cdlPDDisablePrintToFile _cdlPDPrintToFile

_cdlPDHidePrintToFile _cdlPDReturnDC

_cdlPDNoPageNums _cdlPDReturnIC

_cdlPDNoSelection _cdlPDReturnDefault

_cdlPDNoWarning _cdlPDSelection

_cdlPDHelpButton _cdlPDUseDevModeCopies

_cdlHelpCommand _cdlHelpIndex

_cdlHelpContents _cdlHelpKey

_cdlHelpContext _cdlHelpPartialKey

_cdlHelpContextPopup _cdlHelpQuit

_cdlHelpForceFile _cdlHelpSetContents

_cdlHelpHelpOnHelp _cdlHelpSetIndex

 Visual NPL Developers Guide 111

RECORD VnChangedList
 FIELD Flag$1
 FIELD App$8
 FIELD Form$40
 FIELD Control$40
 FIELD ChgValue$40
 FIELD ChgValWhole$1
END RECORD VnChangedList

The record to hold a list of the controls created, used by 'VnCreateCtrls ,
is:

RECORD VnControlsCreated
 FIELD CreatedCtrlName$40
END RECORD VnControlsCreated

The record to hold a list of information about VB control properties, used by
'VnGetPropInfoList , is:

RECORD VnProperties
 FIELD Name$20
 FIELD DataType$1
 FIELD RunTimeAccess$1
 FIELD IsArray$1
 FIELD Default$20
 FIELD PropValue$40
END RECORD VnProperties

The record to hold a list of controls for a given form, used by
'VnGetFormCtrlList , is:

RECORD VnFormControls
 FIELD FormCtrlName$40
 FIELD FormCtrlTabIndex$1
 FIELD FormCtrlVisible$1
 FIELD FormCtrlType$3
 FIELD FormCtrlProp$80
END RECORD VnFormControls

112 Visual NPL Developers Guide

The record to hold a list of loaded forms, used by
'VnGetLoadedFormList , is:

RECORD VnLoadedForms
 FIELD LoadedFormName$40
 FIELD LoadedFormCaption$40
 FIELD LoadedFormVisible$1
END RECORD VnLoadedForms

The record to hold a list of printers, used by 'VnGetPrinterList , is:

RECORD VnPrinters
 FIELD PrinterDeviceName$40
 FIELD PrinterDriverName$8
 FIELD PrinterPort$5
END RECORD VnPrinters

The record to hold a generic collection, used by 'VnGetCollectionList ,
is:

RECORD VnCollection
 FIELD CollectionProp$60
END RECORD VnCollection

7.3 Variables
Variables for handling errors are:

VnError
VnErrMethod
VnErrMsg$80

Variables for returning the change list are:

VnChgNo
VnChgList$(0)# RECORDLENGTH(VnChangedList)

Variables for reporting the controls created are:

VnNumCtrlsCreated
VnCtrlsCreated$(0)# RECORDLENGTH(VnControlsCreated)

Variables for reporting properties for a given control are:

VnNumProps
VnPropInfo$(0)# RECORDLENGTH(VnProperties)

 Visual NPL Developers Guide 113

Variables for reporting controls for a given form are:

VnNumFormCtrls
VnFormCtrl$(0)# RECORDLENGTH(VnFormControls)

Variables for reporting loaded forms are:

VnNumLoadedForms
VnLoadedForm$(0)# RECORDLENGTH(VnLoadedForms)

Variables for reporting printers are:

VnNumPrinters
VnPrinter$(0)# RECORDLENGTH(VnPrinters)

Variables for reporting collections are:

VnNumMembers
VnMembeVnSysColorIndexRECORDLENGTH(VnCollection)

Variables for handling colors are:

Variables for reporting control value changes are:

VnBlueVal VnRGBColor(16)

VnColor$16 VnRGBColorIndex

VnColorSrc VnSysColor$(19)16

VnGreenVal VnSysColor(19)

VnRedVal VnSysColorIndex

VnRGBColor$(16)13

VnKey$1 VnKeyType$1

VnKeyin$5 VnKeyWin$1

VnKeyinMode$1 VnShift

VnKeyTran$5="True"

114 Visual NPL Developers Guide

The variable for handling focus is:

VnVbHasControl$1

This variable used by 'VnPrintTo should have room for an INPUT
SCREEN of 24 rows by 80 columns (= 3248 for 24 rows by 132 columns):

VnPrint$2080

7.4 Subroutines
The following table lists the NPL subroutines grouped according to the type of
operation they perform.
Operation Subroutine

Application
Connections

'VnClose

'VnCloseAll

'VnGetAppNum

'VnOpen

'VnSetAppNum

Management of the NPL
Window

'VnGetNplWndPos

'VnGetNplWndShow

'VnGetNplWndSize

'VnGetNplWndTitle$

'VnSetNplWndPos

'VnSetNplWndShow

'VnSetNplWndSize

'VnSetNplWndTitle

Property and Method Access 'VnAddItems

'VnGetAlf$

'VnGetNum

'VnMethod

'VnSetAlf

'VnSetNum

Record Access 'VnGetRec$

'VnGetRecSubset

'VnSetRec

Object Access 'VnFreeObj

'VnGetObj$

'VnIsObj$

'VnSetObj

Font Translation 'VnGetTran$ 'VnSetTran

Change-List Access 'VnClearChgList 'VnGetChgList

 Visual NPL Developers Guide 115

Color Manipulation 'VnGetColor

'VnSetRGB

'VnSetSysColor

Message Boxes and Input
Boxes

'VnInpBox$ 'VnMsgBox

Creating Controls “On The
Fly”

'VnAt$

'VnCreateCtrls

'VnDestroyCtrl

'VnInputScreen

'VnPrintAt

'VnPrintBox

'VnPrintCtrl

'VnPrintTo

'VnSetRowsCols

VB List Access 'VnGetCollectionList

'VnGetFormCtrlList

'VnGetLoadedFormList

'VnGetPrinterList

'VnGetPropInfoList

Event-Driven Support 'VnSleep 'VnWakeup

Error Handling 'VnErrFunc

'VnErrNum

'VnGetVbError

Miscellaneous 'VnCenter

'VnCmd

'VnConvNum$

'VnDetect

'VnGetVer$

'VnObj$

'VnObj3$

Table 7.7 NPL Subroutines by Type

The remainder of this chapter contains detailed discussions of each of these
routines.

116 Visual NPL Developers Guide

7.4.1 'VnAddItems
PROCEDURE 'VnAddItems (

/POINTER _Object$,
/POINTER Items $())

_Object$
List box, combo box, or grid to which to add the items

Items$()
Items to be added to _Object$

This procedure adds an array of items to a list box, combo box or grid by
calling the VB AddItem method of the object for each item in the array.
'VnMethod is used to call the AddItem method, so none of the array
elements can contain the global constant _VnDelim$, which is used to
separate parameters when calling methods.
The items are appended to the list maintained by the object unless the object
specifies otherwise. For example, if the Sorted property of a list box or combo
box is True then the items will be inserted into the list at the appropriate
position.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnAddItems("MyForm.Colors", VnRGBColor$())

'VnMethod

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 117

7.4.2 'VnAt$
FUNCTION 'VnAt$ (

/POINTER _Row,
/POINTER _Col)

_Row
Row number.

_Col
Column number.

This function emulates the NPL AT(x,y) function when embedded in a
PRINT statement. It returns characters which, when embedded in the
VnPrint$ buffer, cause explicit positioning of the following text when
VnPrint$ is subsequently sent to VB using the 'VnPrintTo function.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

PRINT TO VnPrint$;'VnAt$(2,4);"Name:"
PRINT TO VnPrint$;'VnAt$(4,4);"Address:"
PRINT TO VnPrint$;'VnAt$(10,4);"Phone:"
'VnPrintTo("MyForm")

'VnPrintAt
'VnPrintTo
'VnSetRowsCols

Syntax

Parameters

Description

Return Values

Example

See Also

118 Visual NPL Developers Guide

7.4.3 'VnCenter
PROCEDURE 'VnCenter (

/POINTER _Object$)

_Object$
The form object to be centered.

This procedure centers a form on the screen. It does this by setting the Top and
Left properties of the form based on the current sizes of the screen and the
form.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnCenter("MainForm")

VB procedure VnCenter

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 119

7.4.4 'VnClearChgList
PROCEDURE 'VnClearChgList

This procedure clears the current change list, effectively erasing all changes that
have been recorded so far.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnClearChgList

'VnCmd
'VnGetChgList

Syntax

Description

Return Values

Example

See Also

120 Visual NPL Developers Guide

7.4.5 'VnClose
PROCEDURE 'VnClose

This procedure closes a connection between an NPL program and a VB
program as created by 'VnOpen . The current application number is used to
determine which connection is being closed. This value can be retrieved and/or
set by the 'VnGetAppNum and 'VnSetAppNum procedures, respectively.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnClose

'VnCloseAll
'VnGetAppNum
'VnOpen
'VnSetAppNum

Syntax

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 121

7.4.6 'VnCloseAll
PROCEDURE 'VnCloseAll

This procedure closes all connections between an NPL program and one or
more VB programs as created by 'VnOpen .
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnCloseAll

'VnClose
'VnGetAppNum
'VnOpen
'VnSetAppNum

Syntax

Description

Return Values

Example

See Also

122 Visual NPL Developers Guide

7.4.7 'VnCmd
PROCEDURE 'VnCmd (

/POINTER _Object$,
Cmd$20,

/POINTER _Value$)

_Object$

The object on which the command will be performed.

Cmd$
The command to be performed.

_Value$
Command-specific parameters.

This procedure has three purposes:

• It is the central routine used in change-list programming.

• It is used to issue some special commands to VB that can’t be performed by setting
properties or calling methods.

• It is used to add developer-defined commands to perform specialized tasks.

For more information, see “Remarks.”
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Syntax

Parameters

Description

Return Values

 Visual NPL Developers Guide 123

VnChgNo and VnChgList$() will be set for the VB Show, Show
Modeless, and Set Focus commands.
In the case of the change-list commands (Show, Show Modeless , and
Set Focus) the procedure will only return when a Hot control has been
triggered in the VB program. In this case, the VnChgNo variable will indicate
the number of entries in the VnChgList$() array. In all other cases, the
procedure returns immediately and VnChgNo and VnChgList$() are not
affected.

Special VB Commands Description

Load Loads a form into memory without
showing it. This command can be
used when you want to preload a
form at program startup. The
form can then be displayed or
hidden when it is needed without
incurring the time penalty of
loading the form each time. In
practice, this command is seldom
used because the load time for
most forms is negligible. Also,
because any reference to a form
(that is, setting and getting

Remarks

Change-List Commands Description

Show Shows a form modally (the user can only access the form
being shown) and clears the change list. The focus is set to
the first control in the tab order. The _Value$
parameter is not used for this command.

