VISUAL NPL DEVELOPER’'S GUIDE

Version 2.0

4 Edition - April 1997
COPYRIGHT © 1995-97 Niakwa, Inc.
23600 N. Milwaukee Avenue

Vernon Hills, IL 60061
U.SA.

PHONE: (847) 634-8700
FAX: (847) 634-8718
E-MAIL: sdes@niakwa.com or Support@niakwa.com

DISCLAIMER OF WARRANTIES AND LIMITATION OF
LIABILITIES AND PROPRIETARY RIGHTS

The staff of Niakwa, Inc. (Niakwa) has taken due care in preparing this manual. Nothing
contained herein shall be construed to modify or alter in any way the standard terms and
conditions of the Niakwa Programming Language (NPL) Support and Distribution License
Agreement and Warranty or any other Niakwa License Agreement (collectively, the
“License Agreements”) by which this software package was acquired.

This manual isto serve as a guide for use with the Niakwa-authored suite of NPL products
only, and not as a source of representations or additional undertakings by Niakwa. The
licensee must refer to the License Agreements for Niakwa product and service
representations.

No ownership of Niakwa software is transferred by any of the License Agreements. Any
use of Niakwa software beyond the terms and conditions of the License Agreements,
without the written authorization of Niakwa, is prohibited.

All rightsreserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without prior written permission from Niakwa,
Inc.

Niakwa, Niakwa Data Manager (NDM), Niakwa Programming Language (NPL), and
Visual NPL (VNPL, Vinny) are trademarks of Niakwa, Inc.

All other trademarks are the property of their respective holders.

Contents

DOCUMENTATION CONVENTIONS viii

1. INTRODUCTION

1.1 WhatisVisual NPL? 2
1.2 System Requirements 3
1.2.1 Developer Knowledge 3
1.2.2 Hardware. 3
1.2.3 Software 3
13 Instalation. 4
14 FileList .. oo 5
15 What'sNew inVersion 2.02 7
1.6 MovingfromVersion 1.0t02.0. 8

2. VISUAL BASIC FUNDAMENTALS

2.1 About Objects 12
2.1.1 WindowsObjects. 12
212 VBODJECIS 13
2.1.3 Properties 14
2.1.4 Methods. 15
215 Bvents 15
2.1.6 Naming Objects 15

2.2 Understanding and Working with Projects. 16
2.2.1 FilesThat MakeUpaProject 16
2.2.2 And There Were Many Windows. 18
2.2.3 Useful Configuration Options. 19
2.2.4 Creating Forms, Modules,andClasses 24
2.2.5 Creating Procedures, Functions, and Properties 25

2.2.6 Using Third-Party Controls. 26

Contents

2.2.7 Makingan EXE File. 26
2.2.8 Running and Debugging Your Program 27
2.3 Designing FOrms 28
2.3.1 Selecting ObjectswiththeMouse. 28
2.3.2 Setting Form and Control Properties. 29
2.3.3 Adding and Deleting Form Contrals. 30
2.3.4 Form Control Arrays. 32
235 SettingtheTab Order. 33
2.3.6 Creating Menus. 33
2.4 Editing Code. 35

3. VISUAL NPL FUNDAMENTALS

3.1 How It AITWOrKS. . ..o 40
3.1.1 NPL Diskimage. 41
3.1.2 VB Modulesand Linkage Form. 42
3.1.3 Building the Connection. 43
3.1.4 Multiple Connections. 44

3.2 Event-Driven Programming. 45
3.2.1 MainlineProgram 45
3.2.2 HandlingaForm 46

3.3 Using Objects. a7
3.3.1 Object Names a7
3.3.2 Object References. 49
3.3.3 Registering Your FOrms. 49
3.34 System Objects 50

3.4 Accessing VB from NPL 50
3.4.1 Setting and Getting Properties. 51
3.4.2 CallingMethods 52
3.4.3 Getting Collections. 52
3.4.4 Special Commands. 53
3.4.5 Developer-Defined Commands 54

3.5 Calling NPL ProceduresfromVVB. 55

3.6 Respondingto Events 56

3.7 Error Conditions. 57

3.8 Other ROULINES. 58
3.8.1 Controllingthe NPL Window. 58

3.8.2 Message BOXeS 59

Contents iii

383 Input BOXES. 60
3.84 ClosingaForm. 61
3.8.5 Error Handling 62
3.8.6 Manipulating Colors 63
3.8.7 Font Translation. 64
3.8.8 Detecting the NPL External Library. 65
3.8.9 Miscellaneous Routines. 65
3.9 Recovery IfNPLorVB Stop 66
3.9.1 Recovery If NPL Stops. 66
3.9.2 Recovery If NPL StopsinaVB-Called Procedure 67
3.9.3Recovery If VB StOPS. 67

4. CHANGE LIST PROGRAMMING

4.1 What Is Change-List Programming? 70
4.2 Invoking Change-List Processing. 71
4.3 Accessing the Change-list from NPL. 72
4.3.1 Change-List Array. 73
432 Hot Control 73
4.3.3 Manually Accessing the Change-list. 74
4.4 Addingtothe Change-listfromVB. 75
44.1 RecordingChanges 75
442 CreatingHot Controls 77
443 MenuCommands. 77
4.4.4 ClosingaForm. 78
445 Keyboard Handling. 79
45 Record-Based FOrmS. 80
45.1 Settingand GettingRecords 80
45.2 Mapping Fieldsto Contrals. 82
4.6 Creating ControlsOnTheFly. 82
4.6.1 Row and ColumnMapping........................ 82
4.6.2 PrintingtoaForm. 83
46.3 BaseControls. 84
4.6.4 Registering Control Names. 85
4.6.5 Creating Controls. 85

4.6.6 Destroying Controls. 86

iv Contents

5. DEMO PROGRAMS

5.1 Hello(Change-List) 88
5.2 Hello (Event-Driven) 88
5.3 DEMOS. . . 88
5.3.1 Change-List Programs. 20
5.3.2 Event-Driven Programs. 91
5.33 Common Dialogs. 92
5.3.4 BOXES 93

6. DISTRIBUTING VISUAL NPL PROGRAMS

6.1 Installation Considerations i 96
6.2 Usingthe Setup Wizard. 96
6.3 Distributing Visual NPL Without a Setup Program 97
6.4 Registering OCXS 98
6.5 Required Support Files 98

7. NPL REFERENCE

7.1 CONStaNtS.o 102
7.1.1 VnSys (VNPL.NPL DeviceNumber) 102
7.1.2 VnDelim$ (Parameter Delimiter). 102
7.1.3 VnStrRefSize (Min. /POINTER String Parameter Size) 102
7.1.4 Maximum Number of Controls and Properties. 103
7.1.5 Key Translation Strings 103
7.1.6 Error Handling Flagsand Error Codes 103
7.1.7 MessageBox and Input Box Flags 105
7.1.8 Window Show Modes 106
7.1.9 Color Constants. 106
7.1.10 Standard Property Values. 107
7.1.11 Common DialogFlags 108

7.2 RECOIAS. . .. oo 110

7.3 Variables. 111

7.4 Subroutines. 113
741 VnAdditems 115
TA2 'VNALE 116
TA4.3 VNCeNter. 117
7.4.4 'VnClearChgList 118

745 'VNCIOSE. 119

Contents v

7.4.6

7.4.7

7.4.8

7.4.9

7.4.10
7.4.11
7.4.12
7.4.13
7.4.14
7.4.15
7.4.16
7.4.17
7.4.18
7.4.19
7.4.20
7.4.21
7.4.22
7.4.23
7.4.24
7.4.25
7.4.26
7.4.27
7.4.28
7.4.29
7.4.30
7.4.31
7.4.32
7.4.33
7.4.34
7.4.35
7.4.36
7.4.37
7.4.38
7.4.39
7.4.40
7.4.41
7.4.42

'VnCloseAll. 120
VNCMA . .. 121
VNConvyNUM$ 125
'VnCreateCtrls. 126
'VnDestroyCtrl 128
'VnDetect. 129
'VnErrFunc 130
VNEPNUM ..o 131
'VnFreeObj 132
VNGetAIfS . . 133
VNGetAppNUM 134
'VnGetChgList 135
'VnGetCollectionList 136
VnGetColor 137
'VnGetFormCtrlList. 139
'VnGetLoadedFormList 141
VnGetNplWndPos. 142
VnGetNplWndSize 143
VnGetNplWndShow 144
'VnGetNplWndTitle$. 145
VNGetNUM 146
VnGetObj$. 147
'VnGetPrinterList 148
'VnGetProplnfolList. 149
VNGetReCS. 151
'VnGetRecSubset 152
VNGetTran$ 153
'VnGetVbError 154
VNGetVerS. 155
VNINpBOXS. 156
VnlnputScreen. 157
VnIsObj$ 159
'VnMethod. 161
VNMSgBOX. . .. 162
VNObjS. .. 164
VNObj3S. . . 165
VNOPeN. 166

Vi

Contents

7.4.43
7.4.44
7.4.45
7.4.46
7.4.47
7.4.48
7.4.49
7.4.50
7.4.51
7.4.52
7.4.53
7.4.54
7.4.55
7.4.56
7.4.57
7.4.58
7.4.59
7.4.60
7.4.61

VNPrintAt ... 167
VnPrintBox. 168
VnPrintCtrl 169
VNPrintTo. 171
VNSetAlf . 172
VnSetAppNum 173
VnSetNplWndPas 174
'VnSetNplWndShow. 175
VnSetNplWndSize. 176
VnSetNplWndTitle 177
VNSetNUM. . .. 178
VNSetOh). 179
'VnSetRec 180
VNSetRGB. 181
'VnSetRowsCols. 182
'VnSetSysColor. 183
'VnSetTran. 184
VNSleep. 185
VnWakeup. 186

8. VB REFERENCE

8.1 Constants 188
8.1.1 Version Number. 188
8.1.2 Error Codes. 188

8.2 Subroutines. 189
8.2.1 MaiNn. 190
8.2.2 VnCallProc 191
8.23 VnCenter 193
8.2.4 VNChG 194
8.25 VNChK 195
8.2.6 VNCIOSE. 196
8.2.7 VNCHrIType 197
8.2.8 VnDevDef 198
8.29 VNEITMSG 200
8.2.10 VnHOL 201
8.2.11 VNKEY.o 202
8.2.12 VNKeYPress. 203

Contents vii

8.2.13 VnKill

... 204
8.2.14 VnMenuClIlk 205
8.2.15 VNSetCtrl. 206
8.2.16 VnSetObj. 207
8.2.17 VnWakeup 208

viii

Documentation Conventions

This manual uses the following typographic conventions to describe NPL code and
constructs:

Example of NPL Conventions Description

“Vnpl Dev” Names of NPL modules (programs) are
enclosed within quotations in this font.

'Vnd ose, ' VnQmd Names of NPL functions and procedures appear
in this font, preceded by an apostrophe.

~VnSys, VnPrint$ Names of NPL constants and variables appear
in this font.

PROCEDURE ' Next Recor d/ PUBLI C Code examples written in NPL appear in this

; NPL font. When in proximity to VB code, the NPL
; code will contain anembedded; NPL as an
END PROCEDURE ' Next Recor d explanatory REMar Kk statement.

These typographic conventions describe Visual Basic code and constructs:

Example of VB Conventions Description

Main, VnDevDef, VnSetCtrl Names of VB methods, events, functions and
procedures appear in bold.

MyProject, Form1, VnplLink, VnplUtil Programmatic names (not filenames, titles, or
captions) of VB objects appear in bold and
italics.

BackColor, Tag, Visible, Clipboard, Printer, Namesof VB properties and system objects

Screen appear with initial letter(s) capitalized.
File, Edit, Tools, Next, Previous, Text titles and captions of VB menu choices,
OK, Cancel tab choices, buttons, check boxes and other

objects appear in italics.

Private Sub NextBtn_dick() Code examples written in VB appear in this

Documentation Conventions ¢

Rem VB font withRem VB embedded within the code
VnCal | Proc " Next Record" as an explanatoryRenar k statement.
End Sub

These other typographic conventions also appear in the manual:

Example of Other Conventions Description
BOOT. OBJ, DEMOS. NPL, Filenames of native Windows or DOS files
SETUP. EXE, .DLL (including NPL diskimage filenames), filename

extensions, paths and DOS command lines
appear in this bold font.

F5, TAB, DEL Names of keys and key sequences appear in
small capital letters.

Properties, methods, events In text, italic letters indicate defined terms,
usually the first time they occur in the book.
Italics also are used occasionally for emphasis.

RETURN Text you're instructed to type in appears in this
font.

Other syntactical conventions for the NPL language appear as described in the Introduction
to NPL Technical Reference Guide, Satements Guide.

CHAPTER 1

Introduction

This chapter gives a general introduction to Visual NPL. It includes the following:

A description of Visual NPL
System requirements for Visual NPL
Instructions for installing Visual NPL

A listing of the directories and files created by the installation program
A discussion of what’s new in version 2.0

Instructions for upgrading from version 1.0 to version 2.0.

2 Visual NPL Developers Guide

1.1 What is Visual NPL?

Visual NPL is a development tool that provides a flexible, interactive
link between Niakwa Programming L_anguaPe (NPL) apJJfl_catlons and
Microsoft Visual Basic (B&%opllcatlons. t has been designed so that
developers can use eX|_st|ng% L code as alogic engine and use Visual
Basic forms as a user inter

ace engine to create state-of-the-art Windows
programs.

Visual Basic is a graphical user interface design todhat worksby
creating forms that are controlled by code written in the Visual ‘Basic for
Applications (VBA) language. Visual NPL creates a link between NPL
and VB so that NPL code can be used to control the VB forms. This
allows the NPL devel oEer to add a fully functional Windows user
interface to proven NPL code to perform the underlying logic functions
of a program.

As abenefit, Visual NPL developers can use any of the controls
available in the third-party OLE control (OCX) marketplace. These
controls do everything from drawing dice to providing full spreadsheet
or word-processing capabilities. There are even controls that provide
access to the many facets of the Internet.

Visual NPL applications consist of the following parts:

A VB program consisting of several forms and a small amount of VBA code to
transfer control to the NPL program

The VB form, VBA code, and OCX that facilitate communications with the NPL
program

An NPL program that performs the underlying logic functions of the application
and controls the VB forms

An NPL external, dynamic-link library (DLL) and disk image that facilitate
communications with the VB program.

The code required on the VB side is remarkably simple and requires very
little knowledvg_e of the VBA language. However, in order to create
rofessional Windows programs, it is necessary to become fairly
nowledgeable about the Visual Basic form-désign tools. Fortunately,
this feature of Visual Basic is easy to learn and understand.

Visual NPL Developers Guide 3

1.2 System Requirements

This section discusses what you need in order to use Visual NPL.

1.2.1 Developer Knowledge

It is assumed throughout this manual that the developer has a good
understanding of Microsoft Windows. In order to develop polished user
interfaces in Windows, it is necessary to be familiar with many of the features
available in this environment. It is not, however, necessary to know anything
about Windows programming in the traditional sense. The Visual Basic
environment hides the many complexities of native Windows programming and
presents a greatly simplified forms-based approach.

It is also assumed that the developer has a good understanding of the NPL
Release IV features. Visual NPL makes heavy use of modules, long variable
names, functions and procedures, structured programming techniques, and
nearly every other Release IV feature.

1.2.2 Hardware

Although there are no specific hardware requirements for using Visual NPL
over and above those of NPL and VB, you may want to add or change your
existing hardware to achieve the best results in the Visual NPL environment.
For example, you may want to upgrade your video monitor for doing form
design. Thisis a screen-intensive activity; thereforethe bigger the monitor, the
better. In addition, although 15inch monitors are adequate, 17tnch monitors
really make the Visual Basic environment shineFurthermore, a fast video
adapter can make a significant differenceeven surpassing performance gains
derived from a processor upgrade, for doing highly graphical work.

1.2.3 Software

To develop applicationsin Visual NPL, you need the following:

M S Windows vesion 3.1 or later (Windows 95 recommended)
NPL for MS-Windows Release 4.2 or later

Microsoft Visual Basic version 4.0 (the 16-bit version of any edition)

4 Visual NPL Developers Guide

Note You must use the 16-bit version of Visual Basic. All editions of Visual Basic 4.0
(Standard, Professional, and Enterprise) come with both the 16-bit and 32-bit versions.
When installing Visual Basic, make sure to select the 16-bit version when you are prompted
to choose between the two.

1.3 Installation

Toinstall Visual NPL from the distribution diskette on your hard disk
drive, run theSETUP. EXE programon the diskette. This program does
the following:

Prompt you for the drive and directory into which to copy the Visual NPL files
Decompresghe files and copy them to the specified directory

In Windows 3.1, create a new program group (or in Windows 95, a new folder) named
“Visual NPL 2.0"

Register the OCXused by Visual NPL within Visual Basic
Create icons for th&README. TXT file and the demo programs

Important If you have the 32-bit and the 16-bit versions of Visual Basic installed, you
may have to modify the file name associated with the icon for the demo programs. Thisis
becauseSETUP. EXE associates a file name with the icon as follows:

DEMOS. VBP

Thisis appropriate for most installations because VB registers itself as the handler for files
with the VBP extension (that is, VB project files). Therefore, when the user double-clicks
an icon, Windows looks in the registry to determine which program to use to open the
corresponding file. Unfortunately, if the 32-bit version of Visual Basic isinstalled, that
version may be registered as the handler /dBP files. In this case, the projects will fail to
open properly unless you change the command line for the icon so that it includes the full
path of the 16-bit VB executable, as follows:

C.\VB\VB. EXE DEMCS. VBP

Visual NPL Developers Guide

1.4 File List

Visual NPL consists of this Guide and one disk with a compressed setup
program and files. RunningSETUP decompresses the files into:

Destination Directory

File Name Description

README. TXT Last-minute information not available as of this printing
VNPL. NPL Main Visual NPL disk image

VNPLCHAR. FRM VB form used for creating controls-on-the-fly
VNPLCHAR. FRX Graphics file used inVNPLCHAR. FRM
VNPLDEV. BAS Developer-modifiable VB code

VNPLLI NK. FRM VB form for communicating with NPL

VNPLUTI L. BAS Main VB routines and constants

Subdirectory HELLO_E

File Name Description

BOOT. OBJ NPL boot program

HELLO. EXE Compiled program

HELLO. FRM Main VB form

HELLO. FRX Graphics file used inHELLO. FRM
HELLO. NPL NPL demo program code

HELLO. VBP VB project file

VNPLDEV. BAS Developer-modifiable VB code

Subdirectory HELLO_C

File Name Description

BOOT. OBJ NPL boot program

HELLO. EXE Compiled program

HELLO. FRM Main VB form

HELLO. FRX Graphicsfile used inHELLO. FRM
HELLO. NPL NPL demo program code

HELLO. VBP VB project file

VNPLDEV. BAS Developer-modifiable VB code

Visual NPL Developers Guide

Subdirectory DEMOS

File Name Description

BOOT. OBJ NPL boot program

COLORS. FRM Form used in the “Colors’ demo

COLORS. FRX Graphics used inCOLORS. FRM
COMBOX. FRM Form used in the “Combo Box” demo
COVBOX. FRX Graphics used inCOVBOX. FRM
CTRLVAL. FRM Form used in the “Validation - Control” demo
CTRLVAL. FRX Graphics used inCTRLVAL. FRM
CUSTDB. FRM Form used in the “ Database Access’ demo
CUSTDB. FRX Graphics used inCUSTDB. FRM
CUSTDB. LDB Database used in the “ Database Access’ demo
CUSTDB. VDB Database used in the “ Database Access’ demo
CUSTREC. FRM Form used in the “ Customer Record 1/0” demo
CUSTREC. FRX Graphicsfileused inCUSTREC. FRM
DEMOS. EXE Compiled program

DEMOS. NPL NPL code for all demos

DEMCS. VBP VB project file

GRI D. FRM Form used in the “Unbound Data Grid” demo
@RI D. FRX Graphicsused inGRI D. FRM

| MGVI EW FRM Form used in the “Image Viewer” demo

| MGVI EW FRX Graphicsfile used inl MGVI EW FRM

| NSPECT. FRM Form used in the “Objects - Inspect” demo

I NSPECT. FRX Graphicsfile used inl NSPECT. FRM
KEYVAL. FRM Form used in the “Validation - Keystroke” demo
KEYVAL. FRX Graphics file used inKEYVAL. FRM

MAI NFORM FRM

MAI NFORM FRX
POSTVAL. FRM
POSTVAL. FRX

Main VB form, Common Dialog, and Boxes demos

Graphics used inMAl NFORM FRM
Form used in the “Validation - Post” demo
Graphics used inPOSTVAL. FRM

PROGRESS. FRM Form used in the “Progress’ demo

PROGRESS. FRX

Graphics used inPROGRESS. FRM

PRTSETUP. FRM Form used in the “Printer - Setup” demo

PRTSETUP. FRX

Graphics used inPRTSETUP. FRM

Visual NPL Developers Guide 7

REALVAL. FRM Form used in the “Validation - Real-Time" demo
REALVAL. FRX Graphicsused inREALVAL. FRM
SETPROPS. FRM Form used in the “ Objects - Set Properties’ demo
SETPROPS. FRX Graphics used inSETPROPS. FRM
SWOOSH. B\WP Niakwa logo as a bitmap

SWOOSH. | CO Niakwalogo asanicon

VNPLDEV. BAS Developer-modifiable VB code

\Windows\System Directory of the Destination Drive

File Name Description

VNPL16. DLL NPL external library

VNCONL6. OCX VB connection control

VNPL. LIC License file for VNCON16. OCX
CTL3DV2. DLL 3-D | ook and feel support

M-C250. DLL M crosoft Foundati on O asses

M-CR250. DLL M crosoft Foundati on d asses for CLE
TDBGS16. OCX Updat ed VB data bound grid control
GRDKRNL6. DLL Support DLL for TDBGS16. OCX
REGSVR. EXE Program for registering OCXs

1.5 What's New in Version 2.0?

Visual NPL 2.0 contains many new features as well as several enhancementsto
]Ehe features found in version 1.0. The following are the most significant new
eatures:

Event-driven programming is completely supported.

Any method of any object can now be called fromNP

NPL procedures can now be called from VB.

VB object variables can now be accessed and treated as variablesin NPL.
Support is provided for Visual Basic 4.0 and OLE.

Font translation for foreign languages is provided.

Visual NPL Developers Guide

The following are the most significant enhancements:

Improved performance on the most commonly used operations

Full property access, such that any type of property (not just numbers and strings) can
now be retrieved or set from NPL

Increased ability to create user-definedBvcommands
Revised controls-on-the-fly code that is faster, more flexible, and more stable
Expanded demo programs that provide better coverage of the new and existing features

A simplified file structure that combines many files into one

1.6 Moving from Version 1.0to 2.0

Up
per

?radin from version 1.0 to version 2.0 involves several steps that must be
ormed in a specific order. Start by making a back-up copy of al files. Then

ou need to make changes to your VB and NPL programs as described in the
ollowing procedures.

U Toupgradeyour VB program

© 0 N o gk~ oDbd PR

e
= o

12.

13.

Open the existing project with the 16-bit version of VB 4.0.
SelectYesif asked to update any custom controls.

SelectOk For All when prompted to save filesin VB 4.0 format.
SelectDon’t Add when prompted about the DA Dbrary.

Remove thevnplLink form from your project.

Remove thevnplUtil module from your project.
RemoveVNPLCTRL. VBXfrom your project.

AddVnpl Connection Control to your project.

Add the newVnplLink form to your project.

Add the newMnplUtil module to your project.

. Copy the neeWWNPLDEV. BASfile to your project directory and add it to your project

to create thevnplDev module.

Copy any changes you mad® theMain procedure in th&/NPLMAIN module to the
Main procedure in th&/nplDev module.

Copy any changes you made to thénSetForm function in the/NPLMAIN module to
theVnSetObj function in thé/nplDev module (note the additional and changed
parameters).

Visual NPL Developers Guide 9

14.

15.

16.
17.
18.

Copy any changes you made to thénSetCtrl function in the/NPLMAIN module to the
VnSetCtrl function in the/nplDev module (note the additional and changed
parameters).

Copy any changes you made to thénDevDef function in the/NPLMAIN module to the
VnDevDef function in thé/nplDev module (note the additional and changed
parameters).

Remove theNPLMAIN module from your project.
Delete theVNPLMAI N. BASfile in your project directory.

Save your project.

O To upgrade your NPL program

1.

Change the boot program so that the device table specifies the WPL. NPL
diskimage.

Copy the" Vnpl Dev" module from thé/NPL. NPL diskimage to your main
diskimage under the nameVnpl Dev2" .

Copy any changeyou made to thé Vnpl Dev" ,"Vnpl Err" ,and" Vnpl Ctrl "
modules to the' Vnpl Dev2" module.

4. Deletethe' Vnpl Dev" ,"Vnpl Err" ,and" Vnpl G rl" modules.
5. Rename the' Vnpl Dev2" moduleto' Vnpl Dev" .

10 Visual NPL Developers Guide

(this page blank)

Visual NPL Developers Guide 11

CHAPTER 2

Visual Basic Fundamentals

This chapter is an introduction to the Visual Basic programming environment.
It covers the following:

An introduction to Visual Basic and to object-based development
A discussion about creating and usingsual Basic projects
A description of how to create and use forms and controls

Information about various Visual Badianguage issues

12 Visual NPL Developers Guide

2.1 About Objects

In simplest terms, an objectis a piece of data and the code that manipulates the
data. By combining these two programming elements into a single entity,
objects give developers a powerful toolset to use in building applications.
Visual NPL bridges the tg% between the procedural world of traditional NPL
programming and that of Windows objects available through VB. These are
characteristics of objects:

New objects can be created and destroyed dynamically.

Implementation details of an object are hidden from programs using the object.
Access to an object’s data is through furans provided by the object’s code.
Permanent objects have functions to store and retrieve their data.

Graphical objects have functions to draw the object and control its user interface.

An object is defined by the organization of its pieces—that is, of its code and
data. Obviously, for this approach towvork, there must be a standard that
explains how to access and use objects in general. Without this standard, all
you have isa some code that manipulates a data structure using a proprietary
interface. The evolution of object standards is described in the next section.

2.1.1 Windows Objects

The mechanism used to create objects in Windows is the dynamic-link library
(DLL). A DLL isthe same as an EXE except that thereisno “main” function.
Instead, there is a group of functions (alibrary) that can be called from any
program. ngﬂrams load the library when they need to use it, and unload it
when done (called dynamic linking).

Unfortunately, there is no way to tell what'sinaDLL. Thisiswhere VBXs
(VB contrals) comein. AVBX isaDLL that conforms to the standard set by
the original VB development environment, which specifies a set of data
structures used to describe an object and a set of functions used to get that data.
All VBXs must contain these functions. Furthermore, the standard organizes
objects so that they consist of a set g(SJroperties (the og/ect’ s data), methods

(the operations that can be performed on the data), andvents (notifications

sent from the object to VB).

There were three problems with the VBX standard:

It wasn’t an open standard because it depended on Visual Basic.
It wasn’t portable to the 32-bit environment.
It was limited and needkto have additional functionality.

Visual NPL Developers Guide 13

In light of these limitations, Microsoft created the OCXor OLE control)
standard. Thisisan open, 16-bit and 32-bit standard based on Microsoft OLE.
In fact, OLE was given new functionality in order to support the approach
based on properties, methods, and events used in the VBX standard. The OCX
standard has since been enhanced to accommodate the Internet and has been
renamed to ActivexX

An advantage of this approach isthat it provides pro%rammatic access to any
OCXsresident on your computer, including those embedded in other
applications, such as Microsoft Word or Netscape Navigator.

2.1.2 VB Objects

Visual Basic version 3.0 and earlier versions supported the VBX standard. VB
4.0 supports both VBXs and 16-bit OCXs in its 16-bit version and only 32-bit
OCXsinits 32-bit version. In all cases, the programming interface is the same.

A VB program displays a set of forms asits windows. The items on these
forms are called controls. Bbth formsand controls are objects VB provides the
following built-in objects (not in OCXs):

Forms

Standard Windows controls (buttons, text fields, labels, etc.)
List controls (l§ts, drop-down lists, and grid controls)
Graphics display (images and pictures)

Disk-access controls (drive, directory, and file lists)

3-D effects (lines and panels)

Database-access controls

Windows common dialog-box controls (for file openifimyt selection, printer setup, and
S0 0n)

Communications (serial port) control

14 Visual NPL Developers Guide

In addition, Visual Basic provides the following system objects:

App Application

Clipboard Clipboard

Err Last general error

Error L ast data access error

Forms List of currently loaded forms
Printer Current printer

Printers List of available printers
Screen Screen

There are also severalthird-party OCXs, some provided with VB and others
available from the companies that developed them.

2.1.3 Properties

Each object has a set of propertieshat are the data items of the object. VB
allows access to all of the properties provided by each object, although the
objects may restrict access to certain properties themselves. VB also provides a
set of standard properties associated with each object, including the name of the
object and its size and position if it is a graphical object. Examples of common
properties are:

BackCol or M ousePointer
Capti on Name

Dat aFi el d Tablndex

Dat aSour ce Tag

Dr agl con Text

Enabl ed Top

Font Visible

For eCol or WhatsThisHelplD
Hei ght Width

Left

Visual NPL Developers Guide 15

M ost properties are set while designing the form and are used to indicate the
initial and running state of the object. For example, the Name property can
only be set while designing the form because it is read-only at run time. The
position and color properties are seldom changed at run time, while the Enabled
and Visible properties are commonly used to restrict user access to the control.

2.1.4 Methods

Each object has a set of methodsthese are the functions that can be called to
perform the operations that are allowed with the object. For example, a control
that manages and presents a list of items would have aAdditem method to
insert or append a new item. It would also have &€lear method to empty the
list and render the display blank.

2.1.5 Events

Each object has a set of eventsthese are the notification messages that the
object sends to its container (in this case, VB) when something happens with the
object. VB provides these events as empty functions that you fill in if you want
to respond to the notification. For example, a button control would have a
Click event, which Visual Basic would present as an emptlick function that

is called whenever the user presses the button by means of the mouse or
keyboard. Thisfunction can even be called from VB code, just as a method
would be called.

2.1.6 Naming Objects

Object namesconsist of several parts separated by periods. For example, to
refer to aform, give the name of the fornas follows:

Mai nFor m

To refer to a controlon the form, you would use the name of the form followed
by the name of the control asin the following example:

Mai nFor m Cancel But t on

To refer to a propertyof aform or control, you would use one of the preceding
statements, followed by the property name, such as:

Mai nFor m Narre
Mai nFor m Cancel But t on. Nane

16 Visual NPL Developers Guide

2.2 Understanding and Working with Projects

A VB projectis the collection of files that make up your application. Visual
NPL apé)l Ications tie NPL programsto VB projects. When working with

Visual Basic, you always have an open project, even when you first start eucF

\F/B. 'Iihe default project is namedProjectl and it has one blank form nam
orml

2.2.1 Files That Make Up a Project

The main project file is a standard text file with an extension of VBP. This
file rg:ontai ns the basic project configuration information for your application,
such as:

The name of the project

A list of the form andade files in the project

A list of OCXs used by the project

The name of the executable file produced when the project is compiled
The size and position of the main VB window

Miscellaneous configuration settings

Forms

There are two files used to represent aform. The main one has an extension of
. FRMand the second, which is optional, has an extension of FRX. The. FRM
fileis atext file containing:

The values of any form properties that have been changed frord#feult values
A list of the controls on the form

For each control, the values of any properties that have been changed from the default
values

The source code for the events to which the form responds

The source code for the subroutines containetithin the form
The. FRX file stores graphics associated with the form, such as:
The form’s icon when minimized

Any images appearing on the form

Any other graphics used by the form

Visual NPL Developers Guide 17

Both files are produced automatically whenever you create and change forms.
There should be no need to edit these files manually.

Modules

M odulesare source code files with an extension of BAS. These are text files
that contain the following:

Variable declarations
Constant declarations
Type declarations

Functions and procedures

Modules are very similar to the individual modules within an NPL diskimage.
Aswith NPL modules, you can declare things to be public (visible to the rest of
your program) or private (can only be used within the module). However,
unlike NPL, in Visual Basic you don't NCLUDE modules in other modules.
Anythingdeclared as public in one module is automatically usable in any other
module. Furthermore, al VB modules are loaded into memory when your

rogram starts running; there is no concept of overlays or dynamic loading of
individual modules.

Classes

Classesare source code files with an extension of CLS. These are text files
that contain the definitions of any custom objects that you create within your

plication. The code for a class defines the properties and methods of the
class. When a class has been defined, you can create and use objects of this
type anywhere elsein I%/our program, just as you would use any of the standard
objects available in VB. Your Visual NPL projects probably won’t contain any
classes, since there is no need for them.

18

Visual NPL Developers Guide

2.2.2 And There Were Many Windows

When you open Visual Basic for the first timeyou will probably be amazed by
the sheer number of windowshat appear. Although it looks confusing, it is
really quite simple. The following figure shows some samples of the windows
that may be displayed.

e Project] - Microsoft Visual Basic [design] [0 =]
File Edit Yiew Inset Bun Tools Adddns Help

ETEL|”éo§| EF;lnll E| ’%‘;l%ﬂ >| ||| ll'ﬂ@lwl%l%lﬁz” 2684,154% |IH 3E2ExFI72
m Forml Project]

sy o 0w o n om0 m e e aaon o ano A \f’iewFDrmI ViewCode'

SRR | ST Form1 Form1

Fropeties - Form!
|F|:|rm1 Form j
EEIEE LinkTopic Form1 5|

= MaxButton True

<L E |

T =
=

KMOIChild Falze
MinButton True
Mouselcon (Mone)
MaouseFainter 0 - Default

Farm1 —
MegotiateMenus True
Ficture (Mane)

ScaleHeight 3648
= ScalslLeft 0
=H | EE ScaleMode 1-Twip =

Figure 2.1 Visual Basic Windows

There are seven different types of windows that can appear:

The main VB window appears across the top of the screen. It contiiesnain menu
and optionally atoolbar of shortcut icons.

The project window contains the list of filesin the project. Thisis where you access the

forms and code of your project.

The toolbox window contains icons for each control that can be added tom.

Theproperties window allows you to edit the properties of whatever form or control is

currently selected (highlighted using the mouse).

Multiple form windows are the graphical representations of the windows that appear in

your application.

Visual NPL Developers Guide 19

Multiple code windows contain the code for your modules and classes.

The debug window lets you look at data values while your program is running.

Because Visual Basic doesn’t use amain window that contains all of the other
windows, these windows can appear anywhere on your screen. All windows
can be closed at any time and can be shown again using theéiew menu.

2.2.3 Useful Configuration Options

To change the configuration option®f your VB environment and the current
oject, use theOptions selection under theTools menu. This presents you
W|t the foIIowmg option groups:

Environment General options applicable to the VB environment
Project Options specific to the current project
Editor Options specific to the editing of code

Advanced Miscellaneous advanced options specific to the current project

20 Visual NPL Developers Guide

'kl)'he following figure shows theEnvironment properties of theOptions dialog
OX.

Options

Enviranment lPrDjeu:t] Editar] Advanced]

—Farm Design Grig ——————————— —File Save i
VShDWgr'd = Daon't Save Before Bun
YWidth: 120 &+ Save Before Run, Prompt I

Height: [120 " Sawve Before Run, Don't Prompt

¥ Align Controls to Grid

—Wiindows On Top—————————— ¥ Show ToolTips
[~ Toolbox [~ Project ¥ Require Variahle Declaration
I™ Properties I Debug W Auto Syntax Check

(0] 1 Cancel Help

Figure 2.2 Environment Options

The most frequently-used environment options allow you to do the following:

Specify the grid used to align controls on a form. The default is to have botéhtive
Grid and Align Controls to Grid check boxes selected and théfidth and Height both set
to 120.

Specify whether or not VB should save the project before running it. The safest option is
to selectSave Before Run, Prompt, which prompts you before running the project if any
of the project files have been changed but have not been saved.

M ake sure that th&equire Variable Declaration check box is selected so that no
unforeseen assumptions are made about variable types within your code.

Visual NPL Developers Guide 21

The following figure shows theProject properties of theOptions dialog box.
Options

Startup Form: Froject Marme:
|Farm1 7 [Project
Help File: HelpContext|D:

| T —

Startbdode
’75“ Standalone " OLE Server

Compatible OLE Server:

| -

Application Description:

(0] I Cancel Help

Figure 2.3 Project Options
The most important project options are the following

Project Name; this box should be changed to a unique project name,

Sartup Form; this box specifies the form at which your project will start executing. For
Visual NPL programs, this should be set$ob Main.

22 Visual NPL Developers Guide

The following figure showsEditor properties of theOptions dialog box.
Options

Eont: Size:

Courier Mew RRIE o Tebwict: [4

— Code Colors v Auto Indent

Code Window Text

Selection Text
Syntax Errar Text]
Araakpoint Text ¥ Full Module Wiew
MNext Staternent Text
Comment Text
Kesmword Text
Identifier Text —Sample

¥ Procedure Separstor

Foreground: Background:

I RaBhCCcHXYVEZ
Automatic j I Automatic :_i l
i

(0] I Cancel Help

Figure 2.4 Editor Options

Set the Editor Oﬁtions according to your personal preferences when editing
code; you can change the following settings:

The font used to show the code
The color of specific syntax items so that yaandighlight various language elements
The width of atab stop (the default is 4)

The manner in which you view the code in amodule, either as one long file or as a group
of individual procedures and functions

The advanced options are set tadefault values; these should not be changed.
For more information on these options, refer to the Visual Basic documentation.

2.2.4 Creating Forms, Modules, and Classes

To createa new form, module or class, use the appropriate menu command
under thelnsert menu. Notice that there are two types of forms listed on this
menu, Formand MDI Form. An M DI (multiple document interface) form is
the main window for an application with many subwindows, all of which are

Visual NPL Developers Guide 23

contained within the main window. For example, most word processors are
MDI applications, where the main window has all the menus and toolbars and
each open fileis a smple subwindow within this main window.

The following figure shows a sample project window.

Project]
“Wiew Form I Yiew Code i
El Form1 Farm1
= MDIForm1 MDIFarm1
[&] Class1 Class]
#2 Modulel hodulel

Figure 2.5 Project Window

Regardless of which menu command you choose, a new file will be added to the
BrOjeCt window and given a default name. Every file has two names: the disk-

ased file name (on the left) and the name used to refer to the file within your
VB program (on the right). The first thi n? Iyou should do ighange both names
to something meaningful. To change the file name, right-click the new entry
and select theSave File Ascommand. Fill in the new file name (without an
extension) and click theOK button. To change the internal name, double-click
the new entry in theProject window. In theProperties window, scroll down to
the Name property and set it to what you want. That’s it—you’ ve got a new
file and now you can do some real work with it!

24 Visual NPL Developers Guide

2.2.5 Creating Procedures, Functions, and Properties

To createa new procedure, you must have a code editing window open and it
must be selected. When thisis done, you can select thBrocedure command
from thelnsert menu. This presents you with a window where you can specify:

The name of the new item

Whether the item is a procedure, a function, or a property

Whether the item is private to the fileit isin or is publicly available to all files
The following figure shows an example of thénsert Procedure window.

Insert Procedure

Marne: ||

~ TYRE Cancel I

* Sub " Function " Property

~-Scope

* Public = Private ™ All Local variables as Statics

Figure 2.6 Insert Procedure Window

When you click theOK button, the appropriate code is created in the current
file and the cursor is positioned within the new subroutine. Y ou can then add

any parameters you want and fill in the code.

Visual NPL Developers Guide

25

2.2.6 Using Third-Party Controls

To use athird-party control (OCX you must first add the control to your
project. Y ou do this using theCustom Controls command under theTools

menu. Visual Basic presents you with alist of all of the controls available on
your system. Each control has a check box beside it, indicating whether or not

the control isincluded in the current project.

The following figure is an example of th&€ustom Controls dialog box.

Custom Controls

Available Contrals: (0]4

B Apex Data Bound Grid = Cancel
O Apex True DBGrid Std Data Bound Grid
O Bitmap Image

[Crystal Repart Cantral Browse...
[Desaware Animated Button Control
O tdedia Clip

O MicroHelp Gauge Control

O MicroHelp Key State Control

O Microsoft ClipArt Galleny Help
O Microsoft Camm Control

il

& Microsoft Comman Dialag Cantral - Show
& Microsoft Data Bound List Controls | ¥ Insertable Objects
[Microsoft Equation 2.0

O Micrasoft Excel Chart ¥ Cantrols

[tdicrosoft Excel Worksheet =l e

=%npl Connection Control
Location: CWINDOMYEYSYSTEMYWNCOMN16.0Cx

Figure 2.7 Custom ControlsWindow

To indicate the functionality you want, select the check boxes you want to add
and clear the check boxes that you don’t want. When you click thHeK button,
the toolbox window is redrawn to include an icon for each control now in the
Broject. Asasafeguard, VB doesn't let you clear any control that is currently

eing used on one of your forms.

26 Visual NPL Developers Guide

2.2.7 Making an EXE File

To compile your project intcan . EXE file, use theMake EXE command on the

File menu.

Make EXE File
Fila Bame: Directaries:
IPrDjecﬂ.exe chappsinplhynpl208 rvpro)

T o gl
%i%?s Options... |

E_ﬁvnEIED

I

Drives:

[El IQC: j

Figure 2.8 Make EXE Window

With this window you can set the name of the executable file. By pressing the
Options button, you set the icon used by the application when minimized and
the version information stored in the EXE.

Visual NPL Developers Guide 27

The following figure is an example of thé&XE Options dialog box.
EXE Options

~Yersion Number————————— —Application

Major: Minor Pevision: || Title
I ID Iu

lcan: I—L, bl
™ Auto Increment = Form1 ETL alp

—wersion Information

: |Pr0jecﬂ
Cancel

il

Type: Walue:

Comments =
Company Name

File Description

Legal Copyright

Legal Trademarks =]

Figure 2.9 EXE OptionsWindow

When you click theOK button in the first window, VB compiles your program
and produces the. EXE file. If you try to overwrite an existing EXE file, you
will be warned and given the chance to stop the process before any damage is
done. Itisnot necessary to createan . EXE file in order to test your VB
application. Y ou can then run the program from within the development
environment at any time.

2.2.8 Running and Debugging Your Program

To runaprogram, use theStart command under theRun menu. This compiles
the program, savesit to the disk (depending on youDptions settings), and runs
the program. Topause the program while it is running, use th&reak command
under theRun menu. To continue a paused program, use th€ontinue
command under theRun menu. To stop a program completely, use th&nd
command under theRun menu.

Y ou can also run, pause, and continue a program by pressing the5 key. If the
program is not running, then pressing=5 starts or continuesit. If the program
IS running, then pressingF5 pausesit. While a program is paused, you can use
the Debug window to examine or change your program’s variables.

Toseta breaké)oi ntin your program, at the line where you want the program to
break, pressF9. To remove the breakpoint, pres$=9 again. Y ou can only do
this before running a program or when the program is paused. When a

28 Visual NPL Developers Guide

breakpoint isin place, arunning program will pause whenever it is about to
execute that line.

2.3 Designing Forms

Designing a formis the process of graphical I?/ creating and modifying
](cavltlerything to do with the appearance of the form. This process involves the
ollowing:

Modifying the form’s appearance
Creating controls and modifying their appearance

Creating a menu for the form

2.3.1 Selecting Objects with the Mouse

To modify the properties for an object, you must first select the object with the
mouse. To selecta particular control, click the mouse anywhere on the control.
Notice that the control is marked with small black squares at its corners and
halfway along each side.

The following two-part figure shows examples of what is displayed when a
control is selected.

Figure 2.10 Control Selection

Visual NPL Developers Guide 29

To select more than one control, press and hold down th€TRL key and click
the mouse on each control that you want to select. Each control becomes
marked with small gray squares at its corners and halfway along each side.

Y ou can also click the form back?round and drag the mouse around the controls
ou want to select. To select the form itself, click the mouse anywhere on the
ackground of the form. Any controls that were selected will become cease to

be selected and all of the small black or gray marks will disappear.

The following figure shows an example of what is displayed when aform is
selected.

Figure 2.11 Form Selection

30 Visual NPL Developers Guide

Each time a new object is selected, thé’roperties window is redrawn with the
roperties of the new object. If there is more than one object selected, the
roperties window is redrawn with the properties that are common to all of the

selected objects.

2.3.2 Setting Form and Control Properties

The property window contains a drop-down list of the form and control names
at the top of the window. Thislist shows the name of the currently selected
object; it shows no name if there is more than one object selected. Y ou can use

thislist to select the form or a single control. Theroperties list is redrawn
with the properties of the selected object.

Properies - Login

IOK CommandButtan _‘j
Caption 0]4 =
Default True

Draglcon (Maone)

Draghode 0-tanual

Enabled True

Fant ME Sans Serif
Height 37z

HelpContextlD 0

Index L
Left 480

bouselcon (Maone)
touseFaointer 0 - Default

[Narme ___ J8l§ =

Figure 2.12 Properties Window

Below the list of form and control names is the list of properties for the
currently selected object. The left side of the list gives the property name and
the right side gives the property’s value. To set a particular propertgcroll
down the list and click the value that you want to change. If it's an editable
field, depending on the t?/pe of property, you may be able to update the value in

place using one of the fo

Enter atext value.

lowing methods:

Select an item from a drop-down list.

Present a window to select or edit the item.

Visual NPL Developers Guide 31

Although there are hundreds of form and control properties that can be changed,
almost all of them default to reasonable values. Most of the time, you will only
need to change two or three properties for each object.

2.3.3 Adding and Deleting Form Controls

To add a new contro| double-click the control’s icon in th&oolbox window.
This creates the new control with a default size in the middle of the form. To
manually define the initial size and position of the control, click the icon in the
Toolbox window and then draw the control on the form. Do this by clicking the
form’s background and dragging the mouse to draw a rectangle where you want
the control to appear. Release the mouse button to cause the control to be
created. When anew control is created, it is given default values for al of its
properties and it is selected as the current control. Theropertieswindow is
upaated accordingly.

The following figure shows an example of how to add controlsto a form.

=

I

EH

o

[m]

3

3

=]

=

=

Figure 2.13 Adding and Deleting Controls
To delete a control do one of the following:
Select the control and press theeL key.

With the control selected, select tiielete command in théedit menu.

Right-click the control and select tiElete item from the menu that appears.

32 Visual NPL Developers Guide

When you delete a control, Visual Basic does not delete the code that you have
created for the events of the control. Y ou must delete this code manually using
the code-editing window.

Visual NPL Developers Guide 33

2.3.4 Form Control Arrays

Typically, every control on aform has a unique name. However, sometimes it
is desirable to group several controls together for ease of programming. For
example, when using a series of check boxes or option buttons that all apply to
the same thing, it is easier to use a loop to gehrough an array than to test for
some condition on awhole group of unique names.

The following two-part figure shows examples of how to define control arrays.

[Toppings(2) CheckBox B
L Enabled True =
L CBessm Faont MS Sans Serif
Lo e FDrECD|DI’ &HBDDDDE”E&
.- I Beef] Height 257
e e wl| 0K)1 |HelpContediD D
- !_Harg : . o Inicex 2
- " Pepperoni - Coo o Left 240
- . Cancel | Mouselcon (None)
- M Salami - ———— | ljousePointer 0-Defaul
ClSsegs Tappings
S liooooooooo |Tehkindex 2
....................... TabStDp True
Tag -

Figure 2.14 Control Arrays

To create a control array choose the first of the controls that you want to be
grouped. Set its Name property to the name of the array and set its Index
property to O. If the control is not already a member of an array, then its Index
prOﬁerty is blank. Now change the other control’s Name properties to the name
of the array. Visual Basic automatically chooses the next Index value in the
array for each control, so make sure to define the values in the order that you
want them to appear in the array. Whenever you refer to one of these controls,
you have to specify the index number as an array index following the control
name, as in the following:

Toppi ngs(2) . Val ue

34 Visual NPL Developers Guide

Consider the following information when working with control arrays:

All of the controlsin the array must be of the same type.
The index numbers can start at any nhumber you want.
The index numbers don't have to be consecutive.

All events for the array are passed an Indas the first parameter to identify which
control istriggering the event (that is, the controls in the array share the same event
code).

Visual NPL Developers Guide 35

2.3.5 Setting the Tab Order

One of the most important thinﬂs to do when creating a form is to set the tab
order for the controls. Thisisthe order in which the controls will be traversed
when the user presses theT AB key. To set the tab order for your controls, set
the Tablndex property for each control. When th& AB key is pressed, the
cursor moves among the controls in ascending order by the Tablndex property.
This should be one of the last things that you do with aform, because controls
often get moved around quite a bit before the final form design is determined
and you may waste time and effort if you try to set the tab order before the
design is complete.

2.3.6 Creating Menus

To create amenufor aform, select theMenu Editor command on theTools
menu. Thiswill bring up the menu editor window.

Menu Editor E3
Caption:

Mame: IMainMenu Cancel

Index: |1 Shortcut; I(Nane)
HelpContextlD: IIJ MegotiatePosition: 0-Mane -

I~ Checked ¥ Enabled ¥ Yisible ™ ‘Windowlist

ool els] T _vom | _ouen |

i

&Change List

< &0d Fashioned NFL Record 10

- & Generate WB Screens at FBun Time
<& Transter NFL Screen Text to VB

< &Print Text on B Form

~&Field I/0 Using a B Form
~&Record /0 Using a VB Form
<& Combo Boxes and Record /O

Bt |

Figure 2.15 Menu Editor Window

36 Visual NPL Developers Guide

When you are creating a menu, you are creating several control arrayene for
each group of items at the same level on the same menu. Thidame and Index
fields in theMenu Editor window are the same as theName and Index
properties in thePropertieswindow. To edit the menu, do the following:

Use thelnsert button to add a new menu command above the
currently selected item.

Use the Delete button to remove the currently selected item.

Use the arrow buttons to move the items around within the menu
and to change the nesting level of menu commands.

Use theEnabled and Visible check boxes to control access to the
menu commands.

Use the Checked check box to put check marks beside menu
commands.

Use theWindowList check box with an MDIform for the top-level
menu that holds the list of open windows.

Use the Shortcut drop-down list to select shortcut keystrokes for
menu commands.

Set the caption to a hyphen (-) when you want to create a separator
bar on a menu.

Select the underlined letter in each menu command by putting an
ampersand (&) in front of it.

2.4 Editing Code

To open the codeediting window for a module or a class, double-click the
appropriate line in theProject window. To open the code-editing window for a
form, do one of the following:

Double-click the appropriate line in tReoject window, and then double-click the form
background or one of the controls.

Click the appropriate line in theroject window, and then click théiew Code button in
the Project window.

The Code Editor window contains two drop-down lists at the top of the
window, one for selecting the object being edited Eth@b'ect list) and one for
selecting the procedure within the object %th@roc ist). Therest of the window
is devoted to the actual code editor.

Visual NPL Developers Guide 37

The following figure shows an example of th€ode Editor dialog box.

™™ Form1 M=l B3
Ohject: IFurm :J Froc: ILDEld :_-;
option Explicit ﬂ

Private Sub Cancel Clicki)

End Sub

Frivate Sub Form Load{}

End Sub

Frivate Sub OK Click()

End Sub

o o

Figure 2.16 Code Editor Window

When editing modules:

TheObject list only contains an entry naméGeneral).

TheProc list for the(General) object containgdeclarations) and the names of all of the
procedures in the module.

When editing classes:

TheObject list contains one entry name@General) and one entry name€lass.

TheProc list for the(General) object containgdeclarations) and the names of all of the
local procedures in the class.

TheProc list for theClass object contains thénitialize and Ter minate methods, the
names of any methods created by the developer, and the names of any property
procedures created by the developer.

When editing forms:

TheObject list contains one entry name@General), one namedForm, and the names of
each control (including menus) on the form.

38

Visual NPL Developers Guide

TheProc list for the(General) object containgdeclarations) and the names of all of the
local proceduresin the form.

TheProc list for forms and controls contains the names of all of the events for the object.

When you first create a new form or control, there is no code for any of the
events. To add code for a particular event:

Select the apropriate item from th®bject list and then click the event name in tReoc
list.

If the event doesn’t exist, it will be created and the cursor will be positioned within it.

If the event already exists, the cursor will be moved to the start of thatgerocedure.

The view in the editor Bortion of the window will depend on the settings of the
Full Module View and Procedure Separator check boxes in theEditor tab of
the Options window. If Full Module View is not checked, then you will only
see the code for procedure that is currently selected in thBroc list. If itis
checked, then all of the proceduresin all of the objects will appear as one long
file. In this case, ifProcedure Separator is checked, then there will be a
separator line between each procedure.

Visual NPL Developers Guide 39

CHAPTER 3

Visual NPL Fundamentals

This chapter is an introduction to Visual NPL programming. It discusses:

The overall structure of Visual NPL and hotwiorks
Event-driven programming

Accessing VB objects, properties, and methods from NPL
Handling events by calling NPL functions from VB
Managing the NPL run-time’s main window

Miscellaneous programming details

40 Visual NPL Developers Guide

3.1 How It All Works

The following figure shows the interactions of various programming elementsin
Visual NPL.

I I
VNCON16.0CX

VnplLink Form

Your VB Program

Figure 3-1 Visual NPL Structure

Visual NPL works by creating a link between an NPL program and a VB
|orogram. This communications link is created b usin%can NPL externa
ibrary (VNPL16. DLL) and a VB control /NCON16. OCX) to send messages
back and forth between the two environments.

In NPL, access to the link is provided by a set of subroutines in modules
"Vnpl " and" Vnpl Dev" indiskimageVNPL. NPL. In VB, access to the
link is provided by subroutines in module¥nplUtil and VnplDev in files
named VNPLUTI L. BAS and VNPLDEYV. BAS, respectively. Also, thereisa
VB form namedVnplLink in the file namedVNPLLI NK. FRM, which iswhere
the connection control actually exists.

Visual NPL Developers Guide 41

3.1.1 NPL Diskimage

The" Vnpl " and" Vnpl Dev" modulesare in theVNPL. NPL diskimage.
The" Veryol " module is a protected module that contains most of the interface
provided by Visual NPL. Thé' Vnpl Dev" module contains only the
constants, variables and routines that you are allowed to change, which include:

Device number of the diskimage containihynpl "

Delimiter usd to separate a list of parameters

Minimum size of # PO NTER string parameter passed from VB to NPL
Maximum number of forms or controls that can be returned in alist
Constants to convert NPL screen positions to VB window positions
Error-handling routines and textual error messages

Textual color names

Keyboard translation strings

U TouseVisual NPL from an NPL program
Set the device number (VnSys)of the diski mage containing' anpl " . Then,
ev'\ea NPL module that uses Visual NPL should begin with the following two
I UDE statements:

| NCLUDE T " Vnpl Dev"
| NCLUDE T#_VnSys, " Vnpl

For purposes of these statements;’ Vnpl Dev" must be in Device #0 and
“Vhnpl * can bein any device. Typically, you will copy thé&Vnpl Dev"

module fromVNPL. NPL into your main diskimage, which should be Device
#0. Then you will set the VnSys constant to the device number of the entry
that contains the path forVNPL. NPL. The advantages of this approach are:

Y ou only need one copy ofNPL. NPL on your computer, making it easier to update to
future versions of Visual NPL.

Y ou can make project-specific changest®&npl Dev" without affecting the original
"Vnpl Dev" .

TheVNPL. NPL diskimage can be moved to a different device number by changing the
value of_VnSys in" Vnpl Dev" .