Show Modeless Shows a form modelessly (the user can still access any
form on the screen) and clears the change list. The focus is
set to the first control in the tab order. The _Value$
parameter is not used for this command.

Set Focus Shows a form modelessly (the user can still access any
form on the screen) and clears the change list. The focus is
set to the first control in the tab order if just a form name is
passed in _Object$ or to the specified control if a form
name and a control name are passed in _Object$. The
_Value$ parameter is not used for this command

Resume Returns control to the form and the control that currently
have the focus without clearing the change list. The
_Object$ and _Value$ parameters are not used for
this command

124 Visual NPL Developers Guide

properties, calling methods, and
so on) causes the form to be
loaded, it is recommended that
this command be avoided. The
_Value$ parameter isn’t used for
this command.

Unload Closes a form and removes it from
memory. It may not always be
necessary to unload your forms
using this command as some user
interface actions will
automatically unload a form. For
example, selecting the Close item
on the system menu of a form will
unload the form. On the other
hand, clicking the OK button of a
form will do nothing unless your
program tells it to. The _Value$
parameter is not used for this
command.

Clear Form Clears a form’s control values
and unloads all control array
members except the base control
(index number 0). This command
is used when generating screens
“on the fly”. The _Value$
parameter isn’t used for this
command.

Set Props Sets the values of one or more of
an object’s properties. The
_Value$ parameter contains a list
of property “name=value” pairs
separated by the delimiter
character _VnDelim$, the default
for which is the “pipe” symbol
(|)..

Load Picture Loads a graphics file into a
Picture, Icon, or DragIcon
property. The _Value$ parameter
is the name of the graphics file.
This command calls the VB
LoadPicture function. Most
graphics properties are set at
design time. Use this function
only when graphics need to be

 Visual NPL Developers Guide 125

changed at run time.

Obsolete Commands (from Visual
NPL 1.0)

 Description

Display Makes a form visible by setting
its Visible property to True.
Set the property directly rather
than using this command.

Hide Makes a form invisible by
setting its Visible property to
False. Set the property directly
rather than using this command.

Add Item Adds an item to a list box or
combo box. Call the object’s
AddItem method with VnMethod
rather than using this command.

Remove Item Removes an item from a list box
or combo box. Call the object’s
RemoveItem method with VnMethod
rather than using this command.

Clear Removes all items from a list
box or combo box. Call the
object’s Clear method with
VnMethod rather than using this
command.

Any command other than the those listed in this section is considered to be a
developer-defined command and is passed on to the VnDevDef function in VB.

'VnCmd("MainForm","Show"," ")
'VnCmd("MainForm","Show Modeless"," ")
'VnCmd("MainForm.InputField","Set Focus"," ")
'VnCmd(" ","Resume"," ")
'VnCmd("MainForm","Load"," ")
'VnCmd("MainForm","Unload"," ")
'VnCmd("MainForm","Clear Form"," ")
'VnCmd("MainForm","Set Props","Top=100|Left=100")
'VnCmd("MainForm.Icon","Load Picture","SWOOSH.ICO")
'VnCallMethod

Examples

See Also

126 Visual NPL Developers Guide

7.4.8 'VnConvNum$
FUNCTION 'VnConvNum$ (

/POINTER _Value)

_Value
Numeric value to be converted.

This procedure converts a numeric value into a string with no leading or trailing
blanks.
Returns the numeric value as a string.
PRINT 'VnConvNum$(32);'VnConvNum$(76)

3276

Syntax

Parameters

Description

Return Value
Example

 Visual NPL Developers Guide 127

7.4.9 'VnCreateCtrls
PROCEDURE 'VnCreateCtrls (

/POINTER _Form$,

/POINTER _Control$,

/POINTER _NumCtrls)

_Form$
Form on which to create the controls.

_Control$
Name of the control array to use.

_NumCtrls
Number of controls to create.

Although VB is especially useful for creating forms and controls at design time,
it can also create these objects at run time. This is called creating controls “on
the fly.” The 'VnCreateCtrls procedure creates one or more controls by
duplicating a base control. The new controls copy all of the properties of the
base control except Index and TabIndex, which are both set to the next
available value by VB. Setting properties of the base control prior to the
'VnCreateCtrls call permits those properties to be replicated in the new
controls. After a control is created, it can be displayed at a particular position
on the form by calling the 'VnPrintCtrl procedure (or by using
'VnSetAlf and 'VnSetNum).

The maximum number of elements per control array is 255.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

; create 3 label controls
'VnCreateCtrls("VnplChar","Label",2)
'VnPrintCtrl("Frm.Label(1)",2,2,1,1,"Name:"," ")
'VnPrintCtrl("Frm.Label(2)",4,2,1,1,"Address:"," ")
'VnPrintCtrl("Frm.Label(3)",6,2,1,1,"Phone:"," ")

Syntax

Parameters

Description

Note Although the Visual NPL 1.0 'VnCreateCtrl procedure created a single
control at a time, the Visual NPL 2.0 'VnCreateCtrls procedure creates multiple
controls. Notice the difference in the procedure names.

Return Values

Example

128 Visual NPL Developers Guide

'VnDestroyCtrl
'VnPrintAt
'VnPrintBox
'VnPrintCtrl
'VnPrintTo

See Also

 Visual NPL Developers Guide 129

7.4.10 'VnDestroyCtrl
PROCEDURE 'VnDestroyCtrl (

/POINTER _Object$)

_Object$
A control created by 'VnCreateCtrls .

This procedure is used to destroy the controls created by 'VnCreateCtrls .
The control should always be a member of an array and you should never
destroy element 0 of the array. 'VnDestroyCtrl is called implicitly when
the form is unloaded.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnDestroyCtrl("Frm.Label(1)")
'VnDestroyCtrl("Frm.Label(2)")

'VnCreateCtrls
'VnPrintAt
'VnPrintBox
'VnPrintCtrl
'VnPrintTo

Syntax

Parameters

Description

Return Values

Example

See Also

130 Visual NPL Developers Guide

7.4.11 'VnDetect
DEFFN 'VnDetect

This DEFFN is used to detect whether or not the NPL library (VNPL16.DLL)
is loaded. Calling 'VnDetect and handling the error condition is used to
determine whether the NPL library is present or not. If it doesn’t exist, then
modules requiring the library are not loaded.
'VnDetect can also be called by its number, which is 32116.

None.
GOSUB 'VnDetect
ERROR GOSUB 'NoLibrary

Syntax

Description

Return Value
Example

 Visual NPL Developers Guide 131

7.4.12 'VnErrFunc
PROCEDURE 'VnErrFunc

This procedure puts the error message corresponding to the current error
number (VnError) into VnErrMsg$. If the current error handling method
(VnErrMethod) is set to _VnErrCallFunc , the error message will also
be displayed using the 'VnMsgBox function.
This is a developer-modifiable routine that exists in the “VnplDev” module.
To change the text of the error messages simply change the text that appears
within this function. This can be useful for handling foreign-language issues.
This procedure is called by almost all of the other NPL routines whenever an
error occurs. It should not be called directly from your NPL program.
None
'VnErrNum

Syntax

Description

Return Values
See Also

132 Visual NPL Developers Guide

7.4.13 'VnErrNum
FUNCTION 'VnErrNum

This function returns an NPL error code based on the current error number
(VnError). If the current error handling method (VnErrMethod) is set to
_VnErrSignalError , this function is called whenever an error occurs in
one of the other NPL routines as follows:
RETURN ERROR ('VnErrNum)

By default, this function returns an error code in the range 601-627. You can
change this function if the range conflicts with error codes already in use by
your program.
This procedure is called by almost all of the other NPL routines whenever an
error occurs. It should not be called directly from your NPL program.
The NPL error code corresponding to the current value of VnError .
'VnErrFunc

Syntax

Description

Return Values
See Also

 Visual NPL Developers Guide 133

7.4.14 'VnFreeObj
PROCEDURE 'VnFreeObj (

/POINTER Object$)

Object$
Object reference to be freed.

This procedure frees an object reference created by 'VnGetObj$.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM Obj$_VnObjLen
;
Obj$='VnGetObj$("MainForm.OKButton")
;
PRINT 'VnGetNum('VnObj$(Obj$,"Visible"))
;
'VnFreeObj(Obj$)

'VnGetObj$
'VnIsObj
'VnSetObj

Syntax

Parameters

Description
Return Values

Example

See Also

134 Visual NPL Developers Guide

7.4.15 'VnGetAlf$
FUNCTION 'VnGetAlf$ (

/POINTER _Object$)

_Object$
The property to get.

This function returns the value of a property as a string. If it’s not a string
property, it will be converted to one.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

This function also returns the property value as a string.
PRINT 'VnGetAlf$("MainForm.Caption")

'VnGetNum
'VnGetObj$
'VnSetAlf
'VnSetNum
'VnSetObj

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 135

7.4.16 'VnGetAppNum
FUNCTION 'VnGetAppNum

This function returns the current application number as set by the most recent
call to 'VnOpen or 'VnSetAppNum . If there is no current application the
function returns -1. This function is intended for use with NPL programs that
connect to multiple VB programs.
This function returns the current application number.
AppNum='VnGetAppNum

'VnClose
'VnCloseAll
'VnOpen
'VnSetAppNum

Syntax

Description

Return Values
Example

See Also

136 Visual NPL Developers Guide

7.4.17 'VnGetChgList
PROCEDURE 'VnGetChgList

This procedure retrieves the current change list. VnChgNo and
VnChgList$() will be set appropriately.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnGetChgList

'VnCmd
'VnClearChgList

Syntax

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 137

7.4.18 'VnGetCollectionList
PROCEDURE 'VnGetCollectionList (

/POINTER _Object$,
/POINTER _PropName$)

Object$
Collection from which to get property values.

_PropName$
Property of which to get the values.

This procedure gets the value of a particular property for each member of a
collection. The number of elements is returned in the VnNumMembers global
variable and the values are returned in the VnMember$() global variable.
Each element of VnMember$() is a VnCollection record, which consists
of one string field named CollectionProp$. This field will hold the
property value for each member.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

VnMember$() Property values for each member

VnNumMembers Number of members in the collection

DIM I
;
'VnGetCollectionList("Forms","Name")
;
PRINT "Names of loaded forms:"
FOR I=1 TO VnNumMembers
 PRINT VnMember$(I) .CollectionProp$
NEXT I

'VnGetFormCtrlList
'VnGetLoadedFormList
'VnGetPrinterList
'VnGetPropInfoList

Syntax

Parameters

Description

Return Values

Example

See Also

138 Visual NPL Developers Guide

7.4.19 'VnGetColor
PROCEDURE 'VnGetColor (

/POINTER _Color)

_Color
A color value as used by VB.

This procedure breaks a color value into its component parts. The global
variable VnColorSrc is set as follows to indicate the type of color value:

_VnRGBColor RGB color
_VnSysColor System color
0 Neither an RGB nor a system color

If the type is RGB color, then the VnRedVal , VnGreenVal , and
VnBlueVal global variables will be set to the component color parts. If the
color is one of the standard RGB colors, then the VnRGBColorIndex global
variable will be set to the index of the color value in the VnRGBColor array
and the VnColor$ global variable will be set to the name of the color.
If the type is a system color, then the VnSysColorIndex global variable
will be set to the index of the color value in the VnSysColor array. The
VnColor$ global variable will be set to the name of the color.

If it’s neither an RGB color nor a system color, then no other global variables
are set.

Value Meaning

VnColorSrc The type of color, RGB, system, or other

VnRedVal Red component for RGB colors

VnGreenVal Green component for RGB colors

VnBlueVal Blue component for RGB colors

VnRGBColorIndex Index into VnRGBColor for RGB colors

VnSysColorIndex Index into VnSysColor for system colors

VnColor$ Name of the color for RGB and system colors

Syntax

Parameters

Description

Return Values

 Visual NPL Developers Guide 139

DIM Color
;
; get the background color for the main form
; and break it into its component parts
'VnGetColor('VnGetNum("MainForm.BackColor"))
;
; print the color source value
PRINT "Color Source: " ;VnColorSrc
;
; print the color information
SWITCH VnColorSrc
 ;
 CASE 0
 PRINT "Unknown color"
 ;
 CASE _VnRGBColor
 PRINT "RGB Color: " ;
 IF VnRGBColorIndex<>0
 PRINT VnColor$
 ELSE
 PRINT VnRedVal ;VnGreenVal;VnBlueVal
 END IF
 ;
 CASE _VnSysColor
 PRINT "System Color:" ;VnColor$
 ;
END SWITCH

'VnSetRGB
'VbSetSysColor

Example

See Also

140 Visual NPL Developers Guide

7.4.20 'VnGetFormCtrlList
PROCEDURE 'VnGetFormCtrlList (

/POINTER _Object$,
/POINTER _PropName$)

_Object$
Form for which to get controls.

_PropName$
Control property for which to get values.

This procedure gets this information for each control on a form:
• The name of the control

• The tab index of the control

• Whether or not the control is visible

• The type of control

• The value of a specific property

The number of controls is returned in the VnNumFormCtrls global variable
and the control information is returned in the VnFormCtrl$() global
variable. Each element of VnFormCtrl$() is a VnFormControls
record, which consists of the following fields:
FormCtrlName$
FormCtrlTabIndex$
FormCtrlVisible$
FormCtrlType$
FormCtrlProp$

These fields correspond one-for-one with the preceding list.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM I
;
'VnGetFormCtrlList("MainForm","Top")
;
PRINT "Control Tops:"
FOR I=1 TO VnNumFormCtrls
 PRINT VnFormCtrl$(I) .FormCtrlName$;
 PRINT VnFormCtrl$(I) .FormCtrlProp$
NEXT I

Syntax

Parameters

Description

Return Values

Example

 Visual NPL Developers Guide 141

'VnGetCollectionList
'VnGetLoadedFormList
'VnGetPrinterList
'VnGetPropInfoList

See Also

142 Visual NPL Developers Guide

7.4.21 'VnGetLoadedFormList
PROCEDURE 'VnGetLoadedFormList

This procedure gets the following information for each form that is currently
loaded:
• The name of the form

• The form’s caption

• Whether or not the form is visible

The number of forms is returned in the VnNumLoadedForms global variable
and the form information is returned in the VnLoadedForm$() global
variable. Each element of VnLoadedForm$() is a VnLoadedForm
record, which consists of the following fields:
LoadedFormName$
LoadedFormCaption$
LoadedFormVisible$

These fields correspond one-for-one with the preceding list.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM I
;
'VnGetLoadedFormList
;
PRINT "Loaded forms:"
FOR I=1 TO VnNumLoadedForms
 PRINT VnLoadedForm$(I) .LoadedFormName$;" ";
 PRINT VnLoadedForm$(I) .LoadedFormCaption$;" ";
 PRINT VnLoadedForm$(I) .LoadedFormVisible$
NEXT I

'VnGetCollectionList
'VnGetFormCtrlList
'VnGetPrinterList
'VnGetPropInfoList

Syntax

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 143

7.4.22 'VnGetNplWndPos
PROCEDURE 'VnGetNplWndPos (

/POINTER Left,
/POINTER Top)

Left
Left coordinate of the NPL run-time window.

Top
Top coordinate of the NPL run-time window.

This procedure gets the position (upper left corner) of the NPL run-time
window. All coordinates are in twips (1440 per inch).
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM Left ,Top
;
'VnGetNplWndPos(Left,Top)
;
PRINT Left ,Top

'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

Syntax

Parameters

Description

Return Values

Example

See Also

144 Visual NPL Developers Guide

7.4.23 'VnGetNplWndSize
PROCEDURE 'VnGetNplWndSize (

/POINTER Width,
/POINTER Height)

Width
Width of the NPL run-time window.

Height
Height of the NPL run-time window.

This procedure gets the size (width and height) of the NPL run-time window.
All sizes are in twips (1,440 per inch).
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM Width ,Height
;
'VnGetNplWndSize(Width,Height)
;
PRINT Width ,Height

'VnGetNplWndPos
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 145

7.4.24 'VnGetNplWndShow
FUNCTION 'VnGetNplWndShow

This procedure determines whether or not the NPL run-time window is visible.
Value Meaning

_VnShow Returned if the NPL run-time window is visible

_VnHide Returned if the NPL run-time window is not visible

DIM Ret
;
IF 'VnGetNplWndShow=_VnShow
 Ret='VnMsgBox("Visible","Runtime Window",0)
ELSE
 Ret='VnMsgBox("Invisible","Runtime Window",0)
END IF

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

Syntax

Description
Return Values

Example

See Also

146 Visual NPL Developers Guide

7.4.25 'VnGetNplWndTitle$
FUNCTION 'VnGetNplWndTitle$

This function takes as a parameter the title of the NPL run-time window.
This procedure gets the title (caption) of the NPL run-time window.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM Title$100
;
'VnGetNplWndTitle$(Title$)
;
PRINT Title$

'VnGetNplWndPos
'VnGetNplWndShow
'VnGetNplWndSize
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

Syntax

Parameters
Description

Return Values

Example

See Also

 Visual NPL Developers Guide 147

7.4.26 'VnGetNum
FUNCTION 'VnGetNum (

/POINTER _Object$)

_Object$
The property to get.

This function returns the value of a property as a number. If it’s not a numeric
property, it will be converted to one if possible.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

This function also returns the value of the property as a number.
PRINT 'VnGetNum("MainForm.Top")

'VnGetAlf$
'VnGetObj$
'VnSetAlf
'VnSetNum
'VnSetObj

Syntax

Parameters

Description

Return Values

Example

See Also

148 Visual NPL Developers Guide

7.4.27 'VnGetObj$
FUNCTION 'VnGetObj$ (

/POINTER _Object$)

_Object$
Object for which to get a reference.

This function returns an object reference for a particular object. When you are
done with the object, you must call 'VnFreeObj to free the reference.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

This function also returns the object reference for the object.
DIM Obj$_VnObjLen
;
Obj$='VnGetObj$("MainForm.OKButton")
;
PRINT 'VnGetNum('VnObj$(Obj$,"Visible"))
;
'VnFreeObj(Obj$)

'VnFreeObj
'VnIsObj
'VnSetObj

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 149

7.4.28 'VnGetPrinterList
PROCEDURE 'VnGetPrinterList

This procedure gets the following information for each printer in the Printers
collection:
• The name of the printer device

• The name of the printer driver

• The printer port

The number of printers is returned in the VnNumPrinters global variable
and the printer information is returned in the VnPrinter$() global variable.
Each element of VnPrinter$() is a VnPrinters record, which consists
of the following fields:
PrinterDeviceName$
PrinterDriverName$
PrinterPort$

These fields correspond one-for-one with the preceding list.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM I
;
'VnGetPrinterList
;
PRINT "Printers:"
FOR I=1 TO VnNumPrinters
 PRINT VnPrinter$(I) .PrinterDeviceName$;" ";
 PRINT VnPrinter$(I) .PrinterDriverName$;" ";
 PRINT VnPrinter$(I) .PrinterPort$
NEXT I

'VnGetCollectionList
'VnGetFormCtrlList
'VnGetLoadedFormList
'VnGetPropInfoList

Syntax

Description

Return Values

Example

See Also

150 Visual NPL Developers Guide

7.4.29 'VnGetPropInfoList
PROCEDURE 'VnGetPropInfoList (

/POINTER _Object$)

_Object$
Object for which to get properties.

This procedure gets the following information for each property of a particular
object:
• The name of the property

• The data type of the property

• How the property can be accessed at run time

• Whether or not the property is an array

• The property’s current value

The number of properties is returned in the VnNumProps global variable and
the property information is returned in the VnPropInfo$() global variable.
Each element of VnPropInfo$() is a VnProperties record, which
consists of the following fields:
Name$
DataType$
RunTimeAccess$
IsArray$
PropValue$

These fields correspond one-for-one with the preceding list.

The VnProperties record also contains a field named Default$, which
was used in Visual NPL 1.0 to retrieve the property’s default value. This is no longer
supported and this field will always be blank.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Syntax

Parameters

Description

Note

Return Values

 Visual NPL Developers Guide 151

DIM I
;
'VnGetPropInfoList("MainForm")
;
PRINT "MainForm properties:"
FOR I=1 TO VnNumProps
 PRINT VnPropInfo$(I) .Name$;" ";
 PRINT VnPropInfo$(I) .DataType$;" ";
 PRINT VnPropInfo$(I) .PropValue$
NEXT I

'VnGetCollectionList
'VnGetFormCtrlList
'VnGetLoadedFormList
'VnGetPrinterList

Example

See Also

152 Visual NPL Developers Guide

7.4.30 'VnGetRec$
FUNCTION 'VnGetRec$ (

/POINTER _Object$,
/POINTER _RecName$)

_Object$
The form from which to get the record fields.

_RecName$
The name of the record to use when getting fields.

This function returns all of the field values for a particular NPL record from the
controls on a form. The order, placement, and data types for the values will be
as declared in the PUBLIC record named in the _RecName$ parameter.