3.1.2 VB Modules and Linkage Form

TheVB VBEIU“I and VnplDev modules are in files namedvNPLUTI L. BAS
and VNPLDEV. BAS, respectively and theVnplLink form isin the file named

42

Visual NPL Developers Guide

VNPLLI NK. FRM. TheVnEJILink form contains a connection control that is
used by the routines inVnplUtil and VnplDev. TheVnplUtil module contains
most of the interface provided by Visual NPL.

Note TheVnplUtil module should not be changed, although Visual Basic will allow you
to do so.

The VnplDev module contains only the constants and routines that you are
allowed to change. Thisincludes the following:

Delimiter used to separate a list of parameters

Constants to convert NPL screen positions to VB window positions
Function used to register your forms

Function used to register your controls created “on the fly”
Function used to add commands to the NPIWVnOnd function

Visual BasidViain procedure

U TouseVisual NPL from aVB project

1. Enablethe Visual NPL control by selecting thastom Controls command under the
Tools menu and selecting th¥npl Connection Control check box.

2. Add theVnplLink form to your project.

3. Add theVnplUtil and VnplDev modules to your project.

4. Set up the VB project so that it starts at thain procedure invVnplDev.

If you are adding Visual NPL to an existing VB project that already hasiain

procedure, merge the two into one. Make sure to put the code iinplDev at
the very start of the newMain procedure.

Visual NPL Developers Guide 43

3.1.3 Building the Connection

To build the connectionbetween NPL and VB, each program must call a
routine to initialize communications In the VB program this code isin the
Main procedure inVnplDev. As shown in the following sample, the code calls
the Init method of theVnCon control on theVnplLink form. The method is
passed the name of the VB executable file, which is used as a key when trying
to establish communications with NPL:

Vnpl Li nk. VnCon. | ni t (App. EXENane)

After this has been passed, the connection control is waiting for connection by
an NPL program that can detect the base name of the executable file (the file
name without the full path and without the EXE file-name extension). To
complete the link from the NPL program, you must call the NPLVnQpen
procedure with the base name as follows:

' VnOpen(" BASENAME")

This procedure looks for a connection control with the specified base name that
iswaiting for a connection. If it can’t find one, it looks for the executable file
on the standard Windows search path and runsit. It then looks again for the
connection control. If itstill can’t find it, or if it couldn’t find or run the
executable, the procedure generates a Visual NPL error. Otherwise, the
connection is made and your program continues.

This approach allows you to run your Visual NPL program using either the VB
development environment or the executable file produced by VB. To run the
Program with the development environment, you must run the VB program

irst, and then run the NPL program. To run the program with the VB
executable, you only need to run the NPL program.

When your program is finished, it must close the connectiothat it built. This
}sltilone by calling the Vnd ose procedure from your NPL program as
ollows:

"Vnd ose

Thistellsthe VB Bprogram to end and close the connection. Y ou don't have to
do anything in VB.

3.1.4 Multiple Connections

Although there generally isn’t much need to do so, it is possible for asingle
NPL E)/ro ram to connect to up to 32 VB programsEach time you successfully
cal' VnQpen , it creates a unique VB application number identifying the new
connection. The' Vn(pen routine also sets an internal variable to this
number, which is then used by all subsequent calls to the Visual NPL routines
rather than having to pass it as a parameter every time. This number is referred
to as thecurrent application number. This makes it easy to connect to asingle

44 Visual NPL Developers Guide

VB application because you don’t have to do anything with application
numbers at all.

On the other hand, connecting to more than one VB program requires some
additional steps:

Retrieve the current application number after each call ¥nCpen and record it
somewhere for later use.

M ake sure that thearrent application number is set correctly for every call to a Visual
NPL routine.

Close all connections when done.

U Toobtain the current application number
Call the' VnGet AppNum function immediately after callingnQpen as follows:

" VnOpen(" BASENAME")
AppNunF' VnGet AppNum

U Toset the current application number

Cdl the' VnSet AppNum procedure before each group of calls to the same VB
program as follows:

" VnSet AppNun{ AppNun)

U Tocloseall open connections

Call the' Vnd oseAl | procedure when your program is shutting down as follows:
''Vnd oseAl |

Visual NPL Developers Guide 45

3.2 Event-Driven Programming

VB is anevent-driven progamming environment. This means that all

processing is done in response to a user action, such as selecting a menu
command, typing a character, or clicking a button (callegvents). Every time

an event occurs, Visual Basic calls a predefined procedure (for which you fill in
the code%. For most events you will handle, just call an NPPROCE

using VB procedureVnCallProc asfollows:

Private Sub NextButton_ dick()
Rem VB
VnCal | Proc " Got oNext Recor d"
End Sub

PROCEDURE ' Got oNext Recor d/ PUBLI C
; NPL
END PROCEDURE ' Got oNext Record

3.2.1 Mainline Program

The mainlineof aVisual NPL program is usually very simple and includes:

Initialize your application.

Open the connection with VB.

Start up the main form and wait for it to close.
Close the connection with VB.

Terminate your application.
Inits simplest form, an NPL example would contain the following:

;open the link to the VB app
" VnQpen (" BASENAME")

hi de the run-tine w ndow
" VnSet Npl widShow(_VnH de)

;Ioad, process and unload the main form
' DoMai nForm

;Close the link to the VB app
'Vnd ose

;Cptionally show the run-tinme w ndow again

46 Visual NPL Developers Guide

" VnSet Npl widShow(_VnShow)
$END
where' DoMai nFor m is a procedure that handles the creation, processing, and

shutdown of the main form in your apPIication. There is nothing special about
this procedure; it’s just the mainline of aform.

3.2.2 Handling a Form

Each form in your program should have dorm handler, a procedure that
serves as the form’s mainline. It displays the form and puts NPL into a
suspended state. Eventually some event, such as clicking @lose button,

causes the mainline to wake up. It then closes the form:

PROCEDURE ' DoMai nFor m
; NPL

Show t he form nodel essly
" Vnhet hod(" Mai nFor m Show', " ")

;V\ait for 'VnWakeup to be called
"VnSl eep

;Unl oad the form
"' VnOd(" Mai nFor nt', " Unl oad"," ")

END PROCEDURE ' DoMai nFor m
The only VB event procedure that has to be filled in is for thélick event of the

Close button:
Private Sub d oseButton_ Qick()
Rem VB
VnCal | Proc "VnWakeup "
End Sub

The' VnWakeup procedure causes the' VnSl eep call in the mainline to
return. In other words, it wakes up the mainline, which then continues
executing normally.

Warning When calling VnSl eep, theremust always be a call to' Vn\Wakeup to
cause it to return.

Visual NPL Developers Guide 47

3.3 Using Objects

Most Visual NPL programming is centeredround manipulating VB objects
guch agg)erdms and controls. There are two different ways in which objects can
e acc :

By specifying the full name of the objeatdll calls that use the object

By getting areference to the object, using the reference in all calls that use the object,
and then releasing the reference when done.

Internally, each time you refer to an object by name, the name is resolved into
an object reference. This means that using object referencesis going to be
faster than using object names. However, in many cases, you only need to use a
particular object in one or two statements in a procedure. In this case, the
overhead of getting and freeing the object reference will negate the speed
advantage. In general, only use object references for objects that you will be
working with extensively.

3.3.1 Object Names

Object namesconsist of several parts separated by periods. For example, to
refer to aformyou would simply give the name of the form:

Mai nFor m

To refer to a controlon the form, you would use the name of the form followed
by the name of the control:

Mai nFor m Cancel But t on

Torefertoa ﬁropertyof aform or control, you would use one of thereceding
followed by the property name:

Mai nFor m Narre
Mai nFor m Cancel But t on. Nane

48 Visual NPL Developers Guide

These names are just strings in the NPL program. For example, the following
code will print the names of the main form and th€ancel button:

D M Nane$100
; NPL
PRINT ' VnGet Al f $(" Mai nFor m Nane")

i\lame$=“ Mai nFor m Cancel But t on. Nane"
PRI NT ' VnGet Al f $(Nane$)

It will sometimes be necessary to build an object name from individual parts
that are stored in separate variables. For example, you could pass the name of
an object to a procedure that prints the name of the object. In this case you
would have toappend. Nane to the form name. The VnCbj $ function can
be used for exactly this pur%ose. It accepts two parameters and returns the
combined values separated by a period.

PROCEDURE ' Pri nt Cbj Nane(/ PO NTER (hj Nane$)
; NPL

PRINT ' VnGet Al f $(* VnCbj $(Obj Narre$, " Nane"))
END PROCEDURE ' Pri nt Obj Nare

Visual NPL Developers Guide 49

3.3.2 Object References

Object referencesare createdby calling the' VnGet Cbj $ function with the
name of an object. The function returns a string containing the reference to the
object. Thisreferenceisavalue (apointer in C programming) with a prefix
and suffix that are used to differentiate the reference from an actual object
name. The reference will be VnCbj Len characters long.

D M Cbj $_Vn(oj Len
; NPL

Cbj $=' VnGet Cbj $(" Mai nFor ')
PRINT ' VnGet Al f $(* VnCbj $(Obj $, " Narre”))
' VInFr eeoj () $)

It isimperative that for each call td VnGet Cbj $, there is a corresponding
cal to' VnFreeChj . This releasesthe internal Windows resources used to
create references. Without this call, your program will be creating a Windows
memory leak, which will eventually cause the system to stop.

With object references, it almost always necessary to callVnQhj $ asin the
preceding section, because most functions expect an object followed by a
property or method name.

3.3.3 Registering Your Forms

Internally, Visual NPL resolves all object names into object references. In
order to do this it needs to know about the forms that you have created in your
VB program Unfortunately, VB doesn’t provide this information, so you must
specify it. For each form that you createyou must add aCase to the

Sel ect statement in theVnSetObj function in theVnplDev module in your
VB f)rogram. The text of theCase should be the name of the form and the

sin fe line of code for theCase should set theCbj parameter to the form

itself:

Case " Mai nFor nf
Set bj = MainForm

This alows the form to be used in the NPL program, for example:

PRI NT ' VnGet Al f $(" Mai nFor m Capt i on")

50 Visual NPL Developers Guide

3.3.4 System Objects

Along with the forms that you create, there are several system objecthat are
available to your NPL program.

System Object Description

App Application
dipboard Clipboard

Err Last general error
Error L ast data access error
For ns Currently loaded forms
Printer Current printer
Printers List of available printers
Screen Screen

Table 3-1 System Objects

These objects can be used anywhere that any other object can be used, for
example:

PRI NT ' VnGet Al f $(" App. EXENane")
PRI NT ' VnGet Nun{" Pri nt er. Copi es")

3.4 Accessing VB from NPL

Visual NPL gives youcomplete control over the objects in your Visual Basic
program. Y ou can access properties, call methods, retrieve collections, perform
specialized commands, and even create your own commands.

Visual NPL Developers Guide 51

3.4.1 Setting and Getting Properties

The most fundamental thing you’ll want to do from NPL isto set and get the
various properties of an object. There are several types of properties, all of
which can be setwith one of these procedures:

"VnSet Al f Sets a property value from a string
"VnSet Num Sets a property value from a number
' VnSet Cbj Sets a property value to an object

These procedures all take two ﬁarameters: the first is the property to be set and
the second is the value to which the property should be set. For example:

"VnSet Al f (" Mai nForm Caption","Title")
" VnSet Num(" Mai nForm Vi si bl e", _True)
" VnSet (bj (" Mai nFor m CheckBox. Cont ai ner", " Mai nFor ni')

Corresponding to the Set procedures are the three Gediunctions:

"VnGet A $ Gets a property value as a string
"VnGet Num Gets a property value as a number
"VnGet hj $ Gets a property value as an object reference

These functions al take one parameter, the property to get. For example:

PRI NT ' VnGet Al f $(" Mai nFor m Capt i on")
PRI NT ' VnGet Nun{" Mai nFor m Vi si bl e")
HEXPRI NT ' VnGet (oj $(" Mai nFor ni')

In order to use these functions you must know the type of the property that you
want to access. Even so, the Set procedures will try to convert their parameter
into the appropriate type for the property. Similarly, the Get functions will try
to convert the property value into the type that they return. For example,
"VnGet Al f$ will convert a numeric property into a string and return the
string version of the number.

52

Visual NPL Developers Guide

3.4.2 Calling Methods

In addition to accessing properties, you will often need to call an object’s
methodsin order to perform object-specific operations. TheVnMet hod
procedure takes two parameters, the method to be called and a string containing
the parameters to be passed to the method. The individual parameters are
separated by the %Iobal delimiter character VnDel i n$, the default for which

is the “pipe” symbol ().
" VnMet hod(" Mai nFor m Li st Box. Addl tent, "I tent)
" VnMet hod(" Mai nFor nLi st Box. d ear™," ")

" VnMet hod(" Mai nFor m Move", " 100| 100")

Each parameter will be converted to the appropriate type before being passed to
the method.

3.4.3 Getting Collections

A collectionis a VB object that contains an array of other VB objectsT here

are several collections that you may want to use while working with VB
programs and Visual NPL provides procedures for accessing the most common
information in these collections:

Procedure Collection

"VnGet FormCt r | Li st Controls on aform

" VnGet LoadedFor nii st Currently loaded forms
"VnGet PrinterlList Available printers

" VnGet Pr opl nf oLi st Properties of an object

Table 3-2 Available Collections

In al cases, the procedures return the collection information in two global
variables:

A numeric indicating the number of elementsin the collection

A string array with the information for each object in the collection

Visual NPL Developers Guide 53

For example:
DMI

" VnGet LoadedFor nlLi st

PRI NT "Loaded forns:"

FOR | =1 TO VnNunioadedFor s
PRI NT VnLoadedFor n$(1) .LoadedFor mNane$; " ";
PRI NT VnLoadedFor n$(1) .LoadedFornCaption$;" ";
PRI NT VnLoadedFor n$(1) .LoadedFornVi si bl e$

NEXT |

In addition to these collection specific procedures, the
"VnGet Col | ecti onLi st procedure will get the value of a specific
property for all elements of any collection. For example:

DMI
' VnGet Col | ect i onLi st (" Forms", " Name")
PRI NT "Nanes of |oaded forns: "
FOR 1 =1 TO VnNumivenber s

PRI NT VnMenber $(1) . Col | ecti onProp$
NEXT |

For more information on the collection procedures and the names of
corresponding global variables, see each procedure’s reference section.

3.4.4 Special Commands

There are several special commandshat can be called by means of the
"VnQrd procedure:

Command Description
A ear Form Deletes controls created at run time
Load L oads a form into memory

Load Picture Loads a graphics file
Set Props Sets multiple properties at once
Unl oad Unloads a loaded form

Table 3-3 Special Commands

The' VnQrd procedureis aﬂeneral purpose command execution engine. The
first parameter is an object, the second is a command to be performed on the
object, and the third is an optional list of parameters to be passed to the
command. Theindividual parameters are separated by the global delimiter

54

Visual NPL Developers Guide

character _VnDel i n$, the default for which is the “pipe” symboal (|). For
example:

"VnOrd("M/Fornmd', "Load"," ")

"VnOrd("M/Fornf', "Unl oad"," ")

"VnOd("M/Forni,"d ear Form," ")

"VnOd(" MyFormt', "Set Props", " Top=100| Lef t =100")
"VnOd(" MyForm | con", "Load Picture"," SWOCEH | CO')

TheLoad command loads a form into memory without showing it and the

Unl oad command closes aform and removes it from memory. These
commands are equivalent to the VBLoad and Unload statements. Thed ear
For m command is used when generating screens “on the fly.” It unloads al the
control array members, except the base control (index number 0), from a
particular form.

TheSet Props command sets the values of one or more of an object’s
properties. The parameter list consists of property “name=value” pairs. Each
property is set to the corresponding value.

TheLoad Pi cture command loads agraphicsfileinto a Picture, Icon, or
Draglcon property. The third parameter is the name of the graphicsfile, which
is loaded using the VBL cadPictur e function.

3.4.5 Developer-Defined Commands

If ' VnOrd doesn’t recognize the command passed in the second parameter, it
asses control on to theVnDevDef function in the VBVnplDevmodule. This
unction is your gateway to implementing your own special-purpose commands

]:I'o add acommand, add aCase to theSel ect statement in theVnDevDef
unction.

Rem VB
ny "ErrBox" comrand
Case "FErrBox"

bj Val ue = MsgBox(bj Val ue, vbCritical, "Error")
This command could be called from an NPL program as follows:

*VnOnd(" ", "ErrBox", "Hello Vinny!")

Visual NPL Developers Guide 55

3.5 Calling NPL Procedures from VB

It is possible to call ailmost anyPUBLI C NPL procedurefrom VB. The only
limitation is that you can’t use arrays as parameters to the NPL procedure. The
VB VnCallProc function takes one or more parameters, the firsdf which is the
name of the NPL procedure to be called. Any other parameters are passed on
to the NPL procedure as its parameters. Y ou must pass the correct number of
parameters or the call will fail.

The following example shows how you would call avery poor random number
generator from VB, it also shows a very poor use of this number:

Rem VB

VnCal | Proc "Random', Num
VnCal | Proc "Purge", Num "START"

PROCEDURE ' Randon(/ PO NTER Nunj / PUBLI C

; NPL

Nurm= MOD(Nuntt 1234567, 20)

END PROCEDURE ' Random

PROCEDURE ' Pur ge(Devi ceNum Fi | eNare$8) / PUBLI C

SCRATCH T#Devi ceNum , Fi | eNane$
DELETE T#Devi ceNum, Fi | eName$

END PROCEDURE ' Pur ge

56 Visual NPL Developers Guide

3.6 Responding to Events

The most common place from which to call an NPL procedure is an event
procedure In fact, thisis how you handle eventsin Visual NPL. For each
event that you want to handle you do two things:

Create aPUBLI C procedure in NPL
Call the NPL procedur&rom the VB event procedure

For example, to handle aDelete button you might call an NPL procedure
named DoDel et e from VB in the following manner:

Private Sub Delete dick()
Rem VB
VnCal | Proc "DoDel et e"

End Sub

PROCEDURE ' DoDel et e/ PUBLI C
; NPL

DI M Answer

Answer =' VnMsgBox(" Del et e The Thi ng",
"Are you sure? ",
_VnMYesNo+_VnMbl conQuest i on)
| F Answer =_Vnl dYes
; delete the thing here
END | F

END PROCEDURE ' DoDel et e

Visual NPL Developers Guide 57

3.7 Error Conditions

There are several special concerns regarding calling NPL procedures from VB
asfollows:

1. You can only call procedures.
2. The NPL procedure must exist and be declaredRdBLI C.

3. The number of parameters passed must match the number of parameters eghéy the
NPL procedure.

4. It must be possible to convert the parameters passed into the data types expected by the
procedure.

5. NPL must be executing a call to the/nS| eep procedure or to thé VnOnd
procedure with thé&how, Show Mbdel ess, Set Focus ,orResune
command.

For items 2 and 5 above,VnCallProc returns an error code. This makesit
possible to handle the rare situations in which it’' s acceptable that an NPL
procedure doesn’'t exist or isn't callable. All other conditions are viewed as
developer errors and a message box will be displayed with the appropriate error

message.

Aswith any program, an NPL procedure called from VB may cause an error
and then stop running. This leaves you in immediate mode in NPL with no way
to finish executing the NPL procedure, which means that the call to
VnCallProc cannot complete and return to VB. However, because you are in
immediate mode, thisis easy tdfix: type RETURN. This causes the procedure to
return immediately to VB.

58 Visual NPL Developers Guide

3.8 Other Routines

This section describes miscellaneous Visual NPL routines.

3.8.1 Controlling the NPL Window

There are four aspects of the NPL run-time windowthat is, the main window
created when you execute the NPL run time) that you can control.

Table 3-4 summarizes these and the NPL procedures that alow you to set and

get their values.

Attribute Set Get

Whether or not it svisible ' VnSet Npl WidShow " VnGet Npl WidShow
Position on the screen " VnSet Npl WidPos " VnCGet Npl WidPos
Size of the window ' VnSet Nl WidSi ze " VnCGet Npl WidSi ze
Title of the window "VnSet Nol WidTi tl e "VnCGet Npl WidTi tl e

Table 3-4 NPL Window Operations

In many cases, you will hidehe NPL run-time window at the start of your
program and never show it again:

" VnSet Npl WidShow (_VnH de)

Thiswill make the window invisible, athough it is still accessible. In other
words, even though the window can’'t be seen %ou can still change its position,
size, and title. When you want the window to become visible agajwcall

" VnSet Npl WidShow again:

" VnSet Npl widShow(_VnShow)

Any changes that you made to the window while it was hidden would now be
visible. When making changes to the window’ s positioand size remember

that the coordinates and sizes are irtwips. There are 1440 twips per inch.

Also remember that the Screen object can be used to get the screen coordinates
and size, which are also in twips.

Visual NPL Developers Guide 59

For example, to change the NPL window’ s titlamake the window half the size
of the screen and then put it two inches from the top and left sides of the screen
you would do the following:

DM Wdt h, Hei ght

W dt h=" VnGet Nun{ " Scr een. W dt h")
Hei ght =" VnGet Num(" Scr een. Hei ght ")

' VnSet Npl WidTi t1e$ ("Hel I o Vi nny")
' VnSet Nol WidSi ze(W dt h/ 2, Hei ght / 2)
' VnSet Nol WidPos (2880, 2880)

3.8.2 Message Boxes

Windows provides a built-in facility called the message boxThis a small
window that can be used to show important messages, warnings and errors, and
to ask simple questions. Windows provides a standard set of icons that can be
displayed to the left of your message, as well as a standard set of buttons that
can appear at the bottom of the window.

The' VnMsgBox function is passed the title for the window, the m eto be
displayed and a set of numeric flags. The flags specify which icons and buttons
will appear in the window. The function returns a value that indicates which
button was pressed to close the window. For example, to show a simple error
message you might do the following:

Error Message

@ COops! Bang!

Butt on=" VnMsgBox("Error Message", "CQops! Bang! ",
_VnMbCk+_Vnbl conSt op)

Y ou would probably ignore the result in this call.

60

Visual NPL Developers Guide

To do atypica deletion confirmation, you might do the following:

Confirm Record Deletion

@ Areyou sure?

But t on=" VnMsgBox (" Confirm Record Del eti on",
"Are you sure? ",
_VnMbYesNo+_VnMl conQuest i on)

Here you would most certainly want to know what the result is, because it
indicates whether or not to do the deletion:

| F Button=_Vnl dYes
: delete the record
END | F

3.8.3 Input Boxes

Visual NPL provides a simple window that can be used to prompt for asingle
input value. The' Vnl npBox$ function is passed the title for the window, the
message that prompts the user, a numeric flag, and the initial value to be
displayed in the input field. Set the numeric flag to O to use a single line input
fieldand setitto_VnMil tili ne touseamultiplelineinput field. If the user
clicks theOK button, the function returns the contents of input field; otherwise,
it returns a blank string.

To prompt for a name, you might do the following:
Add New Record

Record name:

New Record

0K Cancel |

Nanme$=" Vnl npBox(" Add New Record", "Record nane: ",
0, "New Record")

Visual NPL Developers Guide 61

To promptfor a users comments, you might do the following:
What's In This Record

Description:

=]

0K Cancel |

Descri ption$="Vnl npBox("Wat’'s In This Record",
"Description:” , VnMultiline," ")

3.8.4 Closing a Form

It isextremely important that you handle form closingcorrectly. Although you
may provide buttons that explicitly close (unload) aform, it is also possible to
close the form using standard Windows features:

TheClose item on theSystem (or Control) menu, which is accessed with the button or
icon in the upper left hand corner of the form

The Windows 9%Close button (appears similar to an “X” in the upper right hand corner
of the form).

If these events are not handled, it is possible for the user to close the form

without I>]/our program detecting it. One way to handle this problem is by

]E:allirr:g]'5 e provided VBVnWakeup procedure from theQueryUnload event
or the form:

Private Sub Form QueryUnl oad(Cancel % Unl oadMode%)
Rem VB
Vn\Wakeup Unl oadMbde

End Sub

62

Visual NPL Developers Guide

TheVnWakeup procedure checks theUnl oadMbde parameter, which
indicates how the form isbeing closed. If it’'s because of a call tovnOnd ,
then nothing is done. Otherwise, it callsthe NPLL VnWAkeup procedure.
which would cause the VnSl eep in the form’s mainline procedure to return.

3.8.5 Error Handling

Most of the NPL routines set a global variable namednEr r or to indicate
whether or not they succeeded. A zero means the operation was successful, a
negative value means that an error occurred. Whenever an error occyrihe
"VnEr r Func procedurein the" Vnpl Dev" moduleiscalled. This
procedure sets the global variablée/nEr r Msg$ to an error message that
describes the problem. Y ou can modify messages to suit your needs.

When the error message is set, the VnEr r Func procedure checks another
global variable namedVnEr r Met hod . If thisvariableis set to

VnErrCal | Func ,thenam e box containing the error message is
displayed. Y ou can change this code to call your own error-handlierg? ﬁrocedure.
When' VnErr Func returns, the Visual NPL routine that generated the error
checkstheVnEr r Met hod variableitself. If the variable is set to
_VnErr Signal Error , then the routine generates an NPL run-time error
code with the following statement:

RETURN ERRCR (' VNEr r Num)

The' VnEr r Num function trandlates the value ofVnEr r or into an NPL error
code and returnsit. By default, these values start at 601 and are incremented.
Y ou can change' VnEr r Num (in" Vnpl Dev") if this conflicts with error
codes that you are already using.

A third option exists for error handling. IVnErr Met hod issetto

VnEr r Suppr ess , then nothing is done with the error code; no message box
isdisplayed and no NPL error code is returned. In this case, your program
would have to manually checkVnEr r or after every call to an NPL routine.

To summarize, the global variable/nEr r Met hod (in" Vnpl Dev") can be
set to one of the following, according to how you want Visual NPL to handle
errors:

_VnErrCal | Func Perform a developer-defined action

_VnErrSignal Error Return an NPL error code (default)
_VnErr Suppr ess Do nothing but setVnEr r Msg$

Visual NPL Developers Guide 63

3.8.6 Manipulating Colors

Almost all Visual Basic objects have at least one colgproperty. Values of
color properties are of two types, expressed in different formats:

RGB Color The number contains three 8-bit numbers indicating the intensity of the three
primary colors: red, green, and blue

System Color The number contains an index into the system table of colors

Visual NPL provides functions for creating both types of color values. It also
provides a function to determine the type of a color value and separate it into its
component parts. The VnSet R@B function takes the three primary color
intensities and returns the combined RGB color value. The

‘ ;I/nSet SysCol or function takes an index and returns the system color
value:

PRI NT ' VnSet R&B(0, 255, 0)
PRI NT ' VnSet SysCol or (1)

65280
- 2147483648

Although there are constants for the 16, standard RGB colors, you may find it
useful to call' VnSet R@B to create other colors. On the other hand, there are
only 19 system colors; constants have been created for each of these. Y ou
should use these constants directly; you should not need to call

"VnSet SysCol or . All of the color constants are documented in Chapter 7,
NPL Reference.

64 Visual NPL Developers Guide

3.8.7 Font

Visual NPL also provides procedure VnGet Col or to determine the type of a
color value and separate it into its component parts. The color is passed as the
only parameter and sets these global variables as a result:

VnBl ueVal Blue valueif it's an RGB color

VnCol or $ Name of the color if it's one of the built-in color values

vnCol or Src Type of color (VNRGBCol or or _VnSysCol or)

VnG eenVal Green valueif it's an RGB color

VnRedVal Red valueif it's an RGB color

VnR@BCol or | ndex Index intoVNR@BCol or () and VNnR@&Col or $() if it'sone
of the built-in RGB color values

VnSysCol or | ndex Index intoVnSysCol or () andVnSysCol or $() ifit'sone

of the built-in system color values

Translation

It is sometimes necessary to translate the NPL foninto another Windows font
in order for it to appear correctly with Visual Basic. Thisis especialy true for
rograms in languages other than English. Visual NPL maintains an internal
ont tranglation table, which is used to transate string values that are passed

between NPL and VB. By default, the trandation table is empty, so no
trangdlation is done.

Y ou can set the font tranglation table by calling theVnSet Tr an procedure
with anew translation table. This table consists of pairs of characters to be
trre]xnslated. Within each pair, the NPL character is first, followed by the VB
character.

' VnSet Tran(" AaBbCc")
If you pass a blank string, the font translation table is cleared and no translation
isdone. You can get the current tranglation table by calling the
"VnGet Tran$ function:

HEXPR NT ' VnCet Tr an$

Visual NPL Developers Guide 65

3.8.8 Detecting the NPL External Library

In some cases you may wish to detect whether or not the NPL library
(VNPL16. DLL) isloaded before trying to use it gloadi ng one of the modules
that uses the library causes a resolve-time error if the library isn’t there)) To
avoid this problem, the library contains EFFN named' VnDet ect . When
you call' VnDet ect and handle the error condition; VnDet ect determines
if the library is present or not. If it doesn’'t exist, then the module that uses the

For example:

Q0SB ' VnDet ect
ERROR GOSUB ' NoLi brary

Note ' VnDet ect can also be called by itBEFFN number, which is 32116.

3.8.9 Miscellaneous Routines

This section discusses miscellaneous routines such as tranglating numeric
values into strings, centering a form on the screen, and getting the version
number of Visual NPL.

It is often necessary in Visual NPL to translat@umeric values into strings.
Y ou can cal the' VnConvNun$ function with a numeric value to get a string
with no leading or trailing blanks:

D M Val ue$10
Val ue$="#" & ' VnConvNun$(123) & "#"
PRI NT Val ue$

#123#

Another thing you may want to do is center a fornon the screen. This be done
by calling the' VnCent er procedure with the form name or object asits
parameter, usually in the form’d. oad event:

Private Sub Form Load()

Rem VB

VnCal | Proc " LoadMi nFor nt
End Sub

PROCEDURE ' LoadMai nFor m
; NPL
" VnCent er (" Mai nFor ni')

66 Visual NPL Developers Guide

END PROCEDURE ' LoadMai nForm

TheVnCenter procedure also exists on the VB side. So if the only thing you
want to do in yourL oad event (or any event) is center the form, you can call
VnCenter directly from the VB event procedure:

Private Sub Form Load()
Rem VB
VnCent er Mai nFor m
End Sub

In addition, you can get the version number of Visual NPL by calling the
"VnGet Ver$ function:

PRI NT "Visual NPL Version ";'VnGetVer$

3.9 Recovery If NPL or VB Stop

Aswith any development project, as you are testing and modifying your
program, you may find that every so often your program stops and can’'t be
restarted from where it stopped. Ordinarily you would fix the problem and run
the program again “from scratch.” However, notice that, with Visual NPL,
there are now two programs running: the NPL program and the VB program.
As aresult, when one program stops, you need to cancel the other program
before you can restart everything.

3.9.1 Recovery If NPL Stops

If your NPL program stops and it isiot executing a procedure that was called
from VB, you can type the following in immediate mode:

"Vnd ose

This will terminate the connection with VB and the VB program itself, leaving
you in anormal editing state in both NPL and VB. From there You can fix your
program and then try it again. If your NPL program has multiple connections
to VB applications, use Vnd oseAl | instead of' Vnd ose .

3.9.2 Recovery If NPL Stops in a VB-Called Procedure

If lgour NPL program stops and it is executing a procedure that was called from
VB, you must first cause the procedure call to return to VB before closing the
connection between NPL and VB. Y ou can do this by typing the following in
immediate mode:

RETURN

Visual NPL Developers Guide 67

Thiswill cause the procedure to return to VB and the VB program to continue
executing as if the NPL procedure had been successful. In some cases,
continuing the program may not be acceptable. In such cases, before typing
RETURN, put a break edpoi nt into your VB program immediately following the
call to the NPL procedure. Then, when you typ&@ETURN in NPL, the
procedure will return to VB and your VB program will stop before executing
the next statement. From there you can terminate the NPL and VB programs as
described in the next section.

3.9.3 Recovery If VB Stops

If your VB program stogs, you can terminate the connection with NPL by
typing the following in the VB Debug window

VnKi | |

If the Debug window is not visible, click th®ebug Window command under
the View menu. ThetypeinVnKi | | , making visible the NPL window, closing
the connection between NPL and VB, and terminating the VB é)rogram. This
leaves the system in anormal editing state in both NPL and VB.

68 Visual NPL Developers Guide

(this page blank)

Visual NPL Developers Guide 69

CHAPTER 4

Change-List Programming

This chapter discusses thechange-list method of programming with Visual
NPL. It covers:

Wha the change-list is and how it works

Accessing the information in the change-list from NPL
Adding information to the change-list from VB

Hot controls and when they should be triggered
Record-based forms

Creating controls “on the fly”

Miscellareous programming details

70

Visual NPL Developers Guide

4.1 What Is Change-List Programming?

Change-list programmirgjg is an attempt to bridge the gap between the NPL
procedural approach and the Visual Basic event-driven approach. It istended
to be used when alarge amount of NPL code can't be easily or quickly
converted to the event-driven style of programming.

In effect, the change-list is a procedural wrapper put around an event-driven
form. It allows the programmer to make a single call to a high-level NPL
procedure, which then displays and activates a VB form. The procedure returns
only when the user has pressed a button (or triggered some other control) that
causes control to return to the NPL program. Any changes made to the contents
of the form are returned in a global array called the change-list. Thisis
especially useful when aform is being used to display the fields of a record.

The downside to change-list programming is that the NPL program is severely
restricted with regard to the degree of control it has over the VB form that it is
displaying. Furthermore, the programmer must still add VB code to respond to
certain important events in order to record information in the change-list.
Change-list programmingviews the controls on a form as the fields of a record
that is being edited. Before the form is displayed, the controls are initialized to
the values of the record fields. The form is then displayed and the user is
allowed to edit the control values. Every time a change is made to a control, its
new value is recorded in an internal array called thehange-list.

A hot control is one that causes editing to stop and causes processing control to
return to NPL. Typically, hot controls will be menu commands or buttons on
our form. The most common cases are th®©K and Cancel buttons.
ventually, the user will trigger a hot control, at which time the change-list will
be returned to NPL. Depending on which control triggered the return to NPL
§a5 recorded in the change-list) the change-list may be processed to update the
ields of the original record.

Visual NPL Developers Guide 71

4.2 Invoking Change-List Processing

In order to use change-list programming you must use theVnQrd procedure
to show the form and then lout NPL to sleep until a hot control is triggered.
When this hgpens, the call td VnOrd returns and the change-list is in global
variablesVnChgNo and VnChgLi st $ ().

The following' VnOrd commands invoke change-list processing:

" VnQOrd(" For mNane", " Show', " ")

"VnOnd(" For mNane", " Show Mbdel ess", " ")
"VnOd(" For mNane", " Set Focus"," ")
] VnOTd(ll II, n Resurm", n ll)

The primary differences between the four calls are listed in this table:

Command Shows Form? SetsFocus To? Clears Change-
list?

Resume No Not affected No

Set Focus No Form or control Yes

Show Yes Default control Yes

Show Model ess Yes Default control Yes

Table 4.5 'VnCmd Change-List Commands

Notice that theShow and Show Mbddel ess commands show the form and
theSet Focus and Resume commandsdo not. This means that when
processing a form you must initialize everything with a call to one @how or
Show Model ess . All subsequent processing should be done with calls to
Set Focus andResune:

; show the form and process user changes
"VnOnd(" Mai nFor ni', " Show Mbdel ess”, " ")

; performuser comrands until the Cancel

;button is pressed or the formis cl osed

VWH LE VWnChgLi st $(VnChgNo) . Cont r ol $<>" Cancel "
AND VnChglLi st $(VnChgNo) . Cont r ol $<>"Form d ose"

’;ret urn to the formand process user changes
"VnOnd(" Mai nForni', "Set Focus"," ")
VEND

The only difference between theShow and Show Mbdel ess commandsisin
how VB creates the form. TheShow command creates amodal form and the

72

Visual NPL Developers Guide

Show Mbdel ess command creates amodeless form. When a modal formis
displayed, the user can’t access the rest of your program. Thisis useful for
windows that appear and prompt the user for input before some operation can
be performed. A modeless form allows the user to access ;513/ other form
currently displayed by your application. This should be used for windows that
are permanently displayed.

TheSet Focus andResune commands are intended for use with aform
that has already been displayed and is how processing user actions. There are
two important differences between the two commands. Th8et Focus
command sets the focus to a particular form or control and clears the change-
list. TheResume command uses the currently active form and control an
doesn't affect the change-list in any way.

4.3 Accessing the Change-list from NPL

When the call to' VnOnd returns, the current change-list isin global variables
VnChgNo and VnChgLi st $() . VnChgNo contains the number of change-
list items andVnChgLi st $ _F) contains one entry for each control that changed
while the user was editing. The hot controthat caused' VnOnd to return is
the last entry in the array. The whole array islisted in order, with the most
recent changes at the end.

Visual NPL Developers Guide 73

4.3.1 Change-List Array

Each element of the change-list array is &nChangedLi st record with the
following fields:

Fl ag$1 A flag indicating what type of change-list item thisis. THel ag$ field
will be one of the following characters:

C Normal control

H Hot control

R Control that is mapped to an NPL record field

A ASCII keystroke generated by a call t&/nKeyPr ess

K Keyboard code geneated by a call toVnKey

X Form close event generated by acall t&/nC ose
App$8 The name of the VB application from which the change is coming
For n$40 The name of the form from which the change is coming
Cont r ol $40 A name identifying the item that has changed
ChgVal ue$40 The changed value

ChgVal Wiol e$1 A flag indicating whether or not the entire control value fits into the
ChgVal ue$ field. TheChgVal Whol e$ field will be“Y” if the
entire control valueisin tha&ChgVal ue$ field and “N” if it didn’t fit. If
the valueis“N,” then you will haveto use VNCGet Al f $ to get the full
value rather than getting it from th&ChgVal ue$ field.

4.3.2 Hot Control

The hot controlthat caused’ VnQrd to return is the last entry in the change-
list. Therefore, the array will always contain at least one element and
VnChgNo will aways be at least 1. Y ou can examine the last entry in the
change-list to determine what to do next in your program:

"VnOnd(" Mai nFor ni', " Show Mbdel ess”, " ")
SW TCH VnChgLi st $(VnChgNo) . Control $

CASE " K"
CAéE "Cancel ", "Form d ose"
END SW TCH

In the case of aCancel button (or the form being closed), your program will
probably ignore the change-list. For the®K button (and possibly other
controls), you will want to determine if any changes were made and then
process them if they exist:

;determne if there are any changes

74 Visual NPL Developers Guide

| F VnChgNo>1

’;pr ocess the changes one at a tine
FOR 1 =1 TO VnChgNo-1 BEG N

NEXT |
END | E

Notice that theFCR loop doesn’t Process the last entry in the change-list,
because thisis just the hot control and not actually one of the changed values.

4.3.3 Manually Accessing the Change-list

At times, it may be necessary to accesshe change-list in response to some
event that doesn’t actually return the change-list by means 6fVnOrd . The
"WnGet Chgli st procedure retrieves the current change-list into the global
variablesVnChgNo and VnChgLi st $(%] . However, there is one important
difference between this change-list and the one returned byVnQrd . This
change-list doesn’'t contain a hot control, which means thathChgNo may be
0. Usethe following code to determine if there are any changes and then
process them if they exist:

;get the change-1i st
" VnCGet Chgli st

;det ermine if there are any changes
I F VnChgNo>0

’;pr ocess the changes one at a tine
FOR 1 =1 TO VnChgNo BEG N

NEXT |
END | E

After thisis processed, you m%want to clear the list so that the changes aren’t
applied twice. The' VnA ear ChgLi st can be used for this purpose:

'Vnd ear ChglLi st

Visual NPL Developers Guide 75

4.4 Adding to the Change-list from VB

In order for information to be put into the change-list, you must add calls to one
or more of the VB change-list routines in response to specific events. This
section describes the VB routines that you must call and the circumstances for
calling them.

4.4.1 Recording Changes

In order to make use of the change-lista control must notingisual NPL
whenever its value changes. This is done by calling thevn <r:1 ﬁrocedure from
a VB event that indicates that something has changed, usuall¢hange, Click,

or DbIClick. Which event(s) to use depend on the type of control and how you
aretrying to useiit.

TheVnChg procedure simply sets an internal flag that indicates that the
control’s value has been changed. In order to actually add the new value to the
change-list, you must call the/nChk procedure from a VB event that indicates
that editing of the control is complete, typically, the ostFocus event. The
VnChk procedure checks the internal flag, if it's not set, then nothing is done.
When the flag has been set by an earlier call thChé;, the value of the control
j‘s((::o,pied into the change-list array and the element’Bl ag$ field is set to

With some controls, particularly buttons, you will want to calWnChk right
after caIIingVnCh%. Thisis useful when the control is initiating some sort of
action that should be performed immediately. Thisis the case with clicking a
command button or spin button and double-clicking some other controls,
particularly lists.

76 Visual NPL Developers Guide

This table shows the VB events that can be used fovnChg and VnChk for the
standard VB controls.

Control VnChg VnChk

Check box Click L ostFocus

Combo box Change, Click or DbIClick LostFocus or DbIClick
Command button Click Click

Directory list box Change or Click L ostFocus or DbIClick
Drive list box Change L ostFocus

File list box Click or DbIClick LostFocus or DbIClick
Grid Click L ostFocus

Horizontal scroll bar Change L ostFocus

List box Click or DbIClick LostFocus or DbIClick
Option button Click L ostFocus

Spin button SpinDown and SpinUp SpinDown and SpinUp
Text box Change L ostFocus

Vertical scroll bar Change L ostFocus

Table4-6 VnChg and VnChk Events

For example, for atext box control, you would fill in the V EBhange and
L ostFocus events in this way:

Private Sub Address_ Change()

Rem VB
VnChg

End Sub

Private Sub Address_ Lost Focus()
VnChk

End Sub

For a button control, you would fill in th€lick event in this way:

Private Sub Cancel _ Qick()
Rem VB
VnChg
VnChk

End Sub

Visual NPL Developers Guide 77

4.4.2 Creating Hot Controls

There are two ways to make a normal control into a hot control

Call VB procedur&nHot instead of calling/nChk.
Put “Hot” into the Tag property of the control.

Use one method or the other; do not use both. Usi n%nH ot has the advantage
of simplicity; you type invnHot instead of VnChk. TheVnHot procedure
works exactly like thevVnChk procedure with one exception. If the control’s
value is copied to the change-list, the change-list is then returned to NPL. For
example, theClick event for anOK button would look similar to this:

Private Sub COKButton_ dick()
Rem VB
VnChg
VnHot

End Sub

Using the Tag propertyhas the advantage of flexibility. Y ou can change a
control into a hot control (or vice versa) at run time just by setting the Tag
property from NPL:

"VnSet Al f (" Mai nFor m SorreCont rol . Tag", "Hot")

When setting the Tag property, you must still cal/nChk. When theVnChk
rocedure copies a control’ s value to the change-lit, it also checks the control’s
NaFngroperty. If it contains the word “Hot”, then the change-list is returned to

Regardless of which method is used, the last entry in the change-list (the hot
control) has itsFl ag$ field isset to" H" .

4.4.3 Menu Commands

TheVnMenuClk procedure is used to add an entry for a menu command to the
change-listand then return the change-list to NPL. This procedure actsin a
similar manner to a hot control in that it forces program control to return to
NPL. It takes one parameter—the name you want returned in théont r ol $
field of the change-list entry. This name can be anything you want as the
following example shows.

78 Visual NPL Developers Guide

Private Sub FileMenu_ dick(lndex%

Rem VB
Sel ect Case | ndex
Case 1
VnMenud k " Fi | eNew!'
Case 2
VnhMenud k "Fi | eCpen”
Case 3
VnMenud k "Fi | eSave"
Case 4
VnMenud k "Fi |l eSaveAs"
Case 5
VnMenud k "FilePrint"
Case 6
VnMenud k "Fil eExit"
End Sel ect
End Sub

4.4.4 Closing a Form

It isextremely important that you handleform-closing correctly. Although you
may provide buttons that explicitly close (unload) atorm, it is also possible to
close the form using standard Windows features:

TheClose command on th&ystem (or Control) menu, which is accessed with the button
or icon in the upper left corner of the form

The Windows 9%Close button (this appears similar to an “X” in the upper right corner of
the form

If these events are not handled, it will be possible for the user to close the form
without your program detecting it. One solution isto call the VB nClose
procedure from theQueryUnload event for the form:

Private Sub Form QueryUnl oad(Cancel % Unl oadMode%)
Rem VB
Vnd ose Unl oadMbde

End Sub

Visual NPL Developers Guide 79

The VnClose procedure checks thelnl oadMbde parameter, which tells how
the form isbeing closed. If it's because of acall toVnQrd in NPL, nothing
isdone. If it'sbeing closed in some other waﬁ, then a special change-list entr
is added and the change-list is returned to NPL. The special entry will have the
Fl ag$ field setto" X" and theControl $ field setto” For m C ose" .

This procedure acts similarly to a hot control in that it forces program control
to return to NPL.

4.45 Keyboard Handling

It is sometimes necessary to process each keystrokénat a user types. There are
two different types of keyboard eventsin Visual Basic. ThkeyDown and
KeyUp events are triggered when any key is pressed or released, including
function keys and specia keys. These procedures are passed a numeric code
that identifies the key. TheKeyPress event is triggered whenever an ASCII key
isreleased. The parameter passed to this procedure is the numeric code for an
ASCII character.

If you want to respond to any or all of these keyboard events, call thénK ey
procedure from theKeyDown and KeyUp events, passing it the parameters

that are passed to the event:

Private Sub Address_ KeyDown(KeyCode% Shift%
Rem VB
VnKey KeyCode, Shift

End Sub

Private Sub Address_ KeyUp(KeyCode% Shift%
Rem VB
VnKey KeyCode, Shift

End Sub

Call theVnKeyPress procedure from theK eyPress event, passing it the
parameter that is passed to the event:

Private Sub Address_ KeyPress(KeyAscii %
Rem VB
VnKeyPress KeyAsci i

End Sub

In the preceding examples, the keyboard events are all for a control named
Address. Itisalso possible for aform to get keyboard events by setting its
KeyPreview property to True. In this case the form’s keyboard events will be
triggered before the control’ s events. This allows you to do keyboard
processing that is common to all controls.

Whether you call theVnKey and VnKeyPress procedures from aform or an
event, each procedure passes its parameters back to NPL as a separate, single-
entry change-list without affecting the current change-list. The change-list

80 Visual NPL Developers Guide

entry will have theFl ag$ field setto” K" if VnKey was called and" A" if
VnKeyPress was called.

Visual NPL Developers Guide 81

When the change-list is processed on the NPL side, some special global
variables are set before it is returned to your program:

VnKeyi n$ Set to "True" (normally "False") to indicate that a keyboard change-list is
being returned to NPL

VnKeyi nMode$ Setto" K" if VnKey was called and' A" if VnKeyPresswas called

For theVnK ey procedure, the following global variables are set:

VnKey$ The K eyCode parameter from VB
VnShi f t The Shift parameter from VB
VnKeyType$ HEX(00) for an ASCII key and HEX(01) for a special key

For the VnK eyPress procedure, the following global variables are set:
VnKey$ The KeyAscii parameter from VB

Because theVnKey and VnKeyPress calls don’'t modify the real change-list,
the next call to' VnOrd should use theResune command in order to leave it
Intact.

4.5 Record-Based Forms

With standard change-list programming you must make several calls to
initialize the values of the controls on aform. Thisis done with the

"VnSet Al f and' VnSet Num procedures. Then, when editing is complete,
you must retrieve the new values one at a time from the change-list. Although
this method is effective, for the sake of performance and simplicity, you may
want to be able to set and get the values of the controls on atorm with one call.
Record-based forms provide this capability.

4.5.1 Setting and Getting Records

The' VnSet Rec procedure is passed a form, the name of @UBLI C NPL
record, and the record itself. The procedure goes through the fields of the
record and sets the controls on the form to the values stored in the record
When your program has initialized the controls, it callsVnQrd in the normal
manner.

82

Visual NPL Developers Guide

When' VnOnd returns, the change-list is still used to determine if any changes
were made. However, rather than retrieving the changes from the change-list,
they are retrieved by calling VnGet Rec . This procedure is passed aform and
the name of aPUBLI C NPL record. It retrieves the fields in the record from
the controls on the form and then returns the new record.

:set the controls fromthe record
' VnSet Rec(" Mai nFor nt', " Mai nRecor d", Mai n$)

; show t he form nodel essly,

;allowthe user to edit the controls,
;return when a Hot control is triggered
"VnOnd(" Mai nFor ni', " Show Mbdel ess”, " ")

;if the OK button was pressed AND soret hi ng
; has changed then process the change-1li st
| F VnChgLi st $(VnChgNo) . Cont r ol $=" K"

AND VnChgNo>1

’; get the record fromthe controls
Mai n$=" VnGet Rec$(" Mai nFor ni', " Mai nRecor d")
END | F

Notice that, when the return value from' VnGet Rec isassigned toMai n$, it
overwrites the original record. This can cause a problem when the record
contains fields that are not on the form. These fields will be set to blanks by the
assignment statement. To avoid this problem, use theVnGet RecSubset
procedure instead of' VnGet Rec . Whereas' VnGet Rec is afunction that
returns a new record,’ VnGet RecSubset isaprocedurethat is passed a
record to be updated. Any fields in the record thatre not on the form are left
Intact.

' VnGet RecSubset (" Mai nFor nt', " Mai nRecor d", Mai n$)
instead of

Mai n$=' VnGet Rec$(" Mai nFor ni', " Mai nRecor d")

Visual NPL Developers Guide 83

4.5.2 Mapping Fields to Controls

In order for the' VnSet Rec and' VnGet Rec calls to work, you must map
each field in the NPL record to a control on the VB form. Thisis done by
setting the Tag properties of the controls to the corresponding record and field
names.

For example, given the following NPL record:

RECCRD Per son
FI ELD Nane$40
Fl ELD Addr ess$40
FI ELD Sal ary

END RECORD

you would set the Tag properties of the appropriate controls to:

Per son. Nane
Per son. Addr ess
Per son. Sal ary

Note that the dollar sign ($) on the end of string field names is omitted.

4.6 Creating Controls On The Fly

Most Visual NPL programming is done by creating forms at design time and
then working with these preconstructed forms at run time. However, it isalso
possible to create forms and controls at run time. The controls “on the fly”
routines treat a VB form as a text based screen with a certain number of rows
and columns. Most of the routines are passed a row and column number
(among other things), where they will “printtheir information (or controls).

When “ ﬁrinti ng” to aform, the form’s AutoRedraw ﬂroperty must be set to
True, otherwise the form’s contents will disappear whenever the form is
minimized or overlaid by another form.

4.6.1 Row and Column Mapping

Obvioudly, the row and column numbersnust be converted into the twips
coordinates used by Visual Basic. The number of rows and columnsis defined
by calling the' VnSet RowsCol s procedure.

' VnSet RowsCol s(" Vnpl Char ", 20, 60)

84

Visual NPL Developers Guide

It isimportant to remember that you must call this routine each time you want
to print to a different form, because the mapping information is not saved
agP/where internally. So, if you have multiple forms being displayed, you must
call ' VnSet RowsCol s each time the user moves to a new form (if you
intend on printing to that form).

Furthermore, you must call this routine and redraw everything on aform
whenever it isresized. Otherwise, the row and column sizes will be different
and any new printing won't align properly with what's already on the form.

4.6.2 Printing to a Form

The' VnPrint At procedure can be used to printext directly on aform. Itis
Basse_d tgde form to be printed on, the row and column to print at and the text to
e printed:

"VnPrint At ("MainForni, 12,25,"Hell o there!")

The' VnPri nt Box procedure can be used to print a rectangle of a specific
color on aform. Passit the form on which to print, the row and column at
which to print, and the height, width and color of the box:

"VnPri nt Box(" Mai nFor ni', 2, 20, 5, 40, _VnLi ght Gray)

Y ou can also Brint several things to the internal print buffeMpPri nt $) and
then send the buffer to VB for printing. Th&nPri nt $ global variable
declared in" Vinpl Dev" islarge enough to handle the text for a 24row by
80—column screen. If you plan on using more rows and columns you may have
to enlarge this buffer.

To print to the buffer, use the NPLPRI NT TO and PRI NTUSI NG TO
statements. However, the NPL AT statement won’'t work when sending the
buffer to VB. Instead, usethé VnAt $ function, which is passed arow and a
column number and returns the characters necessary to do row/column
positioning in VB. When finished ﬁrinti ng to the buffer you can call the

VnPrint To procedure to send the buffer to VB. This procedure is passed
one parameter—the form to print on.

PRINT TO VnPrint$;"' VnAt $(2, 4); "Nane: "

PRI NT TO VnPrint$;' VnAt $(4, 4); " Address: "
PRI NT TO VnPrint$; ' VnAt $(10, 4) ; " Phone: "
"VnPrint To(" Mai nFor ni')

A third procedure,' Vnl nput Scr een , can be used to copy all or part of the
NPL screen to aVB form. Pass this procedure the form on which to print, the
row and column at which to print, and the height and width of the rectangular
areato coPy to VB. This procedure does the equivalent of ahNPUT

SCREEN from the NPL screen and aPRI NT EN toaVB form.

PR NT AT(2,4);" Nare: "

Visual NPL Developers Guide 85

PRI NT AT(4,4);"Address:"
PRI NT AT(6, 4); " Phone: "
" Vnl nput Screen(" Mai nFormt', 0, 0, 10, 40)

The printing routines are not limited to printing on aform. They can also be
used with a picture box object and the printer. Everything except the
"VnPri nt Box routine can also be used on the VB Debug window.

4.6.3 Base Controls

Creating new controls at run timeg¢ontrols “ on the fIy”f) works by making
duplicates of a set of base controls Y ou must create aform in VB with one
base control for eve%t pe of control you need on the form. For example, if
the form only uses| s, text boxes, and buttons, then you would need a base
|abel, a base text box, and a base button. Each base control should have its
Index property set to 0 and itsVisible property set to False. Y ou can name
them whatever you want, but usually the type name is used_@bel, TextBox,
CommandButton).

Setting the Index property to O causes VB to create a single-element array
where element 0 is the control you create. When you create a new control at
run time, Visual NPL makes a copy of the base control by enlarging (using
REDI M) the control array. The new element is an exact duplicate of the base
control except for the Index property. It will be set to the new control’s
position in the control array.

Note TheVnplChar form contains base controls for all of the standard Visual Basic
controls. Y ou can use thisform in your programs.

86 Visual NPL Developers Guide

4.6.4 Registering Control Names

For every unique base control name, you must registethe control array in the
VnSetCtrl function in theVnplDevmodule in VB. This means adding a new
Case totheSel ect statement inVnSetCtrl. The text of theCase should be
the name of the control array and the single line of code for théase should
settheCt r I parameter to element Index of the control array. For example, for
ac%ntrol array namedNewControl, the VB Case statement would look similar
to this:

Case "NewControl "
Set Grl = bj.NewControl (I ndex)

The defaultSel ect statement containsCase statements for each of the
standard Visual Basic controls (that is, the ones on the'nplChar form).