To identify a control on the form as being a record field, put the record and field
name (separated by a period and omitting any dollar signs) into the control’s
Tag property. For example, putting CustRec.Address into the Tag
property of a TextBox control will cause the control’s value to be retrieved into
the Address field of a buffer formatted according to record CustRec.

When using this procedure, all fields defined in the NPL record must have a
corresponding control on the VB form, or an error will be reported.

This function returns the buffer containing the record values.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM CustRec$1000
;
CustRec$= 'VnGetRec("MyForm","Customer")

'VnGetRecSubset
'VnSetRec

Syntax

Parameters

Description

Note

Return Values

Example

See Also

 Visual NPL Developers Guide 153

7.4.31 'VnGetRecSubset
PROCEDURE 'VnGetRecSubset (

/POINTER _Object$,
/POINTER _RecName$,
/POINTER Buffer$)

_Object$
Form from which to get the record fields.

_RecName$
Name of the record to use when getting fields.

Buffer$
Buffer into which to put the record values.

This procedure is a variation on the 'VnGetRec$ function. Although the
'VnGetRec$ function requires all fields in the record to be defined in the Tag
properties of the target form, the 'VnGetRecSubset procedure does not.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM CustRec$1000
;
'VnGetRecSubset("MyForm","Customer",CustRec$)

'VnGetRec
'VnSetRec

Syntax

Parameters

Description

Return Values

Example

See Also

154 Visual NPL Developers Guide

7.4.32 'VnGetTran$
FUNCTION 'VnGetTran$

This function gets the current font translation table. The translation table
consists of zero or more pairs of characters in which the first is the NPL
character and the second is the VB character.
This function returns the current font translation table.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM Tran$1000
;
Tran$='VnGetTran

'VnSetTran

Syntax

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 155

7.4.33 'VnGetVbError
FUNCTION 'VnGetVbError (

/POINTER ErrorMsg$)

ErrorMsg$
The most recent VB error message.

When one of the NPL routines generates an error, it could be due to an error in
VB. If this is the case, then the error code _VnErrVbError will be returned.
In this case, the 'VnGetVbError function can be called to get the VB error
information. The function returns the VB error code and sets the ErrorMsg$
parameter to the VB error message.
This function returns the most recent VB error code.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM Ret ,VbError$100
;
Ret=result of some Visual NPL operation
;
IF Ret=_VnErrVbError
 VbRet= 'VnGetVbError(VbError$)
 PRINT "VB error " ;VbRet;" - ";VbError$
END IF

Syntax

Parameters

Description

Return Values

Example

156 Visual NPL Developers Guide

7.4.34 'VnGetVer$
FUNCTION 'VnGetVer$

This function returns the version number of Visual NPL. This string is a three-
part number of the format X.YY.ZZ where:
• X is the major version number

• YY is the minor version number

• ZZ is the subminor version number

A typical output result might be 2.00.04.
This function returns the Visual NPL version number.
PRINT "I'm using Visual NPL, Version ";'VnGetVer$

Syntax

Description

Return Values
Example

 Visual NPL Developers Guide 157

7.4.35 'VnInpBox$
FUNCTION 'VnInpBox$ (

Title$80,
Prompt$80,
Flags,
/POINTER _InValue$)

Title$
Title (caption) of the input box window

Prompt$
Prompt within the input box window

Flags
Indicates that the value is either a single-line or a multiline value

_InValue$
Initial value

This function prompts the user for an input value, using a small form with a
single or multiline TextBox control. If the user clicks the OK button, the value
in the TextBox is returned. If the user clicks Cancel, an empty string is
returned.
To create a single-line input box, set the Flags parameter to 0. To create a
multiline input box, set the Flags parameter to _VnMultiline .
This function returns the value entered or an empty string if Cancel is clicked.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

DIM Answer$3
;
Answer$= 'VnInpBox("Delete Everything",
 "Are you sure, Yes or No? ”,
 0," ")
;
IF Answer="Yes"
 ; delete everything
END IF

'VnMsgBox

Syntax

Parameters

Description

Return Values

Example

See Also

158 Visual NPL Developers Guide

7.4.36 'VnInputScreen
PROCEDURE 'VnInputScreen (

/POINTER _Object$,
/POINTER _Row,
/POINTER _Col,
Height,
Width)

_Object$
Object on which to draw the screen image

_Row
Row on which to start capturing the screen

_Col
Column on which to start capturing the screen

Height
The number of rows to capture

Width
The number of columns to capture

This procedure emulates a combination of the NPL INPUT SCREEN and
PRINT SCREEN commands, with the INPUT SCREEN being performed on
the NPL window and the PRINT SCREEN being performed on the VB object.
It could be used to pass the background of a NPL data-entry screen to VB.
Only text is transferred, no attributes or colors. Because this procedure uses
the VB Print method, the print data may be displayed to a form or a picture
box control, to a printer, or to the VB Debug window.

The NPL window need not be visible to have data displayed and captured by
'VnInputScreen .

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Syntax

Parameters

Description

Note

Return Values

 Visual NPL Developers Guide 159

; clear NPL screen
PRINT HEX(03)
;
; print text on NPL screen (need not be visible)
PRINT AT(2,4);"Name:"
PRINT AT(4,4);"Address:"
PRINT AT(6,4);"Phone:"
;
; transfer NPL screen text to a VB form
'VnInputScreen("MyForm",0,0,10,40)

'VnPrintAt
'VnPrintBox
'VnPrintCtrl
'VnPrintTo
'VnSetRowsCols

Example

See Also

160 Visual NPL Developers Guide

7.4.37 'VnIsObj$
FUNCTION 'VnIsObj$ (

/POINTER _Object$)

_Object$
The string that may or may not be an object reference

This procedure emulates a combination of the NPL INPUT SCREEN and
PRINT SCREEN commands, with the INPUT SCREEN being performed on
the NPL window and the PRINT SCREEN being performed on the VB object.
It could be used to pass the background of a NPL data-entry screen to VB.
Only text is transferred; no attributes or colors. Because this procedure uses
the VB Print method, the print data may be displayed to a form or a picture
box control, to a printer, or to the VB Debug window.

The NPL window need not be visible to have data displayed and captured by
'VnInputScreen .

This function determines whether or not a string is an object reference. An
object reference is a string that is:
• At least _VnObjLen characters long

• Starts with "VnOb"
• Ends with "bOnV"
The middle characters are the object reference; the wrapper is used to
distinguish objects from normal strings. If the preceding conditions are met,
then the function returns “Y,” otherwise, it returns “N.”
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Syntax

Parameters

Description

Note

Return Values

 Visual NPL Developers Guide 161

DIM Obj$_VnObjLen
;
PRINT 'VnIsObj$(Obj$);
;
Obj$='VnGetObj$("MainForm");
;
PRINT 'VnIsObj$(Obj$)
;
'VnFreeObj(Obj$)

'VnFreeObj
'VnGetObj

Example

See Also

162 Visual NPL Developers Guide

7.4.38 'VnMethod
PROCEDURE 'VnMethod (

/POINTER _Object$,
/POINTER _Parms$)

_Object$
Object and method to call.

_Parms$
Method parameters.

This procedure calls a method for a VB object. The method parameters are
passed as a list of items separated by the global constant _VnDelim$, the
default for which is the “pipe” symbol (|). There are actually three versions of
this routine—the procedure listed in the preceding section, a function that
returns a numeric, and a function that returns a string as follows:
PROCEDURE 'VnMethod(/POINTER _Object$,/POINTER _Parms$)
FUNCTION 'VnMethod(/POINTER _Object$,/POINTER _Parms$)
FUNCTION 'VnMethod$(/POINTER _Object$,/POINTER _Parms$)

Although most methods are called as procedures that simply perform some
operation on their object, some are used to do calculations and then return the
results. The version you use depends on the method being called.

'VnMethod is currently limited to passing its parameters into the method. Any
changes made to the parameters by the method will not be returned to your NPL program.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnMethod(“MainForm.ListBox.AddItem","One")
'VnMethod(“MainForm.Move","100|200")
N='VnMethod(“MainForm.TextWidth","Some text")

Syntax

Parameters

Description

Note

Return Values

Example

See Also

 Visual NPL Developers Guide 163

7.4.39 'VnMsgBox
FUNCTION 'VnMsgBox (

/POINTER _Title$,
/POINTER _Msg$,
Flags)

_Title$
Title (caption) of the message box window

_Msg$
Message to appear within the message box window

Flags
Icon and button mask

This function shows a message in a small window. You use the Flags
parameter to determine what type of icon (if any) to show beside the message as
well as which buttons to use. The icons available are as follows:

_VnMbIconStop
_VnMbIconQuestion
_VnMbIconExc lamation
_VnMbIconInformation

The button combinations that are available are as follows:
_VnMbOk
_VnMbOkCancel
_VnMbAbortRetryIgnore
_VnMbYesNoCancel
_VnMbYesNo
_VnMbRetryCancel

The possible return codes are as follows:
_VnMbIdOk
_VnMbIdCancel
_VnMbIdAbort
_VnMbIdRetry
_VnIdIgnore
_VnIdYes
_VnIdNo

This function returns an indication of which button was clicked.

Syntax

Parameters

Description

Return Values

164 Visual NPL Developers Guide

DIM Answer
;
Answer= 'VnMsgBox("Delete Everything","Are you sure?",
 _VnMbYesNo+_VnMbIconQuestion)
;
IF Answer=_VnIdYes
 ; Delete everything here
END IF

'VnInpBox

Example

See Also

 Visual NPL Developers Guide 165

7.4.40 'VnObj$
FUNCTION 'VnObj$ (

/POINTER _Name1$,
/POINTER _Name2$)

Name1$
The first part of an object name

Name2$
The second part of an object name

This function builds an object name from two parts by concatenating the two,
with the parts joined by a period. Neither part can be blank, as no checking is
done to handle the case of blank names. This is done in order to make the
routine as fast as possible.
This function returns a combined object name.
DIM Obj$_VnObjLen
;
Obj$='VnGetObj("MainForm")
;
PRINT 'VnGetAlf$('VnObj$(Obj$,"Name"))
;
'VnFreeObj(Obj$)

Syntax

Parameters

Description

Return Values
Example

166 Visual NPL Developers Guide

7.4.41 'VnObj3$
FUNCTION 'VnObj3$ (

/POINTER _Name1$,
/POINTER _Name2$,
/POINTER _Name3$)

Name1$
First part of an object name

Name2$
Second part of an object name

Name3$
Third part of an object name

This function builds an object name from three parts by concatenating the three,
with the parts joined by a period. None of the three parts can be blank, as no
checking is done to handle the case of blank names. This is done in order to
make the routine as fast as possible.
This function returns a combined object name.
DIM Form$20,Control$20,Property$20
;
Form$="SignOn"
Control$="Password"
Property$="Text"
;
PRINT 'VnGetAlf$('VnObj3$(Form$,Control$,Property$))

Syntax

Parameters

Description

Return Values
Example

 Visual NPL Developers Guide 167

7.4.42 'VnOpen
PROCEDURE 'VnOpen (

ExeName$260)

ExeName$
Name of the VB program to run

This procedure opens a link with a VB program. The ExeName$ parameter is
the base name of the VB executable file (the file name without the full path and
without the .EXE extension).
The procedure first looks for a connection control with this base name that is
waiting to be connected to. If it can’t find one, then it will look for the
executable file in the standard Windows search path and run it. It will then look
for the connection control again. If it still can’t find it, or if it couldn’t find or
run the executable, it generates a Visual NPL error. Otherwise, the connection
is made and your program continues on.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnOpen("BASENAME")

'VnClose
'VnCloseAll
'VnGetAppNum
'VnSetAppNum

Syntax

Parameters

Description

Return Values

Example

See Also

168 Visual NPL Developers Guide

7.4.43 'VnPrintAt
PROCEDURE 'VnPrintAt (

/POINTER _Object$,
/POINTER _Row,
/POINTER _Col,
/POINTER _Text$)

_Object$
The form on which to print

_Row
The row at which to print

_Col
The column at which to print

_Text$
The text to be printed

This procedure emulates the NPL PRINT AT statement by printing a string at
a specific location on a form.