4.6.5 Creating Controls

TheNPL' VnOreateCirl s procedure creates new controlst run time. It

is passed the form on which to create controls, the name of the base control, and
the number of new controls to create. For example, to create three input fields,
their captions, and anOK and aCancel button, you would do the following:

"WnCreateCrl s("Vnpl Char", " Text Box", 3)
"WnCreateCrl s("Vnpl Char", "Label ", 3)
"WnCreateCrl s("Vnpl Char", " CommandBut t on", 2)

This just creates the controls; it doesn’t show them. To do that, you must
“print” them to the form. Passthé VnPrint Ctrl procedure:

The control to be printed
The row and column to print at
The height and width of the control
The value to be assignewtcontrol’ s default property
A list of properties and their values
The' VnPrintQrl procedureinitializes a control and then showsiit:

"VnPrintCrl ("Vnpl Char. Label (1)",2,2,1,1,"Nane:"," ")
"VnPrintCrl ("Vnpl Char. Label (2)",4,2,1,1,"Address: ",

"VnPrintCrl ("Vnpl Char. Label (3)", 6, 2,1, 1, "Phone: ",
)
" VnPrintCrl ("Vnpl Char. TextBox(1)", 2, 11, 1, 40,

" ", "MaxLengt h=40, Tabl ndex=1")
"WnPrintCrl ("Vnpl Char. Text Box(2)", 4, 11, 1, 40,

Visual NPL Developers Guide 87

" MaxLengt h=40, Tabl ndex=2")
"VnPri ntCIrI(Van Char. Text Box(3) ,6,11,1, 10,
" MaxLengt h=10, Tabl ndex=3")

" \VnPri ntCIrI(Van Char . CommandButton(1)", 9, 13, 2, 10,

"Caption=CK , Tabl ndex—4 Tag=Hot ")

"VnPrintCrl (" Van Char. OommndButton(Z) , 9,28, 2,10,
" "Capti on=Cancel , Tabl ndex= 5, Tag=Hot ")

4.6.6 Destroying Controls

When you unload aform, all the controls on the form are destroyed. However,
with controls “on the fIy,” you may want to create onbase form (such as
VnplChar) and use it to show many other forms. In this case, you would need
to clear the form and recreate the controls on it. Thél ear For m command
of the' VnOnd procedure does that, destroying all the controlsn the form
except for the base controls.

"VnOd(" Vnpl Char","d ear Fornt," ")

To destroy individual controls, pass the control to theVnDest r oyCt r |
procedure. For example:

"VnDestroyCirl (" Vnpl Char. Label (1)")

88

CHAPTER 5

Demo Programs

This chapter discusses the demonstration programs that come with Visual NPL.
These prgl%ramsare meant to be used as a guide to various Visual NPL
features. They include:

A simple change-list program
A simple event-driven program

A large demo program that contains several smaller demo programs, each of which
demonstrates a specific Visual NPL
feature

Visual NPL Developers Guide 89

5.1 Hello (Change-List)

The Change-list Helloprogram is a simple example that demonstrates the
basics of change-list programming.

It calls theVnChg and VnChk procedures from theClick event of theOK
button. Because the Tag property for this button is set to "Hot", thénChk
procedure causes the change-list to be passed back to the NPL program, which
In turn causes the program to end. The program also calls thénClose
procedure from the form’ SQueryUnload event. This handles the case where
the user closes the form from the system menu or by clicking thélose button
i9n5the upper right corner of the window (represented by an “X”) in Windows

5.2 Hello (Event-Driven)

The Event Driven Helloprogram is a smple example that demonstrates the
basics of event-driven programming.

It uses theVnCallProc procedure in theClick event of theOK button to call
the NPL' VnWakeup procedure. This causes the mainline of the NPL
program to return from thé VnSl eep call and then end the program. The
program also calls thevVnWakeup procedure from the form’ QQueryUnload
event. This handles the case where the user closes the form from the system
menu by clicking theClose button in the upper right corner of the window
(represented by an “X”) in Windows 95.

5.3 Demos

The Demos program consists of several subprograms, each of which
demonstrates one or more Visual NPL concepts. The subprograms are
organized into four groups, each of which can be acc from atop-level
menu on the main window:

Change-list Change-list programs
Event Driven Event-driven programs
Common Dialogs Common dialog examples

Boxes M essage and input boxes

90 Visual NPL Developers Guide

The menu commands under each top-level menu correspond to the individual
subprograms for each group. The code that controls the main window and
launches all of the other subprogramsis also a subprogram itself. It's a good
example of how to use menus and can be found in the NPL Mai nFor n
module inDEMOS. NPL and the VB MainFormform in files

MAI NFORM FRM and MAI NFORM FRX. The" Mai nFor m' module also
contains the code for the Common Dialog examples and Boxes examples.

Yisual NPL Demos
Change List EwentDriven Common Dialogs Boxes Help

Visual NPL Demo Programs

Niakwa Inc.

23600 N. Milwaukee Avenue
Yernon Hills, IL

USA 60061

Tel: 847-634-8700

Fax: 847-634-8718

The MNPL code that uses this form is in module "MainForm"

Figure 5.2 Demos Program Main Window

The change-list and event-driven subprograms are all stand-alone Visual NPL
programs when combined with the NPL' START" and" END' modules. Each
of these subprograms consists of amain NPL module and a VB form. In some
cases there may also be additional NPL code and/or data modules involved.
This modularization should make it easier to insert pieces of thBemos

program into your own programs.

5.3.1 Change-List Programs

_Th(le ((:jhange-l istdemos show how to use the change-list programming features
including:

Processing menu commands
Creating forms and controls at run time

Printing to &/B form

Visual NPL Developers Guide 91

Processing input/output (1/0) one field at atime
Processing 1/0 with all fields at once

Terminating the program

The demos are accessed with the following menu commands.

Old Fashioned NPL Record /O Uses the NPL window to do record 1/O.

Generate VB Screens at Run Time Generates a VB window from code at run-time.

Transfer NPL Screen Text to VB Prints to the NPL window and then copiesitto a
VB form.

Print Text on VB Form Prints text directly to a VB form.

Field I/O Using a VB Form Does record 1/0O, accessing the controlson aVB

form one at atime.

Record I/0O Using a VB Form Does record 1/0O, accessing the controlson aVB
form as a group that makes up a record.

Combo Boxes and Record 1/0 Does record 1/0O, accessing the controlson aVB
form as a group that makes up arecord, while
using combo boxes for some of the fixed-choice
fields.

Exit Terminates the program.

92 Visual NPL Developers Guide

5.3.2 Event-Driven Programs

Th(la %/ent-drivendemos show how to use event-driven programming features
including:

Processing menu commands
Showing a prgress meter
Dealing with color
Viewing images
Dealing with objects (forms, controls, and properties)
validating input data,
Setting up and using the printer
Terminating the program
The demos are accessed with the following menu commands:

Colors

Progress Bar

Image Viewer
Database Access
Unbound Data Grid

Objects - Set Properties
Objects - Inspect
Validation - Post
Validation - Keystroke
Validation - Control
Validation - Real-Time
Printer - Setup

Printer - Test

Exit

Selecting and setting colors.

Showing and cancelling a progress indicator.

Selecting drives, directories, and files, and showing images.
Using the data control and data bound controls.

Using a grid to show data records (see the note that
follows).

Accessing objects and setting their properties.
Accessing objects and viewing their propertiesin a grid.
Validating input when the OK button is clicked.
Validating input whenever a key is pressed.

Validating input using a self-validating control.
Validating input on afield by field basis.

Setting up the printer.

Printing text.

Terminate the program.

Note The standard grid that comes with VB is alimited version that may exhibit
instability. Asaresult, thenbound Data Grid demo may behave unpredictably. If you

need to use a grid it ikighly recommended that you buy a full-featured grid control from a
third party. However, you may still view the grid demo for an illustration of how to use a
grid.

Visual NPL Developers Guide 93

5.3.3 Common Dialogs

The common dialog demos show how to use the VB support for Windows
built-in common dialogs (sometimes calleghop-up windows), which provide
access to several common Windows operations:

- Selecting file names

Selecting colors
Selecting printers
Selecting fonts

Invoking the Help system

The CommonDialog control is used by setting various properties édepending on
the action to be performed) and then calling one of itShow methods:

ShowOpen Select afile to be opened
ShowSave Select a file to which to save
ShowColor Select a color

ShowPrinter Select and configure a printer
ShowFont Select and configure a font
ShowHelp Invoke the Help system

The CommonDialog control is a control that has no visual interface and that
exists on theMainForm. It will appear at design time but not at run time. The
code that uses the control is in proceduré ConmonDi al og inthe NPL

"Mai nFor ¥ module.

94

Visual NPL Developers Guide

5.3.4 Boxes

The box demos show how to use the VnMsgBox and' Vnl npBox$
functions. The' VnMsgBox function can be used to show simple error or
information messages as well as to prompt for the following types of user
responses:

OK or Cancdl

Abort, Retry, or Ignore

Yes or No

Yes, No, or Cancel

Retry or Cancel
The' Vnl npBox$ function is used to prompt for asingle-line or a multiline
text value. The user is prompted with a message, an input field, and tleK
and Cancel buttons. If OK is pressed, then the input field is returned; iCancel

is pressed, then a blank string is returned. The code for the box demosisin
procedure' Boxes inthe" Mai nFor nt module.

Visual NPL Developers Guide 95

(this page blank)

96 Visual NPL Developers Guide

CHAPTERSG

Distributing Visual NPL
Programs

This chapter contains a discussion of what needs to be done when installing a
Visual NPL application on auser’s system. It covers the following:

An introduction to what needs to be done to set up the user’s system
How to use the Visual Basic Setup Wizard to create a setup program

A description of the problems associated with deciding not to use a setup program
How to register OCX controls

A list of required support files

Visual NPL Developers Guide 97

6.1 Installation Considerations

There are many thi nPs to consider when installing Windows program on a
user’s computer, including the following:

Determining the destination directory and creating it, if necessary
Insuring that there is enough disk space on the destination drive

Copying and possibly decompressing files, making sure not to overwrite a newer file that
already exists on the user’s computer

M anaging diskette switches and prompting the user as appropriate
Registering DLLs and OCXs
Creating folders, icons, anftart menu commands
Usually all of thisis managed by an installation (or setup) program that the user

runs from the first diskette. Y ou can create this type of program with the Visual
Basic Setup Wizard.

6.2 Using the Setup Wizard

The Setup Wizard is a Windows program that performs seven simple stepsin
order to produce an installation/setup ﬁro?ram and the compr filesto be
installed. Here' s what happens in each of the seven steps:

1. The wizard prompts you to enter the name of the Visual Basic project file (that is,
DEMOS. VBP,).

2. Theproject file is analyzed to determine the files that need to be installed.
3. The wizard prompts you to choose the installation mediudiskettes or hard-disk drive.

4. You can add any OLE servers that your program requires but that weren’t listeg in th
project file.

5. You can remove any unnecessary OCXsor DLLs.

6. You must select the type of installation to perform: normal applicati&XE) or OLE
Sserver.

7. You can add any other files to the list of files to be installed.

98 Visual NPL Developers Guide

In general, you usually don’'t need to specify any entries for steps 2, 4, 5, and 6.
Y ou can leave them set to their defaults. Thisis because steg 2 iscompletely
automated; it determines which OLE servers (steP 4) and OCX controls (step 5)
are used by your program as well as what type of program it is (step 6). In
other words, steps 4, 5, and 6 are only provided as safeguards in case
something is missed in step 2.

Furthermore, steps 1 and 3 are easy choices that should only take a few
moments. This leaves only step 7 in which you have to do any real work. This
is where you do the following:

Add the names of your NPL disk images, includWiyPL. NPL
Add the names of your data files

AddVNPL16. DLL

AddVNPL16. DLL s dependent files (listed as follows)

After completing this step, clicking thé=inish button will create the installation
files and copy them to the chosen installation medium.

When thisis done, you can save the setup configuration as a template. Then,
the nexttime you need to produce the installation files, all you need to do is
open the template in step 1 (instead of entering the name of the project file) and
click theFinish button.

6.3 Distributing Visual NPL Without a Setup

Program

Although it is possible to distribute a VVisual NPL application without using a
setup program, it is not recommended. Along with the basic operation of
copying files, you must consider several factors when installing a Windows
program:

All OCXsand DLLs should be installed into Wendows\ Syst endirectory.

An older DLL (based on the file date or an internal version nemnghould not be
installed over a newer one.

All OCXs must be “registered” before they can be used by any program, including yours.

Visual NPL Developers Guide 929

Although copying the files into the specified directory is easyt can be difficult
to determine the internal version numbers of files being installed in order to
avoid copying older versions over newer ones. Using a setup program can
reduce the complexity of the installation process and eliminate the potential for
problems by detecting and installing the appropriate file versions.

In addition to the version number problem, you must register all of your
controls so that they are usable. As described in the next section, thisinvolves
installing a registration program and calling it for each OCX.

Even if you don't use a setup program of any kind, the Setup Wizard that
gomes;lvlgg Visual Basic is an excellent tool for determining which files need to
e installed.

6.4 Registering OCXs

One of the most important things that an installation/setup program must do is
to register the OCXs that it installs. Registration is the act of telling Windows
about an OCX (or é)rogram) by adding some special entries to the Windows
registry, and an OCX can't be used until it is registered.

Almost all OCX controls contain code to register themselves. The setup
program loads each OCX and invokes its registration code. If you aren’t using
a setup program, then you can use thdREGSVR. EXE program in the

W ndows directory. For each OCX that you need to register, call the program
asfollows:

REGSVR /s DI | Nane
for example:

REGSVR /s VNCON16. OCX

100 Visual NPL Developers Guide

The/ s parameter tel|SREGSVR to run in silent mode; otherwise, it shows a
message box when it is done.

6.5 Required Support Files

The following support files are required by Visual NPL:

VNCON16. OCX VNPL16. DLL
VNPL. NPL

The following support filesare required by VNPL16. DLL:
MFCCO250. DLL MFC250. DLL
The following support files are required by Visual Basic:

CTL3DV2. DLL VAEN21. OLB
OC25. DLL VB40016. DLL
CLE2. DLL

The following support files are required byOLE2. DLL:

COvPOBJ. DLL OLE2. REG
CLE2CONV. DLL SCP. DLL
CLE2DI SP. DLL STDOLE. TLB
OLE2PROX. DLL STORAGE. DLL

CLE2NLS. DLL TYPELI B. DLL

Visual NPL Developers Guide 101

(this page blank)

102 Visual NPL Developers Guide

CHAPTER 7

NPL Reference

This chapter contains:

Detailed descriptions of each of the NPL constants
Definitions for each of the NPL records used to retrieve various lists

Descriptions of each of the NPL variables used to return information from some of the
NPL subroutines

A list of the NPL subroutines categorized by the type of operation they perform

Definitions and detailed descriptions of each of the NPL subroutines in alphabetical
order

Visual NPL Developers Guide 103

7.1 Constants
This section discusses the most important constants defined in tHevnpl * and

“Vhnpl Dev" modules. It also givesan overview of the other constants that are
available.

7.1.1 VnSys (VNPL.NPL Device Number)

The_VnSys constant is defined in" Vinpl Dev" and is used to determine
which device refers to thevNPL. NPL disk image.

It should be used in modules that use Visual NPL as follows:

| NCLUDE T " Vnpl Dev"
| NCLUDE T#_VnSys, " Vnpl

The default valueis 1.

7.1.2 VnDelim$ (Parameter Delimiter)

The_VnDel i n$1 constant is defined in" Vnpl Dev" and is used asthe
delimiter whenever alist of itemsis passed between NPL and VB.

This value's main use is to separate parameters passed tbVnhMet hod .
Ideally, the delimiter character should adhere to the following criteria:

Is not found in normal dataitems
Is directly enterable from a computeeyboard

Has the appearance of a separator, rather than of data

The default value is a vertical bar or “pipe”’ character (|).

7.1.3 VnStrRefSize (Minimum /POINTER String

Parameter Size)

The_WnStr Ref Si ze constant specifies the minimum size of a string
parﬁrgl_eter passed fromVnCallProcin VB into a/ PO NTER string parameter
In :

If the string being passed is smaller than the specified minimum, the DLL will
allocate a buffer of this size, fill it with the passed value, and then passit to the
NPL procedure.

The default valueis 100.

104 Visual NPL Developers Guide

7.1.4 Maximum Number of Controls and Properties

The_VnMaxCQtr| sPer Form and_VnMaxPr opFi el ds constants
specify the maximum number of controls returned by

"WnGet FornCtr | Li st and the maximum number of control properties
returned by' VnCGet Pr opl nf oLi st , respectively.

These values are used when doing &/AT SCORT on the results produced by the
corresponding routines.

The default value for_VnMaxPr opFi el ds is80 and the default value for
_VnMaxQt r | sPer Form is150.

7.1.5 Key Translation Strings

The following constants are used to trandate Windows keystrokes from the
KeyDown and KeyUp events into NPL keyboard codes:

_VnNpl Shi f t Kor d$21 _VnUnshi f t Al phakbr dTr an$52
_VnNpl Unshi f t Kbr d$21 _VnWidUnshi f t Kor d$21
_VnShi ft Al phaKbr d$26

7.1.6 Error Handling Flags and Error Codes

The following are error-handling methods:

_VnErrCal | Func _VnErrSignal Error

_VnEr r Suppr ess

The following are error codes:

_VnEr r BadAppNum Invalid application number or application not open

_VnEr r BadConmmand Invalid command name

_VnEr r BadCont r ol Name Invalid control name (or control name not registered in
VNPLDEV. BAS)

_VnEr r BadFor niName Invalid form name (or form name not registered in
VNPLDEV. BAS)

_VnErrBadl f| ags Invalid input box flags

_VnErr BadM | ags Invalid message box flags

_VnEr r BadMbde Invalid show window mode

_VnEr r BadChj ect Name Invalid object name

_VnEr r BadPar am Invalid parameter

_VnEr r BadPar anCount Wrong number of parameters

_VnEr r BadPri nt RowQr Col Invalid row or column number

Visual NPL Developers Guide 105

_VnEr r BadPr oper t yName Invalid property name

_VnEr r BadRecFi el dNane Field name from VB tag matches nd°UBLI C
Fl ELD name

_VnErr BadVal ueLen Invalid value length

_VnEr r BadVer si on Version-number mismatch betweel/NPL16. OQCX
and VNPL16. DLL

_VnErr Coul dNot Access Couldn't access object, property, or method

_VnErr ExeFai |l ed The. EXE file couldn’t be run or VB isn’'t running

_VnErr M ssi ngSepar at or Missing parameter separator (delimiter)

_VnEr r NoConnect Communications couldn’t be established with the VB
application

_VnEr r NoMenor y Memory for the communications buffer couldn’t be
allocated

_VnEr r Past Dr opDeadDat e This product's limited license has expired

_VnErr PosFai |l ed Invalid NPL Window position

_VnErr Si zeFai |l ed Invalid NPL Window size

_VnErr StrToolLong A string parameter is too long

_VnEr r TooManyApps The maximum number of open applications are already
open

_VnErr Val ueNot Nuneri ¢ The retrieved string couldn’t be converted to a number

_VnErr VbError Visual Basic error message

The following are system variables for capacity:
_VnMaxApps _VnQbj Len
_VnMaxVal ueLen _VnQbj NanrelLen

7.1.7 Message Box and Input Box Flags

The following flags describe the buttons that will appear in a message box and
amask for extracting this flag from the combined flags:

_VnMbAbor t Ret ryl gnor e _VnMboYesNoCancel
_VnMbCk _VnMRet r yCancel
_VnMbkCancel _VnMbTypeMask

_VnMYesNo

106 Visual NPL Developers Guide

The following flags describe the icon that will appear in a message box and a
mask for extracting this flag from the combined fIID ags.

_VnMbl conExcl anat i on _VnMol conQuesti on
_VnMbl conl nf or mat i on _VnMol conSt op
_VnMbl conMask

The following flags describe the button that will be the default button in a
message box and a mask for extracting this flag from the combined flags:

_VnMbDef But t onl _VnMoDef But t on3
_VnMbDef But t on2 _VnMoDef Mask

The following flags describe the modality of a message box:
_VnMbAppl Modal _VnMbTaskModal
_VnMSyst envbdal

The following flag causes a message box not to have the focus when it first
appears:

_VnMoNoFocus

Visual NPL Developers Guide 107

'kIJ'he following return values indicate which button was pressed in a message
0X:

_Vnldl gnore _VnMol dCancel
_Vnl dNo _VnMol dCk
_Vnl dYes _VnMol dRet ry
_Vnhbl dAbor t

This flag indicates whether or not an input box is multiline:
VnMul tiline

7.1.8 Window Show Modes

These constants are used by VnSet Npl WwhidShow and
" VnSet Npl WidShow :

_VnH de _VnShow

7.1.9 Color Constants

These constants tell the type of color returned fromh VnGet Col or

_VnR@&BCol or _VnSysCol or

The RGB color constants are:

_VnBl ack _VnLi ght Green
_VnBl ue _VnLi ght Magent a
_VnCyan _VnLi ght Red
VnG ay _VnLi ght Yel | ow
_VnG een _VnhMagent a

_VnLi ght Bl ue _VnRed

_VnLi ght Cyan _VnYel | ow

_VnLi ght G ay _VnWite

108 Visual NPL Developers Guide

The system color constants are:

_VnAct i veBor der
_VnActiveTitl eBar
_VnAppWr kspace
_VnBut t onFace
_VnBut t onShadow
_VnBut t onText
_VnDeskt op

_VnG ayText

_VnH ghl i ght

_VnH ghl i ght Text

_Vnl nact i veBor der
_Vnl nactiveTit| eBar
_VnMenuBar
_VnMenuText

_VnScrol | Bars

_VnTi t| eBar Text
_VnW ndowBackgr ound
_VnW ndowFr ane
_VnW ndowText

7.1.10 Standard Property Values

Empty object and null string values as as follows:

_VnNot hi ng$

_VnNul | $

Boolean values are as follows (" True" and "False" also work in VB 4.0):

_VnTrue

_VnFal se

Alignment options are as follows:

_VnCent er
_VnRi ght Justify

_VnLeftJustify

Border styles are as follows:

_VnFi xedDoubl e
_VnFi xedSi ngl e

_VnNone
_VnSi zabl e

Visual NPL Developers Guide 109

M ouse pointer types are as follows:

_VnArrow _VnSi zeNeSw
_VnCrosshair _VnSi zeNS
_VnDef aul t _VnSi zeNwsSe
_VnHour gl ass _VnSi zePoi nt er
_Vnl Beam _VnSi zeWE

_Vnl conPoi nt er _VnUpArr ow
_VnNoDr op

Window states are as follows:

_VnMaxi m zed _VnM ni m zed
_VnNor nal

Check box states are as follows:
_VnChecked _VnG ayed
_VnUnchecked

7.1.11 Common Dialog Flags

Constants for the Flags property for theshowOpen and ShowSave common

dialogs are:

_cdl OFNAl | owMul ti sel ect _cdl O-NNoDer ef er enceLi nks
_cdl OFNCr eat ePr onpt _cdl OF-NNoReadOnl yRet urn
_cdl OFNExpl orer _cdl O-FNNoVal i dat e

_cdl OFNExt ensi onDi f f er ent _cdl OG-NOverwri t ePr onpt
_cdl OFNFi | eMust Exi st _cdl OFNPat hMust Exi st

_cdl OFNHel pBut t on _cdl OFNrReadOnl y

_cdl OFNH deReadOnl y _cdl OFNshar eAwar e

_cdl OFNNoChangeDi r _cdOFNLongNarres

110 Visual NPL Developers Guide

Flags property constants for theShowF ont common dialog are:

_cdl CFANSI Onl y _cdl CFNoVect or Font s
_cdl CFBot h _cdl CFPrinterFonts
_cdl CFEffects _cdl CFScal abl eOnl y
_cdl CFFi xedPi tchOnl y _cdl CFScreenFont s
_cdl CFFor ceFont Exi st _cdl CFHel pBut t on
_cdl CFLim t Si ze _cdl CFTTOnl y

_cdl CFNoSi mul at i ons _cdl CRWYSI WG

Flags property constants for theShowColor common dialog are:

_cdCd Ful | Open _cdl CCR&I ni t

_cdl CCPrevent Ful | Open _cdl CCshowHel p

Flags property constants for theShowPrinter common dialog are:
_cdl PDAl | Pages _cdl PDPageNuns

_cdl PDCol | at e _cdl PDPri nt Set up

_cdl PDDi sabl ePrint ToFi | e _cdl PDPrintToFile

_cdl PDH dePrint ToFi | e _cdl PDRet ur nDC

_cdl PDNoPageNuns _cdl PDReturnl C

_cdl PDNoSel ecti on _cdl PDRet ur nDef aul t
_cdl PDNoVr ni ng _cdl PDSel ecti on

_cdl PDHel pButton _cdl PDUseDevMbdeCopi es
gr%nstantsfor the HelpCommand property for th&howH elp common dialog
_cdl Hel pCommand _cdl Hel pl ndex

_cdl Hel pCont ent s _cdl Hel pKey

_cdl Hel pCont ext _cdl Hel pParti al Key

_cdl Hel pCont ext Popup _cdl Hel pQui t

_cdl Hel pForceFil e _cdl Hel pSet Content s

_cdl Hel pHel pOnHel p _cdl Hel pSet | ndex

7.2 Records

The record to hold change-list entriesis:

Visual NPL Developers Guide 111

RECORD VnChangedLi st

FI ELD Fl ag$l

FI ELD App$8

FI ELD For n$40

FI ELD Contr ol $40

FI ELD ChgVal ue$40

FI ELD ChgVal Wiol e$1
END RECCRD VnChangedLi st

The record to hold alist of the controls created, used byVnOreateCirl's
is:

RECORD WnCont r ol sCr eat ed
FI ELD O eat edC r | Nane$40
END RECORD VnCont r ol sCr eat ed

The record to hold a list of information about VB contrgbroperties, used by
"VnCGet Propl nfoLi st ,is:

RECORD VnProperties

FI ELD Nane$20

FI ELD Dat aType$l

FI ELD RunTi neAccess$l

FIELD I sArray$l

FI ELD Def aul t $20

FI ELD PropVal ue$40
END RECCRD VnProperties

The record to hold a list of controls for a givefiorm, used by
"VWnGet FormCr | Li st ,is:

RECORD VnFornControl s
Fl ELD For nt r | Name$40
FI ELD For nCx r| Tabl ndex$1
Fl ELD Forntrl Vi si bl e$1
FI ELD FormCx rl Type$3
FI ELD FornCx r| Pr op$80
END RECORD WnFornControl s

112 Visual NPL Developers Guide

The record to hold alist of loadedorms, used by
" VnCGet LoadedFor nLi st ,is:

RECCORD VnlLoadedFor ns
Fl ELD LoadedFor m\Nanme$40
FI ELD LoadedFor nCapt i on$40
Fl ELD LoadedFor mMi si bl e$1
END RECORD VnlLoadedFor ns

The record to hold alist ofprinters, used by' VnGet Pri nterLi st ,is:

RECORD WnPrinters
FI ELD Pri nt er Devi ceNanme$40
FI ELD Pri nt er Dri ver Nane$8
FI ELD Pri nt er Port $5

END RECORD WnPrinters

The record to hold a generiacollection, used by' VnGet Col | ecti onLi st
is:
RECORD VnCol | ecti on

FI ELD Col | ecti onPr op$60
END RECORD WnCol | ecti on

7.3 Variables

Variables for handling errors are:

VnEr r or

VnEr r Met hod

VnEr r Msg$80

Variables for returning the change list are:

VnChgNo
VnChgLi st $(0) # RECORDLENGTH(VnChangedLi st)

Variables for reporting the controls created are:

VnNumt r | sCr eat ed
VnCirl sCr eat ed$(0) # RECORDLENGTH(VnCont r ol sCr eat ed)

Variables for reporting properties for a given control are:

VnNunPr ops
VnPr opl nf 0$(0) # RECORDLENGTH(VnPr operti es)

Visual NPL Developers Guide

113

Variables for reporting controls for a given form are:

VnNunfFormx r | s
VnFor mnt r | $(0) # RECORDLENGTH(VnFor nCont r ol s)

Variables for reporting loaded forms are:

VnNurmLoadedFor s
VnLoadedFor n$(0) # RECORDLENGTH(VnLoadedFor ns)

Variables for reporting printers are:

VnNunPrinters
VnPri nt er $(0) # RECORDLENGTH(VnPri nt er s)

Variables for reporting collections are:

VnNumvenber s
VnMenmbeVnSysCol or | ndex RECORDLENGTH(VnCol | ect i on)

Variables for handling colors are:

VnBl ueVal VNR@EBCol or (16)
vnCol or $16 VNRGBCol or | ndex
VnCol or Src VnSysCol or $(19) 16
VnG eenVal VnSysCol or (19)
VnRedVal VnSysCol or | ndex

VNRGBCo! or $(16) 13

Variables for reporting control value changes are:

VnKey $1 VnKey Type$1
vnKeyi n$5 VnKeyW n$1
VnKeyi nhvbde$1 VnShi f t

VnKeyTr an$5="Tr ue"

114 Visual NPL Developers Guide

The variable for handling focus is:
VnVbHasCont r ol $1

This variable used by' VnPri nt To should have room for anl NPUT
SCREEN of 24 rows by 80 columns (= 3248 for 24 rows by 132 columns):

VnPri nt $2080

7.4 Subroutines

The following table lists the NPL subroutines grouped according to the type of
operation they perform.

Operation Subroutine
Application 'Vnd ose " VnQpen
Connections ' Vnd oseAl | ' VnSet AppNum
" VnGet AppNum
M anagement of the NPL " VnCGet Npl WidPos " VnSet Npl WidPos
Window ' VnGet Npl WidShow ' VnSet Npl WidShow
" VnCGet Npl WdSi ze ' VnSet Npl WdSi ze
'VnGet Nol WidTitle$ ' VnSet Nol WidTitle
Property and Method Access ' VnAddI t ens " VnMet hod
"VnGet Al f$ "VnSet Al f
" VnGet Num " VnSet Num
Record Access ' VnGet Rec$ ' VnSet Rec

" VnGet RecSubset

Object Access " VnFr ee(hj "Vnls(hj $
"WnGet hj $ ' VnSet vj
Font Translation "VnGet Tr an$ 'VnSet Tr an

Change-List Access "Vnd ear Chgli st " VnGet Chgli st

Visual NPL Developers Guide 115

Color Manipulation " VnCet Col or ' VnSet SysCol or
" VnSet RGB

Message Boxesand Input ' Vnl npBox$ " VnMsgBox

Boxes

Creating Controls“On The ' VnAt $ " VnPri nt Box

Fly” "VnOreateQirls "VnPrintCrl
"VnDestroyQrl "VnPrintTo
" Vnl nput Scr een " VnSet RowsCol s
"VnPrint At

VB List Access "VnGet Col | ectionList 'VnGetPrinterlLi st
"VnGet FornCt r | Li st " VnCet Pr opl nf oLi st

" VnCet LoadedFor nii st

Event-Driven Support 'VnSl eep " VnWakeup
Error Handling " VnEr r Func ' VnGet VbEr r or
"VnEr r Num
Miscellaneous " VnCent er "'VnGet Ver $
" VnOmd "Vn(hj $
" VnConvNuns "' Vn(hj 3%
' VnDet ect

Table 7.7 NPL Subroutinesby Type

The remainder of this chapter contains detailed discussions of each of these
routines.

116 Visual NPL Developers Guide

7.4.1 'VnAddltems

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnAddltems
/POINTER _Object$,
/POINTER ltems$())

_Object$
List box, combo box, or grid to which to add the items

Items$()
Items to be added to Object$

This procedure adds an array of itemsto alist box, combo box or grid by
caIIir'cI% the VB AddItem method of the object for each item in the array.

" VnMet hod isused to call theAdditem method, so none of the array
elements can contain the global constant VnDel i n$, which is used to
separate parameters when calling methods.

The items are appended to the list maintained by the object unless the object
specifies otherwise. For example, if the Sorted property of alist box or combo
box is True then the items will be inserted into the list at the appropriate
position.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
" VnAddlI t ens(" MyFor m Col ors", VnRG@BCol or $())

'VnMethod

117

Visual NPL Developers Guide

7.4.2 'VnAt$
Syntax FUNCTION 'VnAt$(

/POINTER _Row,

/POINTER _Caol)
Parameters _Row

Row number.

_Cal

Column number.

Description This function emulates the NPLAT(x, y) function when embedded in a

Return Values

Example

See Also

PRI NT statement. It returns characters which, when embedded in the
VnPrint$ buffer, cause explicit positioning of the following text when

VnPrint$ issubsequently sent to VB using thé VnPri nt To function.

Value M eaning

VnError Returns 0 if successful, otherwise, returns a >0 value

PRINT TO VnPrint$;"' VnAt $(2, 4); "Nane: "

PRI NT TO VnPrint$;' VnAt $(4, 4); " Address: "
PRI NT TO VnPrint$; ' VnAt $(10, 4) ; " Phone: "
"VnPrint To(" M/For m')

'VnPrintAt

'VnPrintTo
'VnSetRowsCols

118 Visual NPL Developers Guide

7.4.3 'VnCenter

Syntax PROCEDURE 'VnCenter (

/POINTER _Object$)
Parameters _Object$

The form object to be centered.
Description This procedure centers a form on the screen. It does this by setting the Top and

]Ic_eft properties of the form based on the current sizes of the screen and the
orm.

Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
Example " VnCent er (" Mai nFor m')

See Also VB procedureVnCenter

Visual NPL Developers Guide 119

7.4.4 'VnClearChgList

Syntax PROCEDURE 'VnClear ChgList

Description This procedure clears the current change list, effectively erasing all changes that
have been recorded so far.

Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Example " Vnd ear Chgli st

See Also "'VnCmd
'VnGetChgList

120 Visual NPL Developers Guide

7.4.5 'VnClose

Syntax

Description

Return Values

Example

See Also

PROCEDURE 'VnClose

This procedure closes a connection between an NPL program and aVB
program as created by' VnQpen . The current application number is used to
determine which connection is being closed. This value can be retrieved and/or
set by the' VnGet AppNum and' VnSet AppNum procedures, respectively.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

"Vnd ose

'VnCloseAll
'VnGetAppNum
'VnOpen

'VnSetAppNum

Visual NPL Developers Guide 121

7.4.6 'VnCloseAll

Syntax PROCEDURE 'VnCloseAll

Description This procedure closes all connections between an NPL program and one or
more VB programs as created by VnQpen .

Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Example ' Vnd oseAl |

See Also 'VnClose
'VnGetAppNum
'VnOpen

'VnSetAppNum

122 Visual NPL Developers Guide

7.4.7 'VnCmd

Syntax

Parameters

Description

Return Values

PROCEDURE 'VnCmd (
/POINTER _Object$,
Cmds$20,

/POINTER _Value$)

_Object$
The object on which the command will be performed.

Cmd$
The command to be performed.

_Value$
Command-specific parameters.

This procedure has three purposes:

It is the central routine used in change-list programming.

It is used to issue some special commands to VB that can’t be performed by setting

properties or calling methods.

It is used to add developer-defined commands to perform specialized tasks.

For more information, see “ Remarks.”
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Visual NPL Developers Guide 123

Remarks

VnChgNo and VnChgLi st $() will be set for the VBShow, Show

M odeless, and Set Focus commands.

In the case of the change-list commands$how, Show Mbdel ess |, and

Set Focus) the procedure will only return when dlot control has been

triggered in the VB program. In this case, th&nChgNo variable will indicate

the number of entriesin the/nChgLi st $ array. Inall other cases, the

gfrgcedegre returns immediately and/nChgNo and VnChgLi st $() are not
ected.

Change-List Commands Description

Show Shows a form modally (the user can only access the form
being shown) and clears the change list. The focusis set to
the first control in the tab order. The Val ue$
parameter is not used for this command.

Show Mbdel ess Shows a form modelessly (the user can still access any
form on the screen) and clears the change list. The focusis
set to the first control in the tab order. TheVal ue$
parameter is not used for this command.

Set Focus Shows aform modelessly (the user can still access any
form on the screen) and clears the change list. The focusis
set to the first control in the tab order if just aform nameis
passed in_Chj ect $ or to the specified control if aform
name and a control name are passed in Chj ect $. The
_Val ue$ parameter is not used for this command

Resune Returns control to the form and the control that currently
have the focus without clearing the change list. The
_(bj ect$ and_Val ue$ parameters are not used for
this command

Special VB Commands Description

Load Loads a forminto menory wit hout
showing it. This command can be
used when you want to preload a
format programstartup. The
formcan then be displayed or
hi dden when it is needed wi thout
incurring the time penalty of
| oadi ng the formeach tine. 1In
practice, this command is sel dom
used because the load tinme for
nost forms is negligible. A so,
because any reference to a form
(that is, setting and getting

124 Visual NPL Developers Guide

Unl oad

dear Form

Set Props

Load Picture

properties, calling methods, and
S0 on) causes the formto be

| oaded, it is recommended t hat
this command be avoi ded. The
_Val ue$ paraneter isn't used for
this command.

Qoses a formand renoves it from
menmory. It may not always be
necessary to unl oad your forns
using this comrand as some user
interface actions will
automatically unload a form For
exanpl e, selecting the Cose item
on the systemmenu of a formw ||
unl oad the form On the other
hand, clicking the OK button of a
formwi Il do nothing unless your
programtells it to. The _Value$
paraneter is not used for this
comand.

Gears a forms control val ues
and unl oads all control array
nmenbers except the base control
(index nunber 0). This command
i s used when generating screens
“on the fly”. The _Value$
paraneter isn't used for this
comand.

Sets the val ues of one or nore of
an object’s properties. The

_Val ue$ paraneter contains a |ist
of property “name=val ue” pairs
separated by the delimter
character _VnDelin$, the default
for which is the “pi pe” synbol
(-

Loads a graphics file into a
Picture, Icon, or Draglcon
property. The _Val ue$ paraneter
is the nane of the graphics file.
This command calls the VB

LoadPi cture function. Most
graphi cs properties are set at
design tine. Use this function
only when graphics need to be

Visual NPL Developers Guide 125

Examples

See Also

changed at run tinme.

Obsolete Commands (from Visual Description

NPL 1.0)

D spl ay

H de

Add Item

Renove Item

d ear

Makes a formvisible by setting
its Visible property to True.
Set the property directly rather
than using this comand.

Makes a forminvisible by
setting its Visible property to
Fal se. Set the property directly
rather than using this command.

Adds an itemto a list box or
conbo box. Call the object’s
Addl tem et hod with VnMet hod
rather than using this command.

Removes an itemfroma |ist box
or conbo box. Call the object’s
Renovel tem net hod with VnMet hod
rather than using this command.

Renoves all itens froma |ist
box or conbo box. Call the
object’s C ear nethod with
VnMet hod rather than using this
comand.

Any command other than the those listed in this section is considered to be a
developer-defined command and is passed on to the'nDevDef function in VB.

* VnOnd(" Mai
* VnOnd(" Mai
* VnOnd(" Mai
*vVnomd(" ",
* VnOnd(" Mai
* VnOnd(" Mai
* VnOnd(" Mai
* VnOnd(" Mai
* VnOnd(" Mai
'VnCallMethod

nFor ni', " Show", " ")

nFor M, " Show Model ess"," ")

nForm | nput Fi el d", " Set Focus"," ")
"Resune"," "

nFornm', "Load"," ")

nForm', "Unl cad"," ")

nForm',"Q ear Fornm'," ")

nForm', "Set Props", " Top=100| Left =100")
nForm | con", "Load Picture", " SWXCEBH | CO'")

126 Visual NPL Developers Guide

7.4.8 'VnConvNum$

Syntax

Parameters

Description

Return Value
Example

FUNCTION 'VnConvNums$ (
/POINTER _Value)

_Value
Numeric value to be converted.

'tl)'lhiskprocedure converts a numeric value into a string with no leading or trailing
anks.

Returns the numeric value as a string.
PRI NT ' VnConvNun$(32) ; ' VnConvNung(76)

3276

Visual NPL Developers Guide 127

7.4.9 'VVnCreateCtrls

Syntax PROCEDURE 'VnCreateCtrls(
/POINTER _Form$,
/POINTER _Control$,
/POINTER _NumCitrls)

Parameters

_Form$

Form on which to create the controls.
_Control$

Name of the control array to use.
_NumCirls

Number of controlsto create.

Description Although VB is especially useful for Qreatin%_forms and controls at design time,
it can also create these objects at run time. Thisis called creatingontrols™ on
thefly.” The' VnQreateCirls procedure creates one or more controls by
duplicating abase control. The new controls copy all of the properties of the
base control except Index and Tablndex, which are both set to the next
available value by VB. Setting properties of the base control prior to the
"WnCreateQrls cal permitsthose properties to be replicated in the new
controls. After acontrol is created, it can be displayed at a particular position
on the form by calling thé VnPrint Ctrl procedure (or by using
"VnSet Al f and' VnSet Num).

The maximum number of elements per control array is 255.

Note Although the Visual NPL 1.0VnCr eat et rl procedure created a single
control at atime, the Visual NPL 2.0/nCr eat et r| s procedure creates multiple
controls. Notice the difference in the procedure names.

Return Values Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value

Example ; create 3 |abel controls
"WnCreateCirl s("Vnpl Char", "Label ", 2)

"VnPrintCrl ("FrmLabel (1)",2,2,1,1,"Name:"," ")
"VnPrintCrl ("FrmLabel (2)",4,2,1,1,"Address:"," ")
"VnPrintCrl ("FrmLabel (3)",6,2,1,1,"Phone:"," ")

128 Visual NPL Developers Guide

See Also 'VnDestroyCtrl
'VnPrintAt
"VnPrintBox
"VnPrintCtrl
'VnPrintTo

Visual NPL Developers Guide 129

7.4.10 'VnDestroyCitrl

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnDestroyCtrl (
/POINTER _Object$)

_Object$

A control created by VnCreateCirl s .
This procedure is used to destroy the controls created ng/hOr eateQrls .
The control should always be a member of an array and you should never

destroy element O of the array: VnDestroyCirl s caPI/ed implicitly when
the form is unloaded.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

"VnDestroyCirl ("Frm Label (1)")
"VnDestroyCirl ("Frm Label (2)")

'VnCreateCtrls
'VnPrintAt
"VnPrintBox
"VnPrintCtrl

'VnPrintTo

130 Visual NPL Developers Guide

7.4.11 'VnDetect

Syntax DEFFN 'VnDetect

Description ThisDEFFN is used to detect whether or not the NPL libraryMNPL16. DLL)
isloaded. Calling' VnDet ect and handling the error condition is used to
determine whether the NPL library is present or not. If it doesn’t exist, then
modules requiring the library are not loaded.

' VnDet ect can also be called by its number, which is 32116.

Return Value None.
Example @G0BUB ' VnDet ect

ERRCR GOSUB ' NoLi brary

Visual NPL Developers Guide 131

7.4.12 'VnErrFunc

Syntax

Description

Return Values
See Also

PROCEDURE 'VnErrFunc

This procedure puts the error meﬁa% corresponding to the current error
number (VnErr or) intoVnEr r Msg$. If the current error handling method
(VnErr Met hod)issetto_VnErr Cal | Func , the error message will also
be displayed using the VnMsgBox function.
Thisis a developer-modifiable routine that existsin théVnpl Dev” module.
To change the text of the error mes;afg&c simply chanfge the text that appears
within this function. This can be useful for handling foreign-language issues.
This procedure is called by ailmost all of the other NPL routines whenever an
ﬁlrror occurs. It should not be called directly from your NPL program.

one
"VnErrNum

132 Visual NPL Developers Guide

7.4.13 'VNnErrNum

Syntax

Description

Return Values
See Also

FUNCTION 'VnErrNum

This function returns an NPL error code based on the current error number
(VnError). If the current error handling methodVnEr r Met hod) is set to
_VnErrSignal Error |, thisfunction is called whenever an error occursin
one of the other NPL routines as follows;

RETURN ERRCR (' VnEr r Num

By default, this function returns an error code in the range 601-627. Y ou can
change this function if the range conflicts with error codes already in use by
¥_our program.

his procedure is called by amost all of the other NPL routines whenever an
error occurs. It should not be called directly from your NPL program.
The NPL error code corresponding to the current value ofnEr r or .
'VnErrFunc

Visual NPL Developers Guide

133

7.4.14 'VnFreeObj

Syntax PROCEDURE 'VnFreeObj (
/POINTER Object$)

Parameters Object$
Object reference to be freed.

Description This procedure frees an object reference created by VnGet Coj $.
Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
Example Dl M (oj $ Vnoj Len
’G)j $=" VnGet (hj $(" Mai nFor m CKBut t on")
PRINT * VnGet Nun(* VnChj $(Cbj $, " Vi si bl e"))
' VnFr eeQhj (b $)
See Also 'VnGetObj$

"Vnl sObj
'VnSetObj

134 Visual NPL Developers Guide

7.4.15 'VnGetAlf$

Syntax FUNCTION 'VnGetAlf$(
/POINTER _Object$)

Parameters _Object$
The property to get.
Description This function returns the value of a property as astring. If it's not a string
property, it will be converted to one.
Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

This function also returns the property value as a string.

Example PRI NT ' VnGet Al f $(" Mai nFor m Capti on")
See Also "VnGetNum

'VnGetObj$

"VnSetAlf

'VnSetNum

'VnSetObj

Visual NPL Developers Guide 135

7.4.16 'VnGetAppNum

Syntax FUNCTION 'VnGetAppNum

Description This function returns thecurrent application number as set by the most recent
call to' VnQoen or' VnSet AppNum . If there is no current aEpIication the
function returns -1. Thisfunction isintended for use with NPL programs that
connect to multiple VB programs.

Return Values This function returns thecurrent application number.

Example AppNum=' VnGet AppNum
See Also 'VnClose

'VnCloseAll

'VnOpen

'VnSetAppNum

136 Visual NPL Developers Guide

7.4.17 'VnGetChgList

Syntax PROCEDURE 'VnGetChglList

Description This procedure retrieves the current change listvnChgNo and
VnChgLi st $() will be set appropriately.

Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Example " VnCGet Chgli st

See Also 'VnCmd
'VnClearChgList

Visual NPL Developers Guide 137

7.4.18 'VnGetCollectionList

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnGetCollectionList (
/POINTER _Object$,
/POINTER _PropName$)

Object$
Collection from which to get property values.

_PropName$
Property of which to get the values.

This procedure gets the value of a particular property for each member of a
collection. The number of elements is returned in thenNunvenber s global
variable and the values are returned in th&nMenber $() global variable.
Each element oanManber$P isaVnCol | ecti on record, which consists
of one string field namedCol | ecti onProp$. Thisfield will hold the
property value for each member.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
VnMenber $() Property values for each member

VnNunmvenber s Number of members in the collection

DMI
' VnGet Col | ect i onLi st (" Forms", " Name")

PRI NT "Nanes of | oaded forns:"
FOR I =1 TO VWnNunmivenber s

PRI NT VnMenber $(1) . Col | ecti onProp$
NEXT |

'VnGetFormCtrlList
'VnGetL oadedFormList
'VnGetPrinterList
'VnGetProplnfoList

138 Visual NPL Developers Guide

7.4.19 'VnGetColor

Syntax

Parameters

Description

Return Values

PROCEDURE 'VnGetColor (

/POINTER _Color)

_Color

A color value as used by VB.

This procedure breaks a color value into its component parts. The global
variableVnCol or Sr ¢ is set as follows to indicate the type of color value:

_VnR@&Col or
GVnSysOoI or

RGB color
stem color
either an RGB nor a system color

If the typeis RGB color, then the/nRedVal , VnG eenVal , and

VnBl ueVal global variables will be set to the component color parts. If the
color is one of the standard RGB colors, then th¥nRGBCol or | ndex global
variable will be set to the index of the color value in thenRGBCol or array
and theVnCol or $ global variable will be set to the name of the color.

If the type is a system color, then th&/nSysCol or | ndex global variable
will be set to the index of the color value in th&nSysCol or array. The
VnCol or $ global variable will be set to the name of the color.

If it's neither an RGB color nor a system color, then no other global variables

are set.
Value M eaning
vnCol or Src The type of color, RGB, system, or other
VnRedVal Red component for RGB colors
Vn@ eenVal Green component for RGB colors
vnBIl ueVal Blue component for RGB colors

VNnRGEBCol or | ndex
VnSysCol or | ndex
vnCol or $

Index intoVNRGBCol or for RGB colors
Index intoVnSysCol or for system colors

Name of the color for RGB and system colors

Visual NPL Developers Guide

139

Example D M Col or

get the background color for the nmain form
; and break it into its conponent parts
" VnGet Col or (" VnGet Nun(" Mai nFor m BackCol or "))
print the col or source val ue
PRI NT "Col or Source: " ;VnColorSrc
print the color information
SW TCH VnCol or Src

CASE 0

PRI NT " Unknown col or"

CASE _VnR@&BCol or
PR NT "R&B Color: " ;
| F VnR@&Col or | ndex<>0
PRI NT VnCol or $
ELSE
PRI NT VnRedVal ; Vn@ eenVal ; VnBl ueVal
END | F

CASE _VWnSysCol or
PRI NT "System Col or:" ; VnCol or$

END SW TCH

See Also 'VnSetRGB
'VbSetSysColor

140 Visual NPL Developers Guide

7.4.20 'VnGetFormCitrlList

Syntax

Parameters

Description

Return Values

Example

PROCEDURE 'VnGetFormCtrlList (
/POINTER _Object$,
/POINTER _PropName$)

_Object$

Form for which to get controls.
_PropName$

Control property for which to get values.

This procedure gets this information for each control on aform:
- The name of the control

The tab index of the control
Whether or not the control is visible
The type of control

The value of a specific property

The number of controlsisreturned in th&/nNunFor nt r1 s global variable
and the control information is returned in th&nFornC r | $() global
variable. Each element ofVnFormCx r1 $() isaVnFornControl s
record, which consistsof the following fields:

For nCt r | Nane$

For nCt r | Tabl ndex$

FornCtrl Vi si bl e$

FornCxrl Type$

FornCxrl Prop$

These fields correspond one-for-one with the preceding list.

Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value

DMI
' VnGet For nCt r | Li st (" Mai nFornmi', " Top")

PRI NT "Control Tops:"
FOR 1=1 TO VnNunfFornCtrl s
PRINT VnFornCxrl $(1) . FornCxrl Name$;
PRINT VnFornCxrl $(1) . FornCrl Prop$
NEXT |

Visual NPL Developers Guide 141

See Also 'VnGetCollectionL ist
'VnGetL oadedFormList
'VnGetPrinterList
'VnGetProplnfoList

142 Visual NPL Developers Guide

7.4.21 'VnGetLoadedFormlList

Syntax

Description

Return Values

Example

See Also

PROCEDURE 'VnGetL oadedFormList

ITgldS e|8Irocedure gets the following information for each form that is currently
0 :

The name of the form
The form’s caption

Whether or not the form is visible

The number of formsis returned in th&/nNuniLoadedFor ns global variable
and the form information is returned in th&nLoadedFor n$() global
variable. Each element ofVnLoadedFor n$() isaVnLoadedFor m
record, which consistsof the following fields:

LoadedFor nNane$

LoadedFor nCapt i on$

LoadedFor nVi si bl e$

These fields correspond one-for-one with the preceding list.

Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value

DM I
" VnGet LoadedFor nlLi st

PR NT "Loaded forns:"

FOR | =1 TO VnNunioadedFor ns
PRI NT VnLoadedFor n$(1) .LoadedFor mNane$;" ";
PRI NT VnLoadedFor n$(1) .LoadedFor nCaption$;" "

PRI NT VnLoadedFor n$(1) . LoadedFornVi si bl e$
NEXT |

'VnGetCollectionList
'VnGetFormCtrlList
'VnGetPrinterList
'VnGetProplnfoList

Visual NPL Developers Guide 143

7.4.22 'VnGetNpIWndPos

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnGetNplWndPos (
/POINTER Left,
/POINTER Top)

Left

L eft coordinate of the NPL run-time window.
Top

Top coordinate of the NPL run-time window.

This procedure gets the position (upper |eft corner) of the NPL run-time
window. All coordinates are in twips (1440 per inch).

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
D M Left , Top

' VnGet Npl WidPos(Lef t , Top)

PRINT Left , Top

'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplwWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

144 Visual NPL Developers Guide

7.4.23 'VnGetNplWndSize

Syntax PROCEDURE 'VnGetNplWndSize (
/POINTER Widith,
/POINTER Height)

Parameters Width
Width of the NPL run-time window.
Height
Height of the NPL run-time window.
Description This procedure gets the size (width and height) of the NPL run-time window.
All sizes arein twips (1,440 per inch).
Return Values Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value
Example DM Wdt h, Hei ght

' VnGet Npl WidSi ze(W dt h, Hei ght)
PRINT Wdth, Hei ght

See Also "VnGetNplWndPos
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

Visual NPL Developers Guide 145

7.4.24 'VnGetNpIWndShow

Syntax

Description
Return Values

Example

See Also

FUNCTION 'VnGetNplWndShow

This procedure determines whether or not the NPL run-time window isvisible.
Value Meaning

_VnShow Returned if the NPL run-time window is visible
_VnH de Returned if the NPL run-time window is not visible

D M Ret

I F ' VnCGet Nol WhidShow=_VnShow

Ret =' VnMsgBox(" Vi si bl ", "Runti me W ndow', 0)
ELSE

Ret =" VnMsgBox(" I nvi si bl e", "Runti ne W ndow', 0)
END I F

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

146 Visual NPL Developers Guide

7.4.25 'VnGetNpIlWndTitle$

Syntax FUNCTION 'VnGetNplWndTitle$
Parameters This function takes as a parameter the title of the NPL run-time window.
Description This procedure gets the title (caption) of the NPL run-time window.
Return Values Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value
Example DM Title$100

" VnGet Npl WhdTi t1 e$(Titl e$)
PRINT Title$

See Also "VnGetNplWndPos
'VnGetNplWndShow
'VnGetNplWndSize
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

Visual NPL Developers Guide 147

7.4.26 'VnGetNum

Syntax FUNCTION 'VnGetNum (
/POINTER _Object$)

Parameters _Object$
The property to get.
Description This function returns the value of a property as anumber. If it's not a numeric
property, it will be converted to one if possible.
Return Values Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value
This function also returns the value of the property as a number.
Example PRI NT ' VnGet Nun(" Mai nFor m Top")
See Also "VnGetAlf$
"VnGetObj$
"VnSetAlf
'VnSetNum

'VnSetObj

148 Visual NPL Developers Guide

7.4.27 'VnGetObj$

Syntax

Parameters
Description

Return Values

Example

See Also

FUNCTION 'VnGetObj$(
/POINTER _Object$)

_Object$
Object for which to get areference.

This function returns an object reference for a particular object. When you are
done with the object, you must call VnFr eeCoj to free the reference.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

This function also returns the object reference for the object.
D M Cbj $_VnCoj Len

’G)j $=" VnGet (hj $(" Mai nFor m CKBut t on")
PRINT * VnGet Nun(* VnGhj $(Cbj $, " Vi si bl e"))
' VnFr eeQhj (b $)

'VnFreeObj

"Vnl sObj
'VnSetObj

Visual NPL Developers Guide 149

7.4.28 'VVnGetPrinterList

Syntax

Description

Return Values

Example

See Also

PROCEDURE 'VnGetPrinterList

This procedure gets the following information for each printer in the Printers
collection:

The name of the printer device
The name of the printer driver

The printer port

The number of printersisreturned in th&/nNunPri nt ers global variable
and the printer information is returned in th&nPri nt er $() global variable.
Each element of VnPri nter $() isaVnPrinters record, which consists
of thefollowing fields:

Pri nt er Devi ceName$
PrinterDriver Name$
PrinterPort$

These fields correspond one-for-one with the preceding list.

Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value

DM I
"VnGet Pri nt erLi st

PRINT "Printers:"

FOR 1=1 TO VnNunPrinters
PRINT VnPrinter$(l) .PrinterDeviceNane$;" "
PRINT VnPrinter$(l) .PrinterDriverNanme$;" "
PRINT VnPrinter$(l) .PrinterPort$

NEXT |

'VnGetCollectionList
'VnGetFormCtrlList
'VnGetL oadedFormList
'VnGetProplnfoList

150 Visual NPL Developers Guide

7.4.29 'VnGetProplnfolList

Syntax PROCEDURE 'VnGetProplnfoList (
/POINTER _Object$)

Parameters _Object$
Object for which to get properties.
Description Tgis procedure gets the following information for each property of a particular
object:

The name of the property

The data type of the property

How the property can be accessed at run time
Whether or not the property is an array

The property’s current value

The number of propertiesis returned in th&nNunPr ops global variable and
the property information is returned in th&nPr opl nf 0$() global variable.
Each element of VnPr opl nf 0$() isaVnProperties record, which
consistsof the following fields:

Nane$

Dat aType$

RunTi neAccess$

| sArray$

Pr opVal ue$

These fields correspond one-for-one with the preceding list.