The output from this procedure was buffered in Visual NPL 1.0; it is now sent to VB
immediately.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnPrintAt("MyForm",2,2,"Name:")
'VnPrintAt("MyForm",4,2,"Address:")
'VnPrintAt("MyForm",6,2,"Phone:")

'VnPrintBox
'VnPrintCtrl
'VnPrintTo
'VnSetRowsCols

Syntax

Parameters

Description

Note

Return Values

Example

See Also

 Visual NPL Developers Guide 169

7.4.44 'VnPrintBox
PROCEDURE 'VnPrintBox (

/POINTER _Object$,
/POINTER _Row,
/POINTER _Col,
/POINTER _Height,
/POINTER _Width,
/POINTER _Color)

_Object$
The form on which to print the box

_Row
The left row at which to print the box

_Col
The top column at which to print the box

_Height
The number of rows in the box

_Width
The number of columns in the box

_Color
Background color of the box

This procedure emulates the NPL PRINT BOX statement by drawing a box at
a particular location on a form.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnPrintBox("MyForm",2,20,5,40,_VnLightGray)

'VnAt
'VnPrintAt
'VnPrintCtrl
'VnPrintTo
'VnSetRowsCols
'VnSetRGB
'VnSetSysColor

Syntax

Parameters

Description

Return Values

Example

See Also

170 Visual NPL Developers Guide

7.4.45 'VnPrintCtrl
PROCEDURE 'VnPrintCtrl (

/POINTER _Object$,
/POINTER _Row,
/POINTER _Col,
/POINTER _Height,
/POINTER _Width,
/POINTER _Value$,
/POINTER _Buffer$)

_Object$
The form on which to print the control

_Row
The row at which to print the control

_Col
The column at which to print the control

_Height
The number of rows in the control

_Width
The number of columns in the control

_Value$
The initial value of the control

_Buffer$
Other property values

This prints a control onto a form when generating controls “on the fly.” The
form being printed to is treated as a text-emulation window; its coordinates are
expressed in characters rather than pixels. The control must have been created
with 'VnCreateCtrl . After creating the control, but before printing, you
may change any of its properties.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnCreateCtrls("VnplChar","Label",2)
'VnPrintCtrl("Frm.Label(0)",2,2,1,1,"Name:"," ")
'VnPrintCtrl("Frm.Label(1)",4,2,1,1,"Address:"," ")

Syntax

Parameters

Description

Return Values

Example

 Visual NPL Developers Guide 171

'VnAt
'VnPrintAt
'VnPrintBox
'VnPrintTo
'VnSetRowsCols

See Also

172 Visual NPL Developers Guide

7.4.46 'VnPrintTo
PROCEDURE 'VnPrintTo (

/POINTER _Object$)

_Object$
Object to which to print

This procedure emulates a subset of the NPL printing capability. Instead of
using the NPL PRINT and PRINTUSING commands, use the NPL PRINT
TO and PRINTUSING TO commands with the VnPrint$ buffer. The
'VnPrintTo procedure passes the print data accumulated in the VnPrint$
buffer to VB to be displayed. Because this procedure uses the VB Print
method, the print data may be displayed to a form or a picture box control, to a
printer, or to the VB Debug window.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

PRINT TO VnPrint$;'VnAt$(2,4);"Name:"
PRINT TO VnPrint$;'VnAt$(4,4);"Address:"
PRINT TO VnPrint$;'VnAt$(10,4);"Phone:"
'VnPrintTo("MyForm")

'VnAt
'VnPrintAt
'VnPrintBox
'VnPrintCtrl
'VnSetRowsCols

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 173

7.4.47 'VnSetAlf
PROCEDURE 'VnSetAlf (

/POINTER _Object$,
/POINTER _Value$)

_Object$
The property to set

_Value$
The property value

This function sets the value of a property from a string. If the property type is
numeric (or something other than string), the string value will be converted to
the appropriate type.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetAlf("MainForm.Caption","My Main Form")

'VnGetAlf$
'VnGetNum
'VnGetObj$
'VnSetNum
'VnSetObj

Syntax

Parameters

Description

Return Values

Example

See Also

174 Visual NPL Developers Guide

7.4.48 'VnSetAppNum
PROCEDURE 'VnSetAppNum (

NewAppNum)

NewAppNum
The new current application number

This procedure sets the current application number to a new value. This value
must have been returned by 'VnGetAppNum after a call to 'VnOpen . This
procedure is intended for use with NPL programs that connect to multiple VB
programs.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetAppNum(AppNum)

'VnClose
'VnCloseAll
'VnGetAppNum
'VnOpen

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 175

7.4.49 'VnSetNplWndPos
PROCEDURE 'VnSetNplWndPos (

Left,
Top)

Left
The new left coordinate of the NPL run-time window

Top
The new top coordinate of the NPL run-time window

This procedure sets the position (upper, left corner) of the NPL run-time
window. All coordinates are in twips (1440 per inch).
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetNplWndPos(1440,2880)

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

Syntax

Parameters

Description

Return Values

Example

See Also

176 Visual NPL Developers Guide

7.4.50 'VnSetNplWndShow
PROCEDURE 'VnSetNplWndShow (

Mode)

Mode
Indicates whether to show or hide the NPL run-time window

This procedure shows or hides the NPL run-time window. If the Mode
parameter is set to _VnHide , then the window is hidden. If the Mode
parameter is set to _VnShow , then the window is shown.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetNplWndShow(_VnHide)
'VnSetNplWndShow(_VnShow)

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndSize
'VnSetNplWndTitle

Syntax

Parameter

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 177

7.4.51 'VnSetNplWndSize
PROCEDURE 'VnSetNplWndSize (

Width,
Height)

Width
The width of the NPL run-time window

Height
The height of the NPL run-time window

This procedure sets the size (width and height) of the NPL run-time window.
All sizes are in twips (1,440 per inch).
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetNplWndSize(7200,7200)

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndTitle

Syntax

Parameters

Description

Return Values

Example

See Also

178 Visual NPL Developers Guide

7.4.52 'VnSetNplWndTitle
PROCEDURE 'VnSetNplWndTitle (

Title$80)

Title$
The new title (caption) for the NPL run time

This procedure sets the title (caption) of the NPL run-time window.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetNplWndTitle$("My Runtime Window")

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize

Syntax

Parameters

Description
Return Values

Example

See Also

 Visual NPL Developers Guide 179

7.4.53 'VnSetNum
PROCEDURE 'VnSetNum (

/POINTER _Object$,
/POINTER _Value)

_Object$
The property to set

_Value
The property value

This function sets the value of a property from a number. If the property type
is nonnumeric, the number will be converted to the appropriate type.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Example
'VnSetNum("MainForm.Top",2880)

'VnGetAlf$
'VnGetNum
'VnGetObj$
'VnSetNum
'VnSetObj

Syntax

Parameters

Description

Return Values

See Also

180 Visual NPL Developers Guide

7.4.54 'VnSetObj
PROCEDURE 'VnSetObj (

/POINTER _Object$,
/POINTER _Value$)

_Object$
The property to be set

_Value$
The object reference

This procedure sets an “object” property to a new value. Note that the
_Object$ parameter must refer to some property of an object and not to the
object itself.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetObj("Frm.Label(0).Container","Frm.Frame")

'VnFreeObj
'VnGetObj
'VnIsObj$

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 181

7.4.55 'VnSetRec
PROCEDURE 'VnSetRec (

/POINTER _Object$,
/POINTER _RecName$,
/POINTER _Buffer$)

_Object$
The form on which to set the controls

_RecName$
The name of the record to use when setting fields

_Buffer$
The record from which to set the controls

This function sets values for a form’s controls from field values for an NPL
record. Order, placement, and data types for the values will be as declared in
the public record named in the _RecName$ parameter.

To identify a control on the form as a record field, put the record and field name
(separated by a period and without dollar signs) into the control’s Tag property.
For example, putting CustRec.Address into the Tag property of a
TextBox control will cause the control’s value to be fetched into the Address
field of a buffer formatted according to record CustRec .

When using this procedure, all fields defined in the NPL record must have a
corresponding control on the VB form, or an error will be reported.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

RECORD /PUBLIC InfoRecord
 FIELD Name$30
 FIELD Address$40
 FIELD Phone$10
END RECORD
;
DIM Info$# RECORDLENGTH(InfoRecord)
;
'VnSetRec("InfoForm","InfoRecord",Info$)

'VnGetRec
'VnGetRecSubset

Syntax

Parameters

Description

Note

Return Values

Example

See Also

182 Visual NPL Developers Guide

7.4.56 'VnSetRGB
FUNCTION 'VnSetRGB (

/POINTER _Red,
/POINTER _Green,
/POINTER _Blue)

_Red
Red color component

_Green
Green color component

_Blue
Blue color component

This function creates an RGB color value from its red, green, and blue
components. Each of the component colors is a number from 0 to 255
describing the intensity of that color in the combined color.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetNum("MainForm.BackColor",'VnSetRGB(255,0,0))

'VnGetColor
'VnSetSysColor

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 183

7.4.57 'VnSetRowsCols
PROCEDURE 'VnSetRowsCols (

/POINTER _Object$,
/POINTER _NumRows,
/POINTER _NumCols)

_Object$
The form for which to set row and column mapping

_NumRows
The number of rows to use when mapping screen coordinates

_NumCols
The number of columns to use when mapping screen coordinates

This function sets the number of rows and columns to be used when mapping
NPL row and column numbers to the default twips coordinate system used by
Visual Basic. In fact, this mapping will work regardless of which coordinate
system VB is using (as set by the ScaleMode form property).