Note TheVnProperties record also contains afield namdgef aul t $, which
was used in Visual NPL 1.0 to retrieve the property’s default value. Thisis no longer
supported and this field will always be blank.

Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Visual NPL Developers Guide

151

Example

See Also

DMI
' VnGet Pr opl nf oLi st (" Mai nFor ni')

PRI NT " Mai nForm properties:"

FOR I =1 TO VnNunPr ops
PRI NT VnPropl nfo$(l) . Name$;" “;
PRINT VnPropl nfo$(1) .DataType$;" "
PRI NT VnPropl nfo$(1) . PropVal ue$

NEXT |

'VnGetCollectionList
'VnGetFormCtrlList
'VnGetL oadedFormList
'VnGetPrinterList

152 Visual NPL Developers Guide

7.4.30 'VnGetRec$

Syntax

Parameters

Description

Return Values

Example

See Also

FUNCTION 'VnGetRec$
/POINTER _Object$,
/POINTER _RecName$)

_Object$
The form from which to get the record fields.

_RecName$
The name of the record to use when getting fields.

This function returns all of the field values for a particular NPL record from the
controlson aform. The order, placement, and data types for the values will be
as declared in thePUBLI C record named in the_RecName$ parameter.

To identify a control on the form as being a record field, put the record and field
name (separated by a period and omitting any dollar signs) into the control’s
Tag property. For example, puttingust Rec. Addr ess into the Tag

property of a TextBox control will cause the control’ s value to be retrieved into
the Addr ess field of abuffer formatted according to recor@ust Rec.

Note When using this procedure, all fields defined in the NPL record must have a
corresponding control on the VB form, or an error will be reported.

This function returns the buffer containing the record values.
Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
D M CQust Rec$1000
Qust Rec$=" VnGet Rec(" MyForni', " Cust oner ")

'VnGetRecSubset
'VnSetRec

Visual NPL Developers Guide 153

7.4.31 'VnGetRecSubset

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnGetRecSubset (
/POINTER _Object$,
/POINTER _RecNames,
/POINTER Buffer$)

_Object$
Form from which to get the record fields.

_RecName$
Name of the record to use when getting fields.

Buffer$
Buffer into which to put the record values.
This é)erocedure isavariation on the VnGet Rec$ function. Although the

"VnCGet Rec$ function requires all fields in the record to be defined in the Tag
properties of the target form, thé VnGet RecSubset procedure does not.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
D M CQust Rec$1000
' VnGet RecSubset ("My/Fornt, " Cust oner ", Qust Rec$)

'VnGetRec
'VnSetRec

154 Visual NPL Developers Guide

7.4.32 'VnGetTran$

Syntax FUNCTION 'VnGetTran$

Description This function gets the current font translation table. The translation table
consists of zero or more pairs of charactersin which the first is the NPL
character and the second is the VB character.

Return Values This function returns the current font translation table.

Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value
Example D M Tr an$1000

’Tr an$=' \nGet Tr an

See Also 'VnSetTran

Visual NPL Developers Guide 155

7.4.33 'VVnGetVbError

Syntax

Parameters

Description

Return Values

Example

FUNCTION 'VnGetVbError (
/POINTER ErrorMsg$)

ErrorMsg$
The most recent VB error message.

When one of the NPL routines generates an error, it could be due to an error in
VB. If thisisthe case, then the error code VnEr r VbEr r or will be returned.
In this case, the' VnGet VbEr r or function can be called to get the VB error
information. The function returns the VB error code and sets ther r or Msg$
arameter to the VB error message.
his function returns the most recent VB error code.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

D M Ret , VbErr or $100
Ret=result of some Visual NPL operation

| F Ret = VnErrVbError

VbRet =' VnGet VbEr r or (VOErr or $)

PRINT "VB error " ;VbRet;" - ";VbError$
END | F

156 Visual NPL Developers Guide

7.4.34 'VnGetVer$

Syntax FUNCTION 'VnGetVer$

Description This function returns the version number of Visual NPL. Thisstring is a three-
part number of the format X.YY.ZZ where:

X isthe major version number
Y'Y isthe minor version number

ZZ7 isthe subminor version number

A typical output result might be 2.00.04.
Return Values This function returns the Visual NPL version number.
Example PRINT "I'musing Visual NPL, Version ";'VnGetVer$

Visual NPL Developers Guide 157

7.4.35 'VninpBox$

Syntax

Parameters

Description

Return Values

Example

See Also

FUNCTION 'VnInpBox$ (
Title$80,
Prompt$80,
Flags,
/POINTER _InValue$)

Title$
Title (caption) of the input box window

Prompt$
Prompt within the input box window

Flags
Indicates that the value is either a single-line or a multiline value

_Invalue$
Initial value

This function prompts the user for an input value, using a small form with a
single or multiline TextBox control. If the user clicks th®K button, the value
int eg’dextBox isreturned. If the user click€ancel, an empty string is
returned.

To create asingle-line input box, set theFl ags parameter to 0. To create a
multiline input box, set theFl ags parameter to_VnMul ti | i ne .

This function returns the value entered or an empty string i€ancel is clicked.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
DI M Answer $3

Answer $=" Vil npBox("Del et e Everythi ng",
"Are you sure, Yes or No? 7,
O, n ll)

| F Answer =" Yes"
; del ete everything
END | F

'VnM sgBox

158 Visual NPL Developers Guide

7.4.36 'VnIinputScreen

Syntax

Parameters

Description

Return Values

PROCEDURE 'VnlnputScreen (
/POINTER _Object$,
/POINTER _Row,
/POINTER _Caol,
Height,
Width)
_Object$
Object on which to draw the screen image

_Row
Row on which to start capturing the screen

_Cal
Column on which to start capturing the screen

Height
The number of rows to capture

Width
The number of columns to capture

This procedure emulates a combination of the NPIL NPUT SCREEN and

PRI NT SCREEN commands, with thel NPUT SCREEN being performed on
the NPL window and thePRI NT SCREEN being performed on the VB object.
It could be used to pass the background of a NPL data-entry screen to VB.
Only text is transferred, no attributes or colors. Because this procedure uses
the VB Print method, the print data may be displayed to a form or a picture
box control, to a printer, or to the VB Debug window.

Note The NPL window need not be visible to have data displayed and captured by
"'Vnl nput Screen .

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Visual NPL Developers Guide 159

Example ; clear NPL screen
PR NT HEX(03)
print text on NPL screen (need not be visible)
PRI NT AT(2, 4);"Nane:"
PRI NT AT(4,4);"Address:"
PRI NT AT(6, 4);" Phone: "
transfer NPL screen text to a VB form
"Vnl nput Screen(" M/For ni', 0, 0, 10, 40)

See Also 'VnPrintAt
'VnPrintBox
'VnPrintCtrl
'VnPrintTo
'VnSetRowsCols

160 Visual NPL Developers Guide

7.4.37 'VnIsObj$

Syntax

Parameters

Description

Return Values

FUNCTION "VnlsObj$(
/POINTER _Object$)

_Object$
The string that may or may not be an object reference

This procedure emulates a combination of the NPIL NPUT SCREEN and

PRI NT SCREEN commands, with thel NPUT SCREEN being performed on
the NPL window and thePRI NT SCREEN being performed on the VB object.
It could be used to pass the background of a NPL data-entry screen to VB.
Only text is transferreq no attributes or colors. Because this procedure uses
the VB Print method, the print data may be displayed to a form or a picture
box control, to a printer, or to the VB Debug window.

Note The NPL window need not be visible to have data displayed and captured by
"'Vnl nput Screen .

This function determines whether or not a string is an object reference. An
object referenceisastring that is:

At least VnCbj Len characters long
Starts with" VnCb"

Ends with" bOnV"

The middle characters are the object reference; the wrapper is used to
disti n%uish objects from normal strings. If the preceding conditions are met,
then the function returns “Y,” otherwise, it returns “N.”

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Visual NPL Developers Guide 161

Example Dl M oj $ Vnoj Len
PRINT ' Vil sQbj $(O $) ;
Obj $=' VnGet Qbj $(" Mai nFor nt) ;
PRINT ' Vil sCbj $(O $)
' VnFr eeQhj (b $)

See Also 'VnFreeObj
'VnGetObj

162 Visual NPL Developers Guide

7.4.38 'VnMethod

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnMethod (
/POINTER _Object$,
/POINTER _Parms$)

_Object$
Object and method to call.

_Parms$
Method parameters.

This procedure calls amethod for a VB object. The method parameters are
passed as a list of items separated by the global constantVnDel i n$, the
default for which isthe “pipe” symbol (). There are actually three versions of
this routine—the procedure listed in the precedingection, a function that
returns a numeric, and a function that returns a string as follows:

PROCEDURE ' VnMet hod(/ PO NTER _Obj ect $,/ PO NTER _Par ns$)
FUNCTI ON ' VnMet hod(/ PO NTER _(bj ect $,/ PO NTER _Par ns$)
FUNCTI ON ' VnMet hod$(/ PO NTER ~_Cbj ect $,/ PO NTER _Par ns$)

Although most methods are called as procedures that smply perform some
operation on their object, some are used to do calculations and then return the
results. The version you use depends on the method being called.

Note ' VnMet hod is currently limited to passing its parameters into the method. Any
changes made to the parameters by the method will not be returned to your NPL program.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

" VnMet hod(“ Mai nFor m Li st Box. Addl t eni', "(ne")
" VnhMet hod(“ Mai nFor m Move", " 100| 200")
N=' VnMet hod(“ Mai nFor m Text Wdt h", " Sone text")

Visual NPL Developers Guide 163

7.4.39 'VnMsgBox

Syntax FUNCTION 'VnMsgBox (
/POINTER _Title$,
/POINTER _Msy$,
Flags)
Parameters

_Title$
Title (caption) of the message box window

_Msg$
M essage to appear within the message box window

Flags
Icon and button mask

Description This function shows a message in a small window. Y ou use thélags
parameter to determine what ty_[pe of icon (if an R to show beside the message as
well as which buttons to use. The icons available are as follows:
_VnMol conSt op
_VnMdl conQuesti on
_VnMdl conExc | anat i on
_VnMol conl nformati on

The button combinations that are available are as follows:
_VnMbCk
_VnMCkCancel
_VnMAbor t Ret ryl gnore
_VnMYesNoCancel
_VnMYesNo
_VnMRet ryCancel

The possible return codes are as follows:
_VnMdl dCk
_VnMol dCancel
_VnMbl dAbor t
_VnMl dRet ry
_Vnldlgnore
_Vnl dYes
_Vnl dNo

Return Values This function returns an indication of which button was clicked.

164 Visual NPL Developers Guide

Example DI M Answer

Answer =" VnMsgBox (" Del ete Everything","Are you sure?",
_VnMdYesNo+_VnMl conQuest i on)

| F Answer = Vnl dYes
; Delete everything here
END I F

See Also "VninpBox

Visual NPL Developers Guide 165

7.4.40 'VnObj$

Syntax

Parameters

Description

Return Values
Example

FUNCTION 'VnObj$(
/POINTER _Namel$,
/POINTER _Name2$)

Namel$
The first part of an object name

Name2$

The second part of an object name
This function builds an object name from two parts by concatenating the two,
with the parts joined by a period. Neither part can be blank, as no checking is
done to handle the case of blank names. Thisis done in order to make the
routine as fast as possible.
This function returns a combined object name.
D M Cbj $_Vn(oj Len

Obj $=' VnGet Qbj (" Mai nFor nt)
PRINT ' VnGet Al f $(* VnCbj $(Obj $, " Narre”))
' VInFr eeoj (j $)

166 Visual NPL Developers Guide

7.4.41 'VnObj3$

Syntax

Parameters

Description

Return Values
Example

FUNCTION 'VnObj3$(
/POINTER _Namel$,
/POINTER _Name2$,
/POINTER _Name3$)

Namel$
First part of an object name

Name2$
Second part of an object name

Name3$
Third part of an object name

This function builds an object name from three parts by concatenating the three,
with the parts joined by a period. None of the three parts can be blank, as no
checking is done to handle the case of blank names. Thisisdonein order to
make the routine as fast as possible.

This function returns a combined object name.

DI M For n$20, Cont r ol $20, Pr oper t y$20

For n$="Si gnQn"
Cont r ol $="Passwor d"
Property$="Text"

PRINT ' VnGet Al f$(' VnChj 3$(Forns , Control $, Property$))

Visual NPL Developers Guide 167

7.4.42 'VVnOpen

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnOpen (
ExeName$260)

ExeName$
Name of the VB program to run

This procedure opens alink with aVB program. ThexeNanme$ parameter is
the base name of the VB executable file (the file name without the full path and
without the. EXE extension).

The procedure first looks for a connection control with this base name that is
waiting to be connected to. If itan’'t find one, then it will look for the
executable file in the standard Windows search path and runit. 1t will then look
for the connection control again. If istill can’'t find it, or if it couldn’t find or
run the executable, it generates a Visual NPL error. Otherwise, the connection
is made and your program continues on.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
" VnQpen(" BASENAME")

'VnClose
'VnCloseAll
'VnGetAppNum
'VnSetAppNum

168 Visual NPL Developers Guide

7.4.43 'VVnPrintAt

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnPrintAt (
/POINTER _Object$,
/POINTER _Row,
/POINTER _Caol,
/POINTER _Text$)

_Object$
The form on which to print

_Row
The row at which to print

_Cal

The column at which to print
_Text$

The text to be printed

This procedure emulates the NPLPRI NT AT statement by printing a string at
a specific location on aform.

Note The output from this procedure was buffered in Visual NPL 1.0; it is now sent to VB
immediately.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

"VnPrint At ("MyForni, 2,2, "Nane: ")
"VnPrint At ("M/Forni', 4, 2,"Address: ")
"VnPrint At ("M/Forni, 6, 2, "Phone: ")

'VnPrintBox
'VnPrintCtrl

'VnPrintTo
'VnSetRowsCols

Visual NPL Developers Guide 169

7.4.44 '"\/nPrintBox

Syntax PROCEDURE 'VnPrintBox (
/POINTER _Object$,
/POINTER _Row,
/POINTER _Caol,
/POINTER _Height,
/POINTER _Width,
/POINTER _Color)

Parameters _Object$
The form on which to print the box
_Row
The left row at which to print the box
_Cal
The top column at which to print the box
_Height
The number of rows in the box
_Width
The number of columnsin the box
_Color
Background color of the box
Description This procedure emulates the NPLPRI NT BOX statement by drawing a box at
a particular location on aform.
Return Values Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value
Example " VnPri nt Box(" M/Forni', 2, 20, 5, 40, _VnLi ght G ay)
See Also "VnAt
'VnPrintAt
'VnPrintCtrl
'VnPrintTo
'VnSetRowsCols
'VnSetRGB

'VnSetSysColor

170 Visual NPL Developers Guide

7.4.45 'VVnPrintCtrl

Syntax

Parameters

Description

Return Values

Example

PROCEDURE 'VnPrintCtrl (
/POINTER _Object$,
/POINTER _Row,
/POINTER _Caol,
/POINTER _Height,
/POINTER _Widih,
/POINTER _Values,
/POINTER _Buffer$)

_Object$

The form on which to print the control
_Row

The row at which to print the control
_Cal

The column at which to print the control
_Height

The number of rows in the control
_Width

The number of columns in the control
_Value$

Theinitial value of the control
_Buffer$

Other property values

This prints a control onto aform when generatingontrols* on the fly.” The
form being printed tois treated as a text-emulation window; its coordinates are
expressed 1n characters rather than pixels. The control must have been created
with' VnCreateCirl . After creating the control, but before printing, you
may change any of its properties.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

"WnCreateCtrl s("Vnpl Char", "Label ", 2)
"VnPrintCrl ("FrmLabel (0)",2,2,1,1,"Name:"," ")
"VnPrintCrl ("FrmLabel (1)",4,2,1,1,"Address:"," ")

Visual NPL Developers Guide

171

See Also

'VnAt
'VnPrintAt
"VnPrintBox
'VnPrintTo
'VnSetRowsCols

172 Visual NPL Developers Guide

7.4.46 'VVnPrintTo

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnPrintTo(
/POINTER _Object$)

_Object$
Object to which to print

This procedure emulates a subset of the NPL printing capability. Instead of
using the NPL PRI NT and PRI NTUSI NG commands, use the NPLPRI NT
TOand PRI NTUSI NG TO commands with thevnPri nt $ buffer. The
"VnPrint To procedure passes the print data accumulated in thenPri nt $
buffer to VB to be displayed. Because this procedure uses the VBrint

method, the print data may be displayed to aform or a picture box control, to a
printer, or to the VB Debug window.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

PRINT TO VnPrint$;"' VnAt $(2, 4); "Nane: "
PRI NT TO VnPrint$;' VnAt $(4, 4); " Address: "
PRI NT TO VnPrint$; ' VnAt $(10, 4) ; " Phone: "
"VnPrint To(" M/For m')

'VnAt
'VnPrintAt
"VnPrintBox

'VnPrintCtrl
'VnSetRowsCols

Visual NPL Developers Guide 173

7.4.47 'VnSetAlf

Syntax PROCEDURE 'VnSetAlf (
/POINTER _Object$,
/POINTER _Value$)

Parameters _Object$
The property to set

_Value$
The property value

Description This function sets the value of a property from a string. If the property typeis
numeric (or something other than string), the string value will be converted to
the appropriate type.

Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
Example "VnSet Al f (" Mai nForm Caption","M/ Min Form')

See Also 'VnGetAlf$
'VnGetNum
'VnGetObj$
'VnSetNum
'VnSetObj

174 Visual NPL Developers Guide

7.4.48 'VnSetAppNum

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnSetAppNum (
NewAppNum)

NewAppNum
The new current application number

This procedure sets thecurrent a(%olication number to anew value. Thisvalue
must have been returned by VnGet AppNum after acall to' VnQpen . This
procedure is intended for use with NPL programs that connect to multiple VB
programs.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
" VnSet AppNun(AppNum)

'VnClose

'VnCloseAll

'VnGetAppNum

'VnOpen

Visual NPL Developers Guide

175

7.4.49 'VnSetNplWndPos

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnSetNplWndPos (
Left,
Top)

Left

The new left coordinate of the NPL run-time window
Top

The new top coordinate of the NPL run-time window

This procedure sets the position (upper, left corner) of the NPL run-time
window. All coordinates are in twips (1440 per inch).

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

' VnSet Nol WidPos(1440, 2880)

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndShow
'VnSetNplWndSize
'VnSetNplWndTitle

176 Visual NPL Developers Guide

7.4.50 'VnSetNplWndShow

Syntax

Parameter

Description

Return Values

Example

See Also

PROCEDURE 'VnSetNplWndShow (
Mode)

Mode
Indicates whether to show or hide the NPL run-time window
This procedure shows or hides the NPL run-time window. If tHebde

parameter is set to_VnH de , then the window is hidden. If thévbde
parameter is set to_VnShow, then the window is shown.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
" VnSet Npl widShow(_VnH de)
" VnSet Npl widShow(_VnShow)

'VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndSize

'VnSetNplWndTitle

Visual NPL Developers Guide 177

7.4.51 'VnSetNpIWndSize

Syntax PROCEDURE 'VnSetNplWndSize (
Widith,
Height)

Parameters Width
The width of the NPL run-time window

Height
The height of the NPL run-time window

Description This procedure sets the size (width and height) of the NPL run-time window.
All sizes arein twips (1,440 per inch).
Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Example " VnSet Npl WdSi ze(7200, 7200)

See Also "VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle$
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndTitle

178 Visual NPL Developers Guide

7.4.52 'VnSetNpIWndTitle

Syntax PROCEDURE 'VnSetNplWndTitle (
Title$80)

Parameters Title$
The new title (caption) for the NPL run time

Description This procedure sets the title (caption) of the NPL run-time window.
Return Values Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
Example "VnSet Npl WidTitl e$("My Runtine Wndow')

See Also "VnGetNplWndPos
'VnGetNplWndSize
'VnGetNplWndShow
'VnGetNplWndTitle
'VnSetNplWndPos
'VnSetNplWndShow
'VnSetNplWndSize

Visual NPL Developers Guide 179

7.4.53 'VnSetNum

Syntax

Parameters

Description

Return Values

See Also

PROCEDURE 'VnSetNum (
/POINTER _Object$,
/POINTER _Value)

_Object$
The property to set

_Value
The property value

This function sets the value of a property from a number. If the property type
is nonnumeric, the number will be converted to the appropriate type.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

Example
" VnSet Nun(" Mai nFor m Top", 2880)

'VnGetAlf$
'VnGetNum
'VnGetObj$
'VnSetNum
'VnSetObj

180 Visual NPL Developers Guide

7.4.54 'VnSetObj

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnSetObj (
/POINTER _Object$,
/POINTER _Value$)

_Object$
The property to be set

_Value$
The object reference

This procedure sets an “object” property to a new value. Note that the

_oj ect$ parameter must refer to some property of an object and not to the
object itself.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
"VnSet (bj (" Frm Label (0). Cont ai ner", " Frm Frane")

'VnFreeObj
'VnGetObj
'VnIsObj$

Visual NPL Developers Guide 181

7.4.55 'VnSetRec

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnSetRec
/POINTER _Object$,
/POINTER _RecNames,
/POINTER _Buffer$)

_Object$
The form on which to set the controls

_RecName$
The name of the record to use when setting fields

_Buffer$
The record from which to set the controls

This function sets values for aform’s controls from field values for an NPL
record. Order, placement, and data types for the values will be as declared in
the public record named in the RecNane$ parameter.

To identify a control on the form as arecord field, put the record and field name

'(:separat by a period and without dollar signs) into the control’s Tag property.
or example, puttingQust Rec. Addr ess into the Tag property of a

TextBox control will cause the control’s value to be fetched into th&ddr ess

field of a buffer formatted according to recordust Rec .

Note When using this procedure, all fields defined in the NPL record must have a
corresponding control on the VB form, or an error will be reported.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

RECORD / PUBLI C | nf oRecord
FI ELD Nane$30
Fl ELD Addr ess$40
FI ELD Phone$10

END RECORD

DI M I nf 0$# RECORDLENGTH(| nf oRecor d)
"VnSet Rec(" I nfoForm', "I nf oRecor d", | nf 0$)

'VnGetRec
'VnGetRecSubset

182 Visual NPL Developers Guide

7.4.56 'VnSetRGB

Syntax

Parameters

Description

Return Values

Example

See Also

FUNCTION 'VnSetRGB (
/POINTER _Red,
/POINTER _Green,
/POINTER _Blue)

_Red
Red color component

_Green
Green color component

_Blue
Blue color component
This function creates an RGB color value from its red, green, and blue

components. Each of the component colors is a number from O to 255
describing the intensity of that color in the combined color.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
" VnSet Nun(" Mai nFor m BackCol or ", ' VnSet RGB(255, 0, 0))

'VnGetColor
'VnSetSysColor

Visual NPL Developers Guide 183

7.4.57 'VnSetRowsCols

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnSetRowsCals (
/POINTER _Object$,
/POINTER _NumRows,
/POINTER _NumCols)

_Object$

The form for which to set row and column mapping
_NumRows

The number of rows to use when mapping screen coordinates
_NumCols

The number of columns to use when mapping screen coordinates

This function sets the number of rows and columns to be used when mapping
NPL row and column numbers to the default twips coordinate system used by
Visual Basic. Infact, this mapﬁi ngcvglill work regardless of which coordinate
system VB isusing (as set by the eMode form property).

There are several important concerns regarding the use of this procedure:

Y ou should set the form width and height before calling this routine

Y ou must call this routine each timeahser resizes the form; otherwise, the size of the
rows and columns will change with the form, causing new printing to be inconsistent
with earlier printing (unless you make the form nonsizable)

Y ou must call this routie each time you want to print to a form, not just once for each
form at the start of your program

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

"' VnSet Nun{ " Vnpl Char . Wdt h", 4000)
"VnSet Nunm(" Vnpl Char . Hei ght ", 4500)
' VnSet RowsCol s(" Vnpl Char ", 20, 60)

'VnlnputScreen
'VnPrintAt
'VnPrintBox
'VnPrintCtrl
'VnPrintTo

184 Visual NPL Developers Guide

7.4.58 'VnSetSysColor

Syntax FUNCTION 'VnSetSysColor (
/POINTER _Index)

Parameters _Index
Index of the system color

Description This function gets the color value for one of the system colors. The system
colors are as follows:
_VnAct i veBor der _Vnl nact i veBor der
_VnActiveTitl eBar _VnlnactiveTitl eBar
_VnAppWr kspace _VnMenuBar
_VnBut t onFace _VnMenuText
_VnBut t onShadow _VnScrol | Bars
_VnBut t onText _VnTi t| eBar Text
_VnDeskt op _VnW ndowBackgr ound
_Vn@ ayText _VnW ndowFr arre
_VnHi ghl i ght _VnW ndowText

_VnH ghl i ght Text

Return Values Value Meaning
VnError Returns 0 if successful, otherwise, returns a >0 value
Example " VnSet Nun{(" Mai nFor m BackCol or ",

' VnSet SysCol or (_VnDeskt op))

See Also 'VnGetColor
'VnSetRGBColor

Visual NPL Developers Guide 185

7.4.59 'VnSetTran

Syntax

Parameters

Description

Return Values

Example

See Also

PROCEDURE 'VnSetTran (
/POINTER _TranPairs$)

TranPairs$
A new translation table
This procedure sets the current font translation table. The translation table

consists of zero or more pairs of charactersin which the first is the NPL
character and the second is the VB character.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
' VnSet Tran(" AaBbCc")

'VnGetTran$

186 Visual NPL Developers Guide

7.4.60 'VnSleep

Syntax

Description

Return Values

Example

See Also

PROCEDURE 'VnSeegp

This procedure puts the NPL run time to sleep until VnWakeup is called.
Generaly," VnWkeup iscalled in response to some event, such as the
clicking of aClose button. This procedure actually does &EYI N statement in
order to stop the run time from executing. While in §EYI N, NPL procedures
can still be called from an external library (lik&NPL16. DLL), allowing NPL
to process events from your VB program. Eventually, one of these procedures
must call the' VnWakeup procedure.

Warning The NPL window shouldot be visible when your program

invokes VnSl eep . If itis, the user will be able to type a character or click the mouse
within the NPL window, both of which will cause KieYl N statement to finish and
'VnSl eep to resume.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value

; Display the form nodel essly
" VnMet hod(" Hel | oFor m Show', ")

;V\ait until 'VnWakeup is called
"VnSl eep

;Unl oad the form
" VnOd(" Hel | oFor nt', " Unl oad"," ")

;Close the link to the VB app
'Vnd ose

'VnWakeup

Visual NPL Developers Guide 187

7.4.61 'VnWakeup

Syntax

Description

Return Values

Example

See Also

PROCEDURE 'VnWakeup

This procedure wakes up the NPL run time after an earlier call to

" VnWakeup . Generaly," VnWakeup iscalled in response to some event,
such as the pressing of aClose button. To the run time program, this procedure
simulates the pressing of akey Because the' VnSl eep procedure does a

KEYI N, this causes it to return from theKEYl N and then return to the NPL
program that called it, effectively waking up the NPL program.

Value Meaning

VnError Returns 0 if successful, otherwise, returns a >0 value
PROCEDURE ' d oseButt ond i ck/ PUBLI C

" Vn\Wakeup

END PROCEDURE ' O oseBut t ondl i ck

'VnSleep

188 Visual NPL Developers Guide

CHAPTER 8

VB Reference

This chapter contains:

Descriptions of each of the VB constants
A list of the VB subroutines categorized by the type of operation they perform
Definitions and detailed descriptions of eashthe VB subroutines in alphabetical order

Visual NPL Developers Guide 189

8.1 Constants

This section gives an overview of the constants defined in thénplUtil module.

8.1.1 Version Number

The Visual NPL version number constant is:

VN_VERSI ON NUMBER

8.1.2 Error Codes

The Visual Basic error codes constants are as follows:

VN_ERR_NO_NPLWD
VN_ERR _NO_APPNAVE
VN_ERR_NO_MEMORY
VN_ERR DATA TOO LARGE

VN_ERR BAD CONNECT
VN_ERR BAD VERS| ON

VN_ERR CANT_SET_APPNAME
VN_ERR CALLBACK BAD VAR
VN_ERR CALLBACK_NOT_FOUND
VN_ERR CALLBACK_BAD NUM PARVG

VN_ERR CALLBACK _BAD RETURN TYP
E

VN_ERR CALLBACK _BAD PARM
VN_ERR CALLBACK CANT_CALL

No NPL Window was found.
No application name was specified.
The internal message buffer couldn't be allocated.

The dataistoo large for the internal message
buffer.

Invalid NPL connection.

Version number mismatch between

VNPLUTI L. BAS and VNPL16. OCX.
Can't set the application name.

Can't convert variant into NPL parameter.

Can't find NPL procedure.

Wrong number of parameters for NPL procedure.

Can't call NPL functions, just procedures.

Invalid parameter for NPL procedure.
Can't call NPL procedure.

190 Visual NPL Developers Guide

8.2 Subroutines

The following table lists the VB subroutines grouped according to the type of
operation they perform:

Operation Subroutine

Application Starting Point Mai n
Calling NPL Procedures VnCal | Proc
Form Centering VnCent er
Change-List Creation VnChg
VnChk
Vnd ose
VnHot
VnKey
VinKeyPr ess
VnMenud k
Event-Driven Support VnWakeup
Error Handling VnEr r Msg
VnKi | |
Support Functions Called Indirectly From NPL VnQrl Type
VnDev Def
VnSet Ctr |
VnSet (bj

Table 8.8 VB Subroutinesby Type

Visual NPL Developers Guide 191

8.2.1 Main

Syntax

Description

Return Values

Sub Main()

Thisisthe main procedure for the Visual Basic program. It does the
initialization of the link between VB and NPL. When creating anew VB
program you must specify this as the main procedure by selecting ti@ptions
item under theTools menu, and under theProject tab, setting theStartup
Form to Sub Main.

This procedure is called automatically by Visual Basic (when set as described
in the preceding section) when your program starts running. It should not be
called directly from your NPL program.

None

192 Visual NPL Developers Guide

8.2.2 VnCallProc

Syntax

Parameters

Description

Return Values

Function VnCallProc% (
ProcName$,
Parmi, ... ParmN)

ProcName$
Name of the NPL procedure to call

Parml
First parameter passed to this procedure

ParmN
Last parameter passed to this procedure

This function is used to call an NPL Procedurefrom VB. You must passthe
name of the NPL procedure to be called, followed by Zgy £arameters required
by the procedure. The NPL procedure must be declar UBLI C, the
number of parameters must be correct, and the type of each parameter must
match the type of data being passed.

AlthoughVnCallProc is declared as a function, you can aso call it asa

procedure (as you can do with any VB function). In this case, VB discards the

value that was returned. Thisis useful when you know the NPL procedure

exists and you know what types of parameters it takes, which is typical when

y/ou are writing a computer program. So, in most cases you should treat
nCallProc as a procedure and call it accordingly.

]:I'here are redlly only two times when you might want to caNnCallProc as a
unction:

When you don’t know if the procedure exists, which should be a very rare occurence,

When the NPL procedure might not be callable because your NPL program is doing
some processing and not waiting for a callback by means of NPL procedWe<Ond
or' VnSl eep.

Regardless of how you call it, for all other types of error&/nCallProc will

show a message box describing the error. Thisis because the other errors have
to do with parameter mismatches, which is a development-time problem that
should be solved long before a customer ever sees an application. In other
words, al of these problems should be solved by the developer and the user
should never see the message boxes.

Value Meaning

0 If successful
Nonzer o val ue If an error occurs

Visual NPL Developers Guide 193

Example

See Also

D M Nane$
Rem VB

VnCal | Proc "Pronpt","Custoner Nanme","Enter nanme:" , Nane

PROCEDURE ' Pronpt (/ PO NTER _Title$,
/ PO NTER _Pronpt $,
/ PO NTER Nane$)/ PUBLI C
; NPL
i\larre$=‘ Vnl npBox$(_Title$, Pronpt$, 0, Nane$)
END PROCEDURE ' Pr onpt

VnWakeup

194 Visual NPL Developers Guide

8.2.3 VnCenter

Syntax

Parameters

Description

Return Values

Examples

See Also

Sub VnCenter (
Frm AsForm)

Frm
A form to be centered on the screen

This procedure centers a form on the screen. It does this by setting the Top and
L eft properties of the form based on the current sizes of the screen and the
form. This procedure does exactly the same thing as the NPLVnCent er
procedure. It is provided for the sake of convenience.

None

Private Sub Form Load()
Rem VB
VnCenter M

End Sub

NPL procedure'VnCenter

Visual NPL Developers Guide 195

8.2.4 VnChg
Syntax Sub VnChg()
Description This procedure sets an internal flag indicating that the current control has been

chan ed in some way. Itisused to indicate that the control’s new value should
ded to the change-llst whernChk is next called.

Return Values None

Example Private Sub Address_ Change()
Rem VB
VnChg
End Sub
Private Sub COKButton_ dick()
Rem VB
VnChg
VnHot
End Sub
See Also VnChk

VnHot

196 Visual NPL Developers Guide

8.2.5 VnChk
Syntax Sub VnChk ()
Description This procedure checks to see if the current control has been changed in some

way. If so, the control’s new value is added to the change-list and the control’s
TagI BrLoperty ischecked to seeif itis"Hot". If itis, the change-list is sent back
to .

Return Values None

Example Private Sub Address_ Lost Focus()
Rem VB
VnChk
End Sub
See Also VnChg

VnHot

Visual NPL Developers Guide 197

8.2.6 VnClose
Syntax Sub VnClose(
UnloadMode%)
Parameters UnloadMode
UnloadM ode parameter from@ueryUnload event
Description This procedureis meant to be called from &QueryUnload event procedure. It

Return Values

Example

See Also

determines if the form is being closed from code (that is, by adnload
command) or by some other means. If the form is being closed from code, then
this call does nothing. Otherwise, it sends the change-list back to NPL so that
your program can react to the form being closed. It adds an entry to the
cEange—(I:ilst with theFl ag$ field set to "X" and theCont rol $ field set to
"Form Close".

None

Private Sub Form_ QueryUnl oad(Cancel % Unl oadMode%)
Rem VB
Vnd ose Unl oadMbde

End Sub

NPL procedure'VnWakeup

198 Visual NPL Developers Guide

8.2.7 VnCtriType

Syntax

Parameters

Description

Return Values
Example

See Also

Function VnCtrIType$(
Ctrl AsControl)

Ctrl
Any VB control

Thisis a developer-modifiable routine that can be found in thénplDev module
in your VB project. Assuch, you are responsible for its contents.

This function isused bythe NPL"' VnGet FornCt r | Li st procedure to get

a 3 character t?/pe name for a control. For the standard controls (that is, those
that are part of al VB projects), the control name prefixes found on pfi\?es 40-
41 of theMicrosoft Visual Basic Programming System form Windows, Version
4.0 Programmer's Guide are used. For the standard controls that are optional,
and for the 3-D versions of the standard controls, the lines defining the controls
t%pe names are commented out. Remove the comment delimiters for the controls
that you are using in your project.

For al other controls, you need to add VB code to return the type name. The

routine consists mainly of alarge set of nested f (that is, El sel f)
statements, so add anewEl sel f at the end as follows:

El self Typed Crl Is Control Nane Then
VnQrl Type = " XXX'

ReplaceCont r ol Nane with the name of the control and replace “XXX” with
any three-character type name that doesn’t conflict with any other type name in
the procedure.

This procedure is called automatically by Visual Basic when your NPL
program callsthe NPL' VnGet For nCt r | Li st procedure. It should not be
called directly.

This function returns a three-character type name for the control.

See above.

NPL procedure'VnGetFormCtriList

Visual NPL Developers Guide 199

8.2.8 VnDevDef

Syntax

Parameters

Description

Return Values

Function VnDevDef % (
Cmds,
Obj As Object,
ObjValue$)

Cmd
Developer-defined command

Obj
Object on which the command operates

ObjValue
Command-specific parameter values

Thisis a developer modifiable routine that can be found in thénplDev module
in your VB project. Assuch, you are responsible for its contents.

This procedure is used to create devel oper-defined commands for use with the
NPL ' VnOrvd procedure. Whenever' VnOnd doesn’t recognize the command
that it’s been given, it calls this procedure with the parameters that it was
passedv d Igg]:[her words, you can create any command you want by adding code
to VnDev .

For each command you want to create, add &£ase to theSel ect statement
intheVnDevDef function. By default, theDev Def command shows its
parameter in a message box and returns the result in the parameter:

dumy "dev def" command
Rem VB
Case "dev def"
bj Val ue = MsgBox((bj Val ue)

This command could be called from NPL program as follows:

"VnOmd(" ","Dev Def","Hello Vinny!")
Because thisis a sample command, feel free to delete it or use it as the starting
point of your first command. Notice that the command name is not case
sensitive and that the object parameter need not be passed. In general, you can
define the parameters in whatever manner you find appropriate.
This procedure is called automatically by Visual Basic when your NPL

program callsthe NPL' VnOnd procedure with a nonstandard command. It
should not be called directly.

Value Meaning

0 If successful

200 Visual NPL Developers Guide

Nonzer o val ue If an error occurs
Example See above

See Also NPL procedure’VnCmd

Visual NPL Developers Guide 201

8.2.9 VnErrMsg

Syntax

Parameters

Description

Return Values

Example

See Also

Function VnErrMsg$(
ErrCode%)

ErrCode
Visual NPL error code

This function returns the error message corresponding to a specific Visual NPL
error code. It isused by the VBMain procedure to report any errors while
trying to initialize the connection with NPL.

The error message corresponding to the error code.

Result = Vnpl Li nk. VnCon. | ni t (App. EXENane)

Rem VB

If Result <> 0 Then
Beep
MsgBox WVnErrMsg(Result), vbCritical, "Error”
End

End | f

Main

202 Visual NPL Developers Guide

8.2.10 VnHot
Syntax Sub VnHot()
Description This procedure can be called in change-list programming instead of calling

Return Values

Example

See Also

VnChk and setting individual Tag propertiesto "Hot". Normally all hot
controls have theirTag property set to "Hot". Every timé/nChk iscalled, the
Tag property is checked; ifit’s"Hot" then control is passed back to NPL.
VnHot performs the same operation but eliminates the need to set the T
property. You can callVnHot for each hot controlinstead of callingvVnChk .

None

Private Sub OKButton_ dick()
Rem VB
VnChg
VnHot

End Sub

VnChg
VnChk

Visual NPL Developers Guide 203

8.2.11 VnKey

Syntax

Parameters

Description

Return Values

Example

See Also

Sub VnKey(
KeyCode%,
Shift%)

KeyCode
KeyCode parameter from ldeyUp or KeyDown event

Shift
Shift parameter from K eyUp or KeyDown event

This procedureis meant to be called from aKeyUp or KeyDown event
procedure to send the keystroke to NPL as a single-item change-list. The entry
In the change-list will have theFl ag$ field set to "K' and theChgVal ue$
field set to the string versions of th&keyCode and Shi ft f)arameters. The
Shi ft parameter is always a single-digit number that will appear as the last
character of the field.

None

Private Sub Form KeyUp(KeyCode% Shift%
Rem VB
VnKey KeyCode, Shift

End Sub

VnKeyPress

204 Visual NPL Developers Guide

8.2.12 VnKeyPress

Syntax

Parameters

Description

Return Values

Example

See Also

Sub VnK eyPress(
KeyAscii%)

KeyAscii

KeyAscii parameter from ld eyPress event
This procedureis meant to be called from &K eyPress event procedure to send
the keystroke to NPL as a single item change-list. The entry in the change-list

will have theFl ag$ field set to "A" and theChgVal ue$ field set to the string
version of theKeyAsci i parameter.

None

Private Sub Form KeyPress(KeyAscii %
Rem VB
VnKeyPress KeyAsci i

End Sub

VnKey

Visual NPL Developers Guide 205

8.2.13 VnKill
Syntax Sub VnKill
Description

Return Values

Example

See Also

This procedureis meant to be called from the Debu%lwindow when your VB
program stops and can’'t continue. It will make the NPL window visible, re-
enable it, and then close the connection between NPL and VB.

Warning Do not use this procedure in your program. It isintended as a developer’ s tool
to be used only when things go wrong.

None

VnKi | |

NPL procedure'VnClose

206 Visual NPL Developers Guide

8.2.14 VnMenuClk

Syntax

Parameters

Description

Return Values

Example

See Also

Sub VnMenuClk (
MenuName$)

MenuName
The name of the menu command being selected

This procedureis meant to be called from a menu command event procedure to
send the menu command and the current change-list back to NPL. The menu
command’s entry in the change-list will have th€l ag$ field set to "C" and the
Control $ field set to theMenuNae parameter. TheMenuNane

parameter can be any name you want; it doesn’t have to be the name of the
menu control.

None
Private Sub FileMenu_ dick(lndex%
Rem VB
Sel ect Case | ndex
Case 1
VnMenud k " Fi | eNew!'
Case 2
VnhMenud k "Fi | eCpen”
Case 3
VnMenud k "Fi | eSave"
Case 4
VnMenud k "Fi |l eSaveAs"
Case 5
VnMenud k "FilePrint"
Case 6
VnMenud k "Fil eExit"
End Sel ect
End Sub
VnChg
VnChk

VnHot

Visual NPL Developers Guide 207

8.2.15 VnSetCitrl

Syntax
Parameters

Description

Return Values

Example
See Also

Function VnSetCtrl % (
Obj As Object,
CtrIName$,

Index%,
Ctrl AsControl)

Obj
The form on which the control array exists

CtrIName
The name of the control array

Index
The index into the control array

Ctrl
The control from the control array

Thisis a developer-modifiable routine that can be found in thénplDev module
in your VB project. Assuch, you are responsible for its contents.

Thisfunction isused by the NPL' VnOreat eCtrl s procedure to do the
actual control creation. For each control array on each form on which you
create controls, add aCase to theSel ect statement in theVnSet (bj
function. The text of theCase should be the name of the control array and the
single line of code for theCase should set theCt r | parameter to element

I ndex of the control array:

Case " Text Box"
Set Grl = bj. Text Box(| ndex)

This procedure is called automatically by Visual Basic whenever your NPL
3rogr:|:1m calstheVnOreat eCtrl s procedure. It should not be called
irectly.

Value Meaning

0 If successful
Nonzer o val ue If an error occurs
See above.

NPL procedure'VnCreateCtrls
VnSetObj

208 Visual NPL Developers Guide

8.2.16 VnSetODbj

Syntax

Parameters

Description

Return Values

Example
See Also

Function VnSetObj % (
ObjName$,
Index%,
Obj AsObject)

ObjName
The name of the object

Index
The index of the object if it's a member of an array

Obj
The object (or array of objects)

Thisis a developer-modifiable routine that can be found in thénplDev module

in your VB project. Assuch, you are responsible for its contents.

This procedure is used to register the top-level objects (mostly forms) of your

VB program so that your NPL program can access them. For each object that
ou want to use, add aCase to theSel ect statement in theVnSet Qb
unction. The text of theCase should be the name of the object and the single

!ci r}(le of code for theCase should set theCoj parameter to the object itself as
ollows:

Case "Mai nFor nf
Set (bj = Mai nForm

This object can now be used in the NPL program, for example:
PRI NT ' VnGet Al f $(" Mai nFor m Capt i on")
This procedure is called automatically by Visual Basic whenever your NPL

3rogr?rn passes an object to one of the NPL procedures. It should not be called
irectly.

Value Meaning

0 If successful
Nonzer o val ue If an error occurs
See above.

VnSetCtrl

Visual NPL Developers Guide 209

8.2.17 VnWakeup

Syntax

Parameters

Description

Return Values

Example

See Also

Sub VnWakeup (
UnloadMode%)

UnloadMode
UnloadM ode parameter from@ueryUnload event

This procedureis meant to be called from &QueryUnload event procedure. It
determines if the form is being closed from code (that is, by adnload
command) or by some other means. If the form is being closed from code, this
call does nothing. Otherwise, it calls the NPL VnWakeup procedure to wake
up the NPL program so that it can react to the form being closed.

None

Private Sub Form_ QueryUnl oad(Cancel % Unl oadMode%)
Rem VB
Vn\Wakeup Unl oadMbde

End Sub

NPL procedure'VnWakeup
VnCallProc
VnClose

210 Visual NPL Developers Guide

Index

_VnDelim$ 52, 54
_VnMultiline60
_VnObjLen 49
_VnSys4l

A

ActiveX 13
App 14
application number44

B

BAS 17
base controls84
registering 85
boxes
input 60
message 59
breakpoints 28

C

calling NPL from VB55
change list
demos 88, 90
change-list
accessing 72, 74
hot controls 70, 72, 73, 77
keystrokes 79
menu commands77
printing to aform82, 83
record mapping 82
recording changes75
records 80
row and column numbers82
change-list programming70
classes 17
creating 23
Clipboard 14
CLS 17
code
editing 35
collections 52

Visual NPL Developers Guide

211

colors 63
commands

built-in 53

developer defined54
connecting VB and NPL43

closing 43

initialization

NPL 43
VB 43

multiple connections44
control arrays32, 34
controls 13

adding at design time30

arrays 32

clearing 54

deleting at design time31

naming 15, 47

registering base control 85

tab order 33
controls on the fly82
controls-on-the-fly84

base controls84

creating 85

destroying 86

registering base control 85

converting numbers to string$5

current application numberd4

D

Debug window 67
demos

change list 88, 90

event driven 88, 91
detecting the NPL library65
DLL 12

E

Err 14
Error 14
error handling 62
event driven
demos 88, 91
event driven progammingd5
events 13, 15, 45
responding to 56
EXE 26
making 26

F

filelist 5
font translation 64

212 Visual NPL Developers Guide

forms 13, 14
centering 65
clearing 54
closing 61
creating 23
designing 28
FRM 16
FRX 16
handler 46
loading 54
MDI 23
modal vs. modeless72
naming 15, 47
registering 49
unloading 54

FRM 16

FRX 16

functions
creating 24

G

graphics
loading 54

H

hot controls 70, 72, 73, 77

input box 60
installation 4, 96

M

Main 190
mainline 45
MDI 23, 35
menus
creating 33
message box 59
methods 12, 15
calling 52
modules 17
NPL
Vnpl 41
VnplDev 41, 62, 83
VB
BAS 17
CLS 17
creating 23
VnplDev 42, 49, 54, 85

Visual NPL Developers Guide

213

VnplLink 42
VnplUtil 42

N

NPL window 58
changing the title59
hiding 58
positioning 58
showing 58
sizing 58

O

objects 12, 13, 47
collections 52
naming 15, 47
references 49

creating 49

freeing 49
selecting 28
system 50

OCX 2, 13,98
using 25

OLE control 13

P

pictures
loading 54
Printer 14
Printers 14
procedures
calling 55
creating 24
projects 16
breakpoints 28
making an EXE 26
running 27
VBP 16
properties 12, 14
colors 63
creating 24
getting 51
naming 15, 47
setting 51, 54
setting at run time30
Tag 77

R

RETURN 67

214 Visual NPL Developers Guide

S

Screen 14
selecting objects28
SETUP.EXE4

T

tab order 33

Vv

VBA 2
VBP 16
VBX 12
Visual Basic 2

editing code 35

options 19

windows 18
VnAdditems115
VnAt$ 83, 116
VnCallProc 55, 191
VnCenter 65, 117, 193
VnChg 75, 194
VnChgList$ 71, 72
VnChgNo 71, 72
VnChk 75, 195
VnClearChgList75, 118
VnClose 43, 45, 66, 78, 119, 196
VnCloseAll 44, 66, 120
VnCmd 54, 61, 71, 86, 121
VNCON16.0CX 40
VnConvNum$65, 125
VnCreateCtrls85, 126
VnCtrlType 197
VnDestroyCtrl 86, 128
VnDetect 65, 129
VnDevDef 54, 198
VnErrFunc 62, 130
VnErrM ethod 62
VnErrMsg 200
VnErrM sg$ 62
VnErrNum 62, 131
VnError 62
VnFreeObj 49, 132
VnGetAlf$51, 133
VnGetAppNum44, 134
VnGetChgList 74, 135
VnGetCollectionList53, 136
VnGetColor 64, 137
VnGetFormCtrlList52, 139
VnGetL oadedFormList52, 141
VnGetNplWndPos58, 142
VnGetNplWndShow58, 144
VnGetNplWndSize58, 143

Visual NPL Developers Guide

215

VnGetNplWndTitle58
VnGetNplWndTitle$ 145
VnGetNum 51, 146
VnGetObj$ 49, 51, 147
VnGetPrinterList52, 148
VnGetProplnfoList52, 149
VnGetRec 81

VnGetRec$ 151
VnGetRecSubset81, 152
VnGetTran$ 64, 153
VnGetVbError 154
VnGetVer$ 66, 155
VnHot 77, 201
VnlnpBox$ 60, 156
VnlnputScreen 84, 157
VnlsObj$ 159

VnKey 79, 202
VnKeyPress79, 203
VnKill 67,204
VnMenuClick 77
VnMenuClk 205
VnMethod 52, 161
VnMsgBox 59, 162
VnObj$ 48, 164
VnObj3$ 165

VnOpen 43, 44, 45, 166
VNPL.NPL 41
VNPL16.DLL 40, 65
VNPLDEV.BAS42
VNPLLINK.FRM 42
VNPLUTIL.BAS42
VnPrint$ 83

VnPrintAt 83, 167
VnPrintBox 83, 168
VnPrintCtrl 85, 169
VnPrintTo 83, 171
VnSetAlf 172
VnSetAppNum44, 173
VnSetCtrl 85, 206
VnSetNplWndPos58, 174
VnSetNplWndShow58, 175
VnSetNplWndSize58, 176
VnSetNplWndTitle58, 177
VnSetNplWndTitle$59
VnSetNum 178
VnSetObj 49, 179, 207
VnSetRec 80, 180
VnSetRGB 63, 181
VnSetRowsCols82, 182
VnSetSysColor 63, 183
VnSetTran 64, 184
VnSleep 46, 61, 185
VnWakeup 46, 61, 186,208

W

216 Visual NPL Developers Guide

windows
NPL's main window58

	VISUAL NPL DEVELOPER’S GUIDE
	Contents
	Documentation Conventions
	Introduction
	What is Visual NPL?
	System Requirements
	Developer Knowledge
	Hardware
	Software

	Installation
	File List
	What’s New in Version 2.0?
	Moving from Version 1.0 to 2.0

	Visual Basic Fundamentals
	About Objects
	Windows Objects
	VB Objects
	Properties
	Methods
	Events
	Naming Objects

	Understanding and Working with Projects
	Files That Make Up a Project
	And There Were Many Windows
	Useful Configuration Options
	Creating Forms, Modules, and Classes
	Creating Procedures, Functions, and Properties
	Using Third-Party Controls
	Making an EXE File
	Running and Debugging Your Program

	Designing Forms
	Selecting Objects with the Mouse
	Setting Form and Control Properties
	Adding and Deleting Form Controls
	Form Control Arrays
	Setting the Tab Order
	Creating Menus

	Editing Code

	Visual NPL Fundamentals
	How It All Works
	NPL Diskimage
	VB Modules and Linkage Form
	Building the Connection
	Multiple Connections

	Event-Driven Programming
	Mainline Program
	Handling a Form

	Using Objects
	Object Names
	Object References
	Registering Your Forms
	System Objects

	Accessing VB from NPL
	Setting and Getting Properties
	Calling Methods
	Getting Collections
	Special Commands
	Developer-Defined Commands

	Calling NPL Procedures from VB
	Responding to Events
	Error Conditions
	Other Routines
	Controlling the NPL Window
	Message Boxes
	Input Boxes
	Closing a Form
	Error Handling
	Manipulating Colors
	Font Translation
	Detecting the NPL External Library
	Miscellaneous Routines

	Recovery If NPL or VB Stop
	Recovery If NPL Stops
	Recovery If NPL Stops in a VB-Called Procedure
	Recovery If VB Stops

	Change-List Programming
	What Is Change-List Programming?
	Invoking Change-List Processing
	Accessing the Change-list from NPL
	Change-List Array
	Hot Control
	Manually Accessing the Change-list

	Adding to the Change-list from VB
	Recording Changes
	Creating Hot Controls
	Menu Commands
	Closing a Form
	Keyboard Handling

	Record-Based Forms
	Setting and Getting Records
	Mapping Fields to Controls

	Creating Controls On The Fly
	Row and Column Mapping
	Printing to a Form
	Base Controls
	Registering Control Names
	Creating Controls
	Destroying Controls

	Demo Programs
	Hello (Change-List)
	Hello (Event-Driven)
	Demos
	Change-List Programs
	Event-Driven Programs
	Common Dialogs
	Boxes

	Distributing Visual NPL Programs
	Installation Considerations
	Using the Setup Wizard
	Distributing Visual NPL Without a Setup Program
	Registering OCXs
	Required Support Files

	NPL Reference
	Constants
	VnSys (VNPL.NPL Device Number)
	VnDelim$ (Parameter Delimiter)
	VnStrRefSize (Minimum /POINTER String Parameter Size)
	Maximum Number of Controls and Properties
	Key Translation Strings
	Error Handling Flags and Error Codes
	Message Box and Input Box Flags
	Window Show Modes
	Color Constants
	Standard Property Values
	Common Dialog Flags

	Records
	Variables
	Subroutines
	'VnAddItems
	'VnAt$
	'VnCenter
	'VnClearChgList
	'VnClose
	'VnCloseAll
	'VnCmd
	'VnConvNum$
	'VnCreateCtrls
	'VnDestroyCtrl
	'VnDetect
	'VnErrFunc
	'VnErrNum
	'VnFreeObj
	'VnGetAlf$
	'VnGetAppNum
	'VnGetChgList
	'VnGetCollectionList
	'VnGetColor
	'VnGetFormCtrlList
	'VnGetLoadedFormList
	'VnGetNplWndPos
	'VnGetNplWndSize
	'VnGetNplWndShow
	'VnGetNplWndTitle$
	'VnGetNum
	'VnGetObj$
	'VnGetPrinterList
	'VnGetPropInfoList
	'VnGetRec$
	'VnGetRecSubset
	'VnGetTran$
	'VnGetVbError
	'VnGetVer$
	'VnInpBox$
	'VnInputScreen
	'VnIsObj$
	'VnMethod
	'VnMsgBox
	'VnObj$
	'VnObj3$
	'VnOpen
	'VnPrintAt
	'VnPrintBox
	'VnPrintCtrl
	'VnPrintTo
	'VnSetAlf
	'VnSetAppNum
	'VnSetNplWndPos
	'VnSetNplWndShow
	'VnSetNplWndSize
	'VnSetNplWndTitle
	'VnSetNum
	'VnSetObj
	'VnSetRec
	'VnSetRGB
	'VnSetRowsCols
	'VnSetSysColor
	'VnSetTran
	'VnSleep
	'VnWakeup

	VB Reference
	Constants
	Version Number
	Error Codes

	Subroutines
	Main
	VnCallProc
	VnCenter
	VnChg
	VnChk
	VnClose
	VnCtrlType
	VnDevDef
	VnErrMsg
	VnHot
	VnKey
	VnKeyPress
	VnKill
	VnMenuClk
	VnSetCtrl
	VnSetObj
	VnWakeup

	Index