There are several important concerns regarding the use of this procedure:

• You should set the form width and height before calling this routine

• You must call this routine each time the user resizes the form; otherwise, the size of the
rows and columns will change with the form, causing new printing to be inconsistent
with earlier printing (unless you make the form nonsizable)

• You must call this routine each time you want to print to a form, not just once for each
form at the start of your program

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetNum("VnplChar.Width",4000)
'VnSetNum("VnplChar.Height",4500)
'VnSetRowsCols("VnplChar",20,60)

'VnInputScreen
'VnPrintAt
'VnPrintBox
'VnPrintCtrl
'VnPrintTo

Syntax

Parameters

Description

Return Values

Example

See Also

184 Visual NPL Developers Guide

7.4.58 'VnSetSysColor
FUNCTION 'VnSetSysColor (

/POINTER _Index)

_Index
Index of the system color

This function gets the color value for one of the system colors. The system
colors are as follows:

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetNum("MainForm.BackColor",
 'VnSetSysColor(_VnDesktop))

'VnGetColor
'VnSetRGBColor

Syntax

Parameters

Description

_VnActiveBorder _VnInactiveBorder

_VnActiveTitleBar _VnInactiveTitleBar

_VnAppWorkspace _VnMenuBar

_VnButtonFace _VnMenuText

_VnButtonShadow _VnScrollBars

_VnButtonText _VnTitleBarText

_VnDesktop _VnWindowBackground

_VnGrayText _VnWindowFrame

_VnHighlight _VnWindowText

_VnHighlightText

Return Values

Example

See Also

 Visual NPL Developers Guide 185

7.4.59 'VnSetTran
PROCEDURE 'VnSetTran (

/POINTER _TranPairs$)

TranPairs$
A new translation table

This procedure sets the current font translation table. The translation table
consists of zero or more pairs of characters in which the first is the NPL
character and the second is the VB character.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

'VnSetTran("AaBbCc")

'VnGetTran$

Syntax

Parameters

Description

Return Values

Example

See Also

186 Visual NPL Developers Guide

7.4.60 'VnSleep
PROCEDURE 'VnSleep

This procedure puts the NPL run time to sleep until 'VnWakeup is called.
Generally, 'VnWakeup is called in response to some event, such as the
clicking of a Close button. This procedure actually does a KEYIN statement in
order to stop the run time from executing. While in a KEYIN , NPL procedures
can still be called from an external library (like VNPL16.DLL), allowing NPL
to process events from your VB program. Eventually, one of these procedures
must call the 'VnWakeup procedure.

The NPL window should not be visible when your program
invokes'VnSleep . If it is, the user will be able to type a character or click the mouse
within the NPL window, both of which will cause the KEYIN statement to finish and
'VnSleep to resume.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

;Display the form modelessly
'VnMethod("HelloForm.Show"," ")
;
;Wait until 'VnWakeup is called
'VnSleep
;
;Unload the form
'VnCmd("HelloForm","Unload"," ")
;
;Close the link to the VB app
'VnClose

'VnWakeup

Syntax

Description

Warning

Return Values

Example

See Also

 Visual NPL Developers Guide 187

7.4.61 'VnWakeup
PROCEDURE 'VnWakeup

This procedure wakes up the NPL run time after an earlier call to
'VnWakeup . Generally, 'VnWakeup is called in response to some event,
such as the pressing of a Close button. To the run time program, this procedure
simulates the pressing of a key. Because the 'VnSleep procedure does a
KEYIN , this causes it to return from the KEYIN and then return to the NPL
program that called it, effectively waking up the NPL program.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

PROCEDURE 'CloseButtonClick/PUBLIC
;
'VnWakeup
;
END PROCEDURE 'CloseButtonClick

'VnSleep

Syntax

Description

Return Values

Example

See Also

188 Visual NPL Developers Guide

C H A P T E R 8

This chapter contains:

• Descriptions of each of the VB constants

• A list of the VB subroutines categorized by the type of operation they perform

• Definitions and detailed descriptions of each of the VB subroutines in alphabetical order

VB Reference

 Visual NPL Developers Guide 189

8.1 Constants
This section gives an overview of the constants defined in the VnplUtil module.

8.1.1 Version Number
The Visual NPL version number constant is:

8.1.2 Error Codes
The Visual Basic error codes constants are as follows:

VN_VERSION NUMBER

VN_ERR_NO_NPLWND No NPL Window was found.

VN_ERR_NO_APPNAME No application name was specified.

VN_ERR_NO_MEMORY The internal message buffer couldn't be allocated.

VN_ERR_DATA_TOO_LARGE The data is too large for the internal message
buffer.

VN_ERR_BAD_CONNECT Invalid NPL connection.

VN_ERR_BAD_VERSION Version number mismatch between
VNPLUTIL.BAS and VNPL16.OCX .

VN_ERR_CANT_SET_APPNAME Can't set the application name.

VN_ERR_CALLBACK_BAD_VAR Can't convert variant into NPL parameter.

VN_ERR_CALLBACK_NOT_FOUND Can't find NPL procedure.

VN_ERR_CALLBACK_BAD_NUM_PARMS Wrong number of parameters for NPL procedure.

VN_ERR_CALLBACK_BAD_RETURN_TYP
E

Can't call NPL functions, just procedures.

VN_ERR_CALLBACK_BAD_PARM Invalid parameter for NPL procedure.

VN_ERR_CALLBACK_CANT_CALL Can't call NPL procedure.

190 Visual NPL Developers Guide

8.2 Subroutines
The following table lists the VB subroutines grouped according to the type of
operation they perform:

Table 8.8 VB Subroutines by Type

Operation Subroutine

Application Starting Point Main

Calling NPL Procedures VnCallProc

Form Centering VnCenter

Change-List Creation VnChg

VnChk

VnClose

VnHot

VnKey

VnKeyPress

VnMenuClk

Event-Driven Support VnWakeup

Error Handling VnErrMsg

VnKill

Support Functions Called Indirectly From NPL VnCtrlType

VnDevDef

VnSetCtrl

VnSetObj

 Visual NPL Developers Guide 191

8.2.1 Main
Sub Main()

This is the main procedure for the Visual Basic program. It does the
initialization of the link between VB and NPL. When creating a new VB
program you must specify this as the main procedure by selecting the Options
item under the Tools menu, and under the Project tab, setting the Startup
Form to Sub Main.

This procedure is called automatically by Visual Basic (when set as described
in the preceding section) when your program starts running. It should not be
called directly from your NPL program.

None

Syntax

Description

Return Values

192 Visual NPL Developers Guide

8.2.2 VnCallProc
Function VnCallProc %(

ProcName$,
Parm1, ... ParmN)

ProcName$
Name of the NPL procedure to call

Parm1
First parameter passed to this procedure

ParmN
Last parameter passed to this procedure

This function is used to call an NPL procedure from VB. You must pass the
name of the NPL procedure to be called, followed by any parameters required
by the procedure. The NPL procedure must be declared as PUBLIC , the
number of parameters must be correct, and the type of each parameter must
match the type of data being passed.

Although VnCallProc is declared as a function, you can also call it as a
procedure (as you can do with any VB function). In this case, VB discards the
value that was returned. This is useful when you know the NPL procedure
exists and you know what types of parameters it takes, which is typical when
you are writing a computer program. So, in most cases you should treat
VnCallProc as a procedure and call it accordingly.

There are really only two times when you might want to call VnCallProc as a
function:

• When you don’t know if the procedure exists, which should be a very rare occurence,

• When the NPL procedure might not be callable because your NPL program is doing
some processing and not waiting for a callback by means of NPL procedures 'VnCmd
or 'VnSleep .

Regardless of how you call it, for all other types of errors, VnCallProc will
show a message box describing the error. This is because the other errors have
to do with parameter mismatches, which is a development-time problem that
should be solved long before a customer ever sees an application. In other
words, all of these problems should be solved by the developer and the user
should never see the message boxes.

Value Meaning

0 If successful

Nonzero value If an error occurs

Syntax

Parameters

Description

Return Values

 Visual NPL Developers Guide 193

DIM Name$
Rem VB

VnCallProc "Prompt","Customer Name","Enter name:" ,Name

....

PROCEDURE 'Prompt(/POINTER _Title$,
 /POINTER _Prompt$,
 /POINTER Name$)/PUBLIC
 ;NPL
 ;
 Name$='VnInpBox$(_Title$,_Prompt$,0,Name$)
 ;
END PROCEDURE 'Prompt

VnWakeup

Example

See Also

194 Visual NPL Developers Guide

8.2.3 VnCenter
Sub VnCenter(

Frm As Form)

Frm
A form to be centered on the screen

This procedure centers a form on the screen. It does this by setting the Top and
Left properties of the form based on the current sizes of the screen and the
form. This procedure does exactly the same thing as the NPL 'VnCenter
procedure. It is provided for the sake of convenience.

None

Private Sub Form_ Load()
 Rem VB
 VnCenter Me
End Sub

NPL procedure 'VnCenter

Syntax

Parameters

Description

Return Values

Examples

See Also

 Visual NPL Developers Guide 195

8.2.4 VnChg
Sub VnChg()

This procedure sets an internal flag indicating that the current control has been
changed in some way. It is used to indicate that the control’s new value should
be added to the change-list when VnChk is next called.

None

Private Sub Address_ Change()
 Rem VB
 VnChg
End Sub

Private Sub OKButton_ Click()
 Rem VB
 VnChg
 VnHot
End Sub

VnChk
VnHot

Syntax

Description

Return Values

Example

See Also

196 Visual NPL Developers Guide

8.2.5 VnChk
Sub VnChk()

This procedure checks to see if the current control has been changed in some
way. If so, the control’s new value is added to the change-list and the control’s
Tag property is checked to see if it is "Hot". If it is, the change-list is sent back
to NPL.

None

Private Sub Address_ LostFocus()
 Rem VB
 VnChk
End Sub

VnChg
VnHot

Syntax

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 197

8.2.6 VnClose
Sub VnClose(

UnloadMode%)

UnloadMode
UnloadMode parameter from a QueryUnload event

This procedure is meant to be called from a QueryUnload event procedure. It
determines if the form is being closed from code (that is, by an Unload
command) or by some other means. If the form is being closed from code, then
this call does nothing. Otherwise, it sends the change-list back to NPL so that
your program can react to the form being closed. It adds an entry to the
change-list with the Flag$ field set to "X" and the Control$ field set to
"Form Close".

None

Private Sub Form_ QueryUnload(Cancel%, UnloadMode%)
 Rem VB
 VnClose UnloadMode
End Sub

NPL procedure 'VnWakeup

Syntax

Parameters

Description

Return Values

Example

See Also

198 Visual NPL Developers Guide

8.2.7 VnCtrlType
Function VnCtrlType $(

Ctrl As Control)

Ctrl
Any VB control

This is a developer-modifiable routine that can be found in the VnplDev module
in your VB project. As such, you are responsible for its contents.

This function is used by the NPL 'VnGetFormCtrlList procedure to get
a 3 character type name for a control. For the standard controls (that is, those
that are part of all VB projects), the control name prefixes found on pages 40-
41 of the Microsoft Visual Basic Programming System form Windows, Version
4.0 Programmer's Guide are used. For the standard controls that are optional,
and for the 3-D versions of the standard controls, the lines defining the controls’
type names are commented out. Remove the comment delimiters for the controls
that you are using in your project.

For all other controls, you need to add VB code to return the type name. The
routine consists mainly of a large set of nested If (that is, ElseIf)
statements, so add a new ElseIf at the end as follows:

ElseIf TypeOf Ctrl Is ControlName Then
 VnCtrlType = "XXX"

Replace ControlName with the name of the control and replace “XXX” with
any three-character type name that doesn’t conflict with any other type name in
the procedure.

This procedure is called automatically by Visual Basic when your NPL
program calls the NPL 'VnGetFormCtrlList procedure. It should not be
called directly.

This function returns a three-character type name for the control.

See above.

NPL procedure 'VnGetFormCtrlList

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 199

8.2.8 VnDevDef
Function VnDevDef %(

Cmd$,
Obj As Object,
ObjValue$)

Cmd
Developer-defined command

Obj
Object on which the command operates

ObjValue
Command-specific parameter values

This is a developer modifiable routine that can be found in the VnplDev module
in your VB project. As such, you are responsible for its contents.
This procedure is used to create developer-defined commands for use with the
NPL 'VnCmd procedure. Whenever 'VnCmd doesn’t recognize the command
that it’s been given, it calls this procedure with the parameters that it was
passed. In other words, you can create any command you want by adding code
to VnDevDef .

For each command you want to create, add a Case to the Select statement
in the VnDevDef function. By default, the Dev Def command shows its
parameter in a message box and returns the result in the parameter:

' dummy "dev def" command
Rem VB
Case "dev def"
 ObjValue = MsgBox(ObjValue)

This command could be called from NPL program as follows:

'VnCmd(" ","Dev Def","Hello Vinny!")

Because this is a sample command, feel free to delete it or use it as the starting
point of your first command. Notice that the command name is not case
sensitive and that the object parameter need not be passed. In general, you can
define the parameters in whatever manner you find appropriate.

This procedure is called automatically by Visual Basic when your NPL
program calls the NPL 'VnCmd procedure with a nonstandard command. It
should not be called directly.

Value Meaning

0 If successful

Syntax

Parameters

Description

Return Values

200 Visual NPL Developers Guide

Nonzero value If an error occurs

See above

NPL procedure 'VnCmd

Example

See Also

 Visual NPL Developers Guide 201

8.2.9 VnErrMsg
Function VnErrMsg $(

ErrCode%)

ErrCode
Visual NPL error code

This function returns the error message corresponding to a specific Visual NPL
error code. It is used by the VB Main procedure to report any errors while
trying to initialize the connection with NPL.

The error message corresponding to the error code.

Result = VnplLink.VnCon.Init(App.EXEName)
Rem VB
If Result <> 0 Then
 Beep
 MsgBox VnErrMsg(Result), vbCritical, "Error"
 End
End If

Main

Syntax

Parameters

Description

Return Values

Example

See Also

202 Visual NPL Developers Guide

8.2.10 VnHot
Sub VnHot()

This procedure can be called in change-list programming instead of calling
VnChk and setting individual Tag properties to "Hot". Normally all hot
controls have their Tag property set to "Hot". Every time VnChk is called, the
Tag property is checked; if it’s "Hot" then control is passed back to NPL.
VnHot performs the same operation but eliminates the need to set the Tag
property. You can call VnHot for each hot control instead of calling VnChk .

None

Private Sub OKButton_ Click()
 Rem VB
 VnChg
 VnHot
End Sub

VnChg
VnChk

Syntax

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 203

8.2.11 VnKey
Sub VnKey(

KeyCode%,
Shift%)

KeyCode
KeyCode parameter from a KeyUp or KeyDown event

Shift
Shift parameter from a KeyUp or KeyDown event

This procedure is meant to be called from a KeyUp or KeyDown event
procedure to send the keystroke to NPL as a single-item change-list. The entry
in the change-list will have the Flag$ field set to "K" and the ChgValue$
field set to the string versions of the KeyCode and Shift parameters. The
Shift parameter is always a single-digit number that will appear as the last
character of the field.

None

Private Sub Form_ KeyUp(KeyCode%, Shift%)
 Rem VB
 VnKey KeyCode, Shift
End Sub

VnKeyPress

Syntax

Parameters

Description

Return Values

Example

See Also

204 Visual NPL Developers Guide

8.2.12 VnKeyPress
Sub VnKeyPress(

KeyAscii%)

KeyAscii
KeyAscii parameter from a KeyPress event

This procedure is meant to be called from a KeyPress event procedure to send
the keystroke to NPL as a single item change-list. The entry in the change-list
will have the Flag$ field set to "A" and the ChgValue$ field set to the string
version of the KeyAscii parameter.

None

Private Sub Form_ KeyPress(KeyAscii%)
 Rem VB
 VnKeyPress KeyAscii
End Sub

VnKey

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 205

8.2.13 VnKill
Sub VnKill

This procedure is meant to be called from the Debug window when your VB
program stops and can’t continue. It will make the NPL window visible, re-
enable it, and then close the connection between NPL and VB.

Do not use this procedure in your program. It is intended as a developer’s tool
to be used only when things go wrong.

None

VnKill

NPL procedure 'VnClose

Syntax

Description

Warning

Return Values

Example

See Also

206 Visual NPL Developers Guide

8.2.14 VnMenuClk
Sub VnMenuClk(

MenuName$)

MenuName
The name of the menu command being selected

This procedure is meant to be called from a menu command event procedure to
send the menu command and the current change-list back to NPL. The menu
command’s entry in the change-list will have the Flag$ field set to "C" and the
Control$ field set to the MenuName parameter. The MenuName
parameter can be any name you want; it doesn’t have to be the name of the
menu control.

None

Private Sub FileMenu_ Click(Index%)
 Rem VB
 Select Case Index
 Case 1
 VnMenuClk "FileNew"
 Case 2
 VnMenuClk "FileOpen"
 Case 3
 VnMenuClk "FileSave"
 Case 4
 VnMenuClk "FileSaveAs"
 Case 5
 VnMenuClk "FilePrint"
 Case 6
 VnMenuClk "FileExit"
 End Select
End Sub

VnChg
VnChk
VnHot

Syntax

Parameters

Description

Return Values

Example

See Also

 Visual NPL Developers Guide 207

8.2.15 VnSetCtrl
Function VnSetCtrl %(

Obj As Object,
CtrlName$,
Index%,
Ctrl As Control)

Obj
The form on which the control array exists

CtrlName
The name of the control array

Index
The index into the control array

Ctrl
The control from the control array

This is a developer-modifiable routine that can be found in the VnplDev module
in your VB project. As such, you are responsible for its contents.

This function is used by the NPL 'VnCreateCtrls procedure to do the
actual control creation. For each control array on each form on which you
create controls, add a Case to the Select statement in the VnSetObj
function. The text of the Case should be the name of the control array and the
single line of code for the Case should set the Ctrl parameter to element
Index of the control array:

Case "TextBox"
 Set Ctrl = Obj.TextBox(Index)

This procedure is called automatically by Visual Basic whenever your NPL
program calls the 'VnCreateCtrls procedure. It should not be called
directly.
Value Meaning

0 If successful

Nonzero value If an error occurs

See above.
NPL procedure 'VnCreateCtrls
VnSetObj

Syntax
Parameters

Description

Return Values

Example
See Also

208 Visual NPL Developers Guide

8.2.16 VnSetObj
Function VnSetObj %(

ObjName$,
Index%,
Obj As Object)

ObjName
The name of the object

Index
The index of the object if it’s a member of an array

Obj
The object (or array of objects)

This is a developer-modifiable routine that can be found in the VnplDev module
in your VB project. As such, you are responsible for its contents.
This procedure is used to register the top-level objects (mostly forms) of your
VB program so that your NPL program can access them. For each object that
you want to use, add a Case to the Select statement in the VnSetObj
function. The text of the Case should be the name of the object and the single
line of code for the Case should set the Obj parameter to the object itself as
follows:

Case "MainForm"
 Set Obj = MainForm

This object can now be used in the NPL program, for example:

PRINT 'VnGetAlf$("MainForm.Caption")

This procedure is called automatically by Visual Basic whenever your NPL
program passes an object to one of the NPL procedures. It should not be called
directly.
Value Meaning

0 If successful

Nonzero value If an error occurs

See above.
VnSetCtrl

Syntax

Parameters

Description

Return Values

Example
See Also

 Visual NPL Developers Guide 209

8.2.17 VnWakeup
Sub VnWakeup(

UnloadMode%)

UnloadMode
UnloadMode parameter from a QueryUnload event

This procedure is meant to be called from a QueryUnload event procedure. It
determines if the form is being closed from code (that is, by an Unload
command) or by some other means. If the form is being closed from code, this
call does nothing. Otherwise, it calls the NPL 'VnWakeup procedure to wake
up the NPL program so that it can react to the form being closed.

None

Private Sub Form_ QueryUnload(Cancel%, UnloadMode%)
 Rem VB
 VnWakeup UnloadMode
End Sub

NPL procedure 'VnWakeup
VnCallProc
VnClose

Syntax

Parameters

Description

Return Values

Example

See Also

210 Visual NPL Developers Guide

Index

_
_VnDelim$ 52, 54
_VnMultiline 60
_VnObjLen 49
_VnSys 41

A
ActiveX 13
App 14
application number 44

B
BAS 17
base controls 84

registering 85
boxes

input 60
message 59

breakpoints 28

C
calling NPL from VB 55
change list

demos 88, 90
change-list

accessing 72, 74
hot controls 70, 72, 73, 77
keystrokes 79
menu commands 77
printing to a form 82, 83
record mapping 82
recording changes 75
records 80
row and column numbers 82

change-list programming 70
classes 17

creating 23
Clipboard 14
CLS 17
code

editing 35
collections 52

 Visual NPL Developers Guide 211

colors 63
commands

built-in 53
developer defined 54

connecting VB and NPL 43
closing 43
initialization

NPL 43
VB 43

multiple connections 44
control arrays 32, 34
controls 13

adding at design time 30
arrays 32
clearing 54
deleting at design time 31
naming 15, 47
registering base controls 85
tab order 33

controls on the fly 82
controls-on-the-fly 84

base controls 84
creating 85
destroying 86
registering base controls 85

converting numbers to strings 65
current application number 44

D
Debug window 67
demos

change list 88, 90
event driven 88, 91

detecting the NPL library 65
DLL 12

E
Err 14
Error 14
error handling 62
event driven

demos 88, 91
event driven progamming 45
events 13, 15, 45

responding to 56
EXE 26

making 26

F
file list 5
font translation 64

212 Visual NPL Developers Guide

forms 13, 14
centering 65
clearing 54
closing 61
creating 23
designing 28
FRM 16
FRX 16
handler 46
loading 54
MDI 23
modal vs. modeless 72
naming 15, 47
registering 49
unloading 54

FRM 16
FRX 16
functions

creating 24

G
graphics

loading 54

H
hot controls 70, 72, 73, 77

I
input box 60
installation 4, 96

M
Main 190
mainline 45
MDI 23, 35
menus

creating 33
message box 59
methods 12, 15

calling 52
modules 17

NPL
Vnpl 41
VnplDev 41, 62, 83

VB
BAS 17
CLS 17
creating 23
VnplDev 42, 49, 54, 85

 Visual NPL Developers Guide 213

VnplLink 42
VnplUtil 42

N
NPL window 58

changing the title 59
hiding 58
positioning 58
showing 58
sizing 58

O
objects 12, 13, 47

collections 52
naming 15, 47
references 49

creating 49
freeing 49

selecting 28
system 50

OCX 2, 13, 98
using 25

OLE control 13

P
pictures

loading 54
Printer 14
Printers 14
procedures

calling 55
creating 24

projects 16
breakpoints 28
making an EXE 26
running 27
VBP 16

properties 12, 14
colors 63
creating 24
getting 51
naming 15, 47
setting 51, 54
setting at run time 30
Tag 77

R
RETURN 67

214 Visual NPL Developers Guide

S
Screen 14
selecting objects 28
SETUP.EXE 4

T
tab order 33

V
VBA 2
VBP 16
VBX 12
Visual Basic 2

editing code 35
options 19
windows 18

VnAddItems 115
VnAt$ 83, 116
VnCallProc 55, 191
VnCenter 65, 117, 193
VnChg 75, 194
VnChgList$ 71, 72
VnChgNo 71, 72
VnChk 75, 195
VnClearChgList 75, 118
VnClose 43, 45, 66, 78, 119, 196
VnCloseAll 44, 66, 120
VnCmd 54, 61, 71, 86, 121
VNCON16.OCX 40
VnConvNum$ 65, 125
VnCreateCtrls 85, 126
VnCtrlType 197
VnDestroyCtrl 86, 128
VnDetect 65, 129
VnDevDef 54, 198
VnErrFunc 62, 130
VnErrMethod 62
VnErrMsg 200
VnErrMsg$ 62
VnErrNum 62, 131
VnError 62
VnFreeObj 49, 132
VnGetAlf$ 51, 133
VnGetAppNum 44, 134
VnGetChgList 74, 135
VnGetCollectionList 53, 136
VnGetColor 64, 137
VnGetFormCtrlList 52, 139
VnGetLoadedFormList 52, 141
VnGetNplWndPos 58, 142
VnGetNplWndShow 58, 144
VnGetNplWndSize 58, 143

 Visual NPL Developers Guide 215

VnGetNplWndTitle 58
VnGetNplWndTitle$ 145
VnGetNum 51, 146
VnGetObj$ 49, 51, 147
VnGetPrinterList 52, 148
VnGetPropInfoList 52, 149
VnGetRec 81
VnGetRec$ 151
VnGetRecSubset 81, 152
VnGetTran$ 64, 153
VnGetVbError 154
VnGetVer$ 66, 155
VnHot 77, 201
VnInpBox$ 60, 156
VnInputScreen 84, 157
VnIsObj$ 159
VnKey 79, 202
VnKeyPress 79, 203
VnKill 67, 204
VnMenuClick 77
VnMenuClk 205
VnMethod 52, 161
VnMsgBox 59, 162
VnObj$ 48, 164
VnObj3$ 165
VnOpen 43, 44, 45, 166
VNPL.NPL 41
VNPL16.DLL 40, 65
VNPLDEV.BAS 42
VNPLLINK.FRM 42
VNPLUTIL.BAS 42
VnPrint$ 83
VnPrintAt 83, 167
VnPrintBox 83, 168
VnPrintCtrl 85, 169
VnPrintTo 83, 171
VnSetAlf 172
VnSetAppNum 44, 173
VnSetCtrl 85, 206
VnSetNplWndPos 58, 174
VnSetNplWndShow 58, 175
VnSetNplWndSize 58, 176
VnSetNplWndTitle 58, 177
VnSetNplWndTitle$ 59
VnSetNum 178
VnSetObj 49, 179, 207
VnSetRec 80, 180
VnSetRGB 63, 181
VnSetRowsCols 82, 182
VnSetSysColor 63, 183
VnSetTran 64, 184
VnSleep 46, 61, 185
VnWakeup 46, 61, 186, 208

W

216 Visual NPL Developers Guide

windows
NPL's main window 58

	VISUAL NPL DEVELOPER’S GUIDE
	Contents
	Documentation Conventions
	Introduction
	What is Visual NPL?
	System Requirements
	Developer Knowledge
	Hardware
	Software

	Installation
	File List
	What’s New in Version 2.0?
	Moving from Version 1.0 to 2.0

	Visual Basic Fundamentals
	About Objects
	Windows Objects
	VB Objects
	Properties
	Methods
	Events
	Naming Objects

	Understanding and Working with Projects
	Files That Make Up a Project
	And There Were Many Windows
	Useful Configuration Options
	Creating Forms, Modules, and Classes
	Creating Procedures, Functions, and Properties
	Using Third-Party Controls
	Making an EXE File
	Running and Debugging Your Program

	Designing Forms
	Selecting Objects with the Mouse
	Setting Form and Control Properties
	Adding and Deleting Form Controls
	Form Control Arrays
	Setting the Tab Order
	Creating Menus

	Editing Code

	Visual NPL Fundamentals
	How It All Works
	NPL Diskimage
	VB Modules and Linkage Form
	Building the Connection
	Multiple Connections

	Event-Driven Programming
	Mainline Program
	Handling a Form

	Using Objects
	Object Names
	Object References
	Registering Your Forms
	System Objects

	Accessing VB from NPL
	Setting and Getting Properties
	Calling Methods
	Getting Collections
	Special Commands
	Developer-Defined Commands

	Calling NPL Procedures from VB
	Responding to Events
	Error Conditions
	Other Routines
	Controlling the NPL Window
	Message Boxes
	Input Boxes
	Closing a Form
	Error Handling
	Manipulating Colors
	Font Translation
	Detecting the NPL External Library
	Miscellaneous Routines

	Recovery If NPL or VB Stop
	Recovery If NPL Stops
	Recovery If NPL Stops in a VB-Called Procedure
	Recovery If VB Stops

	Change-List Programming
	What Is Change-List Programming?
	Invoking Change-List Processing
	Accessing the Change-list from NPL
	Change-List Array
	Hot Control
	Manually Accessing the Change-list

	Adding to the Change-list from VB
	Recording Changes
	Creating Hot Controls
	Menu Commands
	Closing a Form
	Keyboard Handling

	Record-Based Forms
	Setting and Getting Records
	Mapping Fields to Controls

	Creating Controls On The Fly
	Row and Column Mapping
	Printing to a Form
	Base Controls
	Registering Control Names
	Creating Controls
	Destroying Controls

	Demo Programs
	Hello (Change-List)
	Hello (Event-Driven)
	Demos
	Change-List Programs
	Event-Driven Programs
	Common Dialogs
	Boxes

	Distributing Visual NPL Programs
	Installation Considerations
	Using the Setup Wizard
	Distributing Visual NPL Without a Setup Program
	Registering OCXs
	Required Support Files

	NPL Reference
	Constants
	VnSys (VNPL.NPL Device Number)
	VnDelim$ (Parameter Delimiter)
	VnStrRefSize (Minimum /POINTER String Parameter Size)
	Maximum Number of Controls and Properties
	Key Translation Strings
	Error Handling Flags and Error Codes
	Message Box and Input Box Flags
	Window Show Modes
	Color Constants
	Standard Property Values
	Common Dialog Flags

	Records
	Variables
	Subroutines
	'VnAddItems
	'VnAt$
	'VnCenter
	'VnClearChgList
	'VnClose
	'VnCloseAll
	'VnCmd
	'VnConvNum$
	'VnCreateCtrls
	'VnDestroyCtrl
	'VnDetect
	'VnErrFunc
	'VnErrNum
	'VnFreeObj
	'VnGetAlf$
	'VnGetAppNum
	'VnGetChgList
	'VnGetCollectionList
	'VnGetColor
	'VnGetFormCtrlList
	'VnGetLoadedFormList
	'VnGetNplWndPos
	'VnGetNplWndSize
	'VnGetNplWndShow
	'VnGetNplWndTitle$
	'VnGetNum
	'VnGetObj$
	'VnGetPrinterList
	'VnGetPropInfoList
	'VnGetRec$
	'VnGetRecSubset
	'VnGetTran$
	'VnGetVbError
	'VnGetVer$
	'VnInpBox$
	'VnInputScreen
	'VnIsObj$
	'VnMethod
	'VnMsgBox
	'VnObj$
	'VnObj3$
	'VnOpen
	'VnPrintAt
	'VnPrintBox
	'VnPrintCtrl
	'VnPrintTo
	'VnSetAlf
	'VnSetAppNum
	'VnSetNplWndPos
	'VnSetNplWndShow
	'VnSetNplWndSize
	'VnSetNplWndTitle
	'VnSetNum
	'VnSetObj
	'VnSetRec
	'VnSetRGB
	'VnSetRowsCols
	'VnSetSysColor
	'VnSetTran
	'VnSleep
	'VnWakeup

	VB Reference
	Constants
	Version Number
	Error Codes

	Subroutines
	Main
	VnCallProc
	VnCenter
	VnChg
	VnChk
	VnClose
	VnCtrlType
	VnDevDef
	VnErrMsg
	VnHot
	VnKey
	VnKeyPress
	VnKill
	VnMenuClk
	VnSetCtrl
	VnSetObj
	VnWakeup

	Index

